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Abstract

Advances in automatic readability assess-
ment can impact the way people consume
information in a number of domains. Ara-
bic, being a low-resource and morphologi-
cally complex language, presents numer-
ous challenges to the task of automatic
readability assessment. In this paper, we
present the largest and most in-depth com-
putational readability study for Arabic to
date. We study a large set of features
with varying depths, from shallow words
to syntactic trees, for both L1 and L2 read-
ability tasks. Our best L1 readability ac-
curacy result is 94.8% (75% error reduc-
tion from a commonly used baseline). The
comparable results for L2 are 72.4% (45%
error reduction). We also demonstrate the
added value of leveraging L1 features for
L2 readability prediction.

1 Introduction

The purpose of studies in readability is to develop
and evaluate measures of how well a reader can
understand a given text. Computational readabil-
ity measures, historically shallow and formulaic,
are now leveraging machine learning (ML) mod-
els and natural language processing (NLP) fea-
tures for automated, in-depth readability assess-
ment systems. Advances in readability assessment
can impact the way people consume information
in a number of domains. Prime among them is
education, where matching reading material to a
learner’s level can serve instructors, book publish-
ers, and learners themselves looking for suitable
reading material. Content for the general public,
such as media and news articles, administrative,
legal or healthcare documents, governmental web-
sites and so on, needs to be written at a level ac-

cessible to different educational backgrounds. Ef-
forts in building computational readability mod-
els and integrating them in various applications
continue to grow, especially for more resource-
rich languages (Dell’Orletta et al., 2014a; Collins-
Thompson, 2014).

In this paper, we present a large-scale and in-
depth computational readability study for Arabic.
Arabic, being a relatively low-resource and mor-
phologically complex language, presents numer-
ous challenges to the task of automatic readabil-
ity assessment. Compared to work done for En-
glish and other European languages, efforts for
Arabic have only picked up in recent years, as
better NLP tools and resources became available
(Habash, 2010). We evaluate data from both Ara-
bic as a First Language (L1) and Arabic as a Sec-
ond or Foreign Language (L2) within the same ex-
perimental setting, to classify text documents into
one of four levels of readability in increasing order
of difficulty (level 1: easiest; level 4: most diffi-
cult). This is a departure from all previously pub-
lished results on Arabic readability, which have
only focused on either L1 or L2. We examine
a larger array of predictive features combining
language modeling (LM) and shallow extraction
techniques for lexical, morphological and syntac-
tic features. Our best L1 Readability accuracy re-
sult is 94.8%, a 75% error reduction from a base-
line feature set of raw and shallow text attributes
commonly used in traditional readability formu-
las and simpler computational models (Collins-
Thompson, 2014). The comparable results for L2
are 72.4%, a 45% error reduction from the corre-
sponding baseline performance in L2. We lever-
age our rich Arabic L1 resources to support Ara-
bic L2 readability. We increase the L2 accuracy to
74.1%, an additional 6% error reduction, by aug-
menting the L2 feature set with features based on
L1-generated language models (LM).
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Corpus Depth of Features LM Results
Size (tokens) L1 L2 Raw Morph Syn Features Reported

Al-Khalifa and Al-Ajlan (2010) 150 docs (57,089) D D D Accuracy: 77.8%
Al Tamimi et al. (2014) 1,196 docs (432,250) D D Accuracy: 83.2%
Cavalli-Sforza et al. (2014) 114 docs (49,666) D D D Accuracy: 91.3%
Forsyth (2014) 179 docs (74,776) D D D F-Score: 71.9%
Saddiki et al. (2015) 251 docs (88,023) D D D F-Score: 73.4%
El-Haj and Rayson (2016) 73,000 lines ( 1,8M) D D D Spearman R: .329
Nassiri et al. (2017) 230 docs ( 60,000) D D D F-Score: 90.5%

Our Work
L1: 27,688 docs ( 6.9M)
L2: 576 docs (186,125)

D D D D D D
L1 Accuracy: 94.8%
L2 Accuracy: 72.4%

Table 1: Comparative summary of recent work and our current study on computational readability for
Arabic in terms of corpus size, focus on L1 or L2, use of shallow vs. deep features requiring heavier
processing for extraction from the text, use of language models in generating features. Results reported
are presented for reference rather than direct comparison.

2 Background and Related Work

Computational readability assessment presents a
growing body of work leveraging NLP to extract
complex textual features, and ML to build read-
ability models from corpora, rather than relying on
human expertise or intuition (Collins-Thompson,
2014). Approaches vary depending on the purpose
of the readability prediction model, e.g., mea-
suring readability for text simplification (Aluisio
et al., 2010; Dell’Orletta et al., 2014a; Al Khalil
et al., 2017), selecting more cognitively-predictive
features for readers with disabilities (Feng et al.,
2009) or for self-directed language learning (Bein-
born et al., 2012). Features used in predicting
readability range from surface features extracted
from raw text (e.g. average word count per line),
to more complex ones requiring heavier text pro-
cessing such as syntactic parsing features (Heil-
man et al., 2007, 2008; Beinborn et al., 2012;
Hancke et al., 2012). The use of language models
is increasingly favored in the literature over simple
frequency counts, ratios and averages commonly
used to quantify features in traditional readabil-
ity formulas (Collins-Thompson and Callan, 2005;
Beinborn et al., 2012; François and Miltsakaki,
2012). We evaluate features extracted using both
methods in this study.

There is a modest body of work on readability
prediction for Arabic with marked differences in
modeling approaches pursued, feature complexity,
dataset size and type (L1 vs. L2), and choice of
evaluation metrics. We build our feature set with
predictors frequently used for Arabic readability
studies in the literature, and augment it with fea-
tures from work carried out on other languages.

We do organize our feature set on two dimensions:
(a) the way features are quantified: basic statistics
for frequencies and averages, or language model-
ing perplexity scores; (b) the depth of processing
required to obtain said features: directly from raw
text, morphological analysis, or syntactic parsing.
In Table 1, using these two dimensions, we situate
ours and previous work and establish a common
baseline of raw base features (i.e. traditional mea-
sures (DuBay, 2004)) to compare to.

Use of Language Modeling Features such as
frequency counts, averages and other ratios seem
to dominate the literature for Arabic readability.
These are usually referred to as traditional, shal-
low, basic or base features in the literature for their
simplicity. In contrast, Al-Khalifa and Al-Ajlan
(2010) add word bi-gram perplexity scores to their
feature set, a popular readability predictor in En-
glish and other languages.

Depth of Features The set of features used in
previous readability studies exhibit a range of
complexity in terms of depth of processing needed
to obtain them. While some studies have relied on
raw text features requiring shallow computations
(Al-Khalifa and Al-Ajlan, 2010; Al Tamimi et al.,
2014; El-Haj and Rayson, 2016), most augment
their feature set with lexical and morphological in-
formation by processing the text further and ex-
tracting features such as lemmas, morphemes, and
part-of-speech tags (Cavalli-Sforza et al., 2014;
Forsyth, 2014; Saddiki et al., 2015; Nassiri et al.,
2017). We add another level of feature complexity
by extracting features from syntactic parsing, used
in readability assessment for other languages but
so far untried for Arabic (Table 1).
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3 Features for Readability Prediction

Textual features associated with degree of read-
ability range from surface attributes such as text
length or average word length, to more com-
plex ones quantifying cohesion or higher-level text
pragmatics. Naturally, the shallower attributes are
also the easiest and least costly to extract from a
text, as opposed to the deeper and more computa-
tionally challenging features.

Notation We define the notation used in the re-
mainder of this paper to describe features, ranges
of features and classification feature sets:

• An individual feature is expressed as F[i], i ∈
[1, 146] is a number assigned to the feature as
defined in Table 2; e.g., F[1] for number of
characters per document

• A feature range is expressed as F[i-j], 1 ≤
i ≤ j ≤ 146 and indicates a group of fea-
tures similar in nature with numbers assigned
to them as defined in Table 2

• A classification feature set or subset is ex-
pressed as FEAT

Superscript
Subscript . The super-

script indicates whether the set contains fea-
tures that are {Raw, Morph, Syn or all three
Raw.Morph.Syn}. The subscript indicates
whether the features are computed as {Base,
LM, or both Base.LM} quantities.

The feature list we have compiled (Table 2) is
inspired by previous work for Arabic and other
languages, and is organized by category as dis-
cussed in the previous section.

Base features FEAT Base range from shallow
estimates, like word count or average sentence
length, to others requiring more advanced process-
ing, e.g. average parse tree depth for sentences in
a document. LM-based features FEAT LM are a
range of 12 perplexity scores obtained on n-gram
models (uni-, bi- and tri-grams) built per level of
readability. For instance, the first 3 features in the
range F[51-62] are the following: F[51] Level 1
character unigrams, F[52] Level 1 character bi-
grams, F[53] Level 1 character trigrams.

We also distinguish three category labels for the
depth of NLP-based processing required to extract
the different features:

• FEAT Raw : raw text extraction with mini-
mal processing: Several formulas making use
of raw text features have been successfully

8 FEAT Raw
Base *

F[1] Characters F[5] Tokens
Sentences

F[2] Tokens F[6] Al-Heeti Formula
F[3] Characters/Tokens F[7] ARI Formula
F[4] Sentences F[8] AARI Formula

20 FEAT
Morph
Base *

F[9] Morphemes F[19] V erbs
Tokens

F[10] Lemma Types F[20] Pronouns
Tokens

F[11] LemmaTypes
Tokens F[21] Psv. Verbs

F[12] Morphemes
Sentences F[22] PsvV erbs

Tokens

F[13] Open-class Tokens F[23] Perf. Verbs
F[14] Closed-class Tokens F[24] PerfV erbs

Tokens

F[15] Nouns F[25] Imperf. Verbs
F[16] Verbs F[26] ImperfV erbs

Tokens

F[17] Pronouns F[27] Cmd Verbs
F[18] Nouns

Tokens F[28] CmdV erbs
Tokens

10 FEAT
Syn
Base

F[29-36] CATiB dependency
F[37] Average parse tree breadth
F[38] Average parse tree depth

24 FEAT Raw
LM

F[39-50] LM perplexity of Characters
F[51-62] LM perplexity of Words *

48 FEAT
Morph
LM

F[63-74] LM perplexity of morphemes
F[75-86] LM perplexity of lemmas
F[87-98] LM perplexity of POS
F[99-110] LM perplexity of lemma-POS mix

36 FEAT
Syn
LM

F[111-122] LM perplexity of CATiB POS
F[123-134] LM perplexity of CATiBx POS
F[135-146] LM perplexity of CATiB dependency

Table 2: Our feature set organized by category. All
features are calculated per document, and sentence
level features are averaged per document. Feature
sets or features marked by an * are inspired by pre-
vious work on Arabic readability.

adopted and adapted in English and other lan-
guages, their appeal largely due to them be-
ing easy to understand and compute.

• FEAT Morph : morphological analysis pro-
viding lexical and morpho-syntactic infor-
mation: Readability is heavily influenced
by vocabulary and word-level information
(DuBay, 2007). Having word-level lexical
and morpho-syntactic information can better
inform the predictions.

• FEAT Syn : syntactic parsing providing parse
tree information and dependencies: Syntac-
tic features have shown promise in improving
readability prediction, especially for L2 read-
ing. (Hancke et al., 2012) (Heilman et al.,
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 yqdm

‘offers’

MOD

PNX
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‘.’

OBJ

NOM
@Q�


�
J» kθyrA

‘plenty’

MOD

PRT
	áÓ mn

‘from’

OBJ

NOM
�ðPYË@ Aldrws

‘lessons’

MOD

PRT
+ð w+
‘and’

OBJ

NOM
�

HA
	

¢ªË@ AlςĎAt
‘sermons’

MOD

PRT
È l
‘to’

OBJ

NOM
A
	
K+ +nA

‘us’

SBJ

NOM
t�'
PA

�
JË @ AltAryx

‘History’

Word Morph POS6 English
Lemma Morph POS POS34

1 AltAryx Al+tAriyx+u NOM history
tAriyx DET+NOUN noun

+CASEDEF.NOM

2 yqdm yu+qad∼im+u VRB offers
qad∼am IV3MS+IV verb

+IVSUFFMOOD:I

3 lnA la+nA PRT to, for
li PREP prep us

+PRON1P

4 kθyrA kaθiyr+Aã NOM plenty,
kaθiyr ADJ adj many

+CASEINDEF.ACC

5 mn min PRT from, of
min PREP prep

6 Aldrws Al+duruws+i NOM lessons
dars DET+ NOUN noun

+CASEDEF.GEN

7 wAlςĎAt wa+Al+ςiĎ+At+i NOM sermons
ςiĎah̄ CONJ+DET+NOUN noun

+NSUFFFEM.PL

+CASEDEF.GEN

8 . . PNX .
. PUNC punc

FEAT Raw
Base Features computed for the example sentence

F[1] Characters 35 F[5] Tokens
Sentences 8.0

F[2] Tokens 8 F[6] Al-Heeti Formula F [3]× 4.414− 13.468 5.8
F[3] Characters

Tokens 4.4 F[7] ARI Formula F [3]× 4.71 + F [5]× 0.5− 21.43 3.2
F[4] Sentences 1 F[8] AARI Formula F [1]×3.28+F [3]×1.43+F [5]×1.24+472.42

1046.3 0.6

Figure 1: TOP: Example of linguistic annotations for the sentence .
�

HA
	

¢ªË@ð �ðPYË@ 	áÓ @Q�

�
J» A

	
JË ÐY

�
®K
 t�'
PA

�
JË @

‘History offers us plenty of lessons and sermons.’; BOTTOM: Table of FEAT Raw
Base feature values com-

puted for the example sentence given.

2007)

In Table 2, most base features are computed
simply by counting occurrences within the doc-
ument. Ratios are expressed as mathematical
fractions, such as F[3], F[5], F[11] and so on.
LM perplexity is computed per readability level(1,
2, 3, and 4) on (uni-, bi- and tri-)grams lan-
guage models, generating 4 level scores per n-
gram and a total of 12 perplexity scores per fea-
ture. Figure 1 gives an idea of the linguistic an-
notation extracted for an example sentence and il-
lustrates how feature values are computed for the
FEAT Raw

Base subset. The annotation was generated
using the CamelParser. POS tagsets used are POS6
(Habash and Roth, 2009) and a higher granularity
POS34 (Habash et al., 2012). We refer the user to
Shahrour et al. (2016) for further details.

We elaborate next on the feature names in Ta-
ble 2:

• F[6] Al-Heeti readability formula for Ara-
bic as presented by Al-Khalifa and Al-Ajlan

(2010) and other subsequent work.

• F[7], F[8] represent the Automated Readabil-
ity Index (ARI) readability formula for En-
glish, and the Arabic ARI (AARI) readability
formula for Arabic, both discussed at length
by Al Tamimi et al. (2014).

• F[9] Morphemes - approximated by counting
proclitics+ enclitics+ stem for any given
token, first explored by Cavalli-Sforza et al.
(2014) and Forsyth (2014), further tested by
Saddiki et al. (2015) and Nassiri et al. (2017).

• All features in FEAT
Morph
Base.LM follow the

MADAMIRA POS34 tag set (Pasha et al.,
2014).

• F[13], F[14] Open and closed class tokens are
determined by POS34 tag

• F[21], F[22] Marking passive voice as one
of the few cases where diacritic marks are
typically provided for disambiguation in oth-
erwise undiacritized text intended for adult
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readers of Arabic. It is also a frequently used
indicator of difficult or poor readability in
other languages (DuBay, 2007; Aluisio et al.,
2010).

• F[23-28] Marking verb aspect (perfective,
imperfective, imperative) as an indicator
used with some success in other languages
(Dell’Orletta et al., 2014a).

• F[29-36] Columbia Arabic Treebank
(CATiB) tagset (Habash and Roth, 2009).

• F[63-74] A morpheme language model is
generated with the higher granularity Morph-
POS tagset (illustrated in Figure 1) based on
(Buckwalter, 2002).

• F[99-110] A lemma-POS mixed language
model is generated with the lemma of open-
class tokens and the POS34 (Habash et al.,
2012) for closed-class tokens.

• F[111-122] A POS-based language model
is generated with the CATiB POS tagset
(Habash and Roth, 2009).

• F[123-134] A POS-based language model
is generated with the extended CATiB POS
tagset presented in (Marton et al., 2013).

• F[135-146] A dependency language model is
generated on the CATiB dependency tags in
F[29-36] to get different levels of dependency
context information, the most salient one be-
ing dependency information for parent-child
nodes in the parse tree.

4 Modeling Readability

We evaluate readability prediction as a classifica-
tion problem on a large feature set for documents
in two text corpora designed for L1 and L2 read-
ing, and labelled with readability levels 1, 2, 3 and
4 in increasing difficulty.

4.1 L1 and L2 Data

We leverage the L1 leveled reading corpus built
by Khalil et al. (2018) based on grades 1 through
12 of an Arabic school curriculum and a collec-
tion of adult-level fiction. The corpus was split
across 4 levels of readability in increasing order of
difficulty: level 1 (905 documents), level 2 (1,192
documents), level 3 (2,054 documents) and level
4 (18,089 documents). The first three levels are
sourced from curricular texts, grades 1-4, 5-8 and

9-12. The fourth considerably larger level contains
novels suitable for post-secondary readers.

For L2, we work with an augmented version of
the corpus used by Forsyth (2014), Saddiki et al.
(2015) and Nassiri et al. (2017). It is comprised
of 576 documents, leveled according to the Intera-
gency Language Roundtable (ILR) scale for for-
eign language proficiency.1 With documents in
the L2 corpus averaging 250 words, the L1 cor-
pus was split accordingly for better comparability
in our experiments.

Both the L1 and L2 datasets underwent an 80-
10-10 random stratified split over the four levels
for training (80%), development (10%) and testing
(10%). The L1 corpus, partially sourced from text-
book material from three different subjects, was
also split across the three subjects to ensure a bal-
anced sample of all three: Arabic, Social Studies,
Islamic Studies.

4.2 Feature Extraction
The datasets are first enriched with several layers
of linguistic annotation (e.g. Fig. 1) in prepara-
tion for feature extraction. Then, both raw text
and annotations from the training set are used to
build LMs for each of the 4 levels of readability
(Table 3) with the SRILM toolkit (Stolcke et al.,
2002). At this point, we begin extracting features
from the various configurations of annotation and
language models we generated:

• FEAT Raw
Base.LM features are extracted directly

from the raw text, e.g. total number of char-
acters in a document.

• FEAT
Morph
Base.LM text is annotated with morpho-

logical, lexical and morpho-syntactic infor-
mation using the MADAMIRA tool (Pasha
et al., 2014) for morphological disambigua-
tion.

• FEAT
Syn
Base.LM text is annotated with syn-

tactic parsing information using the Camel-
Parser tool (Shahrour et al., 2016).

All FEAT
Raw.Morph.Syn
Base features are obtained

from computing occurrences, averages and other
ratios over: raw text (FEAT Raw

Base); lemmatiza-
tion, tokenization and morpho-syntanctic annota-
tion (FEAT

Morph
Base ); syntactic parsing annotation

(FEAT
Syn
Base). All FEAT

Raw.Morph.Syn
LM features

1The scale goes from 0 (no proficiency) to 5 (native
or bilingual proficiency) with + designation for interme-
diate levels, for further details http://www.govtilr.org/skills
/ILRscale1.htm
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L1 Corpus L2 Corpus
Level Source Docs Tokens Level Source Docs Tokens

1 K12 grades 1-4 (textbooks) 1,230 297,772 1 0 or 0+ (No proficiency) 31 2,462
2 K12 grades 5-8 (textbooks) 1,683 412,942 2 1 or 1+ (Elementary proficiency) 177 40,816
3 K12 grades 9-12 (textbooks) 2,553 628,978 3 2 or 2+ (Limited working proficiency) 290 105,277
4 Original literary texts (novels) 22,222 5,594,310 4 3 or 3+ (Professional working proficiency) 78 37,570

27,688 6,934,002 576 186,125

Table 3: Descriptive corpus statistics for our L1 and L2 data.

are obtained from computing perplexity scores per
document over the LMs generated using either raw
text or text annotation (lemmas, POS, etc).

In total, there were 146 features extracted for
each document. We perform three main experi-
ments, described next, to determine their efficacy
in the classification task for L1 and L2.

4.3 Experiment Setup
First, we build classifiers on the full feature set
FEAT

Raw.Morph.Syn
Base.LM to determine best perfor-

mance for L1 and L2. All classification exper-
iments are carried out within the WEKA envi-
ronment (Hall et al., 2009). We test classifica-
tion algorithms used with some success in previ-
ous work (D.Tree decision tree, Rnd.F random for-
est, kNN k-nearest-neighbour, SVM support vector
machine). We include two baseline classifiers for
reference: zeroR (a simple classifier predicting the
majority class for all instances) and oneR (a 1-rule
classifier using the feature with least error to pre-
dict the correct class).

Then, we test the performance of the feature
subsets to assess the predictive power of different
feature configurations for L1 and L2. We perform
feature selection in two ways:
• Manually, following the categorization we

defined in Table 2 and resulting in 12 com-
binations of feature sets to be tested: feature
subsets (i, j) with i in {Raw, Morph, Syn} and
j in {Base, LM} with FEAT Raw

Base as the per-
formance baseline for evaluating all feature
subsets; composite subsets (i) with i in {Raw,
Morph, Syn} or (j) in {Base, LM}; and fi-
nally the full feature set FEAT

Raw.Morph.Syn
Base.LM .

• Automatic feature selection using
correlation-based feature selection (CFS)
FEAT Correl

Base.LM implemented as CfsSubsetE-
val in WEKA with a BestFirst backward
search through the feature space (Hall,
1999).

Finally, we experiment with the potential of us-
ing L1 FEAT

Raw.Morph.Syn
LM to improve L2 read-

ability predictions. First, we calculate perplexity
scores for L2 documents using L1 LMs. We add
these perplexity scores as features to the original
L2 feature set, bringing the total set size to 254
features. Then, using this FEAT

Raw.Morph.Syn
Base.LM.LML1

feature set, we: (1) rerun the classifier perfor-
mance experiment to see if any overall perfor-
mance improvement is achieved; (2) run CFS fea-
ture selection on the L1-based LM subset to ex-
amine which features correlate the most with L2
readability classes. All experiments are reported
in terms of F-score in addition to % Accuracy and
F-score to give a better sense of prediction perfor-
mance while accounting for class imbalance in the
corpus.

5 Results and Discussion

In this section we present and discuss the results of
experiments previously described in Section 5.3,
which we organize as follows: results to optimize
for classifier choice, results to optimize for fea-
tures choice, and finally results on leveraging L1-
based features for L2 readability prediction.

5.1 Classifier Choice Optimization
The classification results in Table 4 show that
SVM performs best on overall accuracy for both
L1 and L2 predictions. For L1, SVM achieves er-
ror reduction of 76% to the zeroR baseline, 64 %
to the oneR baseline, while outperforming other
classifiers from the literature by varying degrees.
Performance over the 4 levels of readability, mea-
sured in precision, recall and F-score, is as fol-
lows:

• Precision: Level 1 (78.3%), Level 2 (81.8%),
Level 3 (89.4%) and Level 4 (97.5%)

• Recall: Level 1 (78.8%), Level 2 (68.9%),
Level 3 (81.7%) and Level 4 (100%)

• F-score: Level 1 (78.5%), Level 2 (74.8%),
Level 3 (85.4%) and Level 4 (98.7%)

Taking a closer look at misclassified documents,
mostly from Levels 1, 2 and 3, we find the ma-
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L1 FEAT
Raw.Morph.Syn
Base.LM L2 FEAT

Raw.Morph.Syn
Base.LM

Accuracy Average F1 Accuracy Average F1
ZeroR 77.9 21.9 ZeroR 50.0 16.7
OneR 85.4 52.1 OneR 34.5 24.4
D.Tree (C=0.25, M=12) 72.2 50.4 D.Tree (C=0.25, M=2) 31.0 21.7
Rndm Frst (I=500) 94.6 83.6 Rndm Frst (I=100) 50.0 55.0
kNN (k=9) 93.8 80.4 kNN (k=2) 67.2 61.1
SVM (C=5.0, rbfKernel) 94.8 84.4 SVM (C=1.0, rbfKernel) 72.4 60.5

Table 4: Comparison of different classifiers using the full feature set FEAT
Raw.Morph.Syn
Base.LM for L1 (left)

and L2 (right). Baseline performance is that of classifiers ZeroR and OneR. Performance is reported in
terms of Accuracy (%) and F1-score (%) averaged over the 4 classification levels.

L1 SVM Classifier
Feature Subset Accuracy Average F1
FEAT

Raw.Morph.Syn
Base.LM 94.8 84.4

FEAT
Raw.Morph.Syn
LM 94.3 83.3

FEAT
Morph
Base.LM 94.3 83.1

FEAT
Morph
LM 93.8 81.6

FEAT Raw
Base.LM 88.6 61.4

FEAT Raw
LM 87.2 50.5

FEAT Correl
Base.LM 85.3 42.6

FEAT
Raw.Morph.Syn
Base 83.4 40.7

FEAT
Syn
Base.LM 82.7 39.7

FEAT
Syn
LM 82.0 37.3

FEAT
Morph
Base 81.8 33.7

FEAT Raw
Base 79.3 28.1

FEAT
Syn
Base 78.0 22.5

Table 5: Comparison of different feature subsets
using SVM Classifier for L1 (based on best per-
formance results from Table 4). Baseline perfor-
mance is that of subset FEAT Raw

Base. Performance
is reported in terms of Accuracy (%) and F1-score
(%) averaged over the 4 classification levels.

jority mostly off by no more than 1 level. For
intance, the bulk of misclassified documents for
Level 1 are labeled as Level 2. This can be in
part due to the high similarity between the high-
est grade in Level 1 (Grade 4) and the lowest
grade in Level 2 (Grade 5), considering that Level
2 contains both Primary and Preparatory grades.
Another typically misclassified document type is
one containing mainly instructional text and in-
tended learning outcomes for the lessons. This
is a language and style of writing that is particu-
lar to textbooks and repeated throughout the cur-
riculum. Level 2 shows more dispersion in the
misclassifications across other levels. Considering
that Level 2 combines a portion of upper Primary
and lower Preparatory grades, we expect some in-
terference from the proximity in style and content
in Grade4-Grade5 and Grade8-Grade9. The inclu-

L2 SVM Classifier
Feature Subset Accuracy Average F1
FEAT

Raw.Morph.Syn
Base.LM 72.4 60.5

FEAT
Raw.Morph.Syn
Base 70.7 38.6

FEAT
Raw.Morph.Syn
LM 67.2 53.7

FEAT Correl
Base.LM 67.2 37.3

FEAT
Morph
Base.LM 67.2 36.4

FEAT
Syn
Base.LM 67.2 35.7

FEAT Raw
Base.LM 63.8 35.1

FEAT
Morph
LM 63.8 34.6

FEAT Raw
LM 60.3 33.2

FEAT
Morph
Base 51.7 19.6

FEAT
Syn
LM 50.0 16.9

FEAT Raw
Base 50.0 16.7

FEAT
Syn
Base 50.0 16.7

Table 6: Comparison of different feature subsets
using SVM Classifier for L2 (based on best per-
formance results from Table 4). Baseline perfor-
mance is that of subset FEAT Raw

Base. Performance
is reported in terms of Accuracy (%) and F1-score
(%) averaged over the 4 classification levels.

sion of more excerpts of original literary texts, es-
pecially in the Preparatory grades, could help ex-
plain why Level 4 predictions were obtained for
some documents. Level 3 classification errs pre-
dominantly towards Level 4, this is also a plausible
outcome considering that Arabic textbooks delve
further into literature and include much longer ex-
cerpts of original fiction, and keeping in mind that
some works of fiction are plausibly accessible to
readers nearing the end of their K12 education.

Results for L2 remain consistent with 45% and
58% error reduction to the zeroR and oneR base-
lines, respectively.

We find that all misclassified documents are
only off by 1 level and often due to the interme-
diate proficiency levels marked by a ’+’ being too
close in difficulty to the next level up (e.g. a ’1+’
proficiency document misclassified as ’2’ accord-
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L2 FEAT
Raw.Morph.Syn
Base.LM L2 FEAT

Raw.Morph.Syn
Base.LM.LML1

Accuracy Average F1 Accuracy Average F1
ZeroR 50.0 16.7 50.0 16.7
OneR 34.5 24.4 34.5 24.4
D.Tree 31.0 21.7 31.0 21.7
R.Forest 50.0 55.0 72.4 67.9
kNN 67.2 61.1 74.1 66.2
SVM 72.4 60.5 72.4 60.5

Table 7: L2 results with different classifiers
on FEAT

Raw.Morph.Syn
Base.LM.LML1

. Comparison of differ-
ent classifiers using the augmented feature set
FEAT

Raw.Morph.Syn
Base.LM.LML1

for L2 (L2 features + L1 LM
features). Baseline performance is that of classi-
fiers ZeroR and OneR. Performance is reported in
terms of Accuracy (%) and F1-score averaged over
the 4 classification levels.

ing to the scale in 3). Evaluating L2 readability is
a worthwile experiment which is hindered mostly
by data sparsness.

5.2 Feature Optimization

Feature optimization experiments are carried out
with SVM classification using the best perform-
ing parameter configurations for L1 and L2. Ta-
bles 5 and 6 show performance results of various
feature subsets in comparison with the baseline
FEAT Raw

Base. We make the following noteworthy
observations:

• A combination of LM-based, NLP-based and
traditional features FEAT

Raw.Morph.Syn
Base.LM per-

forms best in readability prediction: 75% and
45% error reduction on FEAT Raw

Base for L1 and
L2 respectively

• LM Features FEAT
Raw.Morph.Syn
LM are better

predictors than base features: performance is
second-best for L1 and third-best for L2

• NLP-based features (FEAT
Raw.Morph.Syn
LM ,

FEAT
Morph
Base.LM , FEAT

Syn
Base.LM ) are bet-

ter predictors than raw shallow features
FEAT Raw

Base: this is true overall, with heavier
influence in L2 prediction

• Features based on syntactic parsing
FEAT

Syn
Base.LM inform readability pre-

dictions, more so for L2 than for L1: 16%
and 34% error reduction on FEAT Raw

Base for
L1 and L2 respectively

FEAT Correl
Base.LM for L1 is a subset of 10 features2

achieving 29% error reduction on the FEAT Raw
Base

2L1 CFS-based subset of 10 features: F[41, 56, 58, 61,
62, 68, 71, 86, 123, 141], numbered according to Table 2

baseline. All features are LM-based, with 50%
of them extracted from raw text, ideal for low-
cost performance with minimal NLP effort. This
can be useful in lightweight web-based readabil-
ity tools. We also noted with interest an 80%-
20% split into vocabulary-based and syntax-based
features, suggesting that vocabulary plays a more
dominant role in readability than grammar.

FEAT Correl
Base.LM for L2 achieves 34% error reduc-

tion on the FEAT Raw
Base baseline with 29 features,3

dominated largely by LM-based attributes. Some
interesting predictive features from FEAT

Morph
Base

are lemma type count per document indicating lex-
ical richness, Verb-to-Token ratio and Pronoun-
to-Token ratio. Mixed LMs built with lemmas
of open-class tokens and the POS of closed-class
tokens for readability levels 2, 3 and 4 correlate
highly with L2 predictions but did not figure in
L1 FEAT Correl

Base.LM which relied more on raw word
LMs.

5.3 L1-based Features for L2 Readability

Table 7 presents the results of augmenting L2 with
L1 LM-based features. Adding L1 features to the
L2 feature set did not degrade performance for any
of the classifiers. While D.Tree and SVM classifi-
cation did not show any significant improvement,
the L1 features drastically improved prediction ac-
curacy and F-score for Random Forest (Accuracy:
45% error reduction, F-score: 28.6% error reduc-
tion) and kNN (Accuracy: 21% error reduction,
F-score: 13% error reduction) classification.

Looking into LM-based L1 features4 that cor-
relate the most with L2 readability levels, we
find that the most predictive of these features are
mostly based on L1 readability levels 1 and 4, and
distributed among raw character features, word
features (raw and lemma), POS features, and pars-
ing dependency features. Results from L2 using
L1 encourage further exploration of L1 feature use
in L2 readability prediction. It is worthwhile to
explore the performance of classifying L1 docu-
ments on an L2 scale validated by expert judg-
ment. Given the considerably smaller size of L2
resources in comparison with L1 texts, we can po-
tentially mine L1 for L2-suitable material, thereby
increasing the pool of texts available to L2 readers.

3L2 CFS-based subset of 29 features: F[10, 19, 20, 26,
37, 41, 47, 50, 55, 56, 58, 59, 62, 65, 67, 68, 73, 74, 82, 83,
86, 97, 103, 107, 109, 113, 124, 134, 137].

4L2 subset of L1-based features: F[46-50, 53, 55, 76, 85,
87, 92, 112, 120, 122-124, 126, 132, 141, 144-146].
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6 Conclusion and Future Work

We have presented the largest and most in-depth
computational readability study for Arabic to date.
We studied a wide set of features with varying
depths from shallow words to syntactic trees for
both L1 and L2 readability tasks. Our best L1
Readability accuracy result is 94.8% (75% error
reduction from a commonly used baseline). The
comparable results for L2 are 72.4% (45% error
reduction). We demonstrated the added value of
using L1 features for L2 readability prediction by
increasing the L2 accuracy to 74.1% (an additional
6% error reduction).

The next step in improving model robustness
and performance would be to address the dataset
imbalance among the four levels for both L1 and
L2 by adjusting sampling (He and Garcia, 2009).
We are also considering a cost-sensitive prediction
model: for instance, by assigning different costs
to misclassification scenarios, we can penalize the
model more heavily for errors in sparser levels.

In the future, we plan to employ our best results
in the development of online tools to support an
effort for text simplification for pedagogical pur-
poses. Going forward in this direction, we expect
to widen our range to include different levels of
document granularity: 500-word to 1K-word size
documents, as well as sentence-level readability
(Dell’Orletta et al., 2014b).
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