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Abstract

The present contribution revolves around efficient approaches to language classification which
have been field-tested in the Vardial evaluation campaign. The methods used in several lan-
guage identification tasks comprising different language types are presented and their results are
discussed, giving insights on real-world application of regularization, linear classifiers and cor-
responding linguistic features. The use of a specially adapted Ridge classifier proved useful in
2 tasks out of 3. The overall approach (XAC) has slightly outperformed most of the other sys-
tems on the DFS task (Dutch and Flemish) and on the ILI task (Indo-Aryan languages), while its
comparative performance was poorer in on the GDI task (Swiss German dialects).

1 Introduction

Language identification is the task of predicting the language(s) that a given document is written in. It
can be seen as a text categorization task in which documents are assigned to pre-existing categories.
This research field has found renewed interest in the 1990s due to advances in statistical approaches and
it has been active ever since, particularly since the methods developed have also been deemed relevant
for text categorization, native language identification, authorship attribution, text-based geolocation, and
dialectal studies (Lui and Cook, 2013).

As of 2014 and the first Discriminating between Similar Languages (DSL) shared task, a unified
dataset (Tan et al., 2014) comprising news texts of closely-related language varieties has been used to
test and benchmark systems. The instances to be classified are quite short and may even be difficult to
distinguish for human annotators, thus adding to the difficulty and the interest of the task. An analysis
of recent developments can be found in Goutte el al. (2016), in the reports on previous shared tasks as
well as in a recently published survey on language and dialect identification (Jauhiainen et al., 2018).
In previous editions the shared tasks organized at VarDial included dialects of Arabic, German, and
the DSL shared task which featured similar languages and language varieties (Zampieri et al., 2017;
Malmasi et al., 2016; Zampieri et al., 2015; Zampieri et al., 2014). Other related shared tasks are the
MGB challenge on Arabic (Ali et al., 2017), the PAN lab on author profiling which included dialects and
language varieties (Rangel et al., 2017), and the TweetLID shared task which included similar languages
(Zubiaga et al., 2016).

The present study was conducted on the occasion of the fifth VarDial workshop (Zampieri et al.,
2018). It focuses on submissions to three different datasets: the first iteration of the Discriminating
between Dutch and Flemish in Subtitles (DFS) task (van der Lee and van den Bosch, 2017), the second
iteration of work on Swiss German dialects based on the GDI dataset as described in Samardžić et al.
(2016), and the first iteration of the Indo-Aryan Language Identification (ILI) shared task, based on the
compiled ILI dataset (Kumar et al., 2018). The peculiarities of the datasets include their diversity in terms
of linguistic characteristics and their fluctuating difficulty, as most varieties can be mutually intelligible
with diverging degrees of lexical and morphosyntactic variation. As in previous tasks, the number of
instances is limited in size, the training and test sets are on the order of magnitude of thousands or tens

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.



165

of thousands of instances, the latter being fairly small in size, with at most a sentence each time. As
a consequence, a classifier constructed on small training sets may be biased and have a large variance,
as the classifier parameters (coefficients) are poorly estimated. It is also unstable, as small changes in
the training set may cause large changes in the classifier. A key component of winning systems is their
capacity to make correct predictions on unseen data based on the trained model.

In this context, it has been shown that more conventional statistical methods can very well be more
accurate than latest machine learning approaches (Barbaresi, 2017), resulting in a paradox common to a
fair number of applications: “Knowing that a certain sophisticated method is not as accurate as a much
simpler one is upsetting from a scientific point of view as the former requires a great deal of academic
expertise and ample computer time to be applied.” (Makridakis et al., 2018)

The remainder of this paper is organized as follows: in section 2 the preprocessing and feature ex-
traction steps are presented, the classifiers follow in section 3, and three systems are then evaluated and
discussed in section 4.

2 Large feature vectors

2.1 Preprocessing

Preliminary tests have shown that adding a custom linguistic preprocessing step could slightly improve
the results. As such, instances are tokenized using the SoMaJo tokenizer (Proisl and Uhrig, 2016),
which achieves state-of-the-art accuracies on both web and CMC data for German. As it is rule-based,
it is supposed to be efficient enough for the languages of the shared task. No stop words are used
since relevant cues are expected to be found automatically as explained below. Additionally, the text
is converted to lowercase (if applicable) as it led to better results during tests on training data, mostly
because of the potential noise induced by words at the beginning of a sentence.

2.2 Bag of n-grams approach

Statistical indicators such as character- and token-based language models have proven to be efficient on
short text samples, especially character n-gram frequency profiles from length 1 to 5, whose interest is
(inter alia) to perform indirect word stemming (Cavnar and Trenkle, 1994). In the context of the shared
task, a simple approach using n-gram features and discriminative classification achieved competitive
results (Purver, 2014). Although features relying on the output of annotation tools may yield useful
information such as POS-features (Zampieri et al., 2013), the varieties to classify here are less-resourced
in terms of tools, which calls for low-resource methods that can be trained and applied easily.

In view of this I document work on a refined version of the Bayesline (Tan et al., 2014) which has
been referenced and used in previous editions (Barbaresi, 2016a; Barbaresi, 2017). After looking for
linguistically relevant subword methods to overcome data sparsity, it became clear that taking frequency
effects into consideration is paramount. As a consequence, the present method grounds on a bag-of-n-
grams approach. It first proceeds by constructing a dictionary representation which is used to map words
to indices. After turning the language samples into numerical feature vectors (a process also known as
vectorization), the documents can be treated as a sparse matrix (one row per document, one column per
n-gram).

2.3 Term-weighting

The next step resides in counting and normalizing, which implies to weight with diminishing importance
tokens that occur in the majority of samples. The concept of term-weighting originates from the field
of information retrieval (Luhn, 1957; Spärck Jones, 1972). The whole operation is performed using
existing implementations by the scikit-learn toolkit (Pedregosa et al., 2011), which features an adapted
version of the tf-idf (term-frequency/inverse document-frequency) term-weighting formula. Smooth idf
weights are obtained by systematically adding one to document frequencies, as if an extra document was
seen containing every term in the collection exactly once, which prevents zero divisions. In addition, the
feature vectors have been normalized using L2-norm, which led to marginal improvements.
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Overall, the feature vectors are typically large and lead to high-dimensional sparse datasets, so that
computationally efficient methods are called for. An additional constraint resides in finding classifiers
which work well with sparse matrices.

3 Classifiers

3.1 Naive Bayes classifier
All naive Bayes classifiers assume that the value of a particular feature is independent of the value of
any other feature, given the class variable. The classifier used entails a conditional probability model
where events represent the occurrence of a n-gram in a single document. In this context, a multinomial
Bayesian classifier assigns a probability to each target language during test phase, as categorical and
multinomial distributions are conflated. This approach performs well with comparatively small training
data, as the estimate of the parameters necessary for classification is good enough to compete with more
complex approaches. In the case of large-scale data, it is computationally very efficient as it allows for
classification in near linear time, i.e. reading the training data once and then reading the instances of the
test data.

It has been shown that Naive Bayes classifiers were not merely baselines for text classification tasks.
They can compete with state-of-the-art classification algorithms such as support vector machines, espe-
cially when using approriate preprocessing concerning the distribution of event frequencies (Rennie et
al., 2003); additionally they are robust enough for the task at hand, as their decisions may be correct even
if their probability estimates are inaccurate (Rish, 2001).

3.2 “Bayesline” formula
The Bayesline formula used in the shared task grounds on existing code (Tan et al., 2014) and takes ad-
vantage of a comparable feature extraction technique and of a similar Bayesian classifier. This approach
outperformed most systems in the previous edition of the shared task (Barbaresi, 2017). It has been
refined for this year’s edition concerning the vector representation and the parameters of classification.
After cross-validation tests on the training data parameters have been added compared to the default
procedure, most importantly a regularization parameter as described above and another parameter for
additive smoothing, also known as Laplace or Lidstone smoothing, which has been set to 0.04 instead of
0.005. Additive smoothing allows the assignment of non-zero probabilities to features which have not
been seen during training. Character n-grams from varying lengths are taken into account and then the
classification takes place.1

One of the potential shortcomings of this approach is that it does not see the instance space as a high
dimensional space, but just as a collection of frequencies from which it estimates the probability of each
class using the Bayes theorem.

3.3 Regularized Linear Classifiers
Regression analysis consists in estimating the relationship between a dependant variable (here the target
language) and a number of predictors (here the linguistic cues). During training, a function of the in-
dependent variables is estimated, the fitted model is then used on test data. Generalized Linear Models
consist in a regression in which the target value is expected to be a linear combination of the input vari-
ables. They can for example be used to discriminate between web texts for inclusion into web corpora
for linguistic research (Barbaresi, 2015).

Ridge is a regularization technique also known as Ridge regression or Tikhonov regularization
(Tikhonov, 1943; Hoerl, 1962). It is particularly useful when the number of input variables greatly
exceeds the number of observations and when there are many small to medium-sized effects, which is
often the case for n-gram data. In such cases, the least square regression estimator may not uniquely ex-
ist, and although it uses a biased estimator Ridge regression can reduce the expected squared loss. This

1TfidfVectorizer(analyzer=’char’, ngram range=(2,6), strip accents=None, lowercase=True, sublinear tf=True,
smooth idf=False, use idf=True, min df=0, norm=’l2’) followed by MultinomialNB(alpha=0.04), adapted from
https://web.archive.org/web/20180507114732/http://scikit-learn.org/stable/auto examples/text/document classification 20-
newsgroups.html See also https://github.com/adbar/vardial-experiments
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Classifier F1 (macro)
Random Baseline 0.5000
Naive Bayes 0.6207
SGD 0.6134
Ridge 0.6318

Table 1: Results for DFS task, all classifiers used the same data preparation pipeline

Classifier F1 (macro)
Random Baseline 0.2521
Naive Bayes 0.6336
SGD 0.6291
Ridge 0.6296

Table 2: Results for GDI task, all classifiers used the same data preparation pipeline

method also proves useful in the presence of multicollinearity, that is when the predictor variables used in
a regression are highly correlated, which can be expected at least in some cases for natural language. In
practice, it imposes a penalty on the size of coefficients so that they become more robust to collinearity.
Moreover the ridge parameter allows a linear regression to work in cases that are not completely linearly
separable. From an practical point of view, ridge regression can avoid overfit through regularization, as
it shrinks the coefficients towards zero (but not exactly zero) to reduce variance. This step can minimize
the impact of statistically irrelevant features on the trained model, in this regard it is bound to simplify the
model. In the present case, it is expected to focus on salient features and lead to a faster, more clear-cut
classification. However, ridge regression cannot perform variable selection directly, thus the potential
increase in prediction accuracy cannot be immediately used for interpretation.

The method used for the task is close to linear least-squares Support Vector Machine (SVM) clas-
sification in terms of formulation but faster in practice. The implementation in the Python framework
scikit-learn (Pedregosa et al., 2011) includes a stochastic average gradient descent solver which is known
to work well with large-scale and sparse machine learning problems often encountered in text classifica-
tion and natural language processing.

To provide a basis for comparison, further experiments have been conducted using a stochastic gradient
descent (SGD) classifier, a method which aims at finding minima or maxima by iteration and is thus more
computationally complex but still an efficient approach to fit linear models, useful when the number of
samples (and the number of features) is very large. Consequently, SGD has been successfully applied
to large-scale and sparse machine learning problems often encountered in text classification and natural
language processing. In the implementation used here, the regularized linear model with stochastic
gradient descent (SGD) learning is equivalent to a (soft-margin) linear Support Vector Machine (SVM),
thus providing a comparison with a well-known classification technique. As SGD requires a number
of hyperparameters, parameter tuning using grid search has been performed on the training data using
k-fold cross-validation tests.

4 Evaluation

The results for the DFS task are summarized in Table 4. The chosen n-gram window was 2 to 6 char-
acters, the feature extraction and classification processes have been conducted as described above. The
classification methods used yield relatively low improvements with respect to the Bayesline, which shows
this is a challenging task. The multinomial Naive Bayes (run 1) indeed outperformed the SGD classifier
(run 2) although the latter had been optimized during training by using parameter tuning. The Ridge
classifier was significantly more robust during training (higher cross-validation scores) and effectively
reached a slightly higher score in the test run. This submission has been ranked 3rd out of 7. The
confusion matrix shown in Figure 1 depicts a rather balanced mix of errors.

The same method has been tested with the same data preprocessing in the identification of Swiss
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Figure 1: Confusion matrix for the Ridge classifier on the DFS task
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Figure 2: Confusion matrix for the Naive Bayes classifier on the GDI task

German varieties (GDI shared task), using only the training data from this year’s edition. Contrarily to
the other tasks, a larger N-Gram span has been selected (1 to 6) as this seemed to carry a little more
useful information. The classifiers have been optimized during training in a similar way. The results are
summarized in Table 2.

This task has seen the worst result compared to the other teams, with the best submission ranked 3rd
out of 4. This result is in line with the fact that the Naive Bayes classifier outperformed more complex
methods, which shows they could not gain more fine-grained information or generalize better on the
test data. As in the last edition of the shared task, the classification of the Lucerne variant is more
problematic than the other ones as shown in Figure 2, however the Ridge classifier is more robust so that
the gap is closing. The F1 score is significantly higher than in the previous competition – 0.634 against
0.606 (Barbaresi, 2017). The improvements can be explained by potentially cleaner data, focus on F1
instead of accuracy during model selection and parameter tuning, whereas the comparatively low score
can be explained by the nature of the occurrences to discriminate: they are much shorter and less regular
than in the other tasks, orthographic normalization is a potential problem and the instances seem to be
closer to speech corpora. Additionally, they had already been tokenized, so that the tokenization during
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Classifier F1 (macro)
Random Baseline 0.2024
Naive Bayes 0.8540
SGD 0.8833
Ridge 0.8983

Table 3: Results for the ILI task, all classifiers used the same data preparation pipeline

pre-processing is without effect here.
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Figure 3: Confusion matrix for the Ridge classifier on the ILI task

Last, the Indo-Aryan varieties have seen the Naive Bayes classifier lead to a significantly lower score
than the other methods, which highlights their comparatively good performance and also explains why
the best submission (Ridge classifier) has been ranked 2nd out of 6 in the competition, which demon-
strates empirically that the processing chain described here also works well for other alphabets. The
results are summarized in Table 3, the finer discrimination using regularized classifiers can be explained
by the morphological characteristics of Indo-Aryan languages and the subsequent necessity to better as-
sess the statistical significance of the extracted n-grams. The confusion matrix in Figure 3 highlights the
difficulty of the AWA variety, which has the worst recall whereas the BRA variety seems to be easier to
discriminate from the rest.

5 Conclusion

The present contribution deals with computationally efficient discrimination between language varieties
using large feature vectors and regularized classifiers. The methods described have been tested in the
VarDial evaluation campaign. The characteristics of the shared tasks (most notably the limited training
data and the relatively short length of instances) call for specially adapted solutions. Supervised op-
timization during the training phase shows that there is a major proportion of small to medium-sized
effects, whereas the high-frequency spectrum could even be ignored without significantly impacting per-
formance. This situation implies that it may be more difficult to avoid overfitting with more powerful
methods, so that statistical models such as linear classifiers are not only computationally efficient but
also lead to better results in practice because of their less precise modelization of phenomena. Moreover,
as information in the low frequency spectrum is valuable, not performing feature selection and using
regularization can often allow for better predictive performance. In a comparison of discriminative and
generative learning as typified by logistic regression and naive Bayes, it has been shown that a genera-
tive classifier may also approach its (higher) asymptotic error much faster (Ng and Jordan, 2002) which
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partly explains why the classifier works better as training data is limited in size.
The Bayesline efficiency as well as the difficulty to reach higher scores in open training could be

explained by these characteristics and also by artificial regularities in the test data. The conflict between
in-vitro and real-world language identification has already been emphasized in the past (Baldwin and
Lui, 2010), it calls for the inclusion of web texts (Barbaresi, 2016b) into the existing task reference.

Future work includes further refinements of classification methods. Reducing the dimensionality of
datasets (for example by principal component analysis) can pave the way for more complex classifiers,
however no performance improvement seems within easy reach so far. Another more promising option
with respect to previous shared tasks could consist of bagging linear models, which may be a way to
produce finer estimates without causing the models to overfit.
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