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Abstract

Text Language Identification is a Natural Language Processing (NLP) task of identifying and
recognizing a given language out of many different languages from a piece of text. In the present
scenario, this task has become the basis and beginning step of various other NLP tasks, for ex-
ample, Machine Translation, improving search relevance for a multilingual query, processing
code-switched data etc. The biggest limitation of many Language Identification systems is not
being able to differentiate between closely related languages. This paper describes our submis-
sion to the ILI 2018 shared-task, which includes the identification of 5 closely related Indo-Aryan
languages. We used a word-level LSTM (Long Short-Term Memory) model, a specific type of
Recurrent Neural Network model, for this task. Given a sentence, our model embeds each word
of the sentence and convert into its trainable word embedding, feeds them into our LSTM net-
work and finally predict the language. We obtained an F1 macro score of 0.836, ranking 5th in
the task.

1 Introduction

In the present scenario, Language Identification (LID) has become an important problem in the field of
Natural Language Processing due to its wide range of applications. The Language Identification task
has become an important step of various other NLP tasks, for example, Machine Translation, improving
search relevance for a multilingual query, named entity recognition in code-switched data etc. The
difficulty for Language Identification systems at present is that it is hard for them to differentiate between
closely related languages. In this paper, we try out a language identification system that basically focuses
on language identification of closely related Indian (Indo-Aryan) languages, i.e., Hindi, Awadhi, Magahi,
Bhojpuri, and Braj. Language Identification is of special significance for multilingual countries like
India.

The ILI shared task (Zampieri et al., 2018) focuses on identification of 5 closely related languages. The
shared task also included an open track that allows additional resources, but we have only participated in
the closed track that is, we performed closed training on the ILI dataset provided (Kumar et al., 2018).

The motivation behind our work is to find out how to build a system which can distinguish between
closely related language over a domain. In the Indian context, it is a very important problem, since India
has a large linguistic diversity, such that many of the languages/dialects/varieties are spoken by a large
number of speakers. Many of these are closely related. There are also a large number of text documents
which consist of a combination of two or more languages (due to code-switching or code-mixing). So, a
system must be developed to serve the purpose. Even though language identification was one of the first
NLP problems for which statistical techniques were applied, there is still a lot of scope for improvement
in the performance of language identification systems for closely related languages. The shared task
provided us a good opportunity to participate and find out the state-of-the-art for this problem. Due to
the diversity in its languages, the given task could be an important step in bridging the digital divide
between the Indian masses and the world.
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.
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For the shared task, we initially used character level n-gram based statistical approaches with vari-
ous distance measures like mutual information (Zamora et al., 2014), out of place measure (Singh and
Goyal, 2014) etc. But the result was not satisfactory for closely related languages in the task, although
these approaches worked very well for distant languages. We then moved to an LSTM (Hochreiter and
Schmidhuber, 1997) based word-level model which has improved our results. Generally, the traditional
statistical approaches, which do not take sequences into account, are useful for distant languages, but in
the case of closely related languages, sequence modelling approaches such as LSTM give better results,
since these approaches effectively utilize the internal dependencies existing between words of sentences.

2 Related Work

Quite often, even human beings are unable to correctly identify similar languages. The accuracy attained
by previous works on language identification is over 95 percent for distant languages, but for closely
related language, the numbers are still significantly lower. In previous years’ reports, there is available a
detailed description of the methods, the datasets and their limitations. Here we briefly summarize these.

Most of the reports show that sequence modelling approaches are better than other classical ap-
proaches, such as n-gram (with distance metric as out of place measure (Singh and Goyal, 2014)),
Support Vector Machines (Noor and Aronowitz, 2006), graph-based n-gram method (Tromp and Pech-
enizkiy, 2011), Naive Bayes Classifier (Peng et al., 2004) etc. for identifying the language. In some
cases, where the task is mainly focused on short sentences, linear SVM and maximum entropy models
(Lau et al., 1995) are performing better. It is also noted that Bhojpuri and Magahi are much more similar
and too difficult to distinguish through the n-gram approach.

For distant languages, using an n-gram based approach, it was noted that character level n-grams are
more appropriate than word-level n-grams. This may be due to the limitation caused by out of vocabulary
words present in the given text document. It was also found that using a combination of six, seven and
eight character n-grams to train the model gave better accuracy.

3 Methodology

We formulate the task as a multi-class classification problem where each language is a distinct class. So,
for a given sentence, our task is to find the appropriate language class for that sentence. The prediction
of language class is carried out with the help of Long Short-Term Memory (LSTM) network architecture
(Gonzalez-Dominguez et al., 2014), which is a special kind of Recurrent Neural Networks (RNNs). We
particularly, are using Bidirectional LSTMs, a variant of LSTMs, instead of unidirectional LSTMs, since
they can see the past and future context of the words present in the sentences and are much better suited
for our task. The overall description of our system is given in the following section.

Input
The input of the model is a sentence of words of an unknown language to be identified.

Output
The output will be a language class (the language name) corresponding to the given sentence. We will
get a probability vector of shape(1, 5) that we pass through an argmax layer to extract the index of the
most likely language label.

Steps Involved

1. The first step is to convert an input sentence into a word vector representation.

2. We train 50-dimensional GloVe (Pennington et al., 2014) word embedding during the training phase
of LSTMs.

3. Finally, we feed GloVe representation of each word in a given sentence of unknown language label
into the LSTM hidden layers and predict the most appropriate language label for the sentence.
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Mini-batching
We are using Keras (Chollet and others, 2015) as the framework for implementing LSTM for our task. In
our task, we will train LSTMs using mini-batches (Ioffe and Szegedy, 2015). The most basic requirement
of a Deep Learning framework is that all sequences in the same mini-batch have the same length. If we
had a five words sentence and, say, a seven words sentence, then the computations and calculations
needed for them are quite different (one will take five steps of LSTMs, and other takes seven steps), so it
is not possible for both to be processed in the same way.

The common solution for this problem is to use padding. We set a maximum limit on the sequence
length and pad all the sentences to the same length. The padding could be done in two ways:
1. Forward padding
2. Backward padding

Forward padding is chosen over backward padding since forward padding does not face many problems
of vanishing gradient problem as compared to Backward Padding. For example, if we set padding as 40
words, the sentence longer than 40 words will be truncated. In our task, we set the padding length to 40
words for each sentence.

Embedding Layer
In Keras, the embedding matrix is displayed as an embedding layer and maps word indices to their
word embedding vectors. The main aim of this layer is to convert a matrix of indices of words of input
sentences into their GloVe (Pennington et al., 2014) word embedding.

Building Model Architecture and Hyper-parameter Tuning
After creating embedding matrix, we need to decide on the architecture of our LSTM model. We choose
some number of hidden layers, Dropout value (Srivastava et al., 2014), etc. to create the LSTM model.
These details are given in Section 3.1.

After creating the architecture, we compile the model with loss function as cross-entropy loss
(De Boer et al., 2005), optimizer as Adam optimizer and metrics as accuracy. The number of epochs
and batch size are also tuned for getting improved results.

3.1 Training Details

We train the entire LSTM model jointly, including the embedding layers. We used Adam optimization
(Kingma and Ba, 2014) with the original parameters that are the default, and the loss function used is
cross-entropy. Our implementation is done with the help of Keras framework. The model is run with
shuffled mini-batches of sizes 128 and the epochs were ended when the loss in the developmental set
stopped improving.

We did hyperparameter tuning by trying out various values, and the best results were observed with
following values of hyperparameters: Mini-batch size of 128, Number of hidden layers in LSTM cell to
128, Number of epochs used were 36 and dropout value is 0.45.

4 Results

The result of our system on various runs are described in Table 1. The scores of various metrics in the
best run is also shown in the Table 2.

System F1 (macro)
Random Baseline 0.2024
01 0.8360
02 0.7444
03 0.8269

Table 1: Results for the ILI task. Best results out of our runs are in bold.
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Metric Score
Accuracy 0.8478
F1-micro 0.8478
F1-macro 0.8360
F1-weighted 0.8442

Table 2: Table showing result of various metric in best run
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Figure 1: ILI task: Confusion Matrix of our best run

The confusion matrix for our best run is shown in Figure 1.

The results of different approaches used for implementing the task reveal that the best result is observed
when we used sequence modelling approaches, i.e., by using the LSTM architecture, with which we
achieved F1-macro score of 0.8360. In our second run, we used statistical n-gram approach with mutual
information (Zamora et al., 2014) as the distance measure, in which we achieved F1-macro score of
0.7444. The reason for above result, could be the inability of n-gram approach to distinguish closely
related languages, particularly, Bhojpuri and Magahi. The above method was unable to model the internal
dependencies between the words of the sentence. So, we used sequence modelling approaches using
LSTMs. The reason is that LSTMs can remember long-range dependencies among the words of the
sentences.

5 Conclusion

The major conclusions which we can draw from our work in this shared task are:

1. In n-gram model, the result were improved when we increased the n-value. The combination of 6,
7 and 8-gram model yield the best result.

2. While tuning our n-gram model, we concluded that results of character-level n-gram model were
much better than that of word-level n-gram model.

3. N-gram approach was not able to distinguish effectively between Bhojpuri and Magahi due to the
high degree of similarity between them. So, the sequence modelling approach was implemented to
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remember internal dependencies existing between words in the sentences.

4. The hyperparameter tuning was performed, and the best results were observed for LSTM model
when mini-batch size was 128, the number of Hidden layers in LSTM was 128, with the dropout of
0.45 and number of epochs used were 36.

5. For smoothing the gradient descent, we used Adam optimization algorithm and the loss function
used was the cross-entropy loss.

6 Future work

In future, we would like to apply our method to other natural language processing tasks such as multilin-
gual search query, dialect identification, etc.
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