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Abstract

We propose a compositional Bayesian semantics that interprets declarative sentences in a natu-
ral language by assigning them probability conditions. These are conditional probabilities that
estimate the likelihood that a competent speaker would endorse an assertion, given certain hy-
potheses. Our semantics is implemented in a functional programming language. It estimates the
marginal probability of a sentence through Markov Chain Monte Carlo (MCMC) sampling of
objects in vector space models satisfying specified hypotheses. We apply our semantics to ex-
amples with several predicates and generalised quantifiers, including higher-order quantifiers. It
captures the vagueness of predication (both gradable and non-gradable), without positing a pre-
cise boundary for classifier application. We present a basic account of semantic learning based
on our semantic system. We compare our proposal to other current theories of probabilistic
semantics, and we show that it offers several important advantages over these accounts.

1 Introduction

In classical model theoretic semantics (Montague 1974; Dowty, Wall, and Peters 1981; Barwise and
Cooper 1981) the interpretation of a declarative sentence is given as a set of truth conditions with Boolean
values. This excludes vagueness from semantic interpretation, and it does not provide a natural frame-
work for explaining semantic learning. Indeed, semantic learning involves the acquisition of classifiers
(predicates), which seems to require probabilistic learning.1

Recently several theories of probabilistic semantics for natural language have been proposed to accom-
modate both phenomena (van Eijck and Lappin 2012; Cooper et al. 2014; Cooper et al. 2015; Goodman
and Lassiter 2015; Lassiter 2015; Lassiter and Goodman 2017; Sutton 2017). These accounts offer inter-
esting ways of expressing vagueness, and suggestive approaches to semantic learning. They also suffer
from a number of serious shortcomings, some of which we briefly discuss in Section 4.

In this paper we propose a compositional Bayesian semantics for natural language in which we assign
probability rather than truth conditions to declarative sentences. We estimate the conditional probability
of a sentence as the likelihood that an idealised competent speaker of the language would accept the
assertion that the sentence expresses, given fixed interpretations of generalised quantifiers and certain
other terms, and a set of specified hypotheses, pS(A | H). S is a competent speaker of the language, A
is the assertion that the sentence expresses, and H is the set of hypotheses on which we are conditioning
the likelihood that S will endorse A. On this approach assessing the probability of a sentence in the cir-
cumstances defined by the hypotheses is an instance of evaluating the application of a classifier acquired
through supervised learning, to a new argument (set of arguments).

Our semantics interprets sentences as probabilistic programs (Borgström et al. 2013). Section 2 gives
a detailed description of our implementation. It involves encoding objects and properties as vectors in
vector space models. Our system uses Markov Chain Monte Carlo (MCMC) sampling, as implemented

This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.

1See (Clark and Lappin 2011) for a discussion of computational learning and probabilistic learning models for natural
language.
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in WebPPL (Goodman and Stuhlmüller 2014), a lightweight version of Church (Goodman et al. 2008),
and it estimates the marginal probabilities of predications and quantified sentences relative to the models
satisfying the constraints of an asserted set of hypotheses (pS(A | H)).

We give examples of inferences involving several generalised quantifiers, including higher-order quan-
tifiers (in the sense of Barwise and Cooper (1981)) like most. Our semantics uses the same vector space
models and sampling mechanism to express both the vagueness of gradable predicates, like tall, and of
ordinary property terms, such as red and chair.

Our semantic framework does not require extensive lexically specified content or pragmatic knowledge
statements to estimate the parameters of our vector space models. It also does not posit boundary values
(hard coded or contextually specified) for the application of a predicate to an argument.

The system that we describe here is a prototype that offers a proof of concept for our approach. A
robust, wide coverage version of this system will be useful for a variety of tasks. Three examples are as
follows.

First, we intend to encode both semantic and real world knowledge as priors in our models. These
will sustain probabilistic inferencing that will support text understanding and question answering in a
way analogous to that in which Bayesian Networks are used for inference and knowledge representation
in restricted domains. Second, we envisage an integration of visual and other non-linguistic vector
representations into our models. This will facilitate the evaluation of candidate descriptions of images
and scenes. It will also allow us to assess the relative accuracy of statements concerning these scenes.
Finally, our system could be used as a filter on machine translation. Source and target sentences are
expected to share the same probability values for the same models. The success which our framework
achieves in these applications will provide criteria for evaluating it.

In Section 3 we present an outline of our implemented system for semantic learning, that extends our
compositional semantics to the probabilistic acquisition of classifiers.

In Section 4 we compare our system to recent work in probabilistic semantics.
Finally, in Section 5 we state the main conclusions of our research, and we indicate the issues that we

will address in future work.

2 An Implemented Probabilistic Semantics

Our semantics draws inspiration from (i) Montague semantics, (ii) vector space models, and (iii)
Bayesian inference. Additionally, the implementation is guided by programming language theory. At the
front-end we rely on a precise semantics for probabilistic programming, provided by Borgström et al.,
using their effect system to make explicit the sampling of parameters and observations. At the backend,
we estimate probabilities using MCMC sampling, as described by Goodman et al. (2008). The imple-
mentation is encoded as a Haskell library. It makes effects explicit using a monadic system, with calls
into Goodman’s WebPPL language for probability approximation.2

Following Montague, our semantics assumes an assignment from syntactic categories to types. These
assignments are given in Haskell as follows:

type Pred = Ind → Prop
type Measure = Ind → Scalar
type AP = Measure
type CN = Ind → Prop
type VP = Ind → Prop
type NP = VP → Prop
type Quant = CN → NP

While Montague leaves individuals Ind as an abstract type, we give it a concrete definition. We
represent individuals as vectors, and propositions as (probabilistic) Booleans. Additionally, adjectival
phrases are treated as scalars, and so they are expressed by a real number.

2The code for our system is available at https://github.com/GU-CLASP/
CompositionalBayesianSemantics.
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Crucially, the evaluation of every expression is probabilistic. The meaning of each expression in our
semantic domain is itself a probability distribution, whose value can be computed symbolically using the
rules provided by Borgström et al. (2013), or approximated with a tool such as WebPPL.

2.1 Individuals and Predicates
We can illustrate these concepts by a simple example, written in Haskell syntax, using our front end.

modelSimplest = do
p ← newPred
x ← newInd
return (p x )

The function modelSimplest declares a predicate p and an individual x , and probabilistically evaluates
the proposition “x satisfies p”. Note that “newPred” and “newInd” have the effect of sampling over their
respective distribution (we clarify those shortly), and so have monadic types. In the absence of further
information, an arbitrary predicate has an even chance to hold of an arbitrary individual. Running the
model, using our implementation, gives the following approximate result:

false : 0.544 true : 0.456

The distribution of individuals is a multi-variate normal distribution of dimension k , with a zero mean
vector and a unit covariance matrix, and where k is a hyperparameter of the system.

newInd = newVector
newVector = mapM (uncurry sampleGaussian) (replicate k (0, 1))

Predicates are parameterised by a bias b and a vector d, given by normalizing a vector sampled in
the same multi-variate normal as individuals. Any individual x is said to satisfy the predicate if the
expression b+ d · x > 0 is true. In code:

newMeasure = do
b ← sampleGaussian 0 1
d ← newNormedVector
return (λx → b + d · x )

newPred = do
m ← newMeasure
return (λx → m x > 0)

In addition to sampling random predicates and individuals, and evaluating expressions, we can make
assumptions about them. We do this using the observe primitive of Borgström et al. (2013). The name
of this primitive suggests that the agent observes a situation where a given proposition holds. In terms
of MCMC sampling, if the argument to an observe call is false, then the previously sampled parameters
are discarded, and a fresh run of the program is performed. In fact, in the WebPPL implementation that
we use, only a portion of the sampling history may be discarded (see (Goodman and Stuhlmüller 2014)
for details.) A trivial model using observe is the following, where one evaluates the probability of an
observed fact:

modelSimple = do
p ← newPred
x ← newInd
observe (p x )
return (p x )

Even when using our approximating implementation, evaluating the above model yields certainty.

true : 1
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2.2 Comparatives
We support scalar predicates and comparatives. The expression b + d · x can be interpreted as a degree
to which the individual x satisfies the property characterised by (b, d). Thus satisfying a scalar predicate
is defined as follows:

is :: Measure → Pred
is m x = m x > 0

And comparatives can be defined by comparing such measures:

more :: Measure → Ind → Ind → Prop
more m x y = m x >m y

Using these concepts we can define models like the following:

modelTall :: P Scalar
modelTall = do

tall ← newMeasure
john ← newInd
mary ← newInd
observe (more tall john mary)

return (is tall john)

That is, if we observe that “John is taller than Mary”, we will infer that “John is tall” is slightly more
probable than “John is not tall”.

The exact probability values that the model produces will be influenced by the priors that we apply
(such as the standard deviation of Gaussian distributions), in addition to the observations that we record.
Further, MCMC sampling is an approximation method, thus the results will vary from run to run. In the
rest of the paper we will show results obtained from a typical run. For the above example, we get:

true : 0.552 false : 0.448

2.3 Vague predicates
We support vague predication, by adding an uncertainty to each measure we make for the predicate in
question. This is implemented through a Gaussian error with a given std. dev. σ for each measure.

vague σ m x = m x + gaussian 0 σ

modelTall :: P Prop
modelTall = do

tall ← vague 3 <$> newMeasure
john ← newInd
mary ← newInd
hyp (more tall john mary)

return (is tall john)

In this situation the tallness of John is more uncertain than before:

false : 0.512 true : 0.488

Additionally, a vague predicate allows apparently contradictory statements to hold, although with low
probability, giving a fuzzy quality to the system. For example:

modelTallContr :: P Prop
modelTallContr = do

tall ← vague 3 <$> newMeasure
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john ← newInd
mary ← newInd

return (more tall john mary ∧ more tall mary john)

false : 0.77 true : 0.23

2.4 Generalised Universal Quantifiers
We now turn to generalised quantifiers. We need to interpret sentences such as “most birds fly” compo-
sitionally. On a standard reading, “most” can be seen as a constraint on a ratio between the cardinality of
sets.

most(cn, vp) =
#{x : cn(x) ∧ vp(x)}

#{x : cn(x)}
> θ. (1)

for a suitable threshold θ. Translated into a probabilistic framework, we posit that the expected value of
vp(x) given that cn(x) holds should be greater than θ.

most(cn, vp) = E(1(vp(x)) | cn(x)) > θ (2)

where 1 is an indicator function, such that 1(true) = 1 and 1(false) = 0. In general, cn and vp may
depend on probabilistic variables, and thus the above equation is itself probabilistic.

While taking the expected value is not an operation found in the language presented by Borgström
et al. (2013), it is not difficult to extend their framework in this direction, because the expected value can
be given a definite symbolic form:

most(cn, vp) =

∫
Ind fN (x)1(cn(x) ∧ vp(x))dx∫

Ind fN (x)1(cn(x))dx
> θ (3)

where fN denotes the density of the multivariate gaussian distribution for individuals. Further, the above
can be implemented in many probabilistic programming languages, including WebPPL. In Haskell code,
we write:

most :: Quant
most cn vp = expectedIndicator p > θ

where p = do x ← newInd
observe (cn x )
return (vp x )

That is, we create a probabilistic program p, which samples over all individuals x which satisfy cn,
and we evaluate vp(x). The compound statement is satisfied if the expected value of the program p,
itself evaluated using an inner MCMC sampling procedure, is larger than θ. In our examples, we let
θ = 0.7. Other generalised quantifiers can be defined in the same way with a different value for θ — in
our examples we define many with θ = 0.6.3

On this basis, we make inferences of the following kind. “If many chairs have four legs, then it is
likely that any given chair has four legs”. We model this sentence as follows:

chairExample1 = do
chair ← newPred
fourlegs ← newPred
observe (many chair fourlegs)
x ← newIndSuch [chair ]
return (fourlegs x )

3It is possible, in fact desirable, to let θ be sampled (say from a beta distribution) so that its posterior would depend on
linguistic and contextual inputs.
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true : 0.821 false : 0.179

The model samples all possible parameter values (vectors/biases) for chairs and four-legged objects.
Then, it discards all parameters such that E(1(four−legged(y)) | chair(y)) ≤ θ for a random individ-
ual y. In the implementation this expected value is approximated by first doing an independent sampling
of a number of individuals y such that chair(y) holds, and then checking the value of four−legged(y)
for this sample.

The evaluation of the last two statements, corresponding to E(four−legged(x)) | chair(x), is done
using another sampling of individuals, but retaining the values for chair and four-legged parameters
identified in the previous sampling.

Interestingly, because the models that we are building implement generalized quantifiers through cor-
relation of predicates, we get ‘inverse’ correlation as well. Therefore, assuming that “many chairs have
four legs”, and in the absence of further information, and given an individual x with four legs, we will
predict a high probability for chair(x).

chairExample2 :: P Prop
chairExample2 = do

chair ← newPred
fourlegs ← newPred
observe (many chair fourlegs)
x ← newIndSuch [fourlegs ]
return (chair x )

true : 0.653 false : 0.347

The model’s assumptions can be augmented with the hypothesis that most individuals are not chairs.
This will lower the probability of being a chair appropriately.

chairExample3 :: P Prop
chairExample3 = do

chair ← newPred
fourlegs ← newPred
observe (many chair fourlegs)
observe (most anything (not ′ ◦ chair))
x ← newIndSuch [fourlegs ]
return (chair x )

false : 0.779 true : 0.221

We conclude this section with a more complex example inference involving three predicates and four
propositions. Assume that

1. Most animals do not fly.

2. Most birds fly.

3. Every bird is an animal.

Can we conclude that “most animals are not birds”? We model the example as follows:

birdExample = do
animal ← newPred
bird ← newPred
fly ← newPred

observe (most animal (not ′ ◦ fly))
observe (most bird fly)
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observe (every bird animal)
return (most animal (not ′ ◦ bird))

And it concludes with overwhelming probability:

true : 0.941 false : 0.059

This result can be explained by the fact that only models similar to the one pictured in Figure 1 conform
to the assumptions. One way to satisfy “every bird is an animal” is to assume that “animal” holds for
every individual, because this is compatible with all hypotheses. Then “most animals don’t fly” implies
that the “fly” predicate has a large (negative) bias. Finally, “most birds fly” can be satisfied only if “fly” is
highly correlated with “bird” (the predicate vectors have similar angles), and if the bias of “bird” is even
more negative than that of “fly”. Consequently, “bird” also has a large negative bias, and the conclusion
holds.

3 Semantic Learning

Bayesian models can adapt to new observations, giving rise to learning. We have seen that our frame-
work takes account of data provided in the form of qualitative statements, including those made with
generalised quantifiers. We can also accommodate information in a sequence of observed situations.

Consider the following data (which we have taken from https://en.wikipedia.org/wiki/
Naive_Bayes_classifier).

Person height (feet) weight (lbs) foot size(inches)
male 6 180 12
male 5.92 190 11
male 5.58 170 12
male 5.92 165 10
female 5 100 6
female 5.5 150 8
female 5.42 130 7
female 5.75 150 9

We feed the person and weight data into our system to see if it can learn a correlation between these
two random variables.

model :: P Prop
model = do

weight ← newMeasure

bird

fly

1

1

Figure 1: A probable configuration for the predicates in the bird example. (We ignore the “animal”
predicate, which can be assumed to hold for every individual.) The grey area suggests the density of
arbitrary individuals, a 2-dimensional Gaussian distribution in this case. Birds lie in the blue and purple
areas. Flying individuals are in the red and purple shaded areas. Note that the density of individuals in
the blue area is small compared to that in the purple area. In this model, the predicates “most individuals
are not birds”, “most individuals don’t fly” and “Most birds fly” hold together.
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isMale ← newPred

let sampleWith :: Bool → Float → P Ind
sampleWith male w = do

s ← newInd
observe (isMale s ‘iff ‘ constant male)
observeEqual (weight s) (constant w)
return s

← sampleWith True 1.80
← sampleWith True 1.90
← sampleWith True 1.70
← sampleWith True 1.65
← sampleWith False 1.00
← sampleWith False 1.50
← sampleWith False 1.30
← sampleWith False 1.50

x ← newInd

observeEqual (weight x ) 1.9
return (isMale x )

The data is provided as a series of observations. The Boolean observations use the usual observe
primitive. To handle continuous data, we must add a new primitive in our implementation. In principle
we could add a hard constraint on the measure of any scalar predicate, and the posterior would simply
select points which satisfy exactly this constraint. However, because we are using MCMC sampling,
this strategy would discard all samples that do not satisfy the constraint exactly. But because precise
satisfaction of a constraint is stochastically impossible, all samples would be discarded and we would
never obtain an approximation for the posteriors.

To avoid this problem we retain samples which do not satisfy the equality exactly, but with a specified
probability, given by the expression e−d

2
, where d is the distance between the predicted and observed

values.
With this implementation our model predicts that an individual of weight 1.9 is male with the following

probabilities.
true : 0.57805 false : 0.42195

A more direct way to identify the learned correlation between weight and maleness is by measuring
the cosine of the angle between the weight and male vectors. The posterior adheres to the following
distribution, which indicates a strong correlation.
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4 Related Work

van Eijck and Lappin (2012) propose a theory in which probability is distributed over the set of possible
worlds. The probability of a sentence is the sum of the probability values of the worlds in which it is
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true. This proposal is not implemented, and it is unclear how the worlds to which probability is assigned
can be represented in a computationally tractable way.4 Van Eijck and Lappin also suggest an account
of semantic learning. It seems to require the wholistic acquisition of all the classifier predicates in a
language in a correlated way.

Our system avoids these problems. Our models sample only the individuals and properties (vector
dimensions) required to estimate the probability of a given set of statements. Learning is achieved for
restricted sets of predicates with these models.

Cooper et al. (2014) and Cooper et al. (2015) develop a compositional semantics within a probabilistic
type theory (ProbTTR). On their approach the probability of a sentence is a judgment on the likelihood
that a given situation is of a particular type, specified in terms of ProbTTR. They also sketch a Bayesian
treatment of semantic learning.

Cooper et al.’s semantics is not implemented, and so it is not entirely clear how probabilities for sen-
tences are computed in their system. They do not offer an explicit treatment of vagueness or probabilistic
inference. It is also not obvious that their type theory is relevant to a viable compositional probabilistic
semantics.

Sutton (2017) uses a Bayesian view of probability to support a resolution of classical philosophical
problems of vagueness in degree predication. His treatment of these problems is insightful, and it seems
to be generally compatible with our implemented semantics. But it operates at a philosophical level of
abstraction, and so a clear comparison is not possible.

Goodman and Lassiter (2015) and Lassiter and Goodman (2017) construct a probabilistic semantics
implemented in WebPPL. They construe the probability of a declarative sentence as the most highly
valued interpretation that a hearer assigns to the utterance of a speaker in a specified context. The
Goodman–Lassiter account requires the specification of considerable amounts of real world knowledge
and lexical information in order to support pragmatic inference. It appears to require the existence of a
univocal, non-vague speaker’s meaning that hearers seek to identify by distributing probability among
alternative readings. Goodman and Lassiter posit a boundary cut off point parameter for graded modi-
fiers, where the value of this parameter is determined in context. They adopt a classical Montagovian
treatment of generalised quantifiers. They also do not offer a theory of semantic learning.

By contrast we take the probability value of a sentence as the likelihood that a competent speaker
would endorse an assertion given certain assumptions (hypotheses). Therefore, predication remains in-
trinsically vague. We do not assume the existence of a sharply delimited non-probabilistic reading for
a predication that hearers attempt to converge on through estimating the probability of alternative read-
ings. All predication consists in applying a classifier to new instances on the basis of supervised training.
We do not posit a contextually dependent cut off boundary for graded predicates, but we suggest an
integrated approach to graded and non-graded predication on which both types of property term allow
for vague borders. Further advantages of our account include a probabilistic treatment of generalised
quantifiers, which includes higher-order quantifiers like most, and a basic theory of semantic learning
that is a straightforward extension of our sampling procedures for computing the marginal probability of
a sentence in a model.

5 Conclusions and Future Work

We have presented a compositional Bayesian semantics for natural language, implemented in the func-
tional programming language WebPPL. We represent objects and properties as vectors in n-dimensional
vector spaces. Our system computes the marginal probability of a declarative sentence through MCMC
sampling in Bayesian models constrained by specified hypotheses.

Our semantic framework provides straightforward treatments of vagueness in predication, gradable
predicates, comparatives, generalised quantifiers, and probabilistic inferences across several property
dimensions with generalised quantifiers. It avoids some of the limitations of other current probabilistic
semantic theories.

4See (Lappin 2015) for a discussion of the complexity problems posed by the representation of complete worlds.
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In future work we will extend the syntactic and semantic coverage of our framework. We will improve
our modelling and sampling mechanisms to accommodate large scale applications more efficiently and
robustly. Finally, we will develop our Bayesian learning theory to handle more complex cases of classifier
acquisition.
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