
ACL 2018

Deep Learning Approaches for
Low-Resource Natural Language Processing

(DeepLo)

Proceedings of the Workshop

July 19, 2018
Melbourne, Australia

c©2018 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-948087-47-6

ii

Preface

The ACL 2018 Workshop on Deep Learning Approaches for Low-Resource Natural Language
Porcessing took place on Thursday July 19, in Melbourne Australia, immediately following the main
conference.

Natural Language Processing is being revolutionized by deep learning with neural networks. However,
deep learning requires large amounts of annotated data, and its advantage over traditional statistical
methods typically diminishes when such data is not available; for example, SMT continues to outperform
NMT in many bilingually resource-poor scenarios. Large amounts of annotated data do not exist for
many low-resource languages, and for high-resource languages it can be difficult to find linguistically
annotated data of sufficient size and quality to allow neural methods to excel. Our workshop aimed
to bring together researchers from the NLP and ML communities who work on learning with neural
methods when there is not enough data for those methods to succeed out-of-the-box. Techniques of
interest include self-training, paired training, distant supervision, semi-supervised and transfer learning,
and human-in-the-loop algorithms such as active learning.

Our call for papers for this inaugural workshop met with a strong response. We received 22 paper
submissions, of which 6 were “extended abstracts”—work that will be presented at the workshop, but
will not appear in the proceedings in order to allow it to be published elsewhere. We accepted 10 papers
and 5 extended abstracts. Our program covers a broad spectrum of applications and techniques. It was
augmented by invited talks from Trevor Cohn (Melbourne), Sujith Ravi (Google), and Stefan Riezler
(Heidelberg).

We would like to thank the members of the Program Committee for their timely and thoughtful reviews.

Reza Haffari, Colin Cherry, George Foster, Shahram Khadivi, and Bahar Salehi

iii

Organizers:

Reza Haffari, Monash University
Colin Cherry, Google Research
George Foster, Google Research
Shahram Khadivi, eBay Research
Bahar Salehi, The University of Melbourne

Program Committee:

Isabelle Augenstein, University of Copenhagen
Mohit Bansal, The University of North Carolina
Daniel Beck, The University of Melbourne
Parminder Bhatia, Amazon
Colin Cherry, Google Research
Jacob Devlin, Google Research
Kevin Duh, Johns Hopkins University
Orhan Firat, Google Research
George Foster, Google Research
Reza Haffari, Monash University
Cong Vu Hoang, The University of Melbourne
Melvin Johnson, Google Research
Shahram Khadivi, eBay Research
Philipp Koehn, Johns Hopkins University
Julia Kreutzer, Heidelberg University
Gaurav Kumar, Johns Hopkins University
Patrick Littell, Carnegie Mellon University
Evgeny Matusov, eBay Research
David Mortensen, Carnegie Mellon University
Marek Rei, University of Cambridge
Sebastian Ruder, Insight Research Centre for Data Analytics
Bahar Salehi, The University of Melbourne
Nicola Ueffing, eBay Research

Invited Speakers:

Trevor Cohn, The University of Melbourne
Sujith Ravi, Google Research
Stefan Riezler, Heidelberg University

v

Table of Contents

Character-level Supervision for Low-resource POS Tagging
Katharina Kann, Johannes Bjerva, Isabelle Augenstein, Barbara Plank and Anders Søgaard 1

Training a Neural Network in a Low-Resource Setting on Automatically Annotated Noisy Data
Michael A. Hedderich and Dietrich Klakow . 12

Multi-task learning for historical text normalization: Size matters
Marcel Bollmann, Anders Søgaard and Joachim Bingel . 19

Compositional Language Modeling for Icon-Based Augmentative and Alternative Communication
Shiran Dudy and Steven Bedrick . 25

Multimodal Neural Machine Translation for Low-resource Language Pairs using Synthetic Data
Koel Dutta Chowdhury, Mohammed Hasanuzzaman and Qun Liu . 33

Multi-Task Active Learning for Neural Semantic Role Labeling on Low Resource Conversational Corpus
Fariz Ikhwantri, Samuel Louvan, Kemal Kurniawan, Bagas Abisena, Valdi Rachman, Alfan Farizki

Wicaksono and Rahmad Mahendra . 43

Domain Adapted Word Embeddings for Improved Sentiment Classification
Prathusha Kameswara Sarma, Yingyu Liang and Bill Sethares . 51

Investigating Effective Parameters for Fine-tuning of Word Embeddings Using Only a Small Corpus
Kanako Komiya and Hiroyuki Shinnou . 60

Semi-Supervised Learning with Auxiliary Evaluation Component for Large Scale e-Commerce Text Clas-
sification

Mingkuan Liu, Musen Wen, Selcuk Kopru, Xianjing Liu and Alan Lu. 68

Low-rank passthrough neural networks
Antonio Valerio Miceli Barone . 77

vii

Program

Thursday, July 19, 2018

9:00–9:10 Opening Remarks

9:10–9:50 Invited Talk
Stefan Riezler

9:50–10:30 Invited Talk
Sujith Ravi

10:30–11:00 Coffee Break

11:00–12:40 Oral Presentations

11:00–11:25 Phrase-Based & Neural Unsupervised Machine Translation
Guillaume Lample, Myle Ott, Alexis Conneau, Ludovic Denoyer and Marc’Aurelio
Ranzato

11:25–11:50 Character-level Supervision for Low-resource POS Tagging
Katharina Kann, Johannes Bjerva, Isabelle Augenstein, Barbara Plank and Anders
Søgaard

11:50–12:15 Training a Neural Network in a Low-Resource Setting on Automatically Annotated
Noisy Data
Michael A. Hedderich and Dietrich Klakow

12:15–12:40 Exploiting Cross-Lingual Subword Similarities in Low-Resource Document Classi-
fication
Mozhi Zhang, Yoshinari Fujinuma and Jordan Boyd-Graber

12:40–14:00 Lunch Break

ix

Thursday, July 19, 2018 (continued)

14:00–15:30 Poster Session

Multi-task learning for historical text normalization: Size matters
Marcel Bollmann, Anders Søgaard and Joachim Bingel

Compositional Language Modeling for Icon-Based Augmentative and Alternative
Communication
Shiran Dudy and Steven Bedrick

Multimodal Neural Machine Translation for Low-resource Language Pairs using
Synthetic Data
Koel Dutta Chowdhury, Mohammed Hasanuzzaman and Qun Liu

Morphological neighbors beat word2vec on the long tail
Clayton Greenberg, Mittul Singh and Dietrich Klakow

Multi-Task Active Learning for Neural Semantic Role Labeling on Low Resource
Conversational Corpus
Fariz Ikhwantri, Samuel Louvan, Kemal Kurniawan, Bagas Abisena, Valdi Rach-
man, Alfan Farizki Wicaksono and Rahmad Mahendra

Domain Adapted Word Embeddings for Improved Sentiment Classification
Prathusha Kameswara Sarma, Yingyu Liang and Bill Sethares

Investigating Effective Parameters for Fine-tuning of Word Embeddings Using Only
a Small Corpus
Kanako Komiya and Hiroyuki Shinnou

Dependency Parsing of Code-Switching Data with Cross-Lingual Feature Repre-
sentations
KyungTae Lim, Niko Partanen, Michael Rießler and Thierry Poibeau

Semi-Supervised Learning with Auxiliary Evaluation Component for Large Scale
e-Commerce Text Classification
Mingkuan Liu, Musen Wen, Selcuk Kopru, Xianjing Liu and Alan Lu

Low-rank passthrough neural networks
Antonio Valerio Miceli Barone

Embedding Transfer for Low-Resource Medical Named Entity Recognition: A Case
Study on Patient Mobility
Denis Newman-Griffis and Ayah Zirikly

x

Thursday, July 19, 2018 (continued)

15:30–16:00 Coffee Break

16:00–16:40 Invited Talk
Trevor Cohn

16:40–17:40 Panel Discussion

17:40–17:55 Closing Remarks

xi

Proceedings of the Workshop on Deep Learning Approaches for Low-Resource NLP, pages 1–11
Melbourne, Australia July 19, 2018. c©2018 Association for Computational Linguistics

Character-level Supervision for Low-resource POS Tagging

Katharina Kann1, Johannes Bjerva2,
Isabelle Augenstein2, Barbara Plank3, Anders Søgaard2

1Center for Data Science, New York University, USA
2Department of Computer Science, University of Copenhagen, Denmark

3Department of Computer Science, IT University of Copenhagen, Denmark
kann@nyu.edu

Abstract

Neural part-of-speech (POS) taggers are
known to not perform well with little train-
ing data. As a step towards overcoming
this problem, we present an architecture
for learning more robust neural POS tag-
gers by jointly training a hierarchical, re-
current model and a recurrent character-
based sequence-to-sequence network su-
pervised using an auxiliary objective. This
way, we introduce stronger character-level
supervision into the model, which enables
better generalization to unseen words and
provides regularization, making our en-
coding less prone to overfitting. We exper-
iment with three auxiliary tasks: lemma-
tization, character-based word autoencod-
ing, and character-based random string
autoencoding. Experiments with mini-
mal amounts of labeled data on 34 lan-
guages show that our new architecture out-
performs a single-task baseline and, sur-
prisingly, that, on average, raw text au-
toencoding can be as beneficial for low-
resource POS tagging as using lemma in-
formation. Our neural POS tagger closes
the gap to a state-of-the-art POS tagger
(MarMoT) for low-resource scenarios by
43%, even outperforming it on languages
with templatic morphology, e.g., Arabic,
Hebrew, and Turkish, by some margin.

1 Introduction

POS tagging, i.e., assigning syntactic categories to
tokens in context, is an important first step when
developing language technology for low-resource
languages. POS tags can provide an efficient in-
ductive bias for modeling downstream tasks, espe-
cially if training data for these tasks are limited.

However, POS tagging can be very challeng-
ing if only a few labeled sentences are avail-
able. Previous work on POS tagging with lim-
ited or no annotated data comes in three fla-
vors, e.g., (Yarowsky et al., 2001; Goldwater and
Griffiths, 2007; Li et al., 2012; Biemann, 2012;
Täckström et al., 2013; Dong et al., 2015; Agić
et al., 2015): unsupervised POS induction, cross-
lingual transfer, or, if some suitable data are avail-
able, supervised induction from small labeled cor-
pora or dictionaries. This work focuses on the lat-
ter: We explore the effect of multi-task learning
for building robust POS taggers for low-resource
languages from small amounts of annotated data.

In low-resource settings, neural POS taggers
have been observed to perform poorly compared to
log-linear models. This is unfortunate, since neu-
ral POS taggers have other advantages, including
being easily integrable into multi-task learning ar-
chitectures, sidestepping feature engineering, and
providing compact word-level and sentence-level
representations. In this paper, we therefore take
steps to bridge the gap to state-of-the-art taggers
in such scenarios.

Specifically, we consider training neural POS
taggers from 478 annotated tokens (the size of the
smallest treebank in UD 2.01). In such a setting, it
is often useful to leverage data from other, related
tasks (Bingel and Søgaard, 2017), if available.
However, since for many low-resource languages
such data is hard to find, we consider multi-task
learning scenarios with no other sequence labeling
data at hand:

(i) a scenario in which type-based morpholog-
ical information is available, e.g., word-
lemma pairs as can be found in standard dic-
tionaries or UniMorph,2

1http://universaldependencies.org/
2http://unimorph.org/

1

(ii) a scenario where we only rely on raw text cor-
pora in the language, and

(iii) a scenario where we do not assume any addi-
tional data, but construct a synthetic auxiliary
task instead.

In order to include secondary information such as
word-lemma pairs into our model, we integrate
a character-based recurrent sequence-to-sequence
model into a hierarchical long short-term mem-
ory (LSTM) sequence tagger (cf. Figure 1). By
formulating suitable auxiliary tasks (lemmatiza-
tion, word autoencoding or random string au-
toencoding, respectively), we can include addi-
tional character-level supervision into our model
via multi-task training.

Contributions. We present a novel architecture
for inducing more robust neural POS taggers from
small samples of annotated data in low-resource
languages, combining a hierarchical, deep bi-
LSTM sequence tagger with a character-based
sequence-to-sequence model. Furthermore, we
experiment with different choices of external re-
sources and corresponding auxiliary tasks and
show that autoencoding can be as efficient as an
auxiliary task for low-resource POS tagging as
lemmatization. Finally, we evaluate our models
on 34 typologically diverse languages.

2 POS Tagging with Subword-level
Supervision

Hierarchical POS tagging LSTMs that receive
both word-level and subword-level input, such as
Plank et al. (2016), are known to perform well on
unseen words. This is due to their ability to asso-
ciate subword-level patterns with POS tags. How-
ever, hierarchical LSTMs are also very expressive,
and thus prone to overfitting. We believe that us-
ing subword-level auxiliary tasks to regularize the
character-level encoding in hierarchical LSTMs is
a flexible and efficient way to get the best of both
worlds: such a model is still able to make predic-
tions about unknown words, but the subword-level
auxiliary task should prevent it from overfitting.

2.1 Hierarchical LSTMs with
Character-level Decoding

Our proposed multi-task architecture is shown in
Figure 1. For the hierarchical sequence label-
ing LSTM, we follow Plank et al. (2016): Our

Figure 1: Our multi-task architecture, consist-
ing of a shared character LSTM (down), as well
as a sequence labeling (up) and a sequence-to-
sequence (right) part.

subword-level LSTM is bi-directional and oper-
ates on the character level (Ling et al., 2015;
Ballesteros et al., 2015). Its input is the charac-
ter sequence of each input word, represented by
the embedding sequence c1, c2, . . . , cm. The final
character-based representation of each word is the
concatenation of the two last LSTM hidden states:

vc,i = conc(LSTMc,f (c1:m), (1)

LSTMc,b(cm:1))

Second, a context bi-LSTM operates on the
word level. Like Plank et al. (2016), we use
the term “context bi-LSTM” to denote a bidi-
rectional LSTM which, in order to generate
a representation for input element i, encodes
all elements up to position i with a forward
LSTM and all elements from n to i using a
backward LSTM. For each sentence represented
by embeddings w1, w2, . . . , wn, its input are
the concatenation of the word embeddings
with the outputs of the subword-level LSTM:
conc(w1, vc,1), conc(w2, vc,2) . . . , conc(wn, vc,n).
The final representation which gets forwarded
to the next part of the network is again the

2

concatenation of the last two hidden LSTM states:

vw,i = conc(LSTMw,f (conc(w, vc)1:i), (2)

LSTMw,b(conc(w, vc)n:i))

This is then passed on to a classification layer.

2.1.1 Character-based Decoding

We extend the network with a new component, a
character-based sequence-to-sequence model. It
consists of a bidirectional LSTM encoder which is
connected to an LSTM decoder (Cho et al., 2014;
Sutskever et al., 2014).

Encoding. The encoder corresponds to the
character-level bi-directional LSTM described
above and thus yields the representation

vc,i = conc(LSTMc,f (c1:m), (3)

LSTMc,b(cm:1))

for an input word embedded as c1, c2, . . . , cm. Pa-
rameters of the character-level LSTM are shared
between the sequence labeling and the sequence-
to-sequence part of our model.

Decoding. The decoder receives the concatena-
tion of the last hidden states vc,i as input. In partic-
ular, we do not use an attention mechanism (Bah-
danau et al., 2015), since our goal is not to improve
performance on the auxiliary task, but instead to
encourage the encoder to learn better word repre-
sentations. The decoder is trained to predict each
output character yt dependent on vc,i and previous
predictions y1, ..., yt−1 as

p(yt|{y1, ..., yt−1}, vc,i) = g(yt−1, st, vc,i) (4)

for a non-linear function g and the LSTM hidden
state st. The final softmax output layer is calcu-
lated over the vocabulary of the language.

Joint model. Figure 1 shows how parameters
are shared between the sequence labeling and
the sequence-to-sequence components of our net-
work. All model parameters, including all embed-
dings, are updated during training. Our model ar-
chitecture is “symmetric”, i.e., it does not distin-
guish between main and auxiliary tasks. However,
we use early stopping on the development set of
the main task, such that convergence is not guar-
anteed for the auxiliary tasks.

2.2 Multi-task Learning

We want to train our neural model jointly on (i)
a low-resource main task, i.e., POS tagging, and
(ii) an exchangeable auxiliary task (cf. §3). There-
fore, we want to maximize the following joint log-
likelihood:

L(θ)=
∑

(l,s)∈DPOS

log pθ (l | s) (5)

+
∑

(in,out)∈Daux

log pθ (out | in)

Here, DPOS denotes the POS tagging training
data, with s being the input sentence and l the cor-
responding label sequence. Daux is a placeholder
for our auxiliary task training data with examples
consisting of input in and output out. We exper-
iment with three different auxiliary tasks, which
will be described in the next section.

The set of model parameters θ is the union of
the set of parameters of the sequence labeling and
the sequence-to-sequence part. Parameters of the
character LSTM are shared between the main and
the auxiliary task.

3 (Un)supervised Auxiliary Tasks

In this section, we will describe our three auxiliary
tasks in more detail.

3.1 Random String Autoencoding

Random string autoencoding is a synthetic auxil-
iary task created for a setting in which we have no
additional resources available. It consists of, given
a random character sequence as input, reconstruct-
ing the same sequence in the output. Concretely,
given the alphabet AL of a language L, the task
is to learn a mapping r 7→ r for r ∈ A+

L . Note
that the random string r is in most cases not a
valid word in L. Additionally, we prepend a spe-
cial symbol Sr to the input which indicates the
current task to the encoder, e.g., “OUT=AE” or
“OUT=POS”.

3.2 Word Autoencoding

Word autoencoding is a special case of the pre-
vious auxiliary task, in that we now use actual
words in the language, e.g., from unlabeled cor-
pora or dictionaries. As for random string autoen-
coding, the task consists of reproducing a given
input character sequence in the output. As before,
we additionally feed a special symbol Sw into the

3

model which signals the current task to the en-
coder. Our final training examples are of the form
(Sw;w) 7→ w, where w ∈ VL for the vocabulary
VL of L. Word autoencoding has been used as an
auxiliary task before, e.g., (Vosoughi et al., 2016).

3.3 Lemmatization
Lemmatization is a task from the area of inflec-
tional morphology. In particular, it is a special
case of morphological inflection. Its goal is to map
a given inflected word form to its lemma, e.g.,

sueño 7→ soñar. (6)

Sequence-to-sequence models have shown strong
performances on morphological inflection (Aha-
roni et al., 2016; Kann and Schütze, 2016;
Makarov et al., 2017). Therefore, when morpho-
logical dictionaries are available, we can easily
combine a neural model for lemmatization with a
POS tagger, using our architecture. Our intuition
for this auxiliary task is that it should be possi-
ble to include morphological information into our
character-based word representations.

Formally, the task can be described as follows.
Let AL be a discrete alphabet for language L and
let TL be a set of morphological tags for L. The
morphological paradigm π of a lemma w in L is a
set of pairs

π(w) =
{(
fk[w], tk

)}
k∈T (w)

(7)

where fk[w`] ∈ A+
L is an inflected form, tk ∈ TL

is its morphological tag and T (w) is the respec-
tive set of paradigm slots. Lemmatization consists
of predicting the lemma w for an inflected form
fk[w`] in π(w).

4 Experimental Setup

In this section, we will describe our experiments,
including data, baselines, and hyperparameters.

4.1 Data
POS. The data for our POS tagging main task
comes from the Universal Dependencies (UD) 2.0
collection (Nivre et al., 2007). We use the pro-
vided train/dev/test splits.

Since we use the official datasets from the SIG-
MORPHON 2017 shared task on universal mor-
phological reinflection (Cotterell et al., 2017) for
the lemmatization auxiliary task, we limit our-
selves to the languages featured there. We simu-
late a low-resource setting by reducing all training

sets to 478 tokens. Among our languages, this is
the size of the smallest training set in UD 2.0.

Lemmatization. For the lemmatization auxil-
iary task, we make use of the word-lemma pairs in
the training sets released for the SIGMORPHON
2017 shared task (Cotterell et al., 2017), which are
subsets of the UniMorph data. In particular, there
are three settings with different training sets per
language: low (100 examples), medium (1,000 ex-
amples) and high (10,000 examples).

Word autoencoding. For the word autoencod-
ing task, we use the inflected forms from the SIG-
MORPHON 2017 shared task dataset for each re-
spective setting. Due to identical forms for differ-
ent slot in the morphological paradigm of some
lemmas, we might have duplicate examples in
those datasets.

Random string autoencoding. For the random
string autoencoding auxiliary task, we generate
random character sequences to be used as training
instances for our model’s encoder-decoder part. In
order to have the same amount of unique char-
acters as with the other two auxiliary tasks, we
use the character sets from the SIGMORPHON
shared task vocabulary for each respective setting.
We then uniformly draw characters from these sets
and form strings of random lengths between 3 and
20 characters.

4.2 Baselines

TreeTagger. Since low-resource settings like the
one considered here are known to be challeng-
ing for neural models, we employ TreeTagger
(Schmid, 1995), a non-neural Markov model tag-
ger, as our first baseline.

MarMoT. Our second non-neural baseline is
the state-of-the-art tagger MarMoT (Müller et al.,
2013), which is based on conditional random
fields (CRFs, Lafferty et al. (2001)).

Single-task hierarchical LSTM. We compare
all our results to a single-task baseline model,
which corresponds largely to the architecture used
by Plank et al. (2016) for POS tagging. We mod-
ify their original code by adding character dropout
with a coefficient of 0.25 to improve regulariza-
tion and make the baseline more comparable to
and competitive with our models.

4

Multi-task baseline. We further compare to a
multi-task architecture which jointly learns to pre-
dict the POS tag and the log-frequency of a word
as suggested by Plank et al. (2016). The intuition
described by the original authors is that the auxil-
iary loss, being predictive of word frequency, can
improve the representations of rare words. Note
that this baseline can easily be combined with our
architecture. We leave the exploration of such a
combination for future work.

4.3 Hyperparameters

For all networks, we use 300-dimensional char-
acter embeddings, 64-dimensional word embed-
dings and 100-dimensional LSTM hidden states.
Encoder and decoder LSTMs have 1 hidden layer
each. For training, we use ADAM (Kingma and
Ba, 2014), as well as word dropout and character
dropout, each with a coefficient of 0.25 (Kiper-
wasser and Goldberg, 2016). Gaussian noise is
added to the concatenation of the last states of the
character LSTMs for POS tagging. All models
are trained using early stopping, with a minimum
number of 75 (single-task and low), 30 (medium)
or 20 (high) epochs and a maximum number of
300 epochs, which is never reached. We stop train-
ing if we obtain no improvement for 10 consecu-
tive epochs. The best model on the development
set is used for testing.

5 Results

The test results for all languages and settings are
presented in Table 1.

Our first observation is that using 100 words of
auxiliary task data seems to be sufficient, as we do
not see consistent gains from adding more auxil-
iary task instances. This might be related to the
very limited amount of POS tagging data we as-
sume available; a too low main-auxiliary task data
ratio probably inhibits further gains.

Second, we find that lemmatization and word
autoencoding on average over all languages bring
similar gains, differences are only between 0.0013
(medium) and 0.0021 (high) absolute accuracy.
Comparing word and random string autoencoding,
two observations can be made: in the low setting,
differences are small, while random string autoen-
coding is the only task which performs worse in
the high compared to the low setting. So the gap
between the two autoencoding tasks grows big-
ger for larger auxiliary task data. This might be

explained by random string autoencoding being
helpful in order to get clearer distinctions between
characters; however, this might as well destroy the
model’s ability to pick up on beneficial similari-
ties.

Our third observation is that lemmatization and
word autoencoding consistently outperform the
auxiliary task of predicting log-frequencies as sug-
gested in Plank et al. (2016) with up to 0.0081
(POS+AE, low/high) higher absolute accuracy;
random string autoencoding performs 0.0079 bet-
ter in the low setting. We may thus conclude
that, in our setting, auxiliary tasks with additional
character-level supervision are more beneficial.

Fourth, both non-neural baselines outperform
the single-task neural model. Adding auxiliary
tasks leads to a higher performance (averaged over
languages) than TreeTagger. MarMoT is the over-
all best performing model. However, for some
individual languages, the neural model obtains
higher accuracies, e.g., for Bulgarian, Dutch, or
Romanian. In particular, our approach is stronger
for languages with templatic morphology, e.g.,
Arabic, Hebrew, or Turkish. This emphasizes the
importance of neural approaches for the task.

Finally, we look at differences between auxil-
iary tasks for individual languages. Here, we no-
tice that autoencoders often outperform lemmati-
zation for agglutinative languages. An explanation
for this might be that agglutinative morphology is
harder to learn, and the chance of overfitting on a
small sample is therefore higher.

6 Analysis

6.1 Error Analysis

Table 2 lists the F1-scores of our models across
POS tags, compared to the single-task baseline.

Our first observation is that the decrease in per-
formance from training on more random strings,
is relatively equal across tags, with the exception
of DET, PUNCT and X; tokens that consist of
very few, fixed characters. We also note that all
our models with character-level supervision get
worse at predicting numerals. In contrast, ADP,
AUX, CCONJ and PUNCT always benefit from a
character-based auxiliary task. Generally, the POS
taggers trained on small amounts of data are chal-
lenged by rare syntactic categories such as inter-
jections and the miscellaneous category X.

5

high medium low baselines
language POS+ POS+ POS+ POS+ POS+ POS+ POS+ POS+ POS+ POS+ POS TreeTagger MarMoT

Lemma AE AE-Random Lemma AE AE-Random Lemma AE AE-Random LogFrequ
arabic .6900(.01) .6862(.01) .6747(.01) .6638(.02) .6737(.01) .6635(.00) .6735(.01) .6680(.01) .6731(.01) .6583(.02) .6545(.01) .6047(.00) .6398(.00)
basque .5925(.01) .6231(.01) .5866(.01) .6088(.01) .6291(.01) .6170(.01) .6332(.01) .6262(.01) .6363(.00) .6058(.01) .6217(.02) .6143(.00) .6862(.00)
bulgarian .6139(.01) .6344(.01) .5954(.01) .6239(.01) .6343(.00) .6153(.02) .6267(.01) .6410(.01) .6431(.01) .6431(.01) .6272(.01) .6208(.00) .6067(.00)
catalan .7104(.01) .7139(.01) .7051(.00) .7175(.01) .7212(.01) .7116(.01) .7279(.01) .7352(.01) .7232(.01) .7024(.01) .7197(.01) .7525(.00) .7824(.00)
czech .6227(.01) .6063(.01) .5574(.02) .5923(.01) .5953(.00) .5742(.01) .6131(.02) .6048(.00) .6003(.01) .5784(.01) .5897(.02) .6417(.00) .6720(.00)
danish .6368(.00) .6322(.01) .6137(.01) .6431(.01) .6434(.00) .6307(.01) .6375(.01) .6378(.00) .6378(.00) .6431(.01) .6346(.03) .6346(.00) .6703(.00)
dutch .5901(.01) .5835(.01) .5533(.01) .5837(.00) .5778(.00) .5689(.01) .5810(.01) .5807(.00) .5812(.01) .5559(.01) .5724(.01) .5406(.00) .5866(.00)
english .5784(.01) .5723(.01) .5183(.01) .5747(.01) .5658(.01) .5423(.00) .5585(.03) .5836(.01) .5857(.00) .5751(.02) .5822(.02) .6019(.00) .6507(.00)
estonian .5386(.01) .5456(.01) .5224(.01) .5438(.01) .5323(.01) .5173(.01) .5384(.01) .5474(.01) .5333(.02) .5388(.01) .5391(.02) .5632(.00) .5851(.00)
finnish .5748(.01) .5678(.01) .5403(.02) .5599(.01) .5632(.01) .5468(.01) .5637(.01) .5616(.01) .5634(.00) .5424(.01) .5525(.01) .5602(.00) .5743(.00)
french .6922(.01) .6898(.01) .6720(.00) .6855(.01) .6874(.00) .6876(.01) .7048(.00) .6981(.00) .6924(.01) .6858(.01) .6826(.01) .5931(.00) .7084(.00)
german .6804(.01) .6742(.00) .5739(.02) .6887(.00) .6639(.01) .6190(.01) .6768(.01) .6830(.01) .6687(.01) .6895(.01) .6711(.01) .5912(.00) .7370(.00)
hebrew .6764(.00) .6838(.00) .6827(.01) .6734(.01) .6781(.00) .6672(.00) .6761(.01) .6825(.00) .6796(.01) .6776(.01) .6655(.01) .6147(.00) .6705(.00)
hindi .5954(.01) .6062(.01) .5874(.01) .5914(.01) .5984(.01) .5839(.01) .5989(.01) .6046(.01) .6001(.01) .5992(.01) .5791(.02) .5784(.00) .5943(.00)
hungarian .5820(.01) .5853(.01) .5647(.01) .5811(.01) .5836(.01) .5712(.01) .5907(.01) .5897(.01) .5991(.00) .5824(.01) .5825(.02) .6352(.00) .6651(.00)
irish .6800(.01) .6715(.01) .6573(.00) .6741(.00) .6649(.00) .6593(.01) .6735(.00) .6743(.00) .6790(.00) .6724(.01) .6699(.00) .6511(.00) .6729(.00)
italian .7150(.00) .7123(.01) .6992(.00) .7105(.00) .7032(.00) .7012(.00) .7012(.01) .7054(.01) .7053(.00) .7076(.01) .6902(.02) .6959(.00) .7280(.00)
latin .5950(.00) .5853(.01) .5633(.01) .6026(.01) .5953(.00) .5863(.00) .5998(.01) .6068(.01) .5992(.01) .6069(.00) .6046(.01) .6234(.00) .6312(.00)
latvian .5446(.01) .5557(.01) .5288(.01) .5406(.01) .5453(.01) .5303(.01) .5344(.01) .5356(.01) .5408(.01) .5382(.00) .5300(.01) .5984(.00) .5773(.00)
lithuanian .5347(.01) .5292(.02) .4936(.01) .5123(.01) .5192(.01) .5213(.01) .5230(.01) .5313(.01) .5327(.01) .5238(.01) .4721(.01) .5783(.00) .5840(.00)
n.-bokmaal .5388(.00) .5399(.01) .5048(.01) .5352(.01) .5368(.01) .5280(.01) .5365(.01) .5400(.01) .5437(.01) .5300(.01) .5016(.02) .5737(.00) .5658(.00)
n.-nynorsk .6172(.01) .6223(.01) .6043(.01) .6200(.01) .6228(.01) .6167(.01) .6256(.01) .6263(.01) .6232(.01) .6238(.01) .6130(.01) .6142(.00) .6168(.00)
persian .7419(.01) .7438(.01) .7287(.01) .7312(.01) .7277(.01) .7330(.00) .7332(.00) .7352(.00) .7340(.00) .7278(.01) .7116(.01) .7339(.00) .7539(.00)
polish .6407(.00) .6423(.01) .5960(.01) .6314(.01) .6243(.01) .6162(.01) .6448(.00) .6460(.01) .6400(.01) .6243(.01) .6489(.01) .6712(.00) .6700(.00)
portuguese .6886(.00) .6865(.00) .6597(.01) .6786(.01) .6775(.01) .6692(.01) .6784(.00) .6815(.00) .6920(.01) .6482(.03) .6408(.02) .6377(.00) .7135(.00)
romanian .6029(.01) .6156(.01) .5956(.01) .6028(.01) .6117(.01) .5969(.00) .6027(.01) .6135(.01) .6145(.01) .6062(.01) .6051(.00) .5993(.00) .5740(.00)
russian .6807(.01) .6817(.01) .6283(.00) .6860(.02) .6607(.01) .6504(.01) .6752(.01) .6661(.01) .6661(.01) .6644(.01) .6241(.05) .6105(.00) .7281(.00)
slovak .6169(.01) .6327(.01) .5835(.01) .6274(.01) .6203(.01) .6337(.02) .6585(.01) .6378(.01) .6443(.01) .6536(.02) .6264(.02) .6642(.00) .6672(.00)
slovene .6364(.00) .6414(.00) .6093(.01) .6343(.01) .6223(.01) .6070(.01) .6358(.00) .6375(.01) .6350(.01) .6105(.01) .5922(.02) .6561(.00) .6046(.00)
spanish .6962(.00) .6891(.01) .6624(.02) .6844(.01) .6797(.01) .6659(.01) .6818(.01) .6939(.01) .6900(.01) .6917(.01) .6724(.01) .6933(.00) .7578(.00)
swedish .6127(.01) .6261(.01) .5909(.01) .6254(.00) .6262(.00) .6194(.01) .6193(.01) .6254(.01) .6254(.00) .6274(.01) .6117(.02) .6290(.00) .6304(.00)
turkish .6067(.01) .6007(.01) .5725(.01) .5846(.01) .5879(.00) .5792(.01) .6042(.01) .6003(.01) .6040(.01) .6087(.01) .5891(.01) .6107(.00) .6025(.00)
ukrainian .5910(.01) .5946(.00) .5755(.00) .5826(.01) .5750(.00) .5668(.01) .5878(.02) .5895(.01) .5894(.01) .5869(.02) .5932(.01) .5297(.00) .6125(.00)
urdu .6589(.01) .6697(.01) .6335(.00) .6572(.01) .6599(.00) .6465(.01) .6578(.01) .6526(.01) .6600(.01) .6395(.02) .6096(.03) .5229(.00) .6776(.00)
average .6286(-) .6307(-) .6010(-) .6251(-) .6238(-) .6131(-) .6287(-) .6307(-) .6305(-) .6226(-) .6141(-) .6188(-) .6529(-)

Table 1: Averaged accuracies and standard deviations over 5 training runs on UD 2.0 test sets, with 478
tokens of POS-annotated data and varying amounts of data for the auxiliary task (low, medium and high).
Best result for each language in bold. Autoencoding and lemmatization are on par across the board, and
with 100 training sentences (low), random autoencoding is also competitive.

6.2 Why does Random String Autoencoding
Help?

In the low setting, i.e., when using only 100
auxiliary task examples, autoencoding, especially
of random strings, works better than or equally
well as lemmatization for highly agglutinative lan-
guages such as Basque, Finnish, Hungarian, and
Turkish. Further, while random string autoencod-
ing is in general less efficient than autoencoding
or lemmatization, it performs on par with these
auxiliary tasks in the set-up with least auxiliary
task data. However, this raises the question why
random string autoencoding does work at all for
a POS tagging main task. We offer two potential
explanations:

General properties of the auxiliary tasks. Bin-
gel and Søgaard (2017) showed that multi-task
learning is more likely to be helpful when the aux-
iliary loss does not plateau earlier than the main
loss. Figure 2 presents the loss curves for one
model for each of four randomly selected lan-
guages (the corresponding plots for the remaining

languages look similar). They show exactly the
patterns found to be predictive of multi-task learn-
ing gains by Bingel and Søgaard (2017), who offer
the explanation that when the auxiliary loss does
not plateau before the target task, it can help the
model out of local minima during training.

Preventing character collisions. A random
string autoencoder needs to memorize the input
string. This means encoding which characters are
at what position in the input sequence. Jointly
learning a random string autoencoder thus forces
a model to make it easy to differentiate between
characters, pushing them apart in vector space.
See Table 3 for the average character distances
and Table 4 for the minimum character distances
across languages for our three systems (low set-
ting) and our single-task baseline. For each sys-
tem, the score is obtained by first calculating the
average distance between all characters or, respec-
tively, finding the minimum distance between any
two characters for each language, and then com-
puting the average across all languages.

6

high medium low
Tag ∆ Lemma ∆ AE ∆ AE- ∆ Lemma ∆ AE ∆ AE- ∆ Lemma ∆ AE ∆ AE- POS

Rand. Rand. Rand.
ADJ -0.0090 0.0083 -0.0555 -0.0167 -0.0017 -0.0290 0.0139 0.0145 0.0045 0.4756
ADP 0.0308 0.0288 0.0042 0.0440 0.0345 0.0205 0.0356 0.0313 0.0293 0.7687
ADV -0.0008 -0.0133 -0.0426 -0.0180 -0.0108 -0.0233 0.0166 0.0209 0.0193 0.2958
AUX 0.0610 0.0537 0.0203 0.0479 0.0264 0.0102 0.0250 0.0423 0.0300 0.6172
CCONJ 0.0849 0.0511 0.0400 0.0579 0.0449 0.0512 0.0646 0.0560 0.0606 0.7594
CONJ 0.0230 -0.0588 -0.0316 -0.0342 0.0674 0.1477 -0.0128 -0.1287 -0.0294 0.6617
DET 0.0227 0.0234 0.0048 0.0178 0.0210 -0.0151 0.0063 0.0046 -0.0037 0.6938
INTJ -0.0204 -0.0072 -0.0022 -0.0229 -0.0133 -0.0086 -0.0217 -0.0115 -0.0166 0.0806
NOUN 0.0015 0.0127 -0.0226 -0.0009 0.0072 -0.0055 0.0099 0.0147 0.0076 0.5457
NUM -0.0537 -0.0777 -0.1332 -0.1389 -0.1626 -0.1372 -0.0830 -0.0633 -0.0885 0.5965
PART 0.0313 0.0195 -0.0252 0.0089 -0.0280 -0.0558 -0.0221 -0.0046 -0.0013 0.6719
PRON 0.0532 0.0389 -0.0084 0.0435 0.0297 -0.0059 0.0346 0.0391 0.0368 0.5189
PROPN -0.0374 -0.0529 -0.1133 -0.0682 -0.0503 -0.0684 -0.0318 -0.0197 -0.0249 0.4271
PUNCT 0.0342 0.0204 0.0192 0.0188 0.0187 0.0186 0.0199 0.0185 0.0142 0.9299
SCONJ 0.0243 0.0346 0.0000 0.0288 0.0116 -0.0073 0.0205 0.0102 0.0166 0.5708
SYM -0.0495 -0.1380 -0.0482 -0.0590 0.0394 0.0072 0.1261 0.1738 0.1496 0.6437
VERB 0.0334 0.0397 -0.0268 0.0314 0.0234 0.0000 0.0416 0.0224 0.0378 0.4370
X 0.0829 0.0754 0.0262 0.0194 0.0175 0.0092 0.0126 0.0023 0.0019 0.1322

Table 2: F-score deltas between the neural single-task baseline (POS) and our multi-task systems.

System Average Distance
low medium high

POS+Lemmatization 0.928 0.976 0.964
POS+AE 0.923 0.965 0.960
POS+AE-Random 0.913 0.956 0.996
POS 0.881

Table 3: Average character embedding distances,
averaged over all languages.

System Minimum Distance
low medium high

POS+Lemmatization 0.031 0.027 0.074
POS+AE 0.032 0.031 0.092
POS+AE-Random 0.033 0.032 0.104
POS 0.018

Table 4: Minimum character embedding dis-
tances, averaged over all languages.

In small sample regimes, pushing individual
characters further apart is a potential advantage,
since character collisions can be hurtful at infer-
ence time. We note how this is analogous to fea-
ture swamping of covariate features, as described
in Sutton et al. (2006). Sutton et al. (2006) use a
group lasso regularizer to prevent feature swamp-
ing. In the same way, we could also detect dis-
tributionally similar characters and use a group
lasso regularizer to prevent covariate characters to
swamp each other. However, this effect can po-
tentially also hurt performance if done in an un-
informed way. We intuit that this makes it also
impossible for the model to learn useful similari-
ties between characters (random string autoencod-

ing in the high setting has a minimum distance
of 0.104 compared to 0.018 for the single-task
model). This might explain the performance gap
between random string encoding and the other two
auxiliary tasks for the high setting.

7 Related Work

POS tagging. POS tagging and other NLP se-
quence labeling tasks have been successfully ap-
proached using bidirectional LSTMs (Wang et al.,
2015; Plank et al., 2016; Yang et al., 2016). Al-
though previous work using such architectures of-
ten relies on massive datasets, Plank et al. (2016)
show that bi-LSTMs in particular are not as re-
liant on large amounts of data in a sequence la-
beling scenario as previously assumed. Further-
more, their model is also a multi-task model, be-
ing trained jointly on predicting the POS and the
log-frequency of a word. Their architecture ob-
tained state-of-the-art results for POS tagging in
several languages. Hence, in the low-resource set-
ting considered here, we build upon the architec-
ture developed by Plank et al. (2016), and extend
it to a multi-task architecture involving sequence-
to-sequence learning. Note though that in contrast
to our setup, their tasks are both sequence-labeling
tasks and using the same input for both tasks.

The same holds true for the multi-task model
by Rei (2017), which is used to investigate how an
additional language modeling objective could im-
prove performance for sequence labeling without
any need for additional training data. He reported

7

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

POS, main task
POS+AE-Random, main task
POS+AE-Random, aux. task
POS+Lemmatization, main task
POS+Lemmatization, aux. task
POS+AE, main task
POS+AE, aux. task

(a) Basque

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

POS, main task
POS+AE-Random, main task
POS+AE-Random, aux. task
POS+Lemmatization, main task
POS+Lemmatization, aux. task
POS+AE, main task
POS+AE, aux. task

(b) Estonian

0 10 20 30 40 50 60 70 80 90
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

POS, main task
POS+AE-Random, main task
POS+AE-Random, aux. task
POS+Lemmatization, main task
POS+Lemmatization, aux. task
POS+AE, main task
POS+AE, aux. task

(c) Hindi

0 20 40 60 80 100 120 140
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

POS, main task
POS+AE-Random, main task
POS+AE-Random, aux. task
POS+Lemmatization, main task
POS+Lemmatization, aux. task
POS+AE, main task
POS+AE, aux. task

(d) Swedish

Figure 2: Learning curve plots for four randomly selected languages, low setting.

gains for all investigated tasks, including POS. Fi-
nally, Gillick et al. (2016) present a multi-lingual
model based on ideas from multi-task training,
with each language constituting a separate task.

Multi-task learning in NLP. Neural networks
make multi-task learning via (hard) parameter
sharing particularly easy; thus, different task com-
binations have been investigated exhaustively. For
sequence labeling, many combinations of tasks
have been explored, e.g. by Søgaard and Gold-
berg (2016); Martı́nez Alonso and Plank (2017);
Bjerva et al. (2016); Bjerva (2017a,b); Augenstein
and Søgaard (2018). An analysis of task combina-
tions is performed by Bingel and Søgaard (2017).
Ruder et al. (2017) present a more flexible archi-
tecture, which learns what to share between the
main and auxiliary tasks. Augenstein et al. (2017)
combine multi-task learning with semi-supervised
learning for strongly related tasks with different
output spaces.

However, work on combining sequence label-
ing main tasks and sequence-to-sequence auxiliary

tasks is harder to find. Dai and Le (2015) pretrain
an LSTM as part of a sequence autoencoder on
unlabeled data to obtain better performance on a
sequence classification task. However, they report
poor results for joint training. We obtain different
results: even simple sequence-to-sequence tasks
can indeed be beneficial for the sequence labeling
task of low-resource POS tagging. This might be
due to differences in the architectures or tasks.

Cross-lingual learning. Even though we do not
employ cross-lingual learning in this work, we
consider it highly relevant for low-resource set-
tings and, thus, want to mention some impor-
tant work here. Cross-lingual approaches have
been used for a large variety of tasks, e.g., auto-
matic speech recognition (Huang et al., 2013), en-
tity recognition (Wang and Manning, 2014), lan-
guage modeling (Tsvetkov et al., 2016), or pars-
ing (Cohen et al., 2011; Søgaard, 2011; Naseem
et al., 2012; Ammar et al., 2016). In the realm
of sequence-to-sequence models, most work has
been done for machine translation (Dong et al.,

8

2015; Zoph and Knight, 2016; Ha et al., 2016;
Johnson et al., 2017). Another example is a
character-based approach by Kann et al. (2017) for
morphological generation.

8 Conclusion

We explored multi-task setups for training ro-
bust POS taggers for low-resource languages from
small amounts of annotated data. In order to add
additional character-level supervision into a hier-
archical recurrent neural model, we introduced a
novel network architecture. We considered dif-
ferent available types of external resources (word-
lemma pairs, unlabeled corpora, or none) and em-
ployed corresponding auxiliary tasks (lemmatiza-
tion, word autoencoding, or the artificial task of
random string autoencoding) as well as varying
amounts of auxiliary task data. While we did not
find a systematic superior performance of mod-
els which were trained with lemmatization as an
auxiliary task, the results confirmed our hypothe-
sis that additional subword-level supervision im-
proves POS taggers for resource-poor languages.

Acknowledgments

We would like to thank Paulina Grnarova and Ro-
drigo Nogueira for their helpful feedback. Isabelle
Augenstein is partly supported by Eurostars grant
Number E10138.

References

Željko Agić, Dirk Hovy, and Anders Søgaard. 2015.
If all you have is a bit of the bible: Learning pos
taggers for truly low-resource languages. In ACL-
IJCNLP.

Roee Aharoni, Yoav Goldberg, and Yonatan Belinkov.
2016. Improving sequence to sequence learning for
morphological inflection generation: The BIU-MIT
systems for the SIGMORPHON 2016 shared task
for morphological reinflection. In SIGMORPHON.

Waleed Ammar, George Mulcaire, Miguel Ballesteros,
Chris Dyer, and Noah Smith. 2016. Many lan-
guages, one parser. TACL, 4:431–444.

Isabelle Augenstein, Sebastian Ruder, and Anders
Søgaard. 2017. Multi-task learning of keyphrase
boundary detection. In ACL.

Isabelle Augenstein and Anders Søgaard. 2018. Multi-
task learning of pairwise sequence classification
tasks over disparate label spaces. In NAACL.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Miguel Ballesteros, Chris Dyer, and Noah A Smith.
2015. Improved transition-based parsing by mod-
eling characters instead of words with LSTMs. In
EMNLP.

Chris Biemann. 2012. Unsupervised part-of-speech
tagging. In Structure Discovery in Natural Lan-
guage, pages 113–144. Springer.

Joachim Bingel and Anders Søgaard. 2017. Identify-
ing beneficial task relations for multi-task learning
in deep neural networks. In EACL.

Johannes Bjerva. 2017a. One Model to Rule them all:
Multitask and Multilingual Modelling for Lexical
Analysis. Ph.D. thesis, University of Groningen.

Johannes Bjerva. 2017b. Will my auxiliary tagging
task help? Estimating auxiliary tasks effectivity in
multi-task learning. In NoDaLiDa.

Johannes Bjerva, Barbara Plank, and Johan Bos. 2016.
Semantic tagging with deep residual networks. In
COLING.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder–decoder ap-
proaches. In SSST.

Shay B Cohen, Dipanjan Das, and Noah A Smith.
2011. Unsupervised structure prediction with non-
parallel multilingual guidance. In EMNLP.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sandra Kübler, David
Yarowsky, Jason Eisner, and Mans Hulden. 2017.
The CoNLL-SIGMORPHON 2017 shared task:
Universal morphological reinflection in 52 lan-
guages. In CoNLL-SIGMORPHON.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
sequence learning. In NIPS.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and
Haifeng Wang. 2015. Multi-task learning for mul-
tiple language translation. In ACL-IJCNLP.

Dan Gillick, Cliff Brunk, Oriol Vinyals, and Amarnag
Subramanya. 2016. Multilingual language process-
ing from bytes. In NAACL-HLT.

Sharon Goldwater and Tom Griffiths. 2007. A fully
bayesian approach to unsupervised part-of-speech
tagging. In ACL.

Thanh-Le Ha, Jan Niehues, and Alexander Waibel.
2016. Toward multilingual neural machine
translation with universal encoder and decoder.
arXiv:1611.04798.

9

Jui-Ting Huang, Jinyu Li, Dong Yu, Li Deng, and
n Gong. 2013. Cross-language knowledge transfer
using multilingual deep neural network with shared
hidden layers. In IEEE.

Melvin Johnson, Mike Schuster, Quoc Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernand a Vigas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s
multilingual neural machine translation system: En-
abling zero-shot translation. TACL, 5:339–351.

Katharina Kann, Ryan Cotterell, and Hinrich Schütze.
2017. One-shot neural cross-lingual transfer for
paradigm completion. In ACL.

Katharina Kann and Hinrich Schütze. 2016. Single-
model encoder-decoder with explicit morphological
representation for reinflection. In ACL.

Diederik Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization.
arXiv:1412.6980.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional LSTM feature representations. TACL, 4:313–
327.

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In ICML.

Shen Li, Joao V Graça, and Ben Taskar. 2012. Wiki-ly
supervised part-of-speech tagging. In EMNLP.

Wang Ling, Chris Dyer, Alan W. Black, Isabel Tran-
coso, Ramon Fermandez, Silvio Amir, Luı́s Marujo,
and Tiago Luı́s. 2015. Finding function in form:
Compositional character models for open vocabu-
lary word representation. In EMNLP.

Peter Makarov, Tatiana Ruzsics, and Simon Clematide.
2017. Align and copy: UZH at SIGMORPHON
2017 shared task for morphological reinflection. In
CoNLL-SIGMORPHON.

Héctor Martı́nez Alonso and Barbara Plank. 2017.
When is multitask learning effective? Semantic se-
quence prediction under varying data conditions. In
EACL.

Thomas Müller, Helmut Schmid, and Hinrich Schütze.
2013. Efficient higher-order CRFs for morphologi-
cal tagging. In EMNLP.

Tahira Naseem, Regina Barzilay, and Amir Globerson.
2012. Selective sharing for multilingual dependency
parsing. In ACL.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan Mc-
Donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007. The CoNLL 2007 shared task on de-
pendency parsing. In EMNLP-CoNLL.

Barbara Plank, Anders Søgaard, and Yoav Goldberg.
2016. Multilingual part-of-speech tagging with
bidirectional long short-term memory models and
auxiliary loss. arXiv:1604.05529.

Marek Rei. 2017. Semi-supervised multitask learning
for sequence labeling. In ACL.

Sebastian Ruder, Joachim Bingel, Isabelle Augenstein,
and Anders Søgaard. 2017. Sluice networks: Learn-
ing what to share between loosely related tasks.
arXiv:1705.08142.

Helmut Schmid. 1995. Improvements in part-of-
speech tagging with an application to German. In
SIGDAT.

Anders Søgaard. 2011. Data point selection for cross-
language adaptation of dependency parsers. In ACL-
HLT.

Anders Søgaard and Yoav Goldberg. 2016. Deep
multi-task learning with low level tasks supervised
at lower layers. In ACL.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS.

Charles Sutton, Michael Sindelar, and Andrew McCal-
lum. 2006. Reducing weight undertraining in struc-
tured discriminative learning. In NAACL.

Oscar Täckström, Dipanjan Das, Slav Petrov, Ryan
McDonald, and Joakim Nivre. 2013. Token and type
constraints for cross-lingual part-of-speech tagging.
TACL, 1:1–12.

Yulia Tsvetkov, Sunayana Sitaram, Manaal Faruqui,
Guillaume Lample, Patrick Littell, David
Mortensen, Alan W Black, Lori Levin, and Chris
Dyer. 2016. Polyglot neural language models: A
case study in cross-lingual phonetic representation
learning. In NAACL-HLT.

Soroush Vosoughi, Prashanth Vijayaraghavan, and Deb
Roy. 2016. Tweet2Vec: Learning tweet embeddings
using character-level CNN-LSTM encoder-decoder.
In SIGIR.

Mengqiu Wang and Christopher D Manning. 2014.
Cross-lingual pseudo-projected expectation regular-
ization for weakly supervised learning. TACL, 2:55–
66.

Peilu Wang, Yao Qian, Frank K Soong, Lei He, and
Hai Zhao. 2015. A unified tagging solution: Bidi-
rectional LSTM recurrent neural network with word
embedding. arXiv:1511.00215.

Zhilin Yang, Ruslan Salakhutdinov, and William Co-
hen. 2016. Multi-task cross-lingual sequence tag-
ging from scratch. arXiv:1603.06270.

David Yarowsky, Grace Ngai, and Richard Wicen-
towski. 2001. Inducing multilingual text analysis
tools via robust projection across aligned corpora.
In HLT.

10

Barret Zoph and Kevin Knight. 2016. Multi-source
neural translation. In NAACL-HLT.

11

Proceedings of the Workshop on Deep Learning Approaches for Low-Resource NLP, pages 12–18
Melbourne, Australia July 19, 2018. c©2018 Association for Computational Linguistics

Training a Neural Network in a Low-Resource Setting on Automatically
Annotated Noisy Data

Michael A. Hedderich1,2 Dietrich Klakow1

1Spoken Language Systems (LSV)
2Saarbrücken Graduate School of Computer Science

Saarland Informatics Campus, Saarland University, Saarbrücken, Germany
{mhedderich,dietrich.klakow}@lsv.uni-saarland.de

Abstract

Manually labeled corpora are expensive
to create and often not available for low-
resource languages or domains. Auto-
matic labeling approaches are an alterna-
tive way to obtain labeled data in a quicker
and cheaper way. However, these labels
often contain more errors which can de-
teriorate a classifier’s performance when
trained on this data. We propose a noise
layer that is added to a neural network ar-
chitecture. This allows modeling the noise
and train on a combination of clean and
noisy data. We show that in a low-resource
NER task we can improve performance by
up to 35% by using additional, noisy data
and handling the noise.

1 Introduction

For training statistical models in a supervised way,
labeled datasets are required. For many natural
language processing tasks like part-of-speech tag-
ging (POS) or named entity recognition (NER),
every word in a corpus needs to be annotated.
While the large effort of manual annotation is reg-
ularly done for English, for other languages this
is often not the case. And even for English, the
corpora are usually limited to certain domains like
newspaper articles. For tasks in low-resource ar-
eas there tend to be no or only few labeled words
available.

Distant supervision and automatic labeling ap-
proaches are an alternative to manually creating
labels. These exploit the fact that frequently large
amounts of unannotated texts do exist in the tar-
geted domain, e.g. from web crawls. The la-
bels are then assigned using techniques like trans-
ferring information from high-resource languages
(Das and Petrov, 2011) or simple look-ups in

knowledge bases or gazetteers (Dembowski et al.,
2017). Once such an automatic labeling system
is set up, the amount of text to annotate becomes
nearly irrelevant, especially in comparison to man-
ual annotation. Also, it is often rather easy to ap-
ply the system to different settings, e.g. by using a
knowledge base in a different language.

However, while easily obtainable in large
amounts, the automatically annotated data usu-
ally contains more errors than the manually an-
notated. When training a machine learning algo-
rithm on such noisy training data, this can result in
a low performance. Furthermore, the combination
of noisy and clean training instances can perform
even worse than just using clean data.

In this work, we present an approach to training
a neural network with a combination of a small
amount of clean data and a larger set of automat-
ically annotated, noisy instances. We model the
noise explicitly using a noise layer that is added
to the network architecture. This allows us to di-
rectly optimize the network weights using stan-
dard techniques. After training, the noise layer
is not needed anymore, removing any added com-
plexity.

This technique is applicable to different classi-
fication scenarios and in this work, we apply it to
an NER task. To obtain a non-synthetic, realistic
source of noise, we use look-ups from gazetteers
for automatically annotating the data. In the low-
resource setting, we show the performance boost
obtained from training with both clean and noisy
instances and from handling the noise in the data.
We also compare to another recent neural network
noise-handling approach and we give some more
insight into the impact of using additional noisy
data and into the learned noise model.

12

2 Related Work

Existing work showed the importance of handling
label noise. Zhu and Wu (2004) suggested that
noise in labels tends to be more harmful than noise
in features. Beigman and Beigman Klebanov
(2009) showed that annotation noise in difficult in-
stances can deteriorate the performance even on
simple instances that would have been classified
correctly in the absence of the hard cases.

Rehbein and Ruppenhofer (2017) presented a
technique for detecting annotation noise in auto-
matically labeled POS and NER tags in an ac-
tive learning scheme. It requires, however, several
sources of automatic annotations and human su-
pervision. Similarly, Rocio et al. (2007) and Lofts-
son (2009) focused on detecting noisy instances
in (semi-) automatically annotated POS corpora,
leaving the correction to human annotators.

The model proposed by Bekker and Goldberger
(2016) assumes that all clean labels pass through
a noisy channel. One does only observe the noisy
labels. The model of the noise channel, as well
as the clean labels, are estimated using an EM al-
gorithm. A neural network is then trained on the
estimated labels. van den Berg (2016) applied this
model to different tasks, obtaining small improve-
ments on NER with automatically annotated data.
A disadvantage of this approach is that the neural
network needs to be retrained in every iteration of
the EM algorithm, making the model difficult to
scale to complex neural architectures.

Goldberger and Ben-Reuven (2017) trans-
formed this model into an end-to-end trainable
neural network by replacing the EM component
with a noise adaptation layer. They experimented
with simple image classification data and Dgani
et al. (2018) applied it on the medical image do-
main. Both limit their approach to only using
noisy data. Also, they just evaluate the effec-
tiveness of their noise-handling method on simple
synthetic noise (uniform and permutation). When
applied to real-life scenarios, the noise might have
a more complex structure.

In the image classification domain, several ideas
have been proposed for estimating cleaned labels
using a combination of clean and noisy labels.
Fergus et al. (2009) employ a label propagation
approach. Sukhbaatar et al. (2015) apply a noise
model on top of a Convolutional Neural Network.
Vahdat (2017) constructs an undirected graphical
model to represent the relationship between clean

and noisy labels. However, an additional source of
auxiliary information is needed to infer clean from
noisy labels. The approach presented by Veit et al.
(2017) uses two components. A cleaning network
learns to map noisy labels to clean ones. The sec-
ond network is used to learn the actual image clas-
sification task from clean and cleaned labels. We
compare our approach to this idea in the experi-
ments.

3 Noise Layer

Given a clean dataset C consisting of feature and
label tuples (x, y), we can construct a multi-label
neural network softmax classifier

p(y = i|x;w) = exp(uTi h(x))∑k
j=1 exp(u

T
j h(x))

(1)

where k is the number of classes, h is a non-linear
function or a more complex neural network and
w are the network weights including the softmax
weights u.

The noisy dataset N is a set of additional train-
ing instances. Following the approach of Gold-
berger and Ben-Reuven (2017), we assume that
each originally clean (but unseen) label y went
through a noise channel transforming it into the
noisy label z. We only observe the noisy label, i.e.
N consists of tuples (x, z).

The noise transformation from a clean label y
with class i to a noisy label z with class j is mod-
eled using a stochastic matrix

θ(i, j) = p(z = i|y = j) =
exp(bij)∑k
l=1 exp(bil)

(2)

for i, j ∈ {1, ..., k} and where b are learned
weights. We call this the noise layer here. The
probability for an observed, noisy label then be-
comes

p(z = j|x;w; θ) =
k∑

i=1

p(z = j|y = i; θ)p(y = i|x;w) (3)

for (x, z) ∈ N .
In contrast to the work by Goldberger and Ben-

Reuven (2017), we also have access to clean data
C. From this, we create two models, as illustrated
in Figure 1. The base model without noise layer
is trained on C and the noise model with the noise
layer is trained on N . Both models share the same

13

Neural Network

w

x
(x,y) ∈ C

θ

Neural Network
x

h

h

Softmax

Softmax Noise Layer

y

y
z (x,z) ∈ N

u

Figure 1: General architecture of the approach.
Above is the base model trained on clean data C
and predicting clean labels y. Below is the noise
layer model trained on noisy label data N . The
predicted labels y are transformed into the seen,
noisy labels z using the noise layer.

network weights. The models are trained alter-
natingly, each for one epoch of its corresponding
clean or noisy data. For prediction, the noise layer
is removed and just the base model is used.

As stated by Goldberger and Ben-Reuven
(2017), the initialization of θ is important. Since
we have access to a small amount of clean data
C, we use it for initializing the stochastic matrix.
We assume that we can create noisy labels for the
clean instances using the same process as for the
noisy data N . We then initialize the weights of θ
as

bij = log(

∑|C|
t=1 1{yt=i}1{zt=j}∑|C|

t=1 1{yt=1}
) (4)

where zt is obtained by creating a noisy label for
(xt, yt) ∈ C.

4 Dataset and Automatic Annotation

Named Entity Recognition (NER) is the task of
assigning phrases in a text an entity label. In the
sentence

Only France backed Fischler’s pro-
posal.

the country France is of the entity class location
and Fischler refers to a person. Creating training
data for this task requires that each word in the text
is labeled with its corresponding class. The effort
to create a sufficiently large dataset might be too
large for a low-resource language.

To tackle this problem, Dembowski et al. (2017)
proposed to use external lists and gazetteers of en-
tities to automatically label words in a training cor-
pus. A list of person names can e.g be extracted
from all of the entries appearing in Wikipedia’s
person category. Equipped with such lists for all

Class Precision Recall F1
PER 48.09% 25.90% 33.67%
ORG 52.45% 10.02% 16.83%
LOC 56.76% 65.42% 60.78%
MISC 0.00% 0.00% 0.00%

Overall 53.31% 27.36% 36.16%

Table 1: Evaluation of the automatic labeling on
the full English CoNLL-2003 training set (which
we use as noisy dataset N).

entity classes, one can then label a text automat-
ically. A word gets assigned a specific class if it
appears in the corresponding entity list. A word or
token that does not appear in any list gets assigned
the null class ”O”. Additionally, simple heuris-
tics help to resolve conflicts between lists and to
remove some sources of errors. One might e.g.
not label the day of the weeks as names, although
”Friday” might be in the list of person names.

For this work, we use the English CoNLL-2003
NER corpus (Tjong Kim Sang and De Meulder,
2003). The dataset is labeled with the classes per-
son (PER), location (LOC), organization (ORG),
miscellaneous name (MISC) and the null class
(O). It consists of a training, a development and a
test set. To obtain a low-resource setting, we ran-
domly sample a subset of the training set as clean
data C. In the experiments, we vary this size be-
tween ca. 400 and 20000 words. The rest of the
labels are removed from the training set.

We then label the whole training set using the
method by Dembowski et al. (2017) in the ver-
sion with heuristics. This approach of automati-
cally labeling words allows to quickly obtain large
amounts of labeled text. However, both precision
and recall tend to be lower than for manually la-
beled corpora (cf. Table 1). It should be noted that
the MISC class is not covered with this technique
which is an additional source of noise in the auto-
matically annotated data. We use this as our noisy
data N .

5 Model Architectures and Training

In this section, we present the different model ar-
chitectures we evaluated in our experiments and
we give details on the training procedure.

For each instance, the input x is a sequence
of words with the target word in the middle sur-
rounded by 3 words from the left and from the
right of the original sentence, e.g. x = ”coun-

14

tries other than Britain until the scientific” where
”Britain” is the target word with label y = LOC.
Sentence boundaries are padded. We encode the
words using the 300-dimensional GloVe vectors
trained on cased text from Common Crawl (Pen-
nington et al., 2014).

The base-model uses a bidirectional LSTM
(Hochreiter and Schmidhuber, 1997) with state
size 300 to encode the input. Then a dense layer is
applied with size 100 and ReLU activation (Glo-
rot et al., 2011). Afterwards, the softmax layer is
used for classification. This model is only trained
on the clean data C.

The noise-model is built upon the base model
and uses the noise layer architecture explained in
section 3. First, the model is trained without noise
layer for one epoch on the clean data. Then, we
alternate between training with the noise layer on
the noisy data and without the noise layer on the
clean, each for one epoch. Instead of training
on the full noisy corpus, we use a subsample Ñ ,
randomly picked in each epoch. This allows the
model to see many different noisy samples while
preventing the noise from being too dominant. In
section 6.2, we evaluate this effect.

For the base-model-with-noise we use the
same clean and noisy data but the noise layer is left
out, using only the base model architecture with-
out an explicit noise-handling technique.

To evaluate the importance of the initialization
of the stochastic matrix θ, the noise-model-with-
identity-init uses the same training approach and
data as the noise-model. However, θ is initialized
with the identity matrix instead of using formula
4.

The noise-adaptation-model uses the original
model of Goldberger and Ben-Reuven (2017). It
consists of the base model with the noise layer
and is trained on the whole noisy dataset in each
epoch. It does not use the clean data. For initial-
izing θ, the base model is pretrained on the noisy
data and its predictions are used as an approxima-
tion to the clean labels.

We also compare to the recent work by Veit
et al. (2017). They train a noise cleaning compo-
nent which learns to map from a noisy label and
a feature representation to a clean label. These
cleaned labels are then used for training of what
we call the base model. The authors did not report
specific layer sizes and their architecture is devel-
oped for an image classification task, which dif-

fers structurally from our NER dataset (e.g. their
label vector is much sparser). We, therefore, adapt
their concept to our setting. As feature represen-
tation, we use the output of the BiLSTM which
is projected to a 30-dimensional space with a lin-
ear layer. This is concatenated with the noisy la-
bel and used as input to the noise cleaning com-
ponent. It is passed through a dense layer with
the same dimension as the label vector. The skip-
connection and clipping are used as in their pub-
lication. We use the same training approach and
data as with the noise-model, replacing the step
where the noise layer is trained. Instead, in each
epoch the noise cleaning component is trained on
C and the corresponding noisy labels. The base
model is then trained on a cleaned version of Ñ
and C. We call this the noise-cleaning-model.

All models are trained using cross-entropy loss,
except for the noise cleaning component of the
noise-cleaning-model which is trained with the ab-
solute error loss like in the original paper. All
models are trained for 40 epochs and the weights
of the best performing epoch are selected accord-
ing to the F1 score on the development set. Adam
(Kingma and Ba, 2015) is used for stochastic op-
timization.

6 Experiments and Evaluation

In this section, we report on our experiments and
their results. The training on noisy data as well
as the randomness in training neural networks in
general lead to a certain amount of variance in the
evaluation scores. Therefore, we repeat all experi-
ments five times and report the average as well as
the standard error. To obtain meaningful results,
no noise is added to the test data.

6.1 Model Comparison

To simulate different degrees of low-resource set-
tings, we trained the models on different amounts
of clean data. We vary the size between 407 la-
beled words (0.2% of the CoNLL-2003 training
data) and 20362 labeled words (10%) in six steps.
Since the noisy labels are easy to obtain, we use
the whole corpus N . The size of the random sub-
sample Ñ in each epoch is set to the same size as
the clean data.

The results of this experiment are given in Fig-
ure 2. There is a general trend that the larger the
amount of clean data is, the lower the differences
between the models are. It seems that once we

15

Figure 2: Evaluation results of the models. Ex-
periments were run for different sizes of the clean
data C and the per epoch randomly subsampled
data Ñ . The average F1 score on the test set is
given over five runs. The error bars show two-
times standard error in both directions.

have obtained enough clean training data, the ad-
ditional noisy data cannot add much more infor-
mation, even when cleaned. This is reminiscent
of results from semi-supervised learning (e.g. in
Nigam et al., 2006).

For the two settings with the lowest amount of
data, the base-model-with-noise (which is trained
on clean and noisy data without a noise channel)
performs worst. For the four settings with more
data, it is better than base-model (which is only
trained onC). This could indicate that noisy labels
do hurt the performance in low-resource settings.
However, once a certain amount of clean training
data is obtained, this is enough to cope with the
noise to a certain degree and obtain improvements,
even when the noise is not explicitly handled.

The models that do handle noise, outperform
these baselines. When comparing noise-model
and noise-model-with-identity-init, we see a large
gap in performance. This shows the importance
of a good initialization of the noise model θ in the
low-resource setting.

The original noise-adaptation-model model by
Goldberger and Ben-Reuven (2017) obtains an av-
erage F1 score of 38.8. This shows that a model
purely trained on a large amount of automatically
annotated data can be an alternative to a model
trained on very few clean instances. However, the
effect of cleaning noisy labels without access to
any clean data seems limited, as the model can-
not even reach the performance of either the base-

model trained on 1018 instances nor our noise-
model on the smaller set of 407 instances.

The noise-model outperforms the cleaning-
model in the four lower-resource settings while the
latter performs slightly better in the two scenarios
with more data. With its access to the features in
the noise cleaning component, the cleaning-model
might be able to model more complex noise trans-
formations. However, it does not seem to be able
to leverage this capability in a low-resource set-
ting. In the low-resource settings, our noise-model
is able to handle the noise well and it gains over ten
points in F1 score over not using a noise-handling
mechanism or only training on clean data.

6.2 Amount of Noisy Data
In this experiment, we evaluate the effect of using
different amounts of noisy data during each epoch,
i.e. we vary the size of the subsampled, noisy
data Ñ . We experiment with the noise-model and
fix the amount of clean data C to 2036 labeled
words (1% of the CoNLL-2003 training data). We
choose |Ñ | as multiples of |C| using factors 0.5,
1, 2, 10, 20, 30 and 50.

The results are given in Figure 3. One can see
a trend that increasing the size of Ñ results in an
improvement in F1 score. This holds until factor
5. Afterwards, the performance degrades again.
This might indicate that the noisy data becomes
too dominant and the cleaning effect of the noise
layer is not able to mitigate it.

6.3 Learned Weights
Since, for evaluation purposes, we do have access
to the clean labels of the whole training set, we
can compare the noise that is in the noisy data to
what the noise layer learned. Table 1 shows the
evaluation of the automatically annotated labels on
the training data. Figure 4 shows the stochastic
matrix θ that was learned in one run of training
the noise-model with |C| = |Ñ | = 2036 labeled
words (1% of the CoNLL-2003 training data).

One can see that the learned weight matrix rep-
resents a reasonable model of the noise. For the
classes PER, ORG and MISC, the recall is very
low in the noisy data and therefore the correspond-
ing weights in the first column of the matrix are
high: Instances (or a certain percentage of the
probability mass) which the base model correctly
classifies as PER/ORG/MISC, are mapped to the
class O because this is the corresponding noisy
label (indicated by the low recall). For the LOC

16

Figure 3: Evaluation results for varying the size of
the per epoch randomly subsampled noisy data Ñ .
The noise-model was used and the amount of clean
data C fixed to 2036 labeled words. The average
F1 score on the test set is given over five runs. The
error bars show two-times standard error in both
directions.

class, the recall in the noisy labels is much higher
and we see this reflected in the learned weights.
The prominent weight is θLOC, LOC, i.e. a predic-
tion of the label LOC is mostly left unchanged be-
cause it tends to be correctly labeled in the noisy
data.

7 Conclusions and Future Work

In this work, we presented a technique to train
a neural network on a combination of clean and
noisy annotations. We modeled the noise explic-
itly using a noise layer. We evaluated our ap-
proach on an NER task using real noise in the form
of automatically annotated labels. We found that
the probabilistic noise matrix learned is a useful
model of the noise. In the low-resource setting
where only a few manually annotated instances
are available, we showed the improvements of up
to 35% obtained from using additional, noisy data
and handling the noise.

For future work, we want to experiment with
different classification tasks and other sources of
noisy data. We would also like to explore more
complex noise models that are able to perform
well both in low- and high-resource settings.

References
Eyal Beigman and Beata Beigman Klebanov. 2009.

Learning with annotation noise. In Proceedings of

Figure 4: Representation of the noise transition
weights θ learned in the noise layer. Each square
is a value exp(θij) where i is the vertical and j the
horizontal index in the visualization.

the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP.

Alan Joseph Bekker and Jacob Goldberger. 2016.
Training deep neural-networks based on unreliable
labels. In IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP).

Esther Maria van den Berg. 2016. Noisy label neu-
ral network approach to named entity recognition.
Master’s thesis, Rijksuniversiteit Groningen, Uni-
versität des Saarlandes.

Dipanjan Das and Slav Petrov. 2011. Unsupervised
part-of-speech tagging with bilingual graph-based
projections. In Proceedings of the 49th Annual
Meeting of the Association for Computational Lin-
guistics: Human Language Technologies-Volume 1.

Julia Dembowski, Michael Wiegand, and Dietrich
Klakow. 2017. Language independent named en-
tity recognition using distant supervision. In Pro-
ceedings of Language and Technology Conference
(LTC).

Yair Dgani, Hayit Greenspan, and Jacob Goldberger.
2018. Training a neural network based on unreliable
human annotation of medical images. In IEEE Inter-
national Symposium on Biomedical Imaging (ISBI).

Rob Fergus, Yair Weiss, and Antonio Torralba. 2009.
Semi-supervised learning in gigantic image collec-
tions. In Advances in neural information processing
systems.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Deep sparse rectifier neural networks. In Pro-
ceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics.

17

Jacob Goldberger and Ehud Ben-Reuven. 2017. Train-
ing deep neural-networks using a noise adaptation
layer. In Int. Conference on Learning Representa-
tions (ICLR).

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8).

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations (ICLR).

Hrafn Loftsson. 2009. Correcting a pos-tagged corpus
using three complementary methods. In Proceed-
ings of the 12th Conference of the European Chapter
of the Association for Computational Linguistics.

Kamal Nigam, Andrew McCallum, and Tom Mitchell.
2006. Semi-supervised text classification using em.
Semi-Supervised Learning.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Natu-
ral Language Processing (EMNLP).

Ines Rehbein and Josef Ruppenhofer. 2017. Detecting
annotation noise in automatically labelled data. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers).

Vitor Rocio, Joaquim Silva, and Gabriel Lopes. 2007.
Detection of strange and wrong automatic part-of-
speech tagging. In Progress in Artificial Intelli-
gence.

Sainbayar Sukhbaatar, Joan Bruna, Manohar Paluri,
Lubomir D. Bourdev, and Rob Fergus. 2015. Train-
ing convolutional networks with noisy labels. In
ICLR Workshop track.

Erik F Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the seventh conference on Natural
language learning at HLT-NAACL.

Arash Vahdat. 2017. Toward robustness against la-
bel noise in training deep discriminative neural net-
works. In Advances in Neural Information Process-
ing Systems.

Andreas Veit, Neil Alldrin, Gal Chechik, Ivan Krasin,
Abhinav Gupta, and Serge Belongie. 2017. Learn-
ing from noisy large-scale datasets with minimal su-
pervision. In The Conference on Computer Vision
and Pattern Recognition (CVPR).

Xingquan Zhu and Xindong Wu. 2004. Class noise
vs. attribute noise: A quantitative study. Artificial
Intelligence Review, 22.

18

Proceedings of the Workshop on Deep Learning Approaches for Low-Resource NLP, pages 19–24
Melbourne, Australia July 19, 2018. c©2018 Association for Computational Linguistics

Multi-task learning for historical text normalization: Size matters

Marcel Bollmann, Anders Søgaard, Joachim Bingel

Dept. of Computer Science

University of Copenhagen

Denmark

{marcel,soegaard,bingel}@di.ku.dk

Abstract

Historical text normalization suffers from

small datasets that exhibit high variance,

and previous work has shown that multi-

task learning can be used to leverage data

from related problems in order to obtain

more robust models. Previous work has

been limited to datasets from a specific lan-

guage and a specific historical period, and

it is not clear whether results generalize. It

therefore remains an open problem, when

historical text normalization benefits from

multi-task learning. We explore the ben-

efits of multi-task learning across 10 dif-

ferent datasets, representing different lan-

guages and periods. Our main finding—

contrary to what has been observed for

other NLP tasks—is that multi-task learn-

ing mainly works when target task data is

very scarce.

1 Introduction

Historical text normalization is the problem of

translating historical documents written in the ab-

sence of modern spelling conventions and making

them amenable to search by today’s scholars, pro-

cessable by natural language processing models,

and readable to laypeople. In other words, his-

torical text normalization is a text-to-text genera-

tion, where the input is a text written centuries ago,

and the output is a text that has the same contents,

but uses the orthography of modern-day language.

In this paper, we limit ourselves to word-by-word

normalization, ignoring the syntactic differences

between modern-day languages and their historic

predecessors.

Resources for historical text normalization are

scarce. Even for major languages like English and

German, we have very little training data for in-

ducing normalization models, and the models we

induce may be very specific to these datasets and

not scale to writings from other historic periods—

or even just writings from another monastery or by

another author.

Bollmann and Søgaard (2016) and Bollmann

et al. (2017) recently showed that we can obtain

more robust historical text normalization models

by exploiting synergies across historical text nor-

malization datasets and with related tasks. Specif-

ically, Bollmann et al. (2017) showed that multi-

task learning with German grapheme-to-phoneme

translation as an auxiliary task improves a state-

of-the-art sequence-to-sequence model for his-

torical text normalization of medieval German

manuscripts.

Contributions We study when multi-task learn-

ing leads to improvements in historical text nor-

malization. Specifically, we evaluate a state-of-

the-art approach to historical text normalization

(Bollmann et al., 2017) with and without various

auxiliary tasks, across 10 historical text normal-

ization datasets. We also include an experiment

in English historical text normalization using data

from Twitter and a grammatical error correction

corpus (FCE) as auxiliary datasets. Across the

board, we find that, unlike what has been observed

for other NLP tasks, multi-task learning only helps

when target task data is scarce.

2 Datasets

We consider 10 datasets from 8 different lan-

guages: German, using the Anselm dataset (taken

from Bollmann et al., 2017) and texts from the

RIDGES corpus (Odebrecht et al., 2016)1; En-

glish, Hungarian, Icelandic, and Swedish (from

Pettersson, 2016); two versions of Slovene using

different alphabets (Bohorič or Gaj; from Ljubešić

1
https://korpling.org/ridges/

19

Dataset/Language Time Period Tokens Source of Splits

Train Dev Test

DEA German (Anselm) 14th–16th c. 233,947 45,996 45,999 Bollmann et al. (2017)

DER German (RIDGES) 1482–1652 41,857 9,712 9,587 –

EN English 1386–1698 147,826 16,334 17,644 Pettersson (2016)

ES Spanish 15th–19th c. 97,320 11,650 12,479 –

HU Hungarian 1440–1541 134,028 16,707 16,779 Pettersson (2016)

IS Icelandic 15th c. 49,633 6,109 6,037 Pettersson (2016)

PT Portuguese 15th–19th c. 222,525 26,749 27,078 –

SLB Slovene (Bohorič) 1750–1840s 50,023 5,841 5,969 Ljubešić et al. (2016)

SLG Slovene (Gaj) 1840s–1899 161,211 20,878 21,493 Ljubešić et al. (2016)

SV Swedish 1527–1812 24,458 2,245 29,184 Pettersson (2016)

Table 1: Historical datasets used in our experiments

et al., 2016); as well as Spanish and Portuguese

texts from the Post Scriptum corpus (Vaamonde,

2017)2.

For the Anselm dataset, we concatenate the

individual training, development, and test sets

from Bollmann et al. (2017) to obtain a single

dataset. For RIDGES, we use 16 texts and ran-

domly sample 70% of all sentences from each text

for the training set, and 15% for the dev/test sets.

The Spanish and Portuguese datasets consist of

manually normalized subsets of the Post Scrip-

tum corpus; here, we randomly sample 80% (train)

and 10% (dev/test) of all sentences per century

represented in the corpus. Dataset splits for the

other languages are taken from Pettersson (2016)

and Ljubešić et al. (2016).

We preprocessed all datasets to remove punctua-

tion, perform Unicode normalization, replace dig-

its that do not require normalization with a dummy

symbol, and lowercase all tokens.

Table 1 gives an overview of all historical

datasets, the approximate time period of histori-

cal texts that they cover, as well as the size of

the dataset splits. Note that, to the best of our

knowledge, the Spanish, Portuguese, and Ger-

man RIDGES datasets have not been used in the

context of automatic historical text normalization

before.

Table 2 additionally gives some examples of his-

torical word forms and their gold-standard normal-

izations from each of these datasets.3

2
http://ps.clul.ul.pt

3Note that normalization guidelines differ between the
datasets, and normalizations do not always constitute a mod-
ern word form—e.g. in the case of extinct lexemes—or the
correct inflected form in the given context.

3 Experimental setup

Model We use the same encoder–decoder archi-

tecture with attention as described in Bollmann

et al. (2017).4 This is a fairly standard model con-

sisting of one bidirectional LSTM unit in the en-

coder and one (unidirectional) LSTM unit in the

decoder. The input for the encoder is a single his-

torical word form represented as a sequence of

characters and padded with word boundary sym-

bols; i.e., we only input single tokens in isola-

tion, not full sentences. The decoder attends over

the encoder’s outputs and generates the normalized

output characters.

Hyperparameters We use the same hyperpa-

rameters across all our experiments: The dimen-

sionality of the embedding layer is 60, the size of

the LSTM layers is set to 300, and we use a dropout

rate of 0.2. We use the Adam optimizer (Kingma

and Ba, 2014) with a character-wise cross-entropy

loss. Training is done on mini-batches of 50 sam-

ples with early stopping based on validation on

the individual development sets. The hyperparam-

eters were set on a randomly selected subset of

50,000 tokens from each of the following datasets:

English, German (Anselm), Hungarian, Icelandic,

and Slovene (Gaj).

Multi-task learning Bollmann et al. (2017) also

describe a multi-task learning (MTL) scenario

where the encoder–decoder model is trained on

two datasets in parallel. We perform similar exper-

iments on pairwise combinations of our datasets.

4The implementation is taken from: https:

//bitbucket.org/mbollmann/acl2017

20

DEA deſe
diese

wort
wort

ſpricht
spricht

vnſer
unser

liber
lieber

here
herr

iheſus
jesus

criſtus
christus

czu
zu

eyme
einem

iczlychen
ieteslichen

menſchen
menschen

DER ſeind
sind

ſÿ
sie

doch
doch

alle
alle

auſz
aus

den
den

vier
vier

elementen
elementen

gemiſchet
gemischt

vnd
und

eins
eins

feüchter
feuchter

deñ
denn

das
das

ander
andere

EN whan
when

your
your

graciouse
gracious

erthely
earthly

persoune
person

from
from

your
your

inward
inward

spirit
spirit

ys
is

dessolued
dissolved

ES anque
aunque

tomeys
toméis

mui
muy

mucho
mucho

travajo
trabajo

tengola
téngola

guardada
guardada

pa
para

quando
cuando

dios
dios

sea
sea

servido
servido

HU o
ő

zauoc
szavuk

ėſmė
ismét

felèmèluē
felemelvén

kèzdėnc̣
kezdének

ſirńoc
sírniuk

èlmēnèc
elmenjek

èzèkèt
ezeket

tolga
toldja

ez
ez

a
a

noemi
noémi

azeꝛt
azért

iouo
jöve

IS þá
þá

sem
sem

hanz
hans

gödverk
góðverk

voru
voru

i
í
og
og

þá
þá

vrdu
urðu

hanns
hans

gödverk
góðverk

miklu
miklu

þýngre
þyngri

enn
en

ill
ill

PT cõ
com

a
a

poenetencia
penitência

que
que

lhe
lhe

derão
deram

pera
para

avisar
avisar

aos
aos

snres
senhores

do
do

sancto
santo

oficio
ofício

SLB ter
ter

ne
ne

bodi
bodi

nevéren
neveren

zhe
če

ſe
se

zherna
črna

perſt
prst

premozhi
premoči

tezhe
teče

od
od

nje
nje

rjav
rjav

mòk
mok

SLG in
in

privéže
priveže

na
na

vsak
vsak

konec
konec

niti
niti

drobtino
drobtino

kruha
kruha

in
in

verže
vrže

vse
vse

kokóšem
kokošim

breskevno
breskvino

vkuhanje
vkuhanje

lovre
lovre

SV blef
blev

av
av

rätten
rätten

afsagdt
avsagt

det
det

en
en

syyn
syn

och
och

rådhgångh
rådgång

nu
nu

nästkommande
nästkommande

wårdagh
vårdag

hållas
hållas

Table 2: Examples of input tokens (first line) and reference normalization (second line) for each of the

historical datasets.

The question we ask here is whether training on

pairs of datasets can improve over training on

datasets individually, which pairings yield the best

results, and what properties of the datasets are most

predictive of this. In other words, we are interested

in when multi-task learning works.

In the multi-task learning setting, the two

datasets—or “tasks”—share all parts of the

encoder–decoder model except for the final

prediction layer, which is specific to each dataset.

This way, most parts of the model are forced to

learn language-independent representations. This

is different from Luong et al. (2015) and related

work in machine translation, where typically only

the encoder or the decoder is shared. We do not

explore these alternatives here.

During training, we iterate over both our

datasets in parallel in a random order, with each

parameter update now being based on 50 samples

from each dataset. Since datasets are of differ-

ent sizes, we define an epoch to be a fixed size

of 50,000 samples. Validation is performed for

both datasets after each epoch, and model states

are saved independently for each one if its vali-

dation accuracy improved. This means that even

if the ideal number of epochs is different for the

datasets, only the best state for each dataset will

be used in the end. Training ends only after the

validation accuracy for each dataset has stopped

improving.

Sparse data scenario The training sets in our

experiments range from ca. 25,000 to 230,000 to-

kens. Generally, historical text normalization suf-

fers from scarce resources, and our biggest datasets

are considered huge compared to what scholars

typically have access to. Creating gold-standard

normalizations is cumbersome and expensive, and

for many languages and historic periods, it is not

feasible to obtain big datasets. Therefore, we also

present experiments on reduced datasets; instead

of taking the full training sets, we only use the first

5,000 tokens from each one.

In this case, for multi-task learning, we com-

bine the small target datasets with the full auxil-

iary datasets. This procedure mimics a realistic

scenario: If a researcher is interested in normal-

izing a language for which no manually normal-

ized resource exists, they could conceivably cre-

ate a small batch of manual normalizations for this

language and then leverage an existing corpus in

another language using multi-task learning.

21

Dataset Full Sparse

Single MTL Single MTL

DEA 88.00 87.78 65.99 71.93

DER 86.05 87.81 70.04 74.25

EN 93.95 93.46 75.43 81.02

ES 94.41 94.32 82.50 86.59

HU 89.43 88.56 49.21 54.86

IS 84.83 86.67 69.52 72.73

PT 93.45 93.36 78.61 81.97

SLB 90.12 91.81 82.39 86.35

SLG 94.79 94.53 89.54 91.03

SV 88.48 89.90 79.24 82.14

Table 3: Normalization accuracy (in percent) us-

ing the full or sparse training sets, both for the

single-task setup and the best-performing multi-

task (MTL) setup.

4 Results

We evaluate our models using normalization ac-

curacy, i.e., the percentage of correctly normal-

ized word forms. Table 3 compares the accuracy

scores of our single-task baseline models and for

multi-task learning, in both the full and the sparse

data scenario. For multi-task learning, we report

the test set performance of the best target-auxiliary

task pair combination, as evaluated on develop-

ment data. Figure 1 visualizes the results for

all pairwise combinations of the multi-task mod-

els; here, we show the error reduction of multi-

task learning over our single-task baseline to better

highlight by how much the MTL setup changes the

performance.

Full datasets We make two observations about

the results for the full data scenario (the left side

of Fig. 1): (i) the usefulness of multi-task learning

depends more on the dataset that is being evalu-

ated than the one it is trained together with; and

(ii) for most datasets, multi-task learning is detri-

mental rather than beneficial.

One hypothesis about multi-task learning is that

its usefulness correlates with either synergistic or

complementary properties of the datasets. In other

words, it is conceivable that the performance on

one dataset improves most with an MTL setup

when it is paired with another dataset that is ei-

ther (i) very similar, or (ii) provides an additional

signal that is useful for, but not covered in, the

first dataset. The results in Figure 1 show that

Auxiliary data Accuracy

None 75.43

Best above 81.02

Twitter 81.72

FCE 78.53

Table 4: Normalization accuracy for English

(sparse): Single and MTL from Table 3; and with

non-historical auxiliary datasets (Twitter & FCE).

there can indeed be considerable variation depend-

ing on the exact dataset combination; e.g., the error

reduction on Slovene (Bohorič) ranges from 5%

(when paired with the Gaj dataset) to 33.2% (when

paired with Swedish). At the same time, the ques-

tion whether multi-task learning helps at all seems

to depend mostly on the dataset being evaluated.

With few exceptions, for most datasets, the error

rate either always improves or always worsens, in-

dependently of the auxiliary task.

Considering the dataset statistics in Table 1,

it appears that the size of the training corpus is

the most important factor for these results. The

four corpora that consistently benefit from MTL—

German (RIDGES), Icelandic, Slovene (Bohorič),

and Swedish—also have the smallest training

sets, with about 50,000 tokens or less. For

other tasks, different patterns have been observed

(MartínezAlonso and Plank, 2017; Bingel and Sø-

gaard, 2017); see Sec. 5.

Sparse datasets In the sparse data scenario

where only 5,000 tokens are used for training (right

side of Fig. 1), MTL almost always leads to im-

provements over the single-task training setup.

This further confirms the hypothesis that multi-

task learning is beneficial for historical text nor-

malization when the target task dataset is small.

English with non-historical auxiliary data We

also conduct a follow-up experiment on the

(sparse) English dataset using a Twitter normaliza-

tion dataset (Han and Baldwin, 2011) and a gram-

matical error corpus (Yannakoudakis et al., 2011)

as auxiliary data. The results are presented in Ta-

ble 4. Surprisingly, the Twitter dataset is actually

more helpful than the best historical dataset; but of

course, it is also in-language, unlike the historical

datasets.

22

D E A D E R E N E S H U I S P T S L B S L G S V

D E A

D E R

E N

E S

H U

I S

P T

S L B

S L G

S V

+ 1 . 8 + 5 . 4 + 6 . 5 + 4 . 8 + 4 . 5 + 4 . 7 + 8 . 3 + 5 . 6 + 6 . 5

- 6 . 4 - 1 8 . 5 - 1 4 . 4 - 1 0 . 9 - 1 4 . 0 - 1 4 . 1 - 1 4 . 4 - 1 7 . 1 - 1 4 . 2

+ 7 . 5 + 2 3 . 6 + 0 . 7 - 5 . 1 + 1 . 3 - 0 . 5 + 0 . 0 + 1 . 4 + 6 . 4

+ 1 0 . 2 + 8 . 9 + 1 7 . 5 + 1 3 . 2 + 1 7 . 8 + 1 . 7 + 5 . 3 + 3 . 1 + 5 . 2

+ 1 7 . 6 + 4 2 . 1 + 2 0 . 8 + 5 . 2 + 2 . 2 + 0 . 4 + 5 . 3 + 7 . 6 + 1 5 . 6

- 1 2 . 0 - 9 . 7 - 6 . 3 - 1 0 . 9 - 5 . 9 - 1 3 . 8 - 1 0 . 2 - 1 0 . 9 - 7 . 4

+ 2 0 . 7 + 2 9 . 2 + 1 6 . 6 + 1 . 4 + 1 2 . 3 + 1 3 . 8 + 5 . 3 + 6 . 8 + 1 7 . 3

- 1 6 . 4 - 2 6 . 1 - 1 3 . 2 - 1 5 . 0 - 1 7 . 5 - 2 0 . 9 - 2 0 . 7 - 5 . 0 - 3 3 . 2

+ 4 . 8 + 1 1 . 2 + 1 3 . 1 + 1 6 . 7 + 8 . 1 + 1 6 . 2 + 2 4 . 0 + 0 . 8 + 1 1 . 5

- 1 6 . 5 - 1 2 . 7 - 1 4 . 0 - 1 6 . 4 - 1 6 . 7 - 1 3 . 5 + 1 . 5 - 1 6 . 0 - 1 6 . 3

D E A D E R E N E S H U I S P T S L B S L G S V

D E A

D E R

E N

E S

H U

I S

P T

S L B

S L G

S V

- 2 1 . 1 - 1 0 . 8 - 4 . 9 - 1 1 . 3 - 5 . 6 - 1 0 . 1 - 3 . 0 - 1 . 3 - 6 . 7

- 1 2 . 9 - 1 0 . 4 - 6 . 5 - 1 1 . 6 - 1 0 . 2 - 6 . 2 - 1 0 . 8 - 1 3 . 8 - 1 6 . 3

- 1 8 . 5 - 2 3 . 6 - 2 2 . 9 - 2 7 . 0 - 1 9 . 7 - 2 8 . 6 - 2 5 . 1 - 2 9 . 5 - 2 3 . 2

- 1 0 . 2 - 1 3 . 8 - 1 8 . 2 - 2 2 . 0 - 1 7 . 0 - 3 0 . 5 - 1 8 . 0 - 1 9 . 1 - 1 6 . 8

- 1 2 . 1 - 1 2 . 5 - 4 . 8 - 8 . 0 - 6 . 7 - 5 . 2 + 0 . 7 - 2 . 4 - 8 . 4

- 6 . 5 - 7 . 7 - 1 2 . 1 - 1 0 . 2 - 1 1 . 5 - 7 . 7 - 7 . 7 - 8 . 5 - 1 1 . 8

- 8 . 8 - 7 . 7 - 7 . 5 - 1 8 . 6 - 1 3 . 3 - 1 0 . 8 - 1 0 . 6 - 9 . 8 - 5 . 6

- 1 1 . 9 - 1 7 . 0 - 1 3 . 3 - 1 3 . 3 - 1 6 . 9 - 1 9 . 8 - 1 4 . 7 - 2 9 . 0 - 1 3 . 4

+ 2 . 1 - 8 . 0 - 8 . 3 - 7 . 1 - 4 . 8 - 5 . 6 - 6 . 3 - 1 6 . 6 - 4 . 1

+ 7 . 7 - 9 . 8 - 1 6 . 2 - 1 5 . 0 - 8 . 3 - 1 4 . 1 - 2 . 9 - 1 2 . 4 - 7 . 3

Figure 1: Percentage change of error of MTLover single-task models; rows are targets, columns auxiliary

data. Left: full data; right: sparse data. Blue scores are improvements, reds increases in error.

5 Related work and conclusion

There has been considerable work on multi-

task sequence-to-sequence models for other tasks

(Dong et al., 2015; Luong et al., 2015; Elliott

and Kádár, 2017). There is a wide range of de-

sign questions and sharing strategies that we ig-

nore here, focusing instead on under what circum-

stances the approach advocated in (Bollmann et al.,

2017) works.

Our main observation—that the size of the tar-

get dataset is most predictive of multi-task learning

gains—runs counter previous findings for other

NLP tasks (MartínezAlonso and Plank, 2017; Bin-

gel and Søgaard, 2017). Martínez Alonso and

Plank (2017) find that the label entropy of the aux-

iliary dataset is more predictive; Bingel and Sø-

gaard (2017) find that the relative differences in

the steepness of the two single-task loss curves is

more predictive. Both papers consider sequence

tagging problems with a small number of labels;

and it is probably not a surprise that their findings

do not seem to scale to the case of historical text

normalization.

Acknowledgments

This research was supported by ERC Starting

Grant LOWLANDS No. 313695 as well as by

Trygfonden. Parts of this research were carried out

by the first author at the Ruhr-Universität Bochum,

Germany, supported by Deutsche Forschungsge-

meinschaft (DFG), Grant DI 1558/4.

References

Joachim Bingel and Anders Søgaard. 2017. Identify-
ing beneficial task relations for multi-task learning
in deep neural networks. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 2, Short
Papers, pages 164–169. Association for Computa-
tional Linguistics.

Marcel Bollmann, Joachim Bingel, and Anders Sø-
gaard. 2017. Learning attention for historical text
normalization by learning to pronounce. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 332–344. Association for Computa-
tional Linguistics.

Marcel Bollmann and Anders Søgaard. 2016. Im-
proving historical spelling normalization with bi-
directional LSTMs and multi-task learning. In Pro-
ceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Techni-
cal Papers, pages 131–139. The COLING 2016 Or-
ganizing Committee.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and
Haifeng Wang. 2015. Multi-task learning for mul-
tiple language translation. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 1723–1732.Association
for Computational Linguistics.

Desmond Elliott and Àkos Kádár. 2017. Imagination
improves multimodal translation. In Proceedings of
the Eighth International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 130–141. Asian Federation of Natural Lan-
guage Processing.

23

Bo Han and Timothy Baldwin. 2011. Lexical normal-
isation of short text messages: Makn sens a #twit-
ter. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 368–378. Asso-
ciation for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Nikola Ljubešić, Katja Zupan, Darja Fišer, and Tomaž
Erjavec. 2016. Normalising Slovene data: historical
texts vs. user-generated content. In Proceedings of
the 13th Conference on Natural Language Process-
ing (KONVENS 2016), volume 16 of Bochumer Lin-
guistische Arbeitsberichte, pages 146–155, Bochum,
Germany.

Minh-Thang Luong, Quoc V. Le, Ilya Sutskever,
Oriol Vinyals, and Lukasz Kaiser. 2015. Multi-
task sequence to sequence learning. volume
abs/1511.06114.

Héctor Martínez Alonso and Barbara Plank. 2017.
When is multitask learning effective? semantic se-
quence prediction under varying data conditions. In
Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 1, Long Papers, pages 44–53. As-
sociation for Computational Linguistics.

Carolin Odebrecht, Malte Belz, Amir Zeldes, Anke
Lüdeling, and Thomas Krause. 2016. RIDGES Her-
bology: designing a diachronic multi-layer corpus.
Language Resources and Evaluation, pages 1–31.

Eva Pettersson. 2016. Spelling Normalisation and Lin-
guistic Analysis of Historical Text for Information
Extraction. Doctoral dissertation, Uppsala Univer-
sity, Department of Linguistics and Philology, Upp-
sala.

Gael Vaamonde. 2017. Userguide for digital edition of
texts in P. S. Post Scriptum. Technical report. Trans-
lated by Clara Pinto.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading ESOL texts. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
180–189. Association for Computational Linguis-
tics.

24

Proceedings of the Workshop on Deep Learning Approaches for Low-Resource NLP, pages 25–32
Melbourne, Australia July 19, 2018. c©2018 Association for Computational Linguistics

Compositional Language Modeling for Icon-Based Augmentative and
Alternative Communication

Shiran Dudy Steven Bedrick
Center for Spoken Language Understanding

Oregon Health & Science University
3181 S.W. Sam Jackson Park Rd.

Portland, Oregon, USA
{dudy,bedricks}@ohsu.edu

Abstract

Icon-based communication systems are
widely used in the field of Augmentative
and Alternative Communication. Typi-
cally, icon-based systems have lagged be-
hind word- and character-based systems
in terms of predictive typing functionality,
due to the challenges inherent to training
icon-based language models. We propose
a method for synthesizing training data for
use in icon-based language models, and
explore two different modeling strategies.

1 Introduction

Individuals who experience speech and language
impairments often are helped by Augmenta-
tive and Alternative Communication (AAC) tech-
niques that facilitate the expression or compre-
hension of spoken or written language (Beukel-
man and Mirenda, 2005; American Speech Lan-
guage Hearing Association et al., 2004; Fossett
and Mirenda, 2007). Impairments may result from
developmental disorders affecting speech and lan-
guage (Cerebral Palsy, Down Syndrome, some
forms of Autism Spectrum Disorder, etc.), or they
may be caused by injury (stroke, traumatic brain
injury, neurodegenerative diseases such as ALS,
etc.). AAC interventions can take many forms,
but a common goal is to provide users with a way
to select symbols (words, phrases, etc.) for pur-
poses of communication. The field of AAC groups
interventions into "low-technology" (i.e., printed)
or "high-technology" (i.e., computerized) devices;
both are commonly used, and there are a number
of factors that go in to the decision of which de-
vice to use (Iacono et al., 2011; Light and Drager,
2007). In some cases, devices produce speech
(or written language) based on those selections,
whereas in other cases, the goal of the device is

to support a user in producing their own speech.
In some cases, the unit of selection may be

icon-based rather than word- or character-based.
This is particularly common in devices used by
children or individuals with impaired literacy, but
is also common in adult use. Icon-based sys-
tems can have higher selection speeds, and can be
easier for individuals with neuromuscular impair-
ments to operate; there are a wide variety of sym-
bol sets and symbol-based communication sys-
tems used (Patel, 2011).

Computerized text-based AAC devices often
include some form of word prediction using
a language model (see (Vertanen and Kristens-
son, 2011; Garay-Vitoria and Abascal, 2006) for
overviews of this area). Icon-based systems often
do not employ predictive features.1 In part, this
is because they typically rely on direct-selection
or other input modalities; another barrier, is a lack
of relevant linguistic training data. To our knowl-
edge, there are no corpora of language produced
using icon-based AAC systems.

In the present work, we apply modern lan-
guage modeling techniques to a large-vocabulary
icon set commonly used in AAC applications, but
for which we have no in-domain (or even in-
vocabulary) training data. We are building our
model as support for a brain-computer interface
(Orhan et al., 2012). In this input modality, the
user has very limited control over item selection,
making accurate language modeling critical.

We propose a method to generate language
models and evaluate their performance by experi-
menting with a process to generate a trainable lan-
guage modeling corpus. We also share an experi-

1One notable exception to this trend is the system used in
SymbolPath (Wiegand and Patel, 2012b), which uses seman-
tic frames to attempt non-sequential symbol prediction (Wie-
gand and Patel, 2012a). This work, however, was limited to a
specific and small icon set.

25

mental setup for a new language modeling archi-
tecture. Our contributions in this paper are:
• A proposed approach to synthesize a pseudo-

corpus with which to learn language models
from a corpus-less symbol set
• An experimental evaluation of the impact

of various pieces of our corpus synthesis
methodology on icon prediction accuracy
• A preliminary attempt to apply a novel lan-

guage model architecture suitable for icon-
based, open-vocabulary AAC applications

2 Symbolstix dataset

The Symbolstix (Clark, 1997) icon set is used in
several commercial AAC applications. Each icon
includes an image, and is associated with metadata
information that textually describes the meaning
assigned to the icon at hand. An image in this set
can represent a single word, a phrase, or a syntac-
tic modifier (such as “plural”). The images cover
48 major topics such as actions, technology, nature
etc. They vary in meaning, demonstrating abstract
concepts and tangible ones; they also present dif-
ferent levels of complexity and details. The meta-
data primarily describe the associated term the im-
age corresponds to, its synonyms, and its transla-
tion to different languages.

The Symbolstix icon set was designed for use
by communities who are in need of icon-based
communication, such as children with communi-
cation disabilities, TBI patients, etc. One commer-
cial application of the current icon-set is a news-
cast aimed at adult consumers; another is a com-
munications platform for children with Cerebral
Palsy. The set of 34k icons is in practice broad
enough to reflect those needs. However, the cre-
ators of the system often do add new icons when
requested by their user population.

Figure 1: Example icons: afraid and bite leg

On the left side of Figure 1 is an exam-
ple of a single-word icon representing the term
afraid. This icon’s human-assigned topic category
is “descriptives-feelings”. Note that many icons
are mapped to multiple synonyms. Synonyms of

this icon are: eerie, fear, feared, fearful, fears,
frightened, Halloween, scary, terrified, upset, and
nervous. As such, an icon’s meaning is highly
context-dependent.

The right-hand side icon in Figure 1 is an exam-
ple of a two-word icon representing the concept
bite leg. This icon’s topic is of “actions”. Syn-
onyms of this icon are: “bad day” and “dog bite”.
As observed in Figure 1, the nature of the Symbol-
stix leans toward conversational concepts of spo-
ken language, due to their intended use in AAC.

Symbolstix contains 34, 837 icons. 13, 951 of
these icons are of a single word; several of these
are duplicates2, only 12, 434 of the single word
icons are unique terms. In our experiment, to
avoid redundancy, we used this set of unique
terms. We chose the unique term-icon pair (from
its non-unique group) that had the richest metadata
and the highest overlap (within its group) to rep-
resent a concept. This step was essential to reduce
complexity; however, it did introduce a limitation
to our approach, which we discuss in section 5.

Notably, the Symbolstix corpus comes with no
dataset that demonstrates the intended usage of
icons to construct a proper sentence. Ideally, we
would use a dataset of icon sentences for language
modeling, as it would enable learning icon se-
quences and by that to infer the language rules
from its patterns. In the next section, we describe
how we were able to overcome that obstacle.

3 Experimental Setup

As mentioned in Section 2, the Symbolstix data set
of icons has no sentence-like corpus from which
icon sequences can be readily learned to form a
language model of icons. We attempted to syn-
thesize an icon corpus by beginning with a textual
corpus, and “projecting” our icons into the text
space using pre-trained word embeddings using
the methodology described below. Since each icon
is accompanied by metadata containing human-
edited synonym lists, it was natural to represent
icons as some composition of their synonyms in a
vector space.

In this manner, we embedded our icons in text,
and created pseudo-sequences (“icon sentences”).
This solution is not without problems, first among
them the issue is that our icon sentences may not

2A single lexical item may be represented several times;
for example, there are several variants of “glue”, with differ-
ent shapes of bottles and patterns of labels.

26

represent realistic examples of how the Symbol-
stix icons are meant to be used. Rather, they might
instead represent the icons as subjected to the lan-
guage conventions found in oral or written lan-
guage. For example comparing a possible icon se-
quence to the English language might look like:
Icon: <I> <go> <here> <past>
English: <I> <went> <here>, or
English: <the> <dogs> <are> <at> <home>
Icon: <the> <dog> <plural> [<be> optional]
<at> <home>
Some of the terms may disappear in translation,
while others are added.

Another question is whether it is possible to
fully represent an icon as the sum of its synonyms;
or, put another way, whether the ways in which an
icon’s synonyms are used in written language can
capture the totality of an icon’s meaning. For ex-
ample, the icon in figure 1 does not precisely mean
“afraid”, but rather refers to a more general con-
cept. This is why we chose to explore a composi-
tional approach to representing icon meaning in a
continuous space. Finally, how should we handle
sentences in our textual data set that are not fully
representable using icons from Symbolstix?

Data Preprocessing
Icon Representation: In order to construct an icon
language model, we needed to find a way to rep-
resent our icon vocabulary in a continuous em-
bedding space (following the lead of Kiros et al.
(2015)). Lacking a corpus that included icons, we
were unable to directly train “icon embeddings”
from data. Instead, we attempted to “project” our
icons into a word embedding space.

We experimented with two different approaches
of word embedding (see section 4), and, for each
icon, generated icon embeddings by averaging3

the word embeddings of the icon’s synonyms (as
specified by the Symbolstix metadata). Note that a
different choice of icon set would have resulted in
a different embedding space and language model.
However, this basic approach describes a generic
process to produce models form a corpus-less
symbol-set, and should translate to other situtions.

Textual Datasets: We next took a textual cor-
pus (see section 4), and identified terms that could
be replaced with icon embeddings. In this work,
we relied on a relatively simple strategy of me-
chanically substituting icons for words based on

3We also experimented with summation, and observed no
meaningful difference.

their Symbolstix metadata. In other words, in-
stances of the word “wetland” in the corpus would
be replaced by the icon with “wetland” in its
list of synonyms or descriptor terms. Note that
this icon’s embedding would contain information
about other words associated with that icon (e.g.
“swamp”). We discuss some practical considera-
tions around polysemous words and icons in sec-
tion 4. This step forms a dataset of embedding
sequences, which we then used as a corpus for
learning a language model. The resulting corpus
was then fully representable by embeddings (both
of the words and icons).

Training
For our language model, we used a standard RNN
architecture with two hidden LSTM layers, a lin-
ear, and a final softmax layer that predicts the
term’s index, trained with cross entropy loss func-
tion (seen in Equation 1). The model’s input is of
the generated embeddings and as such contained
no explicit embedding layer.

Li =
∑

jεJ

T (i, j) log(P (i, j)). (1)

The icons in this project are aimed at patients
who would use them as a means to communicate.
It is very likely that the icon language that would
be formed by these patients would share similar
characteristics with spontaneous speech or infor-
mal language since this is the type of commu-
nication we have with a caregiver, family mem-
ber, or a friend. Knowing this, we used the Sub-
tlexUS (Brysbaert and New, 2009) corpus (made
up of subtitles from movies and television) as a
proxy for a corpus of spontaneous speech that con-
tained 6, 043, 188 sentences.4

Model Evaluation
We evaluated our language model using three dif-
ferent metrics:
• Mean Reciprocal Rank (MRR) of the “cor-

rect” predicted icon as seen in Equation 2

MRR =
1

|Q|
∑

iεQ

1

ranki
, (2)

Q represents the token events of the target.
The choice of MRR metric was to internally

4See (Vertanen and Kristensson, 2011) for an extensive
discussion on issues surrounding corpus selection for AAC
applications.

27

look at the rank of the target, rather than to bi-
nary classify it for whether it was accurately
predicted in the first rank.
• Accuracy@k: The percentage of predictions

in which the “correct” icon was within the
top k predictions. The choice in ACC@k was
to inform about the quality of the prediction
generated by the models. We have chosen
ACC@1 to crudely understand whether the
first choice was correct, and ACC@10 to get
a sense of the prediction quality given that a
user may be able to choose from a limited list
(depending on the user interface), and also
to model the notion that different users may
choose different words in a simialr context
(and so there is not a single correct word in
reality).

4 Experiments

We performed three sets of experiments. The
first explored the effect of different approaches to
word embedding, the second explored the effects
of either including or excluding non-icon terms in
model training, and the third looked at the effects
of other (non-Subtlex) text corpora. For both ap-
proaches to word embedding, we used pre-trained
word vectors. The pretrained set is the source for
generating the icon embeddings.

Both the icon and the pretrained embeddings re-
place the terms in the textual data with their cor-
responding vectors to generate an embedding cor-
pus. All our experiments contained the same num-
ber of pretrained vectors as well as icon vectors. If
both vector sets contained the same term, the icon
embedding was used. The textual dataset was to-
kenized and punctuation was removed. Each of
these experiments was held in a 5 fold cross val-
idation fashion. The process to generate the cor-
pus from which language models are learned is
described in Figure 2.

This process shows also the three different mod-
ules we experimented with: the pretrained corpus,
which forms the icon embeddings; the icon set that
forms (with or with out the pretrained set (there-
fore the ‘switch’ between pretrained embeddings
to textual dataset)) the textual embedding; and the
textual dataset that provides the sequences of sym-
bols to generate the textual embedding.

Experiment 1: Pretrained Vectors
The Pretrained embeddings in our experiment are
used both to construct the icon representations and

BPMN 2.0 shiran | February 20, 2018

Textual
Dataset

PreTrained
embeddings

Icon
embeddings

Embedding
Dataset

Figure 2: Block diagram to generate training set
for language modeling

to represent the textual corpus. In our setting
we have explored the Global Vectors for Word
Representation (Glove) (Pennington et al., 2014)
set consisting of 400,000 uncased entries and
trained on Wikipedia 2014 and Gigaword version
5 (≈6B tokens) with 50 embedding dimensions,
and compared it to Context2Vec (c2v) (Melamud
et al., 2016) trained on ukWaC corpus and MSCC
(≈2B + ≈50M tokens) consisting of 160,563 un-
cased entries, with 600 embedding dimensions.
To maintain a controlled environment the textual
dataset remained fixed, the vocabulary of pre-
trained token types was identical (n=69,840) as
well as the icon list (n=6,934 term types) irrespec-
tive of the dataset used. A term in the dataset was
prioritized to be replaced with an icon term first,
then if not found, with an icon synonym, with a
pretrained representation, and finally, provided no
alternative, a term was replaced with an <unk>
vector representation.

metric c2v Glove
MRR 0.85 (0.00) 0.85 (0.00)
ACC@1 (%) 50.99 (0.03) 49.29 (0.04)
ACC@10 (%) 90.51 (0.01) 90.29 (0.01)

Table 1: Effect of word embedding method

Table 1 contains the experimental results of
evaluations run on models trained with Glove and
c2v vectors, averaged across five folds of cross-
validation on the SubtlexUS dataset.

After controlling for the number of icon- and
pretrained-term types as well as for the textual
corpus, Table 1 shows that there are no meaning-
ful differences resulted from the pretrained vectors
type. The dataset the vectors were trained on as

28

well as the method by which the vectors were gen-
erated had no observable impact on the language
model performance.

While Experiment 1 covers one aspect of com-
paring differences between different word embed-
dings, when choosing a pretrained set of vectors
to use and generate icons from, there may be ad-
ditional considerations. The coverage of the pre-
trained set is essential to produce icon represen-
tations, but also is important for terms in the tex-
tual dataset that cannot be represented with icons
(which are then replaced with a pretrained vector
if found) as described in Experiment 1. The pre-
trained set coverage with regards to the icon set
is measured not only by the total number of icon
representations that were generated from the pre-
trained set, but also by how well each icon cap-
tures the broad meaning it stands for. Since each
icon is likely to have its name and synonyms com-
posed together to represent it (as described in 3 in
Data Preprocessing part), an optimal pretrained set
would contain representations for all these terms.
As for the textual dataset, an optimal coverage of
the text with the pretrained list ideally would con-
sist of a large number of term types, but also term
events that appear in the dataset.

Experiment 2: Icon Symbols Constraint
Ideally, the corpus to learn language models from
would consist of the icon vocabulary solely since
the goal is to construct an Icon language model.
We therefore, experimented with transforming
our synthetic corpus to only include terms rep-
resentable using icon vectors (“pure”) and com-
pared LM and prediction accuracy with the orig-
inal, “non-pure” results. We used Glove and c2v
vectors in our experiment presented in Table 2.

Table 2 describe an averaged five fold cross val-
idation experiment of SubtlexUS with icon only
embeddings referred by the “pure” experiment.

metric c2v Glove
MRR 0.33 (0.00) 0.33 (0.00)
ACC@1 (%) 46.79 (0.06) 45.72 (0.06)
ACC@10 (%) 54.92 (0.01) 54.29 (0.04)

Table 2: Effect of Icon embedding representation
on SubtlexUS mean(standard deviation)

Table 2 describes a similar pattern to Table 1 as
there was no meaningful change in the final icon
language models’ performances due to the “pure”

condition. We do note that there was a slight ad-
vantage to c2v embeddings which seemed to be
predicting more correctly the target.

The “pure” condition resulted in a relatively
smaller prediction accuracy. On the one hand, this
may be surprising evidence, as it is reasonable to
think that a smaller and more focused vocabulary
set would result in an improved language model
performance. We assume that the reduction in vo-
cabulary size caused as a result of employing icons
solely created short, sparse, and uncommon pat-
terns of sequences, which limited the models’ abil-
ity to learn and predict accurately.

Under the “pure” condition, the model vocabu-
lary consists solely of the icon set itself, whereas
in the “non-pure” condition, the model vocabu-
lary consists of the icon set as well as the pre-
trained embeddings together with <unk> terms.
While we can not directly compare the two ex-
periments (1 and 2) we can share our considera-
tions when choosing to generate language models
purely based on icons.

To support our explanation for Table 2 interpre-
tation, we conducted a qualitative test and looked
into to the actual sentences produced by the icons
in isolation, asking whether these sentences cre-
ated “meaningful” (or at least useful) messages
for LM training.. This might be helpful to get a
deeper perspective on the corpus created and assist
in making design choices. Here is an example:
“non-pure”: <your> <warning> <did> <not>
<work>
“pure”: <your> <warning> <not> <work>
Arguably, the main message was conveyed in this
sentence, while in the following:
“non-pure”: <they> <did> <n’t> <use> <mud>
<they> <used> <sod>
“pure”: <they> <use> <they>
the essence is gone. While it is not feasible to
qualitatively look at every sentence, one may con-
sider comparing the amount of tokens prior to
elimination and post, under the assumption that
the greater the loss, the more likely that the quality
of solely using the icon-set becomes a concern.

We would like to note that in Experiment 2 in
particular, we used the same simulated “icon lan-
guage” for both training and evaluation. An ideal
evaluation of our approach to producing synthetic
in-domain training data would have been evaluat-
ing the language models trained on simulated icon
language on “real” text composed using icons. As

29

we did not have such a useful resource, it is impor-
tant to observe this as a limitation of the current
experiment.

Experiment 3: Textual Corpus
In our system, the role of the textual corpus is
to provide the language model with training data
regarding patterns of word (“icon”) use. Ideally,
we would use a corpus made of symbols that rep-
resent the type of content and structure an AAC
user would produce. Finding an AAC-oriented
corpus that would be big enough to train was a
hurdle, and so for our previously-described exper-
iments, we relied on SubtlexUS. While not ideal,
this corpus was closer to spontaneous speech than,
say, a newswire corpus would have been, and
featured smaller and more manageable sentences
that we hoped would withstand being converted to
pseudo-icon representations.

That said, we did wish to investigate the util-
ity of using an existing corpus that was designed
to be closer to AAC-style speech. Vertanen and
Kristensson (2011) produced such a corpus, con-
sisting of 6,142 sentences produced by Amazon
Mechanical Turk users who were paid to generate
plausible sentences and to evaluate the plausibility
of other sentences generated by other workers.

This corpus, while valuable, was too small for
use with our language modeling approach. Fol-
lowing Vertanen and Kristensson’s insight that
“short text” such as that seen in online media such
as Twitter, etc. might be a good proxy for true
AAC-style speech, we therefore mixed the AAC-
style corpus with second corpus, this one con-
sisting of modified SMS messages. The second
corpus was from Chen and Kan (2013) and con-
sisted of 18,042 SMS messages, and was origi-
nally constructed for experiments in text normal-
ization. As such, it includes messages written
in heavily-abbreviated forms as well as “cleaned
up” versions of each message, written in some-
thing approximating “standard” English orthogra-
phy. We used this subset of the corpus in the hopes
that its short, informal, and speech-like sentences
would complement the AAC-style corpus. Our
goal was to assemble a corpus containing language
that is as close as possible to what would be pro-
duced by actual users of an AAC system. We then
repeated the language modeling experiments con-
ducted earlier on this hybrid corpus, using identi-
cal procedures and evaluation metrics.

Table 3 and 4 tell a similar story to one an-

metric c2v Glove
MRR 0.38 (0.00) 0.33 (0.01)
ACC@1 (%) 56.41 (0.52) 47.13 (2.81)
ACC@10 (%) 60.44 (0.42) 54.51 (2.37)

Table 3: Textual corpus (AAC-SMS)
mean(standard deviation)

metric c2v Glove
MRR 0.37 (0.01) 0.34 (0.00)
ACC@1 (%) 53.25 (2.11) 47.73 (1.46)
ACC@10 (%) 59.06 (1.29) 56.00 (1.40)

Table 4: Textual corpus (AAC-SMS/pure)
mean(standard deviation)

other: the models trained using c2v embeddings
outperformed the models that used Glove embed-
dings, which is different from what we observed in
the previous experiments— though with this cor-
pus, the overall performance numbers were much
lower than with the original, larger corpora. The
reason for overall low performance was probably
due to the very small size of the AAC-SMS cor-
pus, and possible overfitting as a result. Digging
more deeply into our data, we examined the in-
dividual cross-validation results at the fold level,
thinking that perhaps the results were unstable due
to the relatively small data set which indeed seem
to be the case.

Nevertheless, in an attempt to indirectly evalu-
ate different models, while the AAC experiments
had substantially higher variance across folds than
did the SubtlexUS experiments, the differences
between the two approaches do appear to be real.
Ultimately, we note that the substantial difference
in corpus size between SubtlexUS and our AAC-
SMS corpus make it difficult to draw any firm con-
clusions, and investigating this issue further will
be a component of our future work in this area.

5 Conclusions

This work is a first step towards the development
of language models for an icon set that has no cor-
responding corpus, but there remains much to be
done. One limitation of this work is that, even
after being projected into an icon space, our syn-
thetic training data is somewhat different from ac-
tual icon-based language produced by AAC users.
That said, we did try to overcome this limitation by
experimenting with a corpus designed to be much

30

closer to actual AAC-style language, though at a
substantial cost in terms of corpus size. This is a
common problem in AAC research in general, and
our immediate next steps will focus on develop-
ing more naturalistic training corpora (following
the lead of Vertanen and Kristensson (2011), who
faced similar challenges).

Another important limitation is that we have not
solved the problem of icons that represent multi-
word expressions or phrases. This will be a ma-
jor area our future work, for two reasons. First,
many important icons fall into this category. Sec-
ond, one of the advantages of icon-based AAC is
increased speed of communication, and collapsing
multi-word expressions to a single icon would en-
able substantial improvements.

A second area of future work will look at ways
to capture and express morphology. Our icon set
includes icons that can be used to indicate tense,
plurality, etc., but our current approach to cor-
pus processing and term substitution/composition
does not take advantage of such information. We
intend to explore ways to directly represent mor-
phological/inflectional information in the input
side of our models, and in doing so make better
use of our icon system.

A final limitation of this work is that our ap-
proach to selecting icons had the unfortunate side
effect of ignoring polysemy: the set of icons that
we worked with here was restricted to a single
sense of polysemous words. This means that some
possibly-useful icons were excluded, which could
have consequences for anybody actually using our
system for communication. Consider the word
“cheer”, which can be either a verb or a noun, and
in both cases has multiple meanings. There are
several icons in Symbolstix that capture different
usages of the word, but our current approach only
uses one. This will be another active area of future
work, and we expect our solution to this problem
to tie in with our solution to the issue of multi-
word expressions.

Our evaluations thus far have been system-
oriented, and have tried to measure the model’s
performance. Our MRR and accuracy results have
provided us with an internal view for where our
models were performing as desired as well as
identified areas where they fall short. The next
step will be to integrate our language model with
the rest of our AAC platform and begin working
with real end-users. We anticipate that this will

guide much of our future work on this problem.

Acknowledgments

We thank the anonymous DeepLo workshop re-
viewers for their valuable feedback and com-
ments. We also thank our clinical collaborators
in OHSU’s Institute on Development & Disabil-
ity: Betts Peters, Brandon Eddy, and Dr. Melanie
Fried-Oken, as well as our collaborators at North-
eastern University, in the laboratories of Drs.
David Smith and Deniz Erdogmus. Research re-
ported in this paper was supported by the National
Institute on Deafness and Other Communication
Disorders of the NIH under awards R01DC009834
and R56DC015999.

References
American Speech Language Hearing Association et al.

2004. Roles and Responsibilities of Speech-
Language Pathologists with Respect to Augmenta-
tive and Alternative Communication: Technical Re-
port .

David R. Beukelman and Pat Mirenda. 2005. Aug-
mentative & Alternative Communication: Support-
ing Children & Adults with Complex Communica-
tion Needs. Paul H. Brookes Publishing Co., 3rd
edition.

Marc Brysbaert and Boris New. 2009. Moving Beyond
Kučera and Francis: A Critical Evaluation of Cur-
rent Word Frequency Norms and the Introduction
of a New and Improved Word Frequency Measure
for American English. Behavior Research Methods
41(4):977–990.

Tao Chen and Min-Yen Kan. 2013. Creating a
live, public short message service corpus: the nus
sms corpus. Language Resources and Evaluation
47(2):299–335.

Jacquie Clark. 1997. Symbolstix. News 2 You.
https://www.n2y.com/symbolstix-prime.

Brenda Fossett and Pat Mirenda. 2007. Augmentative
and Alternative Communication. Handbook of De-
velopmental Disabilities pages 330–348.

Nestor Garay-Vitoria and Julio Abascal. 2006. Text
prediction systems: a survey. Universal Access in
the Information Society 4(3):188–203.

Teresa Iacono, Katie Lyon, and Denise West. 2011.
Non-Electronic Communication Aids for People
with Complex Communication Needs. Inter-
national Journal of Speech-Language Pathology
13(5):399–410.

31

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-Thought Vectors. In
Advances in Neural Information Processing Sys-
tems. pages 3294–3302.

Janice Light and Kathryn Drager. 2007. AAC Tech-
nologies for Young Children with Complex Com-
munication Needs: State of the Science and Future
Research Directions. Augmentative and Alternative
Communication 23(3):204–216.

Oren Melamud, Jacob Goldberger, and Ido Dagan.
2016. context2vec: Learning Generic Context Em-
bedding with Bidirectional LSTM. In Proceedings
of The 20th SIGNLL Conference on Computational
Natural Language Learning. pages 51–61.

U. Orhan, K. E. Hild, D. Erdogmus, B. Roark, B. Oken,
and M. Fried-Oken. 2012. Rsvp Keyboard: An EEG
Based Typing Interface. In 2012 IEEE International
Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). pages 645–648.

R. Patel. 2011. Message Formulation, Organization,
and Navigation Schemes for Icon-Based Communi-
cation Aids. In 2011 Annual International Confer-
ence of the IEEE Engineering in Medicine and Biol-
ogy Society. pages 5364–5367.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global Vectors for Word
Representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP). pages 1532–1543.

Keith Vertanen and Per Ola Kristensson. 2011. The
imagination of crowds: Conversational aac lan-
guage modeling using crowdsourcing and large data
sources. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing.
Association for Computational Linguistics, Strouds-
burg, PA, USA, EMNLP ’11, pages 700–711.
http://dl.acm.org/citation.cfm?id=2145432.2145514.

Karl Wiegand and Rupal Patel. 2012a. Non-
syntactic word prediction for aac. In Proceed-
ings of the Third Workshop on Speech and
Language Processing for Assistive Technolo-
gies. Association for Computational Linguistics,
Stroudsburg, PA, USA, SLPAT ’12, pages 28–36.
http://dl.acm.org/citation.cfm?id=2392855.2392860.

Karl Wiegand and Rupal Patel. 2012b. Symbol-
path: A continuous motion overlay module for
icon-based assistive communication. In Proceed-
ings of the 14th International ACM SIGACCESS
Conference on Computers and Accessibility. ACM,
New York, NY, USA, ASSETS ’12, pages 209–210.
https://doi.org/10.1145/2384916.2384957.

32

Proceedings of the Workshop on Deep Learning Approaches for Low-Resource NLP, pages 33–42
Melbourne, Australia July 19, 2018. c©2018 Association for Computational Linguistics

Multimodal Neural Machine Translation for Low-resource
Language Pairs using Synthetic Data

Koel Dutta Chowdhury
ADAPT Centre

School of Computing
Dublin City University

Dublin, Ireland
koel.chowdhury@adaptcentre.ie

Mohammed Hasanuzzaman
ADAPT Centre

School of Computing
Dublin City University

Dublin, Ireland
mohammed.hasanuzzaman@adaptcentre.ie

Qun Liu
ADAPT Centre

School of Computing
Dublin City University

Dublin, Ireland
qun.liu@adaptcentre.ie

Abstract

In this paper, we investigate the effec-
tiveness of training a multimodal neu-
ral machine translation (MNMT) sys-
tem with image features for a low-
resource language pair, Hindi and En-
glish, using synthetic data. A three-
way parallel corpus which contains
bilingual texts and corresponding im-
ages is required to train a MNMT sys-
tem with image features. However,
such a corpus is not available for low re-
source language pairs. To address this,
we developed both a synthetic train-
ing dataset and a manually curated de-
velopment/test dataset for Hindi based
on an existing English-image parallel
corpus. We used these datasets to
build our image description transla-
tion system by adopting state-of-the-
art MNMT models. Our results show
that it is possible to train a MNMT
system for low-resource language pairs
through the use of synthetic data and
that such a system can benefit from im-
age features.

1 Introduction
Recent years have witnessed a surge in ap-
plication of multimodal neural models as
a sequence to sequence learning problem
(Sutskever et al., 2014; Kalchbrenner and
Blunsom, 2013; Cho et al., 2014b) for solving
different tasks such as machine translations
(Huang et al., 2016), image and video descrip-
tion generation (Karpathy and Fei-Fei, 2015;

Kiros et al., 2014; Donahue et al., 2015; Venu-
gopalan et al., 2014), visual question answer-
ing (Antol et al., 2015), etc. However, neural
machine translation (NMT), which is an inher-
ently data-dependent procedure, continues to
be a challenging problem in the context of low-
resourced and out-of-domain settings (Koehn
and Knowles, 2017). In other words, there is
a concern that the model will perform poorly
with languages having limited resources, espe-
cially in comparison with well-resourced major
languages.

Although English(En) and Hindi(Hi) lan-
guages belong to the same family (Indo-
European), they differ significantly in terms of
word order, syntax and morphological struc-
ture (Bharati et al., 1995). While English
maintains a Subject-Verb-Object (SVO) tem-
plate, Hindi follows a Subject-Object-Verb
(SOV) convention. Moreover, compared to
English, Hindi has a more complex inflec-
tion system, where nouns, verbs and adjec-
tives are inflected according to number, gen-
der and case. These issues, combined with the
data scarcity problem, makes Hi→En machine
translation a challenging task.

Bilingual corpora, which are an important
component for machine translation systems,
suffer from the problem of data scarcity when
one of the languages is resource-poor. To
achieve better quality translation, a potential
solution is to extend along the language di-
mension to construct bilingual corpora. In
particular, for a distant language pair such as
Hindi and English, building a bilingual corpus
can prove to be a useful endeavor in multiple
aspects.

33

We are inspired by the recent successes of
using visual inputs for translation tasks (see
Section 2 for relevant studies). For translat-
ing image descriptions, given both the source
image and it’s description, it can be seen that
both modalities can bring more useful infor-
mation for generating the target language de-
scription. With the goal of preventing a low-
resource language such as Hindi from being
left behind in the advancement of multimodal
machine translation, we take the first steps to-
wards applying MNMT methods for Hi→En
translation.

Our contributions in this study are as fol-
lows:

• To the best of our knowledge, we are the
first to tackle the problem of multimodal
translation from Hindi into English.

• We examine if visual features help to im-
prove machine translation (MT) perfor-
mance in low resource scenarios.

• We investigate whether the multimodal
machine translation system for less-
resourced language can benefit from syn-
thetic data.

• We augment the Flickr30k dataset with
synthetic Hindi descriptions, obtained
from a MT system.

• We manually develop a validation and
test corpus of the English counterpart in
the Flickr30k dataset. We plan to re-
lease this dataset publicly for research
purposes.

This paper is divided as follows: Section 2
provides the necessary background and estab-
lishes the relevance of the presented work,
both in terms of low-resourced MT and MT in
multimodal contexts. Section 3 describes the
overall methodology. In Section 4 we outline
the backgrounds of datasets used for training,
validation and testing. Section 5 provides de-
tailed descriptions of the multimodal models
used in our experiments. Section 6 details the
experimental set-ups. Results and analysis are
presented in Section 7. Finally, in Section 8,
we provide conclusions and indicate possible
directions for future work.

2 Related Work

There has been some previous work on us-
ing visual context in tasks involving both neu-
ral machine translation (NMT) and image de-
scription generation (IDG) that explicitly uses
an encoder-decoder framework as an instan-
tiation of the sequence to sequence (seq2seq)
learning problem (Cho et al., 2014a). Vinyals
et al. (2015) proposed an IDG model that uses
a vector, encoding the image as input based on
the sequence-to-sequence framework. Specia
et al. (2016) introduced a shared task to inves-
tigate the role of images in Multi-modal MT.
Similarly, Huang et al. (2016) introduced a
model to associate textual and visual features
extracted with the VGG19 network for trans-
lation tasks (Simonyan and Zisserman, 2014).
Elliott et al. (2015) generated multilingual im-
age descriptions using image features trans-
ferred from separate non-attentive neural im-
age description models. Calixto et al. (2017a)
carried out experiments to incorporate spatial
visual information into NMT using a separate
visual attention mechanism. Although these
approaches have demonstrated the plausibil-
ity of multilingual natural language processing
with multiple modalities, they rely exclusively
on the availability of a large three-way paral-
lel corpus (bilingual captions corresponding to
the image) as training data.

Having enough parallel corpora is a big chal-
lenge in NMT and it is very unlikely to have
millions of parallel sentences for every lan-
guage pair. Therefore, quite a few attempts
have been made to build NMT systems for
low-resource language pairs (Sennrich et al.,
2016; Zhang and Zong, 2016) which focused
on building NMT systems in a low-resource
scenario. They incorporated huge monolin-
gual corpus in the source or target side. Gul-
cehre et al. (2017) proposed two alternative
methods to integrate monolingual data on tar-
get side, namely shallow fusion and deep fu-
sion. In shallow fusion, the top K hypothe-
ses (produced by NMT) at each time step t
are re-scored using the weighted sum of the
scores given by the NMT(trained on parallel
data) and a recurrent neural network based
language model (RNNLM). Whereas in deep
fusion, hidden states obtained at each time
step t of RNNLM and NMT are concatenated

34

and output is generated from that concate-
nated state.

Sennrich et al. (2016) incorporated mono-
lingual data on the target side to investi-
gate two methods of filling the source side of
the monolingual data. In the first method,
they used a dummy source sentence for every
target sentence, while in the second method
synthetic source sentences were obtained via
back-translation. Their results found that the
second method is more effective. In a sim-
ilar vein, Zhang and Zong (2016) explored
the effect of incorporating large-scale source-
side monolingual in NMT in many ways. In
the first approach, inspired by Sennrich et al.
(2016), they built a baseline system and then
obtained parallel synthetic data by translat-
ing the monolingual data. This parallel data,
along with the original data, is used again for
training an attention-based encoder-decoder
NMT system. Their second method involved
the multi-task learning framework to gener-
ate the target translation and the reordered
source-side sentences at the same time. They
discovered that the use of source-side mono-
lingual data in NMT is more effective than in
SMT.

A few other popular approaches in this area
involve using a method called transfer learn-
ing which focuses on sharing parameters, such
as source side word-embeddings across related
language pairs. Zoph et al. (2016) focus on
training a model on high resource language
pair and then using learned parameters to
train the low resource language pair. How-
ever, it requires selecting closely related high
and low resource language pairs. So this ap-
proach might not work if the language pairs
are distant.

Most of the previous related work on this
problem of low-resource NMT has tried to in-
corporate monolingual data in source or target
side. The effect of adding monolingual data in
NMT is similar to that of building language
model (LM) on large-scale monolingual data
in SMT. While in SMT it can make the out-
put more fluent, adding monolingual data does
not contribute much in improving adequacy
for NMT.

3 Methodology Overview
We formulate the task of augmenting the
Flickr30k dataset with Hindi descriptions as
a multimodal NMT task. The task is defined
as follows.

To produce a target side description of an
image i in Flickr30k dataset, a MT system
may use unimodal information such as text
in the form of description for image i in the
source language En, as well as multimodal in-
formation such as text plus visual features em-
bedded in the image i itself. Our overall ap-
proach consists of the following steps.

• Due to the unavailability of in-domain
Hindi-English parallel corpus for our cap-
tion translation task, we use a general
domain Hindi-English parallel corpus (re-
ferred as Hic − Enc hereafter) which
is compiled from a variety of existing
sources. Details of the dataset are de-
scribed in Section 4.

• Building a phrase based statistical ma-
chine translation(PBSMT) system using
Hic − Enc parallel corpus. To create
a synthetic in-domain Hindi-English par-
allel corpus for the image descriptions
translation task, we translate the English
descriptions of Flickr30k dataset (referred
to as En (Manl.Trans.)) into Hindi, using
a PBSMT system. We take motivation
for using the PBSMT system over NMT
from the work carried out by Kunchukut-
tan et al. (2017). For Hi →En transla-
tion, their system achieves better results
with PBSMT over NMT when trained on
the same corpus.

• We divide the En (Manl.Trans.) into
training, validation and test set and
call these as Ent (Manl.Train.Trans.),
End (Manl.Dev.Trans.) and Enr

(Manl.Test.Trans.), respectively. We
translate the Ent (Manl.Train.Trans) into
Hindi using the PBSMT system and call
these as Hit (Syn.Train.Trans).We manu-
ally translate End (Manl.Dev.Trans) and
Enr (Manl.Test.Trans) into Hindi. We re-
fer to these manually translated English
descriptions as Hid (Manl.Dev.Trans)
and Hir (Manl.Test.Trans).

35

• We use synthetic training data to build
a text-only baseline NMT system. In
particular we use Ent (Manl.Train.Trans)
and its automatically translated Hindi
counter part Hit (Syn.Train.Trans) to
train the system. In addition to this,
we use Hid (Manl.Dev.Trans.) and End

(Manl.Dev.Trans.) to tune the system.

• Visual input may provide right-angled
information that is free of the natural
language ambiguities and can serve as
extraneous information to textual fea-
tures for machine translation in mul-
timodal scenarios. This motivates us
to extract deep visual semantic fea-
tures from the entire image. We use
a pre-trained-convolutional neural net-
work(CNN) model to extract visual global
features for all the images in Flickr30k
dataset.

• We build MNMT system using
the Ent (Manl.Train.Trans.)-Hit
(Syn.Train.Trans.) parallel corpus
and the extracted visual features. We
use Hid (Manl.Dev.Trans.) and End

(Manl.Dev.Trans.) to tune the system.

• Finally, we translate Hir
(Manl.Test.Trans.) into English and
measure the performance with reference
to Enr (Manl.Test.Trans.)

4 Data
Hic −Enc: In order to generate the synthetic
data by means of back-translation, we use the
general domain IITB English-Hindi Corpus to
train a PBSMT system. The corpus is a com-
pilation of parallel corpora collected from a
various existing sources such as OPUS (Tiede-
mann, 2012), HindEn (Bojar et al., 2014b)
and TED (Abdelali et al., 2014) as well as
corpora developed at the Center for Indian
Language Technology, IIT-B 1 over the years
(Kunchukuttan et al., 2017).

Hit(Syn.Trans) : We divide the En-
glish descriptions of Flickr30k dataset con-
sisting of 158,915 sentences into training,
development and test sets. The train-
ing dataset (Ent(Manl.Trans)) contains

1www.cfilt.iitb.ac.in

Hindi-English

(out-of-domain)

Parallel Corpus

 English Image

 Descriptions

 (in-domain)

Images

PBSMT System

 Synthetic Hindi Image

 Descriptions

 Multimodal NMT System

Image features

CNN

Figure 1: Architecture of the Hi-En MNMT
System.

156,915 sentences, the development dataset
(End(Manl.Trans)) contains 1,000 sentences
and the test set (Enr(Manl.Trans)) contains
1000 sentences. We use the PBSMT sys-
tem trained on Hic − Enc to translate the
Ent(Manl.Trans) set into Hindi by means
of back-translation. Such a strategy repre-
sents the case where there is no parallel re-
sources available but domain-specific mono-
lingual data can be translated via an ex-
isting MT system and further provided as
a training corpus to a new MT system.
Hid(Manl.Trans) and Hir(Manl.Trans) :
for manually curating the dataset, we
were assisted by two bilingual speakers of
Hindi and English. One of them trans-
lated the datasets End(Manl.Trans) and
Enr(ManlTrans) into Hindi while the other
speaker verified the same.

The examples of manually translated de-
scriptions are shown in Table 4.

Data #Sentences #Tokens
En Hi

Train 1,492,827 20,667,259 22,171,543
Dev 3207 68459 74027

Table 1: Statistics of data sets used to train
PBSMT system

36

Data–set #sentences
Monolingual 45,075,279

Table 2: Additional monolingual (Hi) text
used for training the language model to cre-
ate synthetic Hindi data

Data–set #sentences
Monolingual 20,638,520

Table 3: Additional monolingual (En) text
used for training the general domain PBSMT
system

5 Multimodal NMT Architecture

In our experiments, we use models which can
essentially be thought of as extensions of the
attentive NMT framework of Bahdanau et al.
(2015). However, following Calixto et al.
(2017b) we have included an additional visual
component for incorporating the visual fea-
tures from images. For the encoder, we use a
bi-directional recurrent neural network (RNN)
with gated recurrent unit (GRU) (Cho et al.,
2014a), while the concatenation of forward and
backward hidden states, hi = [

−→
hi ,
←−
hi] serves as

the final annotation vector for a given source
position i. In subsections 5.2 and 5.3 we de-
scribe the two multi-modal NMT models used
in our experiments. For a detailed description
of these models, we refer the reader to Calixto
et al. (2017b).

5.1 Image feature extraction

For all the images, the global image fea-
ture vectors, which are the 4096D activa-
tions of the penultimate fully connected layer
FC7, (henceforth referred to as q), are ex-
tracted using a publicly available pre-trained
model VGG19-CNN (Simonyan and Zisser-
man, 2014) which is trained for classifying im-
ages into one out of 1000 Imagenet classes
(Russakovsky et al., 2015). In our experiment,
we pass all images in our dataset through the
pre-trained 19-layers VGG network (VGG19-
CNN) to extract global image features and in-
corporate them - (i) to initialise the encoder
hidden state and (ii) as additional input to
initialise the decoder hidden state.

English Source
Sentence

Hindi Translation
(Manual)

A man in an orange
hat starring at

something .

एक नारंगी टोपी मӒ एक
आदमी घरू रहा है |

People are fixing the
roof of a house .

लोग एक घर कҴ छत
ठұक कर रहे हӔ |

Group of Asian boys
wait for meat to

cook over barbecue .

एѠशयाई लड़कӖ का
समहू बारबԹेू पर
खाना बनाने के Ѡलए
मांस का इंतजार करता

है |
The person in the

striped shirt is
mountain climbing .

धारҰदार शट˨ मӒ ͲयџЭ
पहाड़ चढ़ाई कर रहा |

Table 4: Examples of manual curated captions
of the Flickr30k English descriptions in Hindi
using PBSMT system. First column repre-
sents the original English captions. Second
column represents the manually curated En-
glish captions in Hindi.

5.2 IMGE: Image for encoder
initialization

Instead of initializing the hidden state of the
encoder with the zero vector −→0 , as in the orig-
inal attention-based NMT model of Bahdanau
et al. (2015) we use two new single-layer feed-
forward neural networks to compute the initial
states of the forward and backward RNN, re-
spectively.

We use Equation (1) to compute a vector
d from the global image feature vector q ∈
R4096:

d = W2
I .(W1

I .q + b1
I) + b2

I . (1)

Here W and b denote the projection matrix
and bias vector, respectively, such that W1

I ∈
R4096×4096 and b1

I ∈ R4096 while W2
I and b2

I

project the image features into the same di-
mensionality as the hidden states of the source
language encoder.

The encoder hidden state is initialized by
the feed-forward networks computed as fol-
lows:

←−
h init = tanh(Wfd + bf),
−→
h init = tanh(Wbd + bb), (2)

37

where b and W are respectively the bias vec-
tor and the multi-modal projection matrix for
projecting the image features d into the en-
coder hidden state’s dimensionality. The suf-
fix ‘f ’ (‘b’) corresponds to forward (backward)
states.

5.3 IMGD: Image for decoder
initialization

A new single-layer feed-forward neural net-
work is used for incorporating an image into
the decoder. Originally, the initial hidden
state of the decoder is computed from the
encoder’s hidden states, often from concate-
nation of the last hidden states of the en-
coder forward RNN and backward RNN, re-
spectively −→h N and ←−h 1, or from the mean
of the source-language annotation vectors hi.
However, here we compute the initial hidden
state s0 of the decoder by including the image
features as additional inputs as follows:

s0 = tanh(Wdi[
←−h 1;
−→h N]) + Wmd + bdi, (3)

where Wdi and bdi are learned model param-
eters while the image feature d is projected
into the decoder hidden state dimensionality
by the multi-modal projection matrix Wm.

As before, given the global image vector
q ∈ R4096, the vector d is calculated from
Equation (1). However, in the present case,
the image features are projected into the same
dimensionality as the decoder hidden states by
the parameters W2

I and b2
I .

6 Experiment Set–Up

In this section, we briefly describe the experi-
mental settings used to generate the synthetic
Hindi data and further expand it into a multi-
modal NMT framework.

The Hindi side of the Hic − Enc is nor-
malized using the Indic_NLP_Library2 to en-
sure the canonical Unicode representation. We
used the scripts from the above library to tok-
enize and normalize the Hindi sentences. For
English, we used the scripts from the Moses
tokenizer tokenizer.perl3 to tokenize and low-

2https://bitbucket.org/anoopk/indic_nlp_
library

3https://github.com/moses-smt/mosesdecoder/
blob/RELEASE-3.0/scripts/tokenizer/tokenizer.
perl

ercase the English representations for our ex-
periments. We use settings similar to that of
(Kunchukuttan et al., 2017) to develop Hit.
They used the news stories from the WMT
2014 English-Hindi shared task (Bojar et al.,
2014a) as the development(dev) and test cor-
pora which we concatenate together to create
our dev set. The training and dev corpora
consist of 1,492,827 and 3,207 sentence seg-
ments respectively. We used the HindMono
corpus (Bojar et al., 2014b) which contains
roughly 45 million sentences to build our lan-
guage model in Hindi. The corpus statistics
are shown in Table.1 and Table.2. For train-
ing the Hic − Enc corpus, we use the Moses
SMT system (Koehn et al., 2007) . We use the
SRILM toolkit (Stolcke, 2002) for building a
language model and GIZA++ (Och and Ney,
2000) with the grow-diag-final-and heuristic
for extracting phrases from Hic − Enc .The
trained system is tuned using Minimum Error
Rate Training (Och, 2003). For other param-
eters of Moses, default values are used. If the
sentences in English or Hindi are longer than
80 tokens, they are discarded. To measure the
performance of the system, we also translate
the Enr testset into Hir both manually and
automatically.

We also perform Hindi→English (Hi→En)
translation using a PBSMT system with the
general domain Hic−Enc corpus. We use the
News Crawl articles 2016 from the WMT17 4

as additional English monolingual corpora to
train the 4-gram language model. This contain
roughly 20 million sentence for English. (Table
3).

To build our Multi-modal NMT systems we
use OpenNMT-py (the pytorch port of Open-
NMT (Klein et al., 2017)) following the set-
tings of Calixto et al. (2017b) which imple-
ments the encoder as a bi-directional RNN
with GRU, one 1024D single-layer forward
RNN and one 1024D single-layer backward
RNN. Throughout the experiments, the mod-
els are parameterised using 620D source and
target word embeddings, and both are trained
jointly with the model. All non-recurrent
matrices are initialised by sampling from a
Gaussian distribution (µ = 0, σ = 0.01), re-

4http://www.statmt.org/wmt17/
translation-task.html

38

current matrices are random orthogonal and
bias vectors are all initialised to 0. Dropout
with a probability of 0.3 in source and tar-
get word embeddings, in the image features
(in all MNMT models), in the encoder and de-
coder RNNs inputs and recurrent connections,
and before the readout operation in the de-
coder RNN was applied. Following (Gal and
Ghahramani, 2016), dropout to the encoder
bidirectional RNN and decoder RNN using the
same mask in all time steps are also applied.
The models are trained for 25 epochs using
Adam (Kingma and Ba, 2015) with learning
rate 0.002 and mini-batches of size 40, where
each training instance consists of one English
sentence, one Hindi sentence and one image.

Finally, we evaluate translation quality
quantitatively in terms of BLEU (Papineni
et al., 2002) and METEOR (Denkowski and
Lavie, 2014) and report statistical significance
for the metrics using approximate randomisa-
tion computed with MultEval (Clark et al.,
2011).

7 Results and Analysis
7.1 Quantitative Analysis
We develop the following five systems -

• PBSMTout: a phrase based machine
translation system trained on the general-
domain Hic −Enc corpus.

• PBSMTIn: a phrase based machine trans-
lation system trained on the in-domain
Hiit −Enit corpus.

• NMTtext: a text-only NMT system trained
on the in-domain Hiit −Enit corpus.

• IMGD: the multimodal machine system
that uses images as an additional input at
the decoding stage.

• IMGE : the multimodal machine system
that uses images to initialise the encoder
hidden state.

The comparative evaluation results of our sys-
tems are presented in Table 5.

Evaluation is performed against the English
translations of the test set using standard
MT evaluation metrics, with BLEU and ME-
TEOR (multeval implementation, but with
METEOR 1.5).

Hi→ En BLEU METEOR
PBSMTout 21.6 29.6
PBSMTin 22.7 30.2
NMTtext 23.3 29.7
IMGD 24.2(↑ 0.9) 30.7(↑ 1)
IMGE 23.9 29.9

Table 5: Evaluation metrics scores Hi-En
translation systems before and after applying
the image features on manually curated dev
data. Bold numbers indicate that improve-
ments are statistically significant compared to
NMTtext with p = 0.05

Figure 2: Example from the Flickr30k dataset

We see from the results that the text-only
NMT model outperforms phrase based SMT
model in terms of BLEU score. Our results
indicate that incorporating image features in
multimodal models helps, as compared to our
text-only SMT and NMT baselines. This is re-
flected in the fact that both the image models
are shown to produce better results in terms
of BLEU scores with respect to both the SMT
and NMT text-only counterpart.

Although IMGE yields only little improve-
ment over the text-only NMT counterpart,
IMGD performs consistently better in terms
of both metrics (BLEU by ↑ 0.9) and (ME-
TEOR by ↑ 1) than the strong text-only NMT
and SMT baseline.

7.2 Qualitative Analysis
In order to gain a qualitative insight into spe-
cific differences between the text-only and im-
age NMT models, we highlight some instances
as follows:

English reference: two people wearing
odd alien-like costumes , one blue and one

39

purple , are standing in a road .
Manual Source: तदो लोग अजीब џवदेशी
जसैी वशेभषूा पहनन,े एक नीले और एक बӔगनी,
एक सड़क मӒ खड़े हӔ।
NMT: two people dressed in exotic cos-
tumes wear a blue and one flag in a blue
, are standing in a road .
MNMT: two people wearing funny for-
eign attire, one blue and one purple , are
standing in a street .

In the first entry, although the NMT sys-
tem without images incorrectly translated the
color ‘purple’ (as can be seen from Figure. 2,
where the costumes are clearly in two colors)
the multi-modal model translated it correctly,
yielding an improvement in the sentence-level
BLEU (↑ 21.47) score. In terms of trans-
lations, we see that both the models extrap-
olate the reference and translate “alien-like
costumes” into “exotic costumes” (text-only
model) and as a “funny foreign attire” (mul-
timodal model). We attribute this to the fact
that the training set is small and contains dif-
ferent forms of biases and unwarranted infer-
ences (van Miltenburg, 2016).

English reference: two young children
are on sand.
Manual Source: दो छोटे बՃे रेत पर हӔ।
NMT: two little kids are on the sand.
MNMT: two small children are on sand.

For this particular example, the overall mean-
ing of the source description has been cor-
rectly preserved into the target side descrip-
tion for the outputs generated by both mod-
els. However, if we closely look into each of
the example, we note the difference in entity
and its associated attribute. For example, the
word-choice for the entity children in reference
source changes to the term kids for text-only
NMT but remains intact for MNMT model.
Similar trend is observed for the attribute of
the entity where the young in the reference
source is replaced with little and small for
the text and image models respectively. Al-
though every target side entity-attribute pair
is semantically close to the source side entity-
attribute pair-they may vary in terms of their

usage in conventional English language. Com-
pared to the terminology obtained without
the help of the image (little-kids- 1417), the
one obtained with the help of image (small
children-1595) tends to be more widely used
in standard spoken English according to the
’Corpus of Contemporary American English’
5.

The above examples clearly asserts the pos-
itive impact of multimodal models in transla-
tion both in quantitative and qualitative sense.

8 Conclusion and Future Work

We presented the results of using synthetic
Hindi descriptions of Flickr30k dataset gen-
erated via back-translation for multimodal
machine translation and provided benchmark
baseline results on this corpus.

Our study shows that despite being trained
on the same in-domain En–Hi training data,
there are inconsistencies in translation qual-
ity between the SMT and NMT system, at
least in terms of evaluation metrics. These re-
sults are not necessarily surprising given that
the grammatical syntax between the two lan-
guages is poorly represented in the synthetic
Hindi training data. In addition to this, Hindi
as a language presents many of the well-known
issues that NMT currently struggles with (re-
source sparsity, rich morphology and complex
inflection structure). An approach worth con-
sidering to address the divergence in word or-
der of the En-Hi language pair is the pre-
reordering approach such as the one taken by
Ramanathan et al. (2008) to build stronger
baseline systems. We will also investigate if
incorporating local, spatial-preserving image
features can provide more cues to an NMT
model as an extension of this work.

In future, we will conduct a more structured
study to extend this approach to different lan-
guage pairs and data scenarios. In addition,
we plan to include human evaluation rigor-
ously in our studies to confirm that the MT
systems are extended to enhance the transla-
tion quality and not simply be tuned to auto-
matic evaluation metrics.

5https://corpus.byu.edu/coca/

40

Acknowledgments

This research is supported by Science Founda-
tion Ireland in the ADAPT Centre for Digital
Content Technology. The ADAPT Centre for
Digital Content Technology is founded under
the SFI Research Centres Programme (Grant
13/RC/2106) and is co-funded under the Eu-
ropean Regional Development Fund. The au-
thors would like to thank Longyue Wang and
Meghan Dowling for providing many good
suggestions of improvements, as well as our
anonymous reviewers for their valuable com-
ments and feedback.

References
Abdelali, A., Guzman, F., Sajjad, H., and Vogel,

S. (2014). The amara corpus: Building parallel
language resources for the educational domain.
In LREC, volume 14, pages 1044–1054.

Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra,
D., Lawrence Zitnick, C., and Parikh, D. (2015).
Vqa: Visual question answering. In Proceedings
of the IEEE International Conference on Com-
puter Vision, pages 2425–2433.

Bahdanau, D., Cho, K., and Bengio, Y. (2015).
Neural Machine Translation by Jointly Learning
to Align and Translate. In International Confer-
ence on Learning Representations, ICLR 2015,
San Diego, California.

Bharati, A., Chaitanya, V., Sangal, R., and
Ramakrishnamacharyulu, K. (1995). Natural
language processing: a Paninian perspective.
Prentice-Hall of India New Delhi.

Bojar, O., Buck, C., Federmann, C., Haddow, B.,
Koehn, P., Leveling, J., Monz, C., Pecina, P.,
Post, M., Saint-Amand, H., et al. (2014a). Find-
ings of the 2014 workshop on statistical machine
translation. In Proceedings of the ninth work-
shop on statistical machine translation, pages
12–58.

Bojar, O., Diatka, V., Rychlỳ, P., Stranák, P.,
Suchomel, V., Tamchyna, A., and Zeman, D.
(2014b). Hindencorp-hindi-english and hindi-
only corpus for machine translation. In LREC,
pages 3550–3555.

Calixto, I., Liu, Q., and Campbell, N. (2017a).
Doubly-Attentive Decoder for Multi-modal Neu-
ral Machine Translation. In Proceedings of the
55th Conference of the Association for Compu-
tational Linguistics: Volume 1, Long Papers,
Vancouver, Canada (Paper Accepted).

Calixto, I., Liu, Q., and Campbell, N. (2017b). In-
corporating global visual features into attention-
based neural machine translation. CoRR,
abs/1701.06521.

Cho, K., van Merrienboer, B., Gulcehre, C., Bah-
danau, D., Bougares, F., Schwenk, H., and Ben-
gio, Y. (2014a). Learning Phrase Representa-
tions using RNN Encoder–Decoder for Statisti-
cal Machine Translation. In Proceedings of the
2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bah-
danau, D., Bougares, F., Schwenk, H., and
Bengio, Y. (2014b). Learning phrase repre-
sentations using rnn encoder-decoder for sta-
tistical machine translation. arXiv preprint
arXiv:1406.1078.

Clark, J. H., Dyer, C., Lavie, A., and Smith, N. A.
(2011). Better hypothesis testing for statisti-
cal machine translation: Controlling for opti-
mizer instability. In Proceedings of the 49th An-
nual Meeting of the Association for Computa-
tional Linguistics: Human Language Technolo-
gies: short papers-Volume 2, pages 176–181. As-
sociation for Computational Linguistics.

Denkowski, M. and Lavie, A. (2014). Meteor Uni-
versal: Language Specific Translation Evalua-
tion for Any Target Language. In Proceedings of
the EACL 2014 Workshop on Statistical Machine
Translation, Gothenburg, Sweden. The Associa-
tion for Computer Linguistics.

Donahue, J., Anne Hendricks, L., Guadarrama, S.,
Rohrbach, M., Venugopalan, S., Saenko, K., and
Darrell, T. (2015). Long-term recurrent convo-
lutional networks for visual recognition and de-
scription. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR).

Elliott, D., Frank, S., and Hasler, E. (2015). Mul-
tilingual image description with neural sequence
models. arXiv preprint arXiv:1510.04709.

Gal, Y. and Ghahramani, Z. (2016). A Theoret-
ically Grounded Application of Dropout in Re-
current Neural Networks. In Advances in Neural
Information Processing Systems, NIPS, pages
1019–1027, Barcelona, Spain.

Gulcehre, C., Firat, O., Xu, K., Cho, K., and
Bengio, Y. (2017). On integrating a language
model into neural machine translation. Com-
puter Speech & Language, 45:137–148.

Huang, P.-Y., Liu, F., Shiang, S.-R., Oh, J., and
Dyer, C. (2016). Attention-based multimodal
neural machine translation. In Proceedings of
the First Conference on Machine Translation:
Volume 2, Shared Task Papers, volume 2, pages
639–645.

41

Kalchbrenner, N. and Blunsom, P. (2013). Re-
current continuous translation models. In Pro-
ceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, pages
1700–1709.

Karpathy, A. and Fei-Fei, L. (2015). Deep visual-
semantic alignments for generating image de-
scriptions. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR).

Kingma, D. P. and Ba, J. (2015). Adam: A
method for stochastic optimization. Inter-
national Conference on Learning Representa-
tion(ICLR).

Kiros, R., Salakhutdinov, R., and Zemel, R. S.
(2014). Unifying visual-semantic embeddings
with multimodal neural language models. arXiv
preprint arXiv:1411.2539.

Klein, G., Kim, Y., Deng, Y., Senellart, J., and
Rush, A. M. (2017). Opennmt: Open-source
toolkit for neural machine translation. arXiv
preprint arXiv:1701.02810.

Koehn, P., Hoang, H., Birch, A., Callison-Burch,
C., Federico, M., Bertoldi, N., Cowan, B.,
Shen, W., Moran, C., Zens, R., et al. (2007).
Moses: Open source toolkit for statistical ma-
chine translation. In Proceedings of the 45th an-
nual meeting of the ACL on interactive poster
and demonstration sessions, pages 177–180. As-
sociation for Computational Linguistics.

Koehn, P. and Knowles, R. (2017). Six challenges
for neural machine translation. arXiv preprint
arXiv:1706.03872.

Kunchukuttan, A., Mehta, P., and Bhattacharyya,
P. (2017). The iit bombay english-hindi parallel
corpus. arXiv preprint arXiv:1710.02855.

Och, F. J. (2003). Minimum error rate training
in statistical machine translation. In Proceed-
ings of the 41st Annual Meeting on Associa-
tion for Computational Linguistics-Volume 1,
pages 160–167. Association for Computational
Linguistics.

Och, F. J. and Ney, H. (2000). Giza++: Training
of statistical translation models.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J.
(2002). BLEU: a Method for Automatic Evalu-
ation of Machine Translation. In Proceedings of
the 40th annual meeting on association for com-
putational linguistics, pages 311–318, Philadel-
phia, Pennsylvania.

Ramanathan, A., Hegde, J., Shah, R. M., Bhat-
tacharyya, P., and Sasikumar, M. (2008). Sim-
ple syntactic and morphological processing can
help english-hindi statistical machine transla-
tion. In Proceedings of the Third International
Joint Conference on Natural Language Process-
ing: Volume-I.

Russakovsky, O., Deng, J., Su, H., Krause, J.,
Satheesh, S., Ma, S., Huang, Z., Karpathy,
A., Khosla, A., Bernstein, M., et al. (2015).
Imagenet large scale visual recognition chal-
lenge. International Journal of Computer Vi-
sion, 115(3):211–252.

Sennrich, R., Haddow, B., and Birch, A. (2016).
Improving neural machine translation models
with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for
Computational Linguistics, ACL 2016, August
7-12, 2016, Berlin, Germany.

Simonyan, K. and Zisserman, A. (2014). Very deep
convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.

Specia, L., Frank, S., Sima’an, K., and Elliott, D.
(2016). A shared task on multimodal machine
translation and crosslingual image description.
In Proceedings of the First Conference on Ma-
chine Translation: Volume 2, Shared Task Pa-
pers, volume 2, pages 543–553.

Stolcke, A. (2002). Srilm-an extensible language
modeling toolkit. In Seventh international con-
ference on spoken language processing.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014).
Sequence to sequence learning with neural net-
works. In Advances in neural information pro-
cessing systems, pages 3104–3112.

Tiedemann, J. (2012). Parallel data, tools and in-
terfaces in opus. In LREC, volume 2012, pages
2214–2218.

van Miltenburg, E. (2016). Stereotyping and
bias in the flickr30k dataset. arXiv preprint
arXiv:1605.06083.

Venugopalan, S., Xu, H., Donahue, J., Rohrbach,
M., Mooney, R., and Saenko, K. (2014). Trans-
lating videos to natural language using deep
recurrent neural networks. arXiv preprint
arXiv:1412.4729.

Vinyals, O., Toshev, A., Bengio, S., and Erhan,
D. (2015). Show and tell: A neural image cap-
tion generator. In Computer Vision and Pat-
tern Recognition (CVPR), 2015 IEEE Confer-
ence on, pages 3156–3164. IEEE.

Zhang, J. and Zong, C. (2016). Exploiting source-
side monolingual data in neural machine trans-
lation. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 1535–1545.

Zoph, B., Yuret, D., May, J., and Knight, K.
(2016). Transfer learning for low-resource neural
machine translation. pages 1568–1575.

42

Proceedings of the Workshop on Deep Learning Approaches for Low-Resource NLP, pages 43–50
Melbourne, Australia July 19, 2018. c©2018 Association for Computational Linguistics

Multi-Task Active Learning for Neural Semantic Role Labeling on Low
Resource Conversational Corpus

Fariz Ikhwantri1 Samuel Louvan1,2 Kemal Kurniawan1 Bagas Abisena1

Valdi Rachman3 Alfan Farizki Wicaksono3 Rahmad Mahendra3

1Kata.ai, Jakarta, Indonesia
2Fondazione Bruno Kessler/University of Trento, Trento, Italy

3Universitas Indonesia, Depok, Indonesia
{fariz,kemal,bagas}@kata.ai, slouvan@fbk.eu

valdi.rachman@gmail.com
{alfan,rahmad.mahendra}@cs.ui.ac.id

Abstract

Most Semantic Role Labeling (SRL) ap-
proaches are supervised methods which
require a significant amount of annotated
corpus, and the annotation requires lin-
guistic expertise. In this paper, we pro-
pose a Multi-Task Active Learning frame-
work for Semantic Role Labeling with En-
tity Recognition (ER) as the auxiliary task
to alleviate the need for extensive data
and use additional information from ER
to help SRL. We evaluate our approach
on Indonesian conversational dataset. Our
experiments show that multi-task active
learning can outperform single-task active
learning method and standard multi-task
learning. According to our results, active
learning is more efficient by using 12%
less of training data compared to passive
learning in both single-task and multi-task
setting. We also introduce a new dataset
for SRL in Indonesian conversational do-
main to encourage further research in this
area1.

1 Introduction

Semantic Role Labeling (SRL) extracts predicate-
argument structures from sentences (Jurafsky and
Martin, 2006). It tries to recover information be-
yond syntax. In particular, information that can
answer the question about who did what to whom,
when, why and so on (Johansson and Nugues,
2008; Choi et al., 2010).

There have been many proposed SRL tech-
niques, and the high performing models are mostly
supervised (Akbik and Li, 2016; Punyakanok
et al., 2004). As they are supervised methods,

1request to research@kata.ai

the models are trained on a relatively large anno-
tated corpus. Building such corpus is expensive
as it is laborious, time-consuming, and usually re-
quires expertise in linguistics. For example, Prop-
Bank annotation guideline by Choi et al. (2010)
is around 90 pages so it can be a steep learning
curve even for annotators with a linguistic back-
ground. This difficulty makes reproducibility hard
for creating annotated data especially in low re-
source language or different domain of data. Sev-
eral approaches have been proposed to reduce the
effort of annotation. He et al. (2015) introduced
a Question Answering-driven approach by casting
a predicate as a question and its thematic role as
an answer in the system. Wang et al. (2017b) used
active learning using semantic embedding. Wang
et al. (2017a) utilized Annotation Projection with
hybrid crowd-sourcing to route between hard in-
stances for linguistic experts and easy instances
for non-expert crowds.

Active Learning is the most common method to
reduce annotation by using a model to minimize
the amount of data to be annotated while maxi-
mizing its performance. In this paper, we propose
to combine active learning with multi-task learn-
ing applied to Semantic Role Labeling by using
a related linguistic task as an auxiliary task in an
end-to-end role labeling. Our motivation to use a
multi-task method is in the same spirit as (Gorm-
ley et al., 2014) where they employed related syn-
tactic tasks to improve SRL in low-resource lan-
guages as multi-task learning. Instead, we used
Entity Recognition (ER) as the auxiliary task be-
cause we think ER is semantically related with
SRL in some ways. For example, given a sen-
tence: Andy gives a book to John, in SRL con-
text, Andy and John are labeled as AGENT and
PATIENT or BENEFACTOR respectively, but in
ER context, they are labeled as PERSON. Hence,
although the labels are different, we hypothesize

43

that there is some useful information from ER that
can be leveraged to improve overall SRL perfor-
mance.

Our contribution in this paper consists of two
parts. First, we propose to train multi-task ac-
tive learning with Semantic Role Labeling as the
primary task and Entity Recognition as the auxil-
iary task. Second, we introduce a new dataset and
annotation tags for Semantic Role Labeling from
conversational chat logs between a bot and human
users. While many of the previous work studied
SRL on large scale English datasets in news do-
main, our research aims to explore SRL in Indone-
sian conversational language, which is still under-
resourced.

2 Related Work

Active learning (AL) (Settles, 2012) is a
method to improve the performance of a learner by
iteratively asking a new set of hypotheses to be la-
beled by human experts. A well-known method is
Pool-Based AL, which selects the hypotheses pre-
dicted from a pool of unlabeled data (Lewis and
Gale, 1994). The most informative instance from
hypotheses is selected and added into labeled data.
The informativeness of an instance is measured by
its uncertainty, which is inversely proportional to
the learner’s confidence of its prediction for that
instance. In other words, the most informative in-
stance is the one which the model is least confident
with.

There are two well-studied methods of se-
quence labeling with active learning. The first one
is maximum entropy: given an input sentence x,
the probability of word xt having tag yt is given
by

pθ(yt|xt) =
exp(aytt (xt|θ))∑K
j=1 exp(a

j
t (xt|θ))

(1)

Where θ denotes a model parameters and K is
the number of tags. Uncertainty in maximum en-
tropy can be defined using Token Entropy (TE) as
described in (Settles and Craven, 2008; Marcheg-
giani and Artières, 2014).

φTE
t = −

∑

j∈K
p(yt = j|xt) log p(yt = j|xt) (2)

xTE = argmax
x

T∑

t=1

−φTE
t (3)

From token level entropy (TE) in (2), we used a
simple aggregation such as summation to select an
instance. So that instance x is selected by Equa-
tion (3) as least confident sample, where

∑T
t=1(.)

is a summation term for greedy aggregation of sen-
tence level entropy.

Another well-studied sequence labeling method
with active learning is Conditional Random Fields
(CRFs) by Lafferty et al. (2001), where the prob-
ability of a sequence label y = {y1, y2, .., yT }
given a sequence of observed vectors x =
{x1, x2, .., xT } and a joint log-likelihood function
of unary and transition parameter ψ(yt−1, yt, xt)
is defined as

pψ(y|x) =
∏T
t=1 ψ(yt−1, yt, xt)∑

y∈Y
∏T
t=1 ψ(yt−1, yt, xt)

(4)

Uncertainty in conditional random fields can be
obtained by Viterbi decoding by selecting instance
with maximum p(y|x) from a pool of unlabeled
instances as defined below.

xVE = argmin
x

pψ(y
?|x) (5)

where p(y?|.) is a probability assigned by Viterbi
inference algorithm (Marcheggiani and Artières,
2014).

Multi-Task Learning Instead of training one
task per model independently, one can use related
labels to optimize multiple tasks in a learning pro-
cess jointly. This method is commonly known as
Multi-Task learning (MTL) or as Parallel Transfer
Learning (Caruana, 1997). Our motivation to use
multi-task learning is to leverage ”easier” annota-
tion than Semantic Roles to regularize model by
using related tasks. Previous work on Multi-Task
learning on Semantic Role Labeling by Collobert
et al. (2011) did not report any significant im-
provement for SRL task. A recent work (Maraso-
vic and Frank, 2017) used SRL as the auxiliary
task with Opinion Role Labeling as the main task.

Multi-Task Active Learning Previous work
on multi-task active learning (MT-AL) (Reichart
et al., 2008) was focused on formulating a method
to keep the performance across a set of tasks in-
stead of a single task. In multi-task active learn-
ing scenario, optimizing a set of task classifiers
can be regarded as a meta-protocol by combin-
ing each task query strategy into a single query
method. In one-sided task query scenario settings,

44

Figure 1: Model Overview. Four layers Highway
LSTM. SRL task used Conditional Random Fields
(CRF) for sequence labeling output.

one selected task classifier uncertainty strategy is
used to query unlabeled samples. In multiple task
scenario, the uncertainty of an instance is the ag-
gregate of classifiers uncertainties for all tasks.

3 Proposed Method

In this section, we explain on how we incorporated
both the AL and MTL in our neural network archi-
tecture. We used the state-of-the-art SRL model
from He et al. (2017) as our base model as shown
in Figure 1.

Our model is a modification of He et al.’s work.
Our first adjustment is to use CRF as the last layer
instead of softmax because of its notable superi-
ority found by Reimers and Gurevych (2017) for
both role labeling and entity recognition. In this
scenario, we used CRF layer for the primary task
(SRL) (Zhou and Xu, 2015) and softmax layer for
the auxiliary task. The auxiliary task acts as a
regularization method (Caruana, 1997). Second,
we used character embedding with Convolutional
Neural Networks as Characters Encoder (Ma and
Hovy, 2016), to handle out-of-vocabulary prob-
lem caused by misspelled words, slangs, and ab-
breviations common in informal chatting, as well
as word embedding and predicate indicator fea-
ture embedding as the input features for a High-
way LSTM.

In multi-task learning configuration, we used
parameter sharing in embedding and sequence
encoder layers except for the outermost module
which is used for prediction for each specific
task. We optimized the parameters jointly by
minimizing the sum loss of L(ys, ye|x, θ, ψ) =
L(ŷs, ys|x, θ)+L(ŷe, ye|x, ψ), where the first part

Table 1: Semantic Roles dataset for conversational
language statistics and examples
Semantic Roles Count Example

AGENT (A) 2843 I brought you a present
PATIENT (PS) 3040 I brought you a present
BENEFACTOR (BN) 293 I brought you a present
GREET (G) 572 Hi Andy!

I brought you a present
LOCATION (L) 183 I can eat at home today
TIME (T) 399 I can eat at home today

of the equation is the SRL loss and the second part
is the entity loss. SRL loss is computed by joint
log-likelihood of emissions with transition param-
eters in CRF from Equation 4 and entity loss is
computed using standard cross-entropy loss from
softmax output in Equation 1.

Multi-Task Active Learning In multiple task
scenario, we used the rank combination by Re-
ichart et al. (2008) that combines each task query
strategy into an overall rank(xi) = rank(xiVE) +
rank(xiTE). Note that in both training one-sided
and combined rank multi-task active learning, we
returned all task gold labels to be trained in multi-
task models.

As a multi-task active learning baseline, instead
of one-sided AL which queries a pre-determined
task for all-iteration, we used random task selec-
tion to draw which task to use as the query strat-
egy in the i-th iteration. Random task selection
is implemented using random multinomial sam-
pling. The selected task is used for the query in-
stances using standard uncertainty sampling.

4 Dataset & Experiment

4.1 Dataset

This research presents the dataset of human users
conversation with virtual friends bot2. The an-
notated messages are user inquiries or responses
to the bot. Private information in the original
data such as name, email, and address will be
anonymized. Three annotators with a linguistic
background performed the annotation process. In
this work, we used a set of semantic roles adapted
for informal, conversational language. Table 1
shows some examples of the semantic roles. The
dataset consists of 6057 unique sentences which
contain predicates.

2https://kata.ai/case-studies/jemma

45

The semantic roles used are a subset of Prop-
Bank (Palmer et al., 2005). Also, we added a new
role, GREET. In our collected data, Indonesian
people tend to call the name of the person they are
talking to. Because such case frequently co-occurs
with another role, we felt the need to differentiate
this previously mentioned entity as a new role. For
example, in the following sentence: Hi Andy! I
brought you a present can help refers ”you” role
as PATIENT to ”Andi” role as GREET instead of
left unassigned.

In our second task, which is Entity Recogni-
tion (ER), we annotated the same sentence after
the SRL annotation. We used common labels such
as PERSON, LOCATION, ORGANIZATION, and
MISC as our entity tags. Different from Named
Entity Recognition (NER), ER also tag nominal
objects such as ”I”, ”you” and referential loca-
tions like ”di sana (over there)”. While this tag-
ging might raise a question whether there are over-
lapping tags with SRL, we argue that entity la-
bels are less ambiguous compared to role argu-
ments which are dependent on the predicate. An
example of this case can be seen in Table 1, where
both of I and you are tagged as PERSON whereas
the roles are varied. In this task, we used semi-
automatic annotation tools using brat (Stenetorp
et al., 2012). These annotation were checked and
fixed by four people and one linguistic expert.

4.2 Experiment Scenario

The purpose of the experiment is to understand
whether multi-task learning and active learning
help to improve SRL model performance com-
pared to the baseline model (SRL with no AL sce-
nario). In this section, we focus on several experi-
ment scenarios: single-task SRL, single-task SRL
with AL, MTL, and MTL with AL.

Model Architecture Our model architecture
consists of word embedding, character 5-gram en-
coder using CNN and predicate embedding as in-
puts, with 50, 50, and 100 dimension respec-
tively. These inputs are concatenated into a 200-
dimensional vector which then fed into two-layer
Highway LSTM with 300 hidden units.

Initialization The word embedding were ini-
tialized with unsupervised pre-trained values ob-
tained from training word2vec (Mikolov et al.,
2013) on the dataset. Word tokens were lower-
cased, while characters were not.

Scenario Metric

Task Active Data
(%)

P R F1

SRL - 100 75.12 75.49 75.30
SRL Random 50 75.50 74.01 74.75
SRL Random 85 78.83 71.91 75.21
SRL Uncertain 50 76.67 74.01 75.32
SRL Uncertain 85 78.35 75.25 76.77

SRL+ER - 100 76.88 74.50 75.67

SRL+ER RandTask 50 77.31 71.28 74.18
SRL+ER RandTask 85 76.59 74.50 75.53
SRL+ER Ranking 50 78.94 71.90 75.25
SRL+ER Ranking 85 78.18 75.87 77.01

Table 2: Experiment results, Scenario Active
means the query strategy used to sort instance in-
formativeness, RandTask = Random Task Selec-
tion, Data scenario are initial percentage of labeled
data, 50% means the 50:50 split, 85% means 85:15
split, and 100% means use all training data. P
(Precision), R (Recall), F1 (F1 Score)

Training Configurations For training config-
urations, we trained for 10 epochs using AdaDelta
(Zeiler, 2012) with ρ = 0.95 and ε = 1.e−6. We
also employed early stopping with patience set to
3. We split our data using 80% training, 10% val-
idation, and 10% test for the fully supervised sce-
nario. For the active learning scenario, we further
split the training data into labeled and unlabeled
data. We used two kinds of split, 50:50 and 85:15.
For the 50:50 scenario, we queried 100 sentences
for each epoch. For the 85:15 scenario, we used
a smaller query of 10 sentences in an epoch to
keep the number of queries less than the number
of available fully supervised training data in 10
epochs. This number of queried sentences was ob-
tained by tuning on the validation set.

As for the AL query method, in the single-task
SRL, we used random and uncertainty sampling
query. SRL with 100% training data and SRL with
random query serve as baseline strategies. In the
MTL SRL, we employed random task and rank-
ing.

5 Results & Analysis

We experimented with a low-resource conversa-
tional language by varying the task scenario, ac-
tive learning query strategy, and outset percentage
of data seed from training data. We report our re-
sults using Precision (P), Recall (R), and the F1
score (F1) computed by exact matching of gold
and predicted role spans. The report can be seen

46

Figure 2: Comparison of experiment scenarios
in validation set. Multi-Task AL using Ranking
Combination with initial 85% labeled training data
achieve best F1 score

Label dev test

P R F1 P R F1

AGENT 87.03 83.43 85.196 86.68 85.85 86.26
PATIENT 72.80 69.64 71.19 74.00 70.76 72.34
BENEFACTOR 60.53 76.67 67.65 38.10 42.11 40.00
GREET 75.81 65.28 70.15 83.05 76.56 79.66
LOCATION 50.00 34.62 40.91 60.00 65.22 62.50
TIME 66.67 61.11 63.76 72.73 65.31 68.82

Table 3: Detailed scores of Multi-Task Active
Learning performance with 85% initial data. P
(Precision), R (Recall), F1 (F1 Score)

in Table 2.
Our baseline multi-task (SRL+ER with no AL

scenario) learning model in this experiment has
a higher precision compared to the single-task
(SRL) model. From the initial 85% of labeled
training data scenario, our model in total requested
87% of the training data in 10 epochs. In this sce-
nario, our proposed method for multi-task active
learning using ranking combination can outper-
form the single-task active learning models. Fig-
ure 2 presents the F1 score learning curve for each
model.

Significance test We performed two tails sig-
nificance test (t-test) by using 5-fold cross vali-
dation from the training and the test parts of the
corpus. The multi-task learning model is better
compared to the single-task learning one (p <
0.05). However, the single-task and the multi-task
learning scenario are not significantly better than
both multi-task active learning from 85% and 50%
training data scenario, since the p-value between
model pairs are greater than 0.05. Therefore, ac-
cepting the null hypothesis indicate that perfor-
mances between multi-task active learning with
50%/85% initial data and multi-task or single-task
with full dataset are comparable.

Figure 3: Confusion matrix for Multi-Task Active
Learning Model using 85% initial labeled data.

We draw a confusion matrix of the multi-task
active learning model with 85% initial training
data in Figure 3 to analyze our model perfor-
mance. We observe several common errors made
by the model. The largest mistakes from the ma-
trix are PATIENT false positive. The model incor-
rectly detected 59% of non-roles as PATIENT. An-
other prominent error is 21% false negative of total
gold roles. The model primarily failed to tag 37%
of gold BENEFACTOR and 35% of gold TIME.
Quite different from the English SRL, we found
that labels confusion happens less frequently than
other error types. Based on this percentage, we
investigated the error by drawing samples. In gen-
eral, we broke down the incorrect predictions into
several types of error.

False Negative Spans
False negatives in semantic role labeling are de-
fined as the number of roles in the gold data that
do not have the corresponding span matches in
the model prediction. False negative for AGENT
encompasses 69% of errors from the total of 45
AGENT gold span role errors, while the errors in
TIME roles all occur in this error type. In Table
4, the left example shows that, the model failed
to tag ”ini komputer” (EN: This is a computer).
In the right example, the model did not recognize
”get rick nya3” as PATIENT. An interesting re-
mark is perhaps how the model failed to tag be-
cause the predicate is an unknown word in the
training vocabulary despite the use of characters
encoder to alleviate the out-of-vocabulary prob-
lem. While in the left example, predicate ”men-
jawab” is also an unknown word in the vocabulary

3mistyped application name

47

Predicate : menjawab (EN: reply) Predicate : di donlot (EN: download)

token vocab gold predicted token vocab gold predicted

Yang Yang O O Jemma Jemma B-A B-A
menjawab UNK O O udah udah O O
ini ini B-PS O di di O O
komputer komputer I-PS O donlot UNK O O
kan kan O O get UNK B-PS O
? ? O O rick UNK I-PS O

nya nya I-PS O

Table 4: Undetected Roles examples. Left translation: ”This is a bot replying, right ?”. Right translation:
”Jemma, have you downloaded get rick?”

Predicate: ada (EN: exists)

token vocab gold predicted

jem jem B-G B-G
ada ada O O
info info B-PS B-PS
makanan makanan I-PS O
gak gak O O
? ? O O
. . O O

Predicate: tny (EN : ask)

token vocab gold predicted

Aku Aku B-A B-A
mau mau O O
tny UNK O O
sahabar UNK B-PS B-PS
virtual virtual I-PS O
itu itu I-PS O
mksd mksd O O
a a O O
gimana gimana O O
? ? O O
. . O O

Table 5: Boundary error examples. Top trans-
lation: ”Jem, do you have any food related
info?”. Bottom translation: ”I want to ask what
is a virtual friend meaning?”

Predicate: genit (EN : flirt)

true vocab gold pred

Jemma Jemma B-P B-A
jangan jangan O O
genit UNK O O
sama sama O O
NAME UNK B-BN B-PS
; UNK O O
((O O
. . O O

Predicate: lihat (EN : see)

true vocab gold predicted

Aku Aku O B-A
kesal UNK O O
lihat lihat O O
kamu kamu B-G B-BN
dek UNK B-PS O
. . I-PS O

Table 6: Role confusion examples. Top trans-
lation: ”Jemma do not flirt with NAME (per-
son name is censored due to privacy)”. Bottom
translation: ”I am annoyed to see you boya”

aIn the original language, the word is gender neutral.

but not a mistyped word, the right sample’s predi-
cate ”di donlot” is an informal writing of the word
”download”.

In the 50% training data scenario, we found that
multi-task active learning model achieves less re-
call compared to the single-task active learning
model. The multi-task active learning with 50%
initial training data performance suffers from fail-
ing to tag 53% of BENEFACTOR label.

Boundary Error

Overall, we found that boundary errors contribute
to 22% of the total span exact match errors. For
example, we found that PATIENT boundary errors
mostly occurred because predicted role spans do

not match the continuation of subsequent role. As
shown in Table 5, the model failed to recognize
makanan (EN: food) as the continuation of info
(EN: info) from the top example. In the bottom
example, the model failed to predict the continua-
tion of a mistyped role ”sahabar”.

Role Confusion

Role confusion is defined as the matching between
gold span and predicted span, but they have dif-
ferent labels. This error typically occurs the least
compared to the false negatives and boundary er-
rors. In total, it is only 7% of the total errors. The
most common incorrect prediction is between gold
PATIENT and prediction AGENT. As shown in

48

Table 6 in the top sentence, the model incorrectly
labeled a PATIENT (Jemma) as an AGENT. Addi-
tionally, the model also incorrectly tagged BENE-
FACTOR as PATIENT. In the bottom sentence, the
word ”Aku” (EN: I) is not annotated as any roles
but detected as an AGENT by the model.

6 Conclusion & Future Work

In this paper, we applied previous state-of-the-art
deep semantic role labeling models on a low re-
source language in a conversational domain. We
propose to combine multi-task and active learn-
ing methods into a single framework to achieve
competitive SRL performance with less training
data, and to leverage a semantically related task
for SRL.

Our primary motivation is to apply the frame-
work for low resource languages in terms of
dataset size and domains. Our experiments
demonstrate that active learning method performs
comparably well to the single-task baseline using
30% fewer data by querying a total of 3483 from
4845 sentences. This result can be increased fur-
ther marginally to outperform the baseline using
87% of the training data. Our error analysis re-
veals some different obstacles from English SRL
to work on in the future.

While He et al.’s model of deep layers of high-
way LSTM allows learning the relation between
a predicate and arguments explicitly, not all tasks
in multi-task learning have equal complexity that
needs deep layers. Søgaard and Goldberg (2016)
proposed a method to allow a model to predict
tasks with different complexities at different layer
depths. For example, predicting entity recognition
tag at lower layers or inserting predicate features
at higher layers in an LSTM, because entity recog-
nition does not need predicates as features and is
considered as a lower-level task compared to SRL.

Combining multi-task learning with an unsuper-
vised task such as language modeling (Rei, 2017)
is also a possible improvement in multi-task ac-
tive learning settings as a semi-supervised vari-
ant. Analyzing other active learning methods such
as query by committee, variance reduction (Set-
tles and Craven, 2008), and information density
(Wang et al., 2017b) in multi-task settings are also
a promising path in deep learning architectures.

References
Alan Akbik and Yunyao Li. 2016. K-srl: Instance-

based learning for semantic role labeling. In COL-
ING.

Rich Caruana. 1997. Multitask learning. Machine
Learning, 28:41–75.

Jinho D. Choi, Claire Bonial, and Martha Palmer.
2010. Propbank frameset annotation guidelines us-
ing a dedicated editor, cornerstone. In Proceedings
of the Seventh International Conference on Lan-
guage Resources and Evaluation (LREC’10), Val-
letta, Malta. European Language Resources Associ-
ation (ELRA).

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. J. Mach. Learn. Res., 12:2493–2537.

Matthew R. Gormley, Margaret Mitchell, Ben-
jamin Van Durme, and Mark Dredze. 2014. Low-
resource semantic role labeling. In ACL.

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle-
moyer. 2017. Deep semantic role labeling: What
works and whats next. In Proceedings of the An-
nual Meeting of the Association for Computational
Linguistics.

Luheng He, Mike Lewis, and Luke S. Zettlemoyer.
2015. Question-answer driven semantic role label-
ing: Using natural language to annotate natural lan-
guage. In EMNLP.

Richard Johansson and Pierre Nugues. 2008.
Dependency-based semantic role labeling of
propbank. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing,
EMNLP ’08, pages 69–78, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Daniel Jurafsky and James H. Martin. 2006. Speech
and language processing: an introduction to natural
language processing, computational linguistics, and
speech recognition.

John D. Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In ICML.

David D. Lewis and William A. Gale. 1994. A sequen-
tial algorithm for training text classifiers. In SIGIR.

Xuezhe Ma and Eduard H. Hovy. 2016. End-to-end
sequence labeling via bi-directional lstm-cnns-crf.
CoRR, abs/1603.01354.

Ana Marasovic and Anette Frank. 2017. SRL4ORL:
improving opinion role labelling using multi-task
learning with semantic role labeling. CoRR,
abs/1711.00768.

49

Diego Marcheggiani and Thierry Artières. 2014. An
experimental comparison of active learning strate-
gies for partially labeled sequences. In EMNLP.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Martha Palmer, Paul Kingsbury, and Daniel Gildea.
2005. The proposition bank: An annotated corpus of
semantic roles. Computational Linguistics, 31:71–
106.

Vasin Punyakanok, Dan Roth, Wen tau Yih, and Dav
Zimak. 2004. Semantic role labeling via integer lin-
ear programming inference. In COLING.

Marek Rei. 2017. Semi-supervised multitask learning
for sequence labeling. In ACL.

Roi Reichart, Katrin Tomanek, Udo Hahn, and Ari
Rappoport. 2008. Multi-task active learning for
linguistic annotations. In Proceedings of ACL-08:
HLT, pages 861–869, Columbus, Ohio. Association
for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2017. Reporting
score distributions makes a difference: Performance
study of lstm-networks for sequence tagging. In
EMNLP.

Burr Settles. 2012. Active Learning. Morgan & Clay-
pool, San Rafael, USA.

Burr Settles and Mark Craven. 2008. An analysis
of active learning strategies for sequence labeling
tasks. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing,
EMNLP ’08, pages 1070–1079, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Anders Søgaard and Yoav Goldberg. 2016. Deep
multi-task learning with low level tasks supervised
at lower layers. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 231–235.
Association for Computational Linguistics.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. brat: a web-based tool for NLP-assisted
text annotation. In Proceedings of the Demonstra-
tions Session at EACL 2012, Avignon, France. As-
sociation for Computational Linguistics.

Chenguang Wang, Alan Akbik, laura chiticariu, Yun-
yao Li, Fei Xia, and Anbang Xu. 2017a. Crowd-
in-the-loop: A hybrid approach for annotating se-
mantic roles. In Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 1914–1923. Association for Com-
putational Linguistics.

Chenguang Wang, Laura Chiticariu, and Yunyao Li.
2017b. Active learning for black-box semantic role
labeling with neural factors. In IJCAI.

Matthew D. Zeiler. 2012. Adadelta: An adaptive learn-
ing rate method. CoRR, abs/1212.5701.

Jie Zhou and Wei Xu. 2015. End-to-end learning of
semantic role labeling using recurrent neural net-
works. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1127–1137, Beijing, China. Association for
Computational Linguistics.

50

Proceedings of the Workshop on Deep Learning Approaches for Low-Resource NLP, pages 51–59
Melbourne, Australia July 19, 2018. c©2018 Association for Computational Linguistics

Domain Adapted Word Embeddings for Improved Sentiment
Classification

Prathusha K Sarma, Yingyu Liang and William A Sethares

University of Wisconsin-Madison
{kameswarasar,sethares}@wisc.edu,

yliang@cs.wisc.edu

Abstract

Generic word embeddings are trained on
large-scale generic corpora; Domain Spe-
cific (DS) word embeddings are trained
only on data from a domain of interest.
This paper proposes a method to combine
the breadth of generic embeddings with
the specificity of domain specific embed-
dings. The resulting embeddings, called
Domain Adapted (DA) word embeddings,
are formed by first aligning correspond-
ing word vectors using Canonical Corre-
lation Analysis (CCA) or the related non-
linear Kernel CCA (KCCA) and then com-
bining them via convex optimization. Re-
sults from evaluation on sentiment classifi-
cation tasks show that the DA embeddings
substantially outperform both generic, DS
embeddings when used as input features
to standard or state-of-the-art sentence en-
coding algorithms for classification.

1 Introduction

Generic word embeddings such as Glove and
word2vec (Pennington et al., 2014; Mikolov et al.,
2013) which are pre-trained on large bodies of
raw text, have demonstrated remarkable success
when used as features for supervised learning
problems. There are, however, many applica-
tions with domain specific vocabularies and rel-
atively small amounts of data. The performance
of generic word embeddings in such applications
is limited, since word embeddings pre-trained on
generic corpora do not capture domain specific se-
mantics/knowledge, while embeddings learned on
small data sets are of low quality.

A concrete example of a small-sized domain
specific corpus is the Substances User Disorders
(SUDs) data set (Quanbeck et al., 2014; Litvin

et al., 2013), which contains messages on dis-
cussion forums for people with substance addic-
tions. These forums are part of mobile health
intervention treatments that encourages partici-
pants to engage in sobriety-related discussions.
The goal of such treatments is to analyze con-
tent of participants’ digital media content and pro-
vide human intervention via machine learning al-
gorithms. This data is both domain specific and
limited in size. Other examples include customer
support tickets reporting issues with taxi-cab ser-
vices, product reviews, reviews of restaurants and
movies, discussions by special interest groups and
political surveys. In general they are common
in domains where words have different sentiment
from what they would have elsewhere.

These data sets present significant challenges
for word embedding learning algorithms. First,
words in data on specific topics have a differ-
ent distribution than words from generic cor-
pora. Hence using generic word embeddings ob-
tained from algorithms trained on a corpus such
as Wikipedia, would introduce considerable errors
in performance metrics on specific downstream
tasks such as sentiment classification. For exam-
ple, in SUDs, discussions are focused on topics
related to recovery and addiction; the sentiment
behind the word ‘party’ may be very different in
a dating context than in a substance abuse con-
text. Thus domain specific vocabularies and word
semantics may be a problem for pre-trained sen-
timent classification models (Blitzer et al., 2007).
Second, there is insufficient data to completely re-
train a new set of word embeddings. The SUD
data set consists of a few hundred people and only
a fraction of these are active (Firth et al., 2017),
(Naslund et al., 2015). This results in a small data
set of text messages available for analysis. Fur-
thermore, these messages are unstructured and the
language used is informal. Fine-tuning the generic

51

word embedding also leads to noisy outputs due to
the highly non-convex training objective and the
small amount of the data. Since such data sets are
common, a simple and effective method to adapt
word embedding approaches is highly valuable.
While existing work (e.g (Yin and Schütze, 2016))
combines word embeddings from different algo-
rithms to improve upon intrinsic tasks such as sim-
ilarities, analogies etc, there does not exist a con-
crete method to combine multiple embeddings for
extrinsic tasks. This paper proposes a method for
obtaining high quality domain adapted word em-
beddings that capture domain specific semantics
and are suitable for tasks on the specific domain.
Our contributions are as follows.

1. We propose an algorithm to obtain Domain
Adapted (DA) embeddings. DA embeddings
are obtained by performing three steps. (i)
First, generic embeddings are obtained from
algorithms such as Glove or word2vec that
are trained large corpora (such as wikipedia,
common crawl). (ii) Next we learn domain
specific (DS) embeddings by applying al-
gorithms such as Latent Semantic Analysis
(LSA) on the domain specific corpus. (iii) We
then perform Canonical Correlation Analysis
(CCA) or kernelized CCA (KCCA) to obtain
projected DS and projected generic embed-
dings. The projected DS and generic embed-
dings are linearly combined via an optimiza-
tion formulation to obtain a single DA em-
bedding for each word.

2. We propose two optimization based ap-
proaches to combining generic and DS em-
beddings. In the first method, we mini-
mize the sum of squared distance of the
DA embeddings from the projected embed-
dings. The second approach combines pro-
jected embeddings in such a way that the doc-
ument clusters are tightly packed. This helps
in our downstream sentiment analysis task by
separating out the clusters.

3. We demonstrate the efficacy of our embed-
dings by measuring the accuracy of our clas-
sifiers built using various embeddings on
a sentiment analysis task. In the first set
of experiments (Table (1)) we train logistic
regression classifiers using a bag-of-words
(BOW) framework, for the problem of senti-
ment analysis. Our experimental results show

that the classifier built using DA word em-
beddings outperform the classifiers built us-
ing Glove, word2vec or LSA. Our classifier
also outperforms the classifier built using the
embeddings output by the concSVD algo-
rithm (Yin and Schütze, 2016) which, obtains
a word embedding by performing SVD on a
matrix of word embeddings.

4. In the second set of experiments we demon-
strate the efficiency of DA embeddings when
used to initialize InferSent; a bi-LSTM, en-
coder/decoder architecture that learns sen-
tence embeddings from input word embed-
dings. The resulting document embed-
dings are classified using logistic regres-
sion classifier. Performance metrics (see
Table (2)) show that DA embeddings out-
perform generic embeddings such as Glove
common crawl, when used to initialize In-
ferSent. Furthermore, we also outperform
RNTN, which is a recursive neural network
based sentiment analysis algorithm (Socher
et al., 2013).

The remainder of this paper is organized as fol-
lows. Section 2 presents related work. Sec-
tion 3 briefly introduces the CCA/KCCA and de-
tails the procedure used to obtain the DA embed-
dings. Section 4 describes the experimental set up
and discusses the results from sentiment classifi-
cation tasks on benchmark data sets using standard
classification as well as using a sentence encoding
algorithm. Section 5 concludes this work.

2 Related Work

This work is related to three areas of research
which are outlined below.
CCA based word embeddings and applications
in multilingual correlation: In (Dhillon et al.,
2012), the authors proposed an algorithm called
Two Step CCA to learn word embeddings from
a one hot encoding representation of words in a
given vocabulary. CCA has been used to learn
multilingual word embeddings (Faruqui and Dyer,
2014) from words aligned in text across differ-
ent languages. Building on this work, (Lu et al.,
2015) developed deep CCA to learn multilingual
word embeddings using neural networks. In both
these algorithms, word embeddings are learned
for words and their translations across multiple
languages such as English-German or English-

52

French, separately via a LSA based approach. Em-
beddings in the two different languages are then
projected onto the best k correlated dimensions via
CCA.

Recently, (Gouws et al., 2015) proposed a neu-
ral network based model that learns across mul-
tiple languages without the need for word align-
ment. This algorithm jointly optimizes learning of
monolingual embeddings via an objective similar
to (Mikolov et al., 2013), along with a cross lin-
gual alignment task. Recently, CCA has been ap-
plied to perform cross-lingual entity linking tasks
(Tsai and Roth, 2016).

Most applications of CCA in NLP, as stated
above, have focused on multilingual settings. In
contrast, in this paper we use CCA/KCCA to im-
prove performance of monolingual word embed-
dings across data sets in different application do-
mains/contexts for the purpose of a given down-
stream task such as sentiment classification.

Domain Adaptation with CCA: The idea of us-
ing word embeddings across different domains has
been explored by (Luo et al., 2014) where word
embeddings are learned independently from two
large corpora and then combined via a neural net-
work. This is different from our approach where
the CCA-based approach is used to exploit co-
occurrences and context information in the do-
main specific data set along with linear properties
of the generic word embedding. More recently,
(Yin and Schütze, 2016) propose an ensemble ap-
proach of combining word embeddings learned
via different embedding algorithms across differ-
ent data sets. One of their proposed approaches
is to concatenate word vectors from multiple em-
beddings and to then performing SVD on the re-
sulting matrix. The resulting embeddings are then
evaluated on several intrinsic tasks such as word
similarities and analogies. In contrast, our work
focuses on adapting the word vectors to incorpo-
rate domain specific knowledge which is impor-
tant for the extrinsic objective of sentiment classi-
fication. In Section (4) we compare our algorithms
against the algorithms of (Yin and Schütze, 2016)
and show that we outperform (Yin and Schütze,
2016) for the task of sentiment analysis. Some
other work (Blitzer et al., 2011), (Anoop et al.,
2015) and (Mehrkanoon and Suykens, 2017) ex-
plores CCA based dimensionality reduction tech-
niques for domain adaptation in problems with
multi-modal data in general, but not necessarily

natural language data.
Transfer Learning using Sentence Embed-
dings: The idea of training on a large corpus and
testing on a different yet related data set has been
successfully explored via transfer learning in com-
puter vision applications (Taigman et al., 2014;
Sharif Razavian et al., 2014; Antol et al., 2015).
A similar idea has been explored to solve prob-
lems in NLP applications via sentence level em-
beddings with and without composition of word
embeddings. An unsupervised algorithm such as
skip-thought (Kiros et al., 2015) that adapts the
word level skip-gram model by (Mikolov et al.,
2013) to sentence level embeddings has demon-
strated success in transfer learning tasks. Simi-
larly, (Hill et al., 2016) compare task-specific sen-
tence embeddings to supervised methods for ap-
plications on machine translation data.

However, these supervised models fail to per-
form as well as an unsupervised Skip-Net. The
current state-of-the art in sentence embedding
algorithms is InferSent (Conneau et al., 2017),
which learns a sentence embedding via an encoder
trained on the Stanford Natural Language Infer-
ence data set. It has demonstrated success in many
transfer tasks. While domain adaptation is not the
focus of these algorithms, the underlying idea of
training a model on one data set/task and testing
on a different data set/task is relevant to the theme
of this paper. In fact, our experiments demonstrate
that our domain adapted embeddings combined
with the InferSent architecture can significantly
improve over generic embeddings combined with
InferSent in the sentiment classification task.

3 Domain Adapted Word Embeddings

Training word embedding algorithms on small
data sets leads to noisy outputs, due to lack of data,
while embeddings from generic corpora fail to
capture specific local meanings within the domain.
For example, the word “alcohol” has a somewhat
neutral to a mildly positive tone in the common
crawl corpus, whereas this same word has a strong
negative sentiment in a substance use disorder
(SUD) dataset. In order to learn useful word em-
beddings that incorporate the sentimentality of a
small target corpus, we propose learning domain
specific embeddings obtained by applying word
embedding algorithms on the given target corpus
and generic embeddings, obtained using applying
word embedding algorithms on large generic cor-

53

pora, using CCA or kernel CCA (KCCA).
Let WDS ∈ R|VDS |×d1 be the matrix whose

columns are the domain specific word embeddings
(obtained by, e.g., the LSA algorithm on the do-
main specific data set), where VDS is its vocabu-
lary and d1 is the dimension of the embeddings.
Similarly, let WG ∈ R|VG|×d2 be the matrix
of generic word embeddings (obtained by, e.g.,
GloVe algorithm on the Common Crawl data),
where VG is the vocabulary and d2 is the dimen-
sion of the embeddings. Let V∩ = VDS ∩ VG.
Let wi,DS be the domain specific embedding of
the word i ∈ V∩, and wi,G be its generic embed-
ding. For one dimensional CCA, let φDS and φG
be the projection directions of wi,DS and wi,G re-
spectively. Then the projected values are,

w̄i,DS = wi,DS φDS

w̄i,G = wi,G φG. (1)

CCA maximizes the correlation ρ between w̄i,DS
and w̄i,G to obtain φDS and φG such that

ρ(φDS , φG) = max
φDS ,φG

E[w̄i,DSw̄i,G]√
E[w̄2

i,DS]E[w̄2
i,G]

(2)

where the expectation is over all words i ∈ V∩.
The d-dimensional CCA with d > 1 can be de-

fined recursively. Suppose the first d − 1 pairs
of canonical variables are defined. Then the dth

pair is defined by seeking vectors maximizing the
same correlation function subject to the constraint
that they be uncorrelated with the first d − 1
pairs. Equivalently, matrices of projection vec-
tors ΦDS ∈ Rd1×d and ΦG ∈ Rd2×d are ob-
tained for all vectors in WDS and WG where
d ≤ min {d1, d2}. Embeddings obtained by
w̄i,DS = wi,DS ΦDS and w̄i,G = wi,G ΦG are
projections along the directions of maximum cor-
relation. The final domain adapted embedding for
word i is given by ŵi,DA = αw̄i,DS + βw̄i,G.
We next propose optimization based algorithms to
determine α, β.

3.1 α, β that minimizes the sum of squared
distances

One way to determine α and β is to find DA em-
beddings such that in the CCA transformed space,
the new DA embeddings are as close as possible
to both generic and DS embeddings. This is ex-

pressed by the following optimization problem,

min
α,β
‖w̄i,DS − (αw̄i,DS + βw̄i,G)‖22+

‖w̄i,G − (αw̄i,DS + βw̄i,G)‖22. (3)

Solving (3) gives α = β = 1
2 , i.e., the new vector

is equal to the average of the two projections:

ŵi,DA =
1

2
w̄i,DS +

1

2
w̄i,G. (4)

3.2 α, β to minimize the sum of cluster
variance

A major goal of learning domain adapted embed-
dings is to use them in a downstream task such as
sentiment analysis. To facilitate better sentiment
analysis it helps if the cluster of positive and neg-
ative documents are tightly clustered. That is, we
would like to minimize the sum of variance of each
individual cluster of documents. This can be cast
as a convex optimization problem that has a closed
form solution as shown in the following theorem.

Theorem 1. Let β = 1 − α. Then, the
optimal value of α that minimizes the sum
of the variance of document clusters is
given by the following set of equations, α̃ =
1
k

∑k
i=1(dgpi−µ̂p)>(µ̄p−d̄pi)+ 1

N−k

∑N−k
i=1 (dgni

−µ̂n)>(µ̄n−d̄ni)
1
k

∑k
i=1(µ̄p−d̄pi)>(µ̄p−d̄pi)+ 1

N−k

∑N−k
i=1 (µ̄n−d̄ni)

>(µ̄n−d̄ni)

α = max(0,min(α̃, 1)).

Proof. Assume that a DA embedding is expressed
as, ŵi,DA = αw̄i,DS + (1 − α)w̄i,G. Further,
let each ith document be expressed as the sum of
constituent word embeddings,

di =
n∑

j=1

ŵj,DA

=

n∑

j=1

(w̄j,G + α(w̄j,DS − w̄j,G))

= dgi + αd̄i.

Suppose, there are N documents of which k are
positive and N − k are negative. Also, let µp, µn
denote the cluster center of all positive and neg-
ative documents respectively. We can determine
α that minimizes the sum of cluster variances by
solving

min
α∈[0,1]

1

k

k∑

i=1

||dpi−µp||22+
1

N − k
N−k∑

i=1

||dni−µn||22
(5)

54

Here µp and µn are centers of positive and neg-
ative document cluster centers. Taking means of
clusters, we get µp = 1

k

∑k
i=1(dgpi + αd̄pi) =

µ̂p + αµ̄p. Similarly µn = µ̂n + αµ̄n.

min
α∈[0,1]

1

k

k∑

i=1

||(dgpi − µ̂p)− α(µ̄p − d̄pi)||22+

1

N − k
N−k∑

i=1

||(dgni
− µ̂n)− α(µ̄n − d̄ni)||22. (6)

The above problem is a very simple convex min-
imization problem. Differentiating w.r.t. α and
setting it to 0, and projecting the resulting solu-
tion onto the interval [0, 1] we get the desired re-
sult.

3.3 Kernel CCA

Because of its linear structure, the CCA in (2) may
not always capture the best relationships between
the two matrices. To account for nonlinearities,
a kernel function, which implicitly maps the data
into a high dimensional feature space, can be ap-
plied. For example, given a vector w ∈ Rd, a
kernel function K is written in the form of a fea-
ture map ϕ defined by ϕ : w = (w1, . . . ,wd) 7→
ϕ(w) = (ϕ1(w), . . . , ϕm(w))(d < m) such that
given wa and wb

K(wa,wb) = 〈ϕ(wa), ϕ(wb)〉.

In kernel CCA, data is first projected onto a
high dimensional feature space before performing
CCA. In this work the kernel function used is a
Gaussian kernel, i.e.,

K(wa,wb) = exp
(
− ||wa−wb ||2

2σ2

)
.

The implementation of kernel CCA follows the
standard algorithm described in several texts such
as (Hardoon et al., 2004); see reference for details.

4 Experimental Evaluation

In this section we evaluate DA embeddings in bi-
nary sentiment classification tasks on four stan-
dard data sets. Document embeddings are ob-
tained via i) a standard bag-of-words framework,
in which documents are expressed as the weighted
combination of their constituent word embeddings
and ii) by initializing a state-of-the-art-sentence
encoding algorithm, InferSent (Conneau et al.,

Data Set Embedding Avg Precision Avg F-score Avg AUC

Yelp

WDA

WG

WDS

KCCA(Glv, LSA)
CCA(Glv, LSA)

KCCA(w2v, LSA)
CCA(w2v, LSA)

KCCA(GlvCC, LSA)
CCA(GlvCC, LSA)

KCCA(w2v, DSw2v)
CCA(w2v, DSw2v)
concSVD(Glv, LSA)
concSVD(w2v, LSA)

concSVD(GlvCC, LSA)
GloVe

GloVe-CC
word2vec

LSA
word2vec

85.36± 2.8
83.69± 4.7
87.45± 1.2
84.52± 2.3
88.11± 3.0
83.69± 3.5
78.09± 1.7
86.22± 3.5
80.14± 2.6
85.11± 2.3
84.20± 3.7
77.13± 4.2
82.10± 3.5
82.80± 3.5
75.36± 5.4
73.08± 2.2

81.89±2.8
79.48±2.4
83.36±1.2
80.02±2.6
85.35±2.7
78.99±4.2
76.04±1.7
84.35±2.4
78.50±3.0
83.51±2.2
80.39±3.7
72.32±7.9
76.74±3.4
78.28±3.5
71.17±4.3
70.97±2.4

82.57±1.3
80.33±2.9
84.10±0.9
81.04±2.1
85.80±2.4
80.03±3.7
76.66±1.5
84.65±2.2
78.92±2.7
83.80±2.0
80.83±3.9
74.17±5.0
78.17±2.7
79.35±3.1
72.57±4.3
71.76±2.1

Amazon

WDA

WG

WDS

KCCA(Glv, LSA)
CCA(Glv, LSA)

KCCA(w2v, LSA)
CCA(w2v, LSA)

KCCA(GlvCC, LSA)
CCA(GlvCC, LSA)

KCCA(w2v, DSw2v)
CCA(w2v, DSw2v)
concSVD(Glv, LSA)
concSVD(w2v, LSA)

concSVD(GlvCC, LSA)
GloVe

GloVe-CC
word2vec

LSA
word2vec

86.30±1.9
84.68±2.4
87.09±1.8
84.80±1.5
89.73±2.4
85.67±2.3
85.68±3.2
83.50±3.4
82.36±2.0
87.28±2.9
84.93±1.6
81.58±2.5
79.91±2.7
84.55±1.9
82.65±4.4
74.20±5.8

83.00±2.9
82.27±2.2
82.63±2.6
81.42±1.9
85.47±2.4
83.83±2.3
81.23±3.2
81.31±4.0
81.30±3.5
86.17±2.5
77.81±2.3
77.62±2.7
81.63±2.8
80.52±2.5
73.92±3.8
72.49±5.0

83.39±3.2
82.78±1.7
83.50±2.0
82.12±1.3
85.56±2.6
84.21±2.1
82.20±2.9
81.86±3.7
81.51±2.5
86.42±2.0
79.52±1.7
78.72±2.7
81.46±2.6
81.45±2.0
76.40±3.2
73.11±4.8

IMDB

DA

WG

WDS

KCCA(Glv, LSA)
CCA(Glv, LSA)

KCCA(w2v, LSA)
CCA(w2v, LSA)

KCCA(GlvCC, LSA)
CCA(GlvCC, LSA)

KCCA(w2v, DSw2v)
CCA(w2v, DSw2v)
concSVD(Glv, LSA)
concSVD(w2v, LSA)

concSVD(GlvCC, LSA)
GloVe

GloVe-CC
word2vec

LSA
word2vec

73.84±1.3
73.35±2.0
82.36±4.4
80.66±4.5
54.50±2.5
54.08±2.0
60.65±3.5
58.47±2.7
73.25±3.7
53.87±2.2
78.28±3.2
64.44±2.6
50.53±1.8
78.92±3.7
67.92±1.7
56.87±3.6

73.07±3.6
73.00±3.2
78.95±2.7
75.95±4.5
54.42±2.9
53.03±3.5
58.95±3.2
57.62±3.0
74.55±3.2
51.77±5.8
77.67±3.7
65.18±3.5
62.39±3.5
74.88±3.1
69.79±5.3
56.04±3.1

73.17±2.4
73.06±2.0
79.66±2.6
77.23±3.8
53.91±2.0
54.90±2.1
58.95±3.7
58.03±3.9
73.02±4.7
53.54±1.9
74.55±2.9
64.62±2.6
49.96±2.3
75.60±2.4
69.71±3.8
59.53±8.9

A-CHESS

DA

WG

WDS

KCCA(Glv, LSA)
CCA(Glv, LSA)

KCCA(w2v, LSA)
CCA(w2v, LSA)

KCCA(GlvCC, LSA)
CCA(GlvCC, LSA)

KCCA(w2v, DSw2v)
CCA(w2v, DSw2v)
concSVD(Glv, LSA)
concSVD(w2v, LSA)

concSVD(GlvCC, LSA)
GloVe

GloVe-CC
word2vec

LSA
word2vec

32.07±1.3
32.70±1.5
33.45±1.3
33.06±3.2
36.38±1.2
32.11±2.9
25.59±1.2
24.88±1.4
27.27±2.9
29.84±2.3
28.09±1.9
30.82±2.0
38.13±0.8
32.67±2.9
27.42±1.6
24.48±0.8

39.32±2.5
35.48±4.2
39.81±1.0
34.02±1.1
34.71±4.8
36.85±4.4
28.27±3.1
29.17±3.1
34.45±3.0
36.32±3.3
35.06±1.4
33.67±3.4
27.45±3.1
31.72±1.6
34.38±2.3
27.97±3.7

65.96±1.3
62.15±2.9
65.92±0.6
60.91±0.9
61.36±2.6
62.99±3.1
57.25±1.7
57.76±2.0
61.59±2.3
62.94±1.1
62.13±2.6
60.80±2.3
57.49±1.2
59.64±0.5
61.56±1.9
57.08±2.5

Table 1: This table shows results from the classi-
fication task using sentence embeddings obtained
from weighted averaging of word embeddings.
Metrics reported are average Precision, F-score
and AUC and the corresponding standard devi-
ations. Best performing embeddings and corre-
sponding metrics are highlighted in boldface.

55

2017) with DA word embeddings to obtain sen-
tence embeddings. Encoded sentences are then
classified using a logistic regressor. Performance
metrics reported are average precision, F-score
and AUC. All hyperparameters are tuned via 10
fold cross validation.

4.1 Data Sets

Experiments are conducted using four data sets
which differ in vocabulary and content. All four
arise in specific domains and hence illustrate the
objective of this work. The four data sets are:

• The Yelp data set consists of 1000 restaurant
reviews obtained from Yelp. Each review is
associated with a ‘positive’ or ‘negative’ la-
bel. There are a total of 2049 distinct word
tokens in this data set.

• The Amazon data set consists of 1000 prod-
uct reviews with ‘positive’ or ‘negative’ la-
bels obtained from Amazon. It has 1865 dis-
tinct tokens.

• The IMDB data set consists of 1000 movie
reviews with binary ‘positive’ and ‘negative’
labels obtained from IMDB. It has 3075 dis-
tinct tokens.

• The A-CHESS data set is a proprietary data
set1 obtained from a study involving users
with alcohol addiction. Text data is obtained
from a discussion forum in the A-CHESS
mobile app (Quanbeck et al., 2014). There
are a total of 2500 text messages, with 8% of
the messages indicative of relapse risk. Since
this data set is part of a clinical trial, an exact
text message cannot be provided as an exam-
ple. However, the following messages illus-
trate typical messages in this data set, “I’ve
been clean for about 7 months but even now
I still feel like maybe I won’t make it.” Such
a message is marked as ‘threat’ by a human
moderator. On the other hand there are other
benign messages that are marked ‘not threat’
such as “30 days sober and counting, I feel
like I am getting my life back.” The aim is
to eventually automate this process since hu-
man moderation involves considerable effort
and time. This is an unbalanced data set (8%

1Center for Health Enhancement System Services at UW-
Madison

of the messages are marked ‘threat’) with a
total of 3400 distinct work tokens.

The first three data sets are obtained from (Kotzias
et al., 2015).

4.2 Word embeddings, baselines and
parameter settings

The following generic and DS word embeddings
are used,

• Generic word embeddings: Generic word
embeddings used are GloVe2 from both
Wikipedia and common crawl and the
word2vec (Skip-gram) embeddings3. These
generic embeddings will be denoted as Glv,
GlvCC and w2v.

• DS word embeddings: DS embeddings are
obtained via Latent Semantic Analysis (LSA)
and via retraining word2vec on the test data
sets using the implementation in gensim4.
DS embeddings via LSA are denoted by LSA
and DS embeddings via word2vec are de-
noted by DSw2v. We also retrained GloVe
on our test datasets to obtain domain specific
word embeddings. Since, the performance of
retrained Glove embeddings was similar to
word2vec we shall not present the results of
Glove based DS embeddings in this paper.

• concatenation-SVD (concSVD) baseline:
Generic and DS embeddings are concate-
nated to form a single embeddings matrix.
SVD is performed on this matrix and the re-
sulting singular vectors are projected onto the
d largest singular values to form word em-
beddings. The resultant word embeddings
called meta-embeddings proposed by (Yin
and Schütze, 2016) have demonstrated con-
siderable success in intrinsic tasks such as
similarities, analogies etc.

Dimensions of generic, DS and DA word embed-
dings are provided in the supplement.
Kernel parameter estimation A rule-of-thumb
for estimating the kernel parameter σ is to set σ
equal to the median of pairwise distance between
data points (Flaxman et al., 2016). We use this rule

2https://nlp.stanford.edu/projects/
glove/

3https://code.google.com/archive/p/
word2vec/

4https://radimrehurek.com/gensim/

56

to set the value of σ for all of our experiments that
use kernel CCA. CCA is performed using the read-
ily available installation in python. KCCA used in
this work is implemented in python and follows
closely the implementation developed by (Bilenko
and Gallant, 2016).

Data Set Embedding Avg Precision Avg F-score Avg AUC

Yelp

GlvCC
KCCA(GlvCC, LSA)

CCA(GlvCC, LSA)
concSVD(GlvCC,LSA)

RNTN

86.47±1.9
91.06±0.8
86.26±1.4
85.53±2.1
83.11±1.1

83.51±2.6
88.66±2.4
82.61±1.1
84.90±1.7

-

83.83±2.2
88.76±2.4
83.99±0.8
84.96±1.5

-

Amazon

GlvCC
KCCA(GlvCC, LSA)

CCA(GlvCC, LSA)
concSVD(GlvCC, LSA)

RNTN

87.93±2.7
90.56±2.1
87.12±2.6
85.73±1.9
82.84±0.6

82.41±3.3
86.52±2.0
83.18±2.2
85.19±2.4

-

83.24±2.8
86.74±1.9
83.78±2.1
85.17±2.6

-

IMDB

GlvCC
KCCA(GlvCC, LSA)

CCA(GlvCC, LSA)
concSVD(GlvCC, LSA)

RNTN

54.02±3.2
59.76±7.3
53.62±1.6
52.75±2.3
80.88±0.7

53.03±5.2
53.26±6.1
50.62±5.1
53.05±6.0

-

53.01±2.0
56.46±3.4
58.75±3.7
53.54±2.5

-

A-CHESS

GlvCC
KCCA(GlvCC, LSA)

CCA(GlvCC, LSA)
concSVD(GlvCC, LSA)

RNTN

52.21±5.1
55.37±5.5
54.34±3.6
40.41±4.2

-

55.26±5.6
50.67±5.0
48.76±2.9
44.75±5.2

-

74.28±3.6
69.89±3.1
68.78±2.4
68.13±3.8

-

Table 2: This table shows results obtained by ini-
tializing InferSent encoder with different embed-
dings in the sentiment classification task. Met-
rics reported are average Precision, F-score and
AUC along with the corresponding standard de-
viations. Best performing embeddings and corre-
sponding metrics are highlighted in boldface We
use α = 0.5 for all of our experiments here.

4.3 Results from standard classification tasks
Table 1 presents results from the standard clas-
sification task. In this approach, we use a bag-
of-words approach to combine word embeddings
weighted by their term frequency counts. The re-
sulting encoding v = γ>W. Here γ ∈ R|V |
represents the weights for all the words in the
sentence/document, and W is the matrix whose
columns are word embeddings. A logistic regres-
sion classifier is then trained on the training data
and used to predict the sentiment labels on the
test data sets. From this table, it can be inferred
that DA embeddings obtained by applying KCCA
on GlvCC generic and LSA DS embeddings pro-
vide the best performing results on all data sets.
Note that in these experiments α = 1

2 (3.1). On
the Amazon data set, concSVD achieves slightly
better average F-score (86.17) and average AUC
(86.42) over average F-score (85.47) and average
AUC (85.56) obtained by KCCA (GlvCC, LSA).
However, KCCA (GlvCC, LSA) achieves an av-
erage precision of 89.73 while concSVD achieves
an average precision of 87.28. On the A-CHESS

data set, owing to the imbalance in the classes, the
best performing embedding is one that achieves
maximum precision. From the table we can de-
termine that KCCA (GlvCC, LSA) achieves the
highest average precision of 36.38.

4.4 Results from InferSent encoding for
classification

In this section DA embeddings are used to initial-
ize a state-of-the-art sentence encoding algorithm,
InferSent. The resultant sentence embeddings are
then classified using a logistic regression classifier.
Table 2 presents results from classifying sentences
obtained from InferSent. First, the pre-trained en-
coder5 initialized with GloVe common crawl em-
beddings is used to obtain vector representations
of the input data. Next, InferSent is fine-tuned
with a combination of GloVe common crawl em-
beddings and DA embeddings. DA embeddings
are only obtained for a small subset of a vocabu-
lary, so the combination is obtained by using the
common crawl embeddings for the rest of the vo-
cabulary. The same procedure is repeated with
concSVD embeddings. Additionally, embeddings
are compared against a classic sentiment classi-
fication algorithm, the Recursive Neural Tensor
Network (RNTN) (Socher et al., 2013). This is a
dependency parser based sentiment analysis algo-
rithm. Since the focus of this work is not on sen-
timent analysis algorithms per se, but on domain
adaptation of word embeddings for extrinsic tasks,
this is used as a baseline for comparison. From ta-
ble 2 it can be inferred that KCCA(GlvCC, LSA)
embeddings perform better than all other baselines
for Yelp, Amazon and A-CHESS data sets. On the
IMDB data set, RNTN performs best. This could
be a case of (GlvCC, LSA) being bad initial guess
embeddings for the IMDB data set. Performance
of GlvCC embeddings from table 1 further support
this conjecture. Also, InferSent produces superior
sentence embeddings than simple averaging hence
results from table 2 are better than results in ta-
ble 1.

4.5 Results from using α that minimizes the
sum of cluster variances

As described in Theorem (1), α can be selected
to minimizes variance of document clusters when
learning DA embeddings. Since from tables 1

5 https://github.com/facebookresearch/
InferSent

57

and 2 we see that the best performing DA embed-
ding is obtained by KCCA, results for this embed-
ding alone are presented in table 3. Furthermore,
empirically we did not observe much difference
in CCA DA embeddings obtained using α = 0.5
and α that minimizes the sum of cluster variances.
From tables 2 and 3 observe that on the Yelp,
Amazon and IMDB data sets, there is not much of
difference in performance metrics for α = 0.5 and
the α obtained from Theorem (1). However, on
the A-CHESS data set, α as obtained from Theo-
rem (1) does better than α = 0.5. This result is not
surprising given that the word sentiments on the
A-CHESS data set is highly atypical. This sup-
ports our hypothesis that using only generic em-
beddings such as the GloVe common crawl is not
sufficient when analyzing datasets such as the A-
CHESS dataset.

Data Set Embedding α Avg Precision Avg F-score Avg AUC

Yelp
KCCA(Glv, LSA)
KCCA(w2v, LSA)

KCCA(GlvCC, LSA)

0.25
0.45
0.6

84.75±2.2
87.74±2.2
88.84±2.3

80.02±2.5
83.57±2.6
85.36±2.3

81.13±2.0
84.27±2.4
85.93±2.0

Amazon
KCCA(Glv, LSA)
KCCA(w2v, LSA)

KCCA(GlvCC, LSA)

0.35
0.54
0.4

85.63±1.3
87.15±2.0
90.42±2.2

84.64±1.9
84.27±1.9
87.48±2.3

84.84±1.6
84.79±1.6
87.92±2.0

IMDB
KCCA(Glv, LSA)
KCCA(w2v, LSA)

KCCA(GlvCC, LSA)

0.35
0.4

0.45

72.10±1.8
83.01±1.6
58.56±1.8

72.63±2.3
79.10±1.2
53.29±1.7

73.01±2.1
79.96±2.0
60.56±1.9

A-CHESS
KCCA(Glv, LSA)
KCCA(w2v, LSA)

KCCA(GlvCC, LSA)

0.4
0.55
0.75

37.32±1.6
35.06±0.9
38.65±3.1

41.64±2.8
43.44±1.4
43.03±2.2

66.13±2.1
68.60±1.3
67.26±2.2

Table 3: This table shows results using KCCA
DA embeddings within a BoW framework. Since
from tables 1 and 2 we see that the best perform-
ing DA embedding is obtained by KCCA, results
for this embedding alone are presented in this ta-
ble. α used minimizes the sum of cluster variances
as shown in Theorem (1). Note that on the A-
CHESS dataset the value of α is large. This ob-
servation supports our hypothesis that on domain
specific data sets such as A-CHESS, using only
generic embeddings such as the GloVe common
crawl, as features for classification or to initialize
algorithms such as InferSent is not sufficient.

5 Discussion and Conclusion

In this paper DA embeddings are obtained by op-
timizing a combination of generic and DS em-
beddings that are projected along directions of
maximum correlation. The resulting DA em-
beddings are evaluated on sentiment classifica-
tion tasks from four different data sets. Results
show that while actual performance metrics vary
from database to database, the optimized DA em-
beddings outperform both the generic and the

DS word embeddings in a standard classification
framework; as well as outperform concatenation
based combination embeddings. This is a posi-
tive results since CCA/KCCA provides a princi-
pled formulation for combining multiple embed-
dings. In contrast, concatenating embeddings fol-
lowed by SVD is an ad-hoc procedure and does
not exploit correlations among multiple embed-
dings. The need for such DA embeddings is moti-
vated by the limitations of performance of generic
embeddings on data sets such as A-CHESS. Ini-
tializing InferSent with DA embeddings further
improves the output from InferSent. This is en-
couraging because several NLP tasks such as Sen-
timent Analysis, POS tagging, etc., use algorithms
that must be initialized with word embeddings.
Initializing such algorithms with embeddings cus-
tomized to a particular domain or data set will
improve performance of these algorithms. Future
work will explore effectiveness of using our ap-
proach in other downstream applications such as
question/answering, machine translation.

References
KR Anoop, Ramanathan Subramanian, Vassilios

Vonikakis, KR Ramakrishnan, and Stefan Winkler.
2015. On the utility of canonical correlation analysis
for domain adaptation in multi-view headpose esti-
mation. In Image Processing (ICIP), 2015 IEEE In-
ternational Conference on. IEEE, pages 4708–4712.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C Lawrence Zitnick,
and Devi Parikh. 2015. Vqa: Visual question an-
swering. In Proceedings of the IEEE International
Conference on Computer Vision. pages 2425–2433.

Natalia Y Bilenko and Jack L Gallant. 2016. Pyrcca:
regularized kernel canonical correlation analysis in
python and its applications to neuroimaging. Fron-
tiers in neuroinformatics 10.

John Blitzer, Mark Dredze, Fernando Pereira, et al.
2007. Biographies, bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classi-
fication. In ACL. volume 7, pages 440–447.

John Blitzer, Sham Kakade, and Dean Foster. 2011.
Domain adaptation with coupled subspaces. In Pro-
ceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics. pages 173–
181.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. arXiv preprint
arXiv:1705.02364 .

58

Paramveer Dhillon, Jordan Rodu, Dean Foster, and
Lyle Ungar. 2012. Two step cca: A new spec-
tral method for estimating vector models of words.
arXiv preprint arXiv:1206.6403 .

Manaal Faruqui and Chris Dyer. 2014. Improving vec-
tor space word representations using multilingual
correlation. Association for Computational Linguis-
tics.

Joseph Firth, John Torous, Jennifer Nicholas, Re-
bekah Carney, Simon Rosenbaum, and Jerome Sar-
ris. 2017. Can smartphone mental health interven-
tions reduce symptoms of anxiety? a meta-analysis
of randomized controlled trials. Journal of Affective
Disorders .

Seth Flaxman, Dino Sejdinovic, John P Cunningham,
and Sarah Filippi. 2016. Bayesian learning of kernel
embeddings. arXiv preprint arXiv:1603.02160 .

Stephan Gouws, Yoshua Bengio, and Greg Corrado.
2015. Bilbowa: Fast bilingual distributed represen-
tations without word alignments. In Proceedings
of the 32nd International Conference on Machine
Learning (ICML-15). pages 748–756.

David R Hardoon, Sandor Szedmak, and John Shawe-
Taylor. 2004. Canonical correlation analysis: An
overview with application to learning methods.
Neural computation 16(12):2639–2664.

Felix Hill, Kyunghyun Cho, and Anna Korhonen.
2016. Learning distributed representations of
sentences from unlabelled data. arXiv preprint
arXiv:1602.03483 .

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in neural information processing systems.
pages 3294–3302.

Dimitrios Kotzias, Misha Denil, Nando De Freitas, and
Padhraic Smyth. 2015. From group to individual la-
bels using deep features. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. ACM, pages 597–
606.

Erika B Litvin, Ana M Abrantes, and Richard A
Brown. 2013. Computer and mobile technology-
based interventions for substance use disorders:
An organizing framework. Addictive behaviors
38(3):1747–1756.

Ang Lu, Weiran Wang, Mohit Bansal, Kevin Gimpel,
and Karen Livescu. 2015. Deep multilingual cor-
relation for improved word embeddings. In HLT-
NAACL. pages 250–256.

Yong Luo, Jian Tang, Jun Yan, Chao Xu, and Zheng
Chen. 2014. Pre-trained multi-view word embed-
ding using two-side neural network. In AAAI. pages
1982–1988.

Siamak Mehrkanoon and Johan AK Suykens. 2017.
Regularized semipaired kernel cca for domain adap-
tation. IEEE Transactions on Neural Networks and
Learning Systems .

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

John A Naslund, Lisa A Marsch, Gregory J McHugo,
and Stephen J Bartels. 2015. Emerging mhealth and
ehealth interventions for serious mental illness: a
review of the literature. Journal of mental health
24(5):321–332.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP). pages 1532–1543.

Andrew Quanbeck, Ming-Yuan Chih, Andrew Isham,
Roberta Johnson, and David Gustafson. 2014. Mo-
bile delivery of treatment for alcohol use disorders:
A review of the literature. Alcohol research: current
reviews 36(1):111.

Ali Sharif Razavian, Hossein Azizpour, Josephine Sul-
livan, and Stefan Carlsson. 2014. Cnn features off-
the-shelf: an astounding baseline for recognition. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition workshops. pages 806–
813.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 conference on
empirical methods in natural language processing.
pages 1631–1642.

Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato,
and Lior Wolf. 2014. Deepface: Closing the gap
to human-level performance in face verification. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition. pages 1701–1708.

Chen-Tse Tsai and Dan Roth. 2016. Cross-lingual wik-
ification using multilingual embeddings. In HLT-
NAACL. pages 589–598.

Wenpeng Yin and Hinrich Schütze. 2016. Learning
word meta-embeddings. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). vol-
ume 1, pages 1351–1360.

59

Proceedings of the Workshop on Deep Learning Approaches for Low-Resource NLP, pages 60–67
Melbourne, Australia July 19, 2018. c©2018 Association for Computational Linguistics

Investigating Effective Parameters for Fine-tuning of Word Embeddings
Using Only a Small Corpus

Kanako Komiya
Ibaraki University

4-12-1 Nakanarusawa
Hitachi Ibaraki 316-8511 Japan
kanako.komiya.nlp@vc.

ibaraki.ac.jp

Hiroyuki Shinnou
Ibaraki University

4-12-1 Nakanarusawa
Hitachi Ibaraki 316-8511 Japan

hiroyuki.shinnou.0828@vc.
ibaraki.ac.jp

Abstract

Fine-tuning is a popular method to achieve
better performance when only a small
target corpus is available. However, it
requires tuning of a number of meta-
parameters and thus it might carry risk of
adverse effect when inappropriate meta-
parameters are used. Therefore, we inves-
tigate effective parameters for fine-tuning
when only a small target corpus is avail-
able. In the current study, we target at im-
proving Japanese word embeddings cre-
ated from a huge corpus. First, we demon-
strate that even the word embeddings cre-
ated from the huge corpus are affected by
domain shift. After that, we investigate
effective parameters for fine-tuning of the
word embeddings using a small target cor-
pus. We used perplexity of a language
model obtained from a Long Short-Term
Memory network to assess the word em-
beddings input into the network. The ex-
periments revealed that fine-tuning some-
times give adverse effect when only a
small target corpus is used and batch size
is the most important parameter for fine-
tuning. In addition, we confirmed that ef-
fect of fine-tuning is higher when size of a
target corpus was larger.

1 Introduction

We investigate effective parameters for fine-
tuning using nwjc2vec. Nwjc2vec is Japanese
word2vec (the word embeddings proposed by
(Mikolov et al., 2013)) created from NINJAL
Web Japanese Corpus (NWJC) (Asahara et al.,
2014) (Asahara and Teruaki, 2017). It contains
25.8 billion words as a whole. Therefore, it
is believed that nwjc2vec is high-quality. In

fact, some models used it showed better re-
sults (Yamaki et al., 2017) (Shinnou et al., 2017b)
(Shinnou et al., 2017a). In addition, it is also be-
lieved that nwjc2vec is useful for various docu-
ments because it contains a number of documents
described about various topics.

However, we show that a problem posed by do-
main shift occurs when nwjc2vec is used in the
current study. (See Section 4)

The simplest and most effective approach to ad-
dress the problem caused from domain shift of
word embeddings is fine-tuning using a large tar-
get corpus. However, in practice, we often face
the situation where only a small corpus of the
target domain is available. It is possible to use
other resources than a corpus, but they are not al-
ways available. Therefore, in the current study,
we investigate effective parameters for word2vec,
which is a program to create word embeddings,
when we fine-tune nwjc2vec using only a small
target corpus. (See Section 5)

We evaluate the word embeddings via language
models obtained from a LSTM (Long Short-Term
Memory) (Hochreiter and Schmidhuber, 1997)
(Gers et al., 2000) (Greff et al., 2016) (See Sec-
tion 3). First, we develop a language model using
a LSTM. Usually, word embeddings are learned
from the same corpus as a training corpus for a lan-
guage model. In other words, when we have only a
small target corpus, we use the word embeddings
learned from the target corpus for the inputs for
the LSTM that develops a language model. How-
ever, we input nwjc2vec fine-tuned using the small
corpus into the LSTM instead of the word embed-
dings directly learned from the corpus. We eval-
uate the language model to assess the fine-tuned
word embeddings assuming that the quality of the
output language model is higher when the qual-
ity of the word embeddings used in the LSTM is
higher.

60

The experiments revealed that the batch size
is the most important parameter for word2vec to
fine-tune nwjc2vec using a small corpus. In addi-
tion, they also showed that fine-tuning using in-
appropriate parameters sometimes make perfor-
mance worse. Moreover, we confirmed that size
of the corpus is crucial for fine-tuning. (See Sec-
tions 6 and 7)

2 Related Work

Generally, effectiveness of word embeddings de-
pends on tasks and target domains of the tasks.
Therefore, (Schnabel et al., 2015) proposed tuning
of word embeddings according to tasks and their
target domains.

The simplest tuning is fine-tuning, which is
an approach where learned word embeddings are
used for the initial values and tuned using an addi-
tional corpus. Its effectiveness has been shown for
object recognition (Agrawal et al., 2014), named
entity recognition (Lee et al., 2017), and many
other tasks. Usually, a large target corpus is re-
quired for fine-tuning. Some works improved the
word embeddings using external knowledges such
as dictionaries. (Yu and Dredze, 2014) changed
the loss function to use pre-knowledges and im-
proved the word embeddings. (Faruqui et al.,
2015) proposed to use retrofitting, which is an ap-
proach where the word embeddings obtained from
a huge corpus are re-learned using external knowl-
edges.

Fine-tuning is one of the methods for transfer
learning (Pan and Yang, 2009). There are also
much work about multi-task learning, which is
another approach often used for transfer learn-
ing for neural networks (Aguilar et al., 2017)
(von Däniken and Cieliebak, 2017).

3 Evaluation Method of Word
Embeddings Using a LSTM

In the current study, we used a LSTM, which
is an extended version of an a RNN to evalu-
ate the word embeddings for a certain domain as
(Shinnou et al., 2017a). We developed a language
model using a LSTM from a training corpus and
calculated the perplexity of the language model for
a test corpus. Perplexity is given by the following
equation.

PP = 2H

where H is entropy given by the following equa-
tion.

H =
1

|D|

|D|∑

i=1

−P (Wi|M)log2P (Wi|M)

where D denotes a size of test data, M denotes a
language model, and Wi denotes ith word in the
test data.

We evaluate the quality of the word embed-
dings depending on the perplexity assuming that
the quality of the output language model is higher
when the quality of the word embeddings used in
the LSTM is higher. Usually, word embeddings
are learned from the same corpus as the training
corpus for a language model. However, we used
the word embeddings to be evaluated instead of
the word embeddings learned together with the
language model (cf. Figure1). We believe that we
can evaluate the quality of the word embeddings
by evaluating the perplexity of the language model
when they are used in a LSTM.

4 Effect of Domain Shift for Nwjc2vec

We demonstrate that even nwjc2vec, which is a
word embeddings obtained from a huge corpus,
NWJC, has a problem posed by domain shift in
this section.

4.1 Mai2Vec

To show this problem, we firstly created word
embeddings from newspapers collected for seven
years: Mainichi Shimbun newspaper articles from
1993 to 1999. We removed headlines and tables
and extracted only sentences. The sentences were
divided into words and the words were used for
inputs into word2vec. The corpus had 6,791,403
sentences. We used MeCab-0.996 as a morpho-
logical analyzer and UniDic-2.1.2 as a dictio-
nary. These word embeddings are referred to
as mai2vec. The word2vec parameters used for
mai2vec are the same as the parameters used for
nwjc2vec. The final number of tokens of mai2vec
we obtained was 132,509.

4.2 Language Model for Blogs and Q & A
sites

First, we compared mai2vec with nwjc2vec using
blogs and Q & A sites for test data. We extracted
7,330 sentences from blogs (Yahoo! blogs) and
Q & A sites (Yahoo! Chiebukuro) of Balanced

61

Figure 1: Evaluation Method of Word Embeddings Using LSTM

Corpora of Contemporary Witten Japanese (BC-
CWJ) (Maekawa et al., 2014) and used them for
the language model. We used 7,226 sentences for
the training and 104 sentences for the test. The
language model that used nwjc2vec in the LSTM
was referred to as nwjc2vec-lm-1 and the language
model that used mai2vec in the LSTM was re-
ferred to as mai2vec-lm-1. Base-lm-1, which was
a language model that used the word embeddings
learned together with the language model in the
LSTM, was also evaluated for reference. Table 1
shows the corpora used for this experiment.

Perplexity was used for the evaluation of the
language models. We conducted learning 15
epochs, saved the models, and calculated their per-
plexities for each epoch. After that, we evaluated
the lowest perplexity for each model1.

Table 2 shows the results. According to the ta-
ble, the perplexity of nwjc2vec-lm-1 is the low-
est, which indicates that the quality of nwjc2vec is
higher than that of mai2vec.

However, the domains of the training and test
corpora for the language model, blogs and Q &A
site, were different from that of mai2vec, Mainichi
Shimbun Newspaper. Therefore, nwjc2vec per-
haps had an advantage.

1The perplexity was the lowest at the fourth or fifth epoch
for all the models.

4.3 Language Model for Newspaper

Next, we evaluate the word embeddings using the
training and test corpora from newspapers, whose
domain is the same as that of mai2vec. We used
100,000 sentences extracted from Mainichi Shim-
bun Newspaper in 2007 for the training of the lan-
guage models. Ten thousand sentences extracted
from Mainichi Shimbun Newspaper in 2008 were
used for the test. Nwjc2vec-lm-2 and mai2vec-
lm-2, which were the language models that used
nwjc2vec and mai2vec respectively, were devel-
oped again. Base-lm-2, which was a language
model that uses the word embeddings learned to-
gether with the language model in a LSTM, was
also evaluated for reference. Note that the training
corpora of word2vec for base-lm-1 and base-lm-2
are different. Table 3 shows the corpora used for
this experiment.

Table 4 and Figure 2 show the results. They
show that the perplexity of mai2vec-lm is the low-
est, which indicates that the quality of mai2vec is
higher than that of nwjc2vec.

The better method was shifted from nwjc2vec-
lm into mai2vec-lm when the domain of the train-
ing and test corpora were the same as that of
mai2vec. This fact indicates that even nwjc2vec
has a problem posed by domain shift.

62

Table 1: Corpora Used for Word2vec and Training and Test Data for Language Model for Blogs and Q
& A Sites

Name of model Word2Vec corpus Training data Test data
mai2vec-lm-1 Newspaper in from 1993 to 1999 Blogs
nwjc2vec-lm-1 NWJC (Web pages) And
base-lm-1 Blogs and Q & A sites Q & A sites

Table 2: Evaluation of Language Models Obtained
from Each Word Embeddings 1

base-lm-1 mai2vec-lm-1 nwjc2vec-lm-1
130.35 124.72 118.68

50

55

60

65

70

75

80

85

90

95

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

mai2vec-lm

64.8

nwjc2vec-lm

67.4

epoch

perplexity

Figure 2: Perplexities of Language Models Devel-
oped Using Each Word Embeddings

Finally, Table 5 summarizes the number of sen-
tences of each corpus. Please note that the corpora
used for word2vec for base-lm-1 and base-lm-2
are the same as the corpora used for training the
language models, respectively. The word embed-
dings were learned together with the LSTMs.

5 Fine-tuning Using a Small Corpus

Fine-tuning of nwjc2vec using a target corpus is
the simplest way to address the problem caused
from domain shift. It is preferable that the large
target corpus is used for the fine-tuning but some-
times only a small target corpus is available. In
these cases, it is not clear yet if the fine-tuning im-
proves nwjc2vec.

Therefore, we tested various parameters of
word2vec, which was a program to develop word
embeddings, and found out if they were effective
or not.

First, we set standard parameters of word2vec

and fine-tuned nwjc2vec through them using an
additional corpus (the small target corpus). Next,
only a windows size parameter was changed from
the standard one and fine-tuned nwjc2vec through
them using the same additional corpus. We
changed the batch size and epoch number param-
eters and fine-tuned nwjc2vec in the same way.

Table 6 lists the standard parameters of
word2vec for the fine-tuning.

The procedures to investigate the parameters
are described as follows. First, we fine-tuned
nwjc2vec using the standard parameters listed in
Table 6 and developed word embeddings. The
word embeddins developed in this setting are re-
ferred to as base emb. Next, we changed the
window size parameter into 8 and fine-tuned
nwjc2vec. The word embeddins developed in this
setting are referred to as win emb. After that,
we changed only the batch size parameter into
20 remaining the other parameters as the standard
ones and fine-tuned nwjc2vec. The word embed-
dins developed in this setting are referred to as
batch20 emb. We also evaluated batch100 emb,
which were word embeddings fine-tuned using the
standard parameters except the batch size, which
had been changed into 100. Finally, we eval-
uated epch emb, which were word embeddings
fine-tuned using the standard parameters except
the epoch number, which had been changed into
20. Table 7 lists the parameters of word2vec we
tried for the fine-tuning. We tested the five set-
tings of fine-tuning including the setting in Table
6. We used 100,000 sentences randomly extracted
from Mainichi Shimbun in from 1993 to 1999 as
an additional corpus for the fine-tuning.

6 Experiments

We developed the language models through the
LSTMs. We used the five fine-tuned word em-
beddings described above, base emb, win emb,
batch20 emb, batch100 emb, and epch emb, and
used 100,000 sentences randomly extracted from
Mainichi Shimbun Newspaper in from 1993 to

63

Table 3: Corpora Used for Word2vec and Training and Test Data for Language Model for Newspapers
Name of model Word2Vec corpora Training data Test data
mai2vec-lm-2 Newspaper in from 1993 to 1999 Newspaper Newspaper
nwjc2vec-lm-2 NWJC (Web pages) In In
base-lm-2 Newspaper in 2007 2007 2008

Table 4: Evaluation of Language Models Obtained
from Each Word Embeddings２

base-lm-2 mai2vec-lm-2 nwjc2vec-lm-2
81.52 64.81 67.47

1999 to train the LSTMs. We calculated perplex-
ities of the language models obtained from the
LSTMs at each epoch using the test data, which
was 10,000 sentences from the same corpus as the
training data. These is no overlap among the data
for the fine-tuning, the training, and the testing.
Table 8 summarizes the number of sentences of
each corpus.

Table 9 and Figure 3 show the results. They
include the perplexities of the language model ob-
tained from the LSTMs when original nwjc2vec
was used without the fine-tuning. The asterisks in
the table mean that the language model using the
fine-tuned word embeddings was better than that
using nwjc2vec.

65

66

67

68

69

70

71

72

73

74

75

1 2 3 4 5 6 7 8 9 10

batch100_emb

nwjc2vec

batch20_emb

epch_emb

base_emb

win_emb

66.23

66.47

perplexity

epoch

Figure 3: Changes of Perplexities According to
Various Settings

These results show that the perplexities
of the language model decrease only when
batch100 emb is used. It indicates that fine-tuning
is only effective when the batch size parameter is
changed into 100. Other parameter changes made
the results worse. The experiments revealed that
fine-tuning has an opposite effect when unsuitable

parameters are used in the case where small
corpora are used.

7 Discussion

We think that although we might obtain better
performance if we changed parameters other than
batch size, the best results would be around the
performance of batch100 emb because the batch
size affected much more than the window size and
the epoch number according to Table 9 and Figure
3.

In addition, we believe that the most important
factor for the effective fine-tuning of nwjc2vec is
the size of the additional corpus. To confirm this
point, we tried some variation of the additional
corpus size, 200,000 and 300,000 sentences in ad-
dition to the original setting, 100,000 sentences.

Table 10 and Figure 4 list the results of these
experiments. These results indicate that the effect
of fine-tuning is higher when the size of the addi-
tional corpus is larger.

64

65

66

67

68

69

70

1 2 3 4 5 6 7 8 9 10

100K sentences

(batch100_emb)
66.23

65.62

64.61

200K sentences

300K sentences

perplexity

epoch

Figure 4: Changes of Perplexities According to
Various Sizes of Additional Corpora

The fine-tuning approach we employed is the
simplest way to tune word embeddings. Fine tun-
ing of nwjc2vec requires large-sized additional
corpus. Instead of the additional corpus, the exter-
nal resources such as dictionaries would be useful.
We plan to improve nwjc2vec using such external
resources in the future.

64

Table 5: Corpus Data for Domain Shift Experiments
Corpus Type Aim Genre Number of Sentences
NWJC Training Nwjc2vec Web pages 1,463,142,939
Mainichi Shimbun 1993-1999 Training Mai2vec Newspaper 6,791,403
BCCWJ Training Word2vec of base-lm-1 Blogs 7,226

Language model And
BCCWJ Test For blogs and Q &A sites Q & A sites 104
Mainichi Shimbun 2007 Training Word2vec of base-lm-2 100,000

Language model Newspaper
Mainichi Shimbun 2008 Test For newspaper 10,000

Table 6: Standard Parameters for Word2vec
Model Name base emb
Number of Units 200
Window Size 5
Batch Size 10
Epoch Number 10
Used Model skip-gram

8 Conclusion

We showed the problem occurred by domain
shift when nwjc2vec was used and investigated
the effective parameters of word2vec to fine-tune
nwjc2vec using a small corpus.

The experiments revealed that it is possible to
obtain better results using fine-tuning of nwjc2vec
if we properly adjust parameters. We showed that
the most effective parameter of the fine-tuning
is the batch size and fine-tuning using improper
parameters make the results worse. Finally, we
demonstrated that the size of the additional corpus
is crucial for fine-tuning of nwjc2vec. We plan
to use external resources instead of the large-sized
corpus in the future.

References
Pulkit Agrawal, Ross Girshick, and Jitendra Malik.

2014. Analyzing the Performance of Multilayer
Neural Networks for Object Recognition. In Pro-
ceedings of ECCV-2014, page arXiv:1407.1610.

Gustavo Aguilar, Suraj Maharjan, A. Pastor Lopez-
Monroy, and Thamar Solorio. 2017. A Multi-task
Approach for Named Entity Recognition in Social
Media Data. In Proceedings of the 3rd Workshop on
Noisy User-generated Text, pages 148–153.

Masayuki Asahara, Kikuo Maekawa, Mizuho Imada,
Sachi Kato, and Hikari Konishi. 2014. Archiv-
ing and Analysing Techniques of the Ultra-large-
scale Web-based Corpus Project of NINJAL, Japan.

Alexandria: The Journal of National and Interna-
tional Library and Information Issues, 25(1-2):129–
148.

Masayuki Asahara and Oka Teruaki. 2017. nwjc2vec:
word embedding data based on NINJAL Japanese
Web Corpus (in Japanese). In ANLP-2017, pages
94–97.

Pius von Däniken and Mark Cieliebak. 2017. Trans-
fer Learning and Sentence Level Features for Named
Entity Recognition on Tweets. In Proceedings of the
3rd Workshop on Noisy User-generated Text, pages
166–171.

Manaal Faruqui, Jesse Dodge, Sujay K. Jauhar, Chris
Dyer, Eduard Hovy, and Noah A. Smith. 2015.
Retrofitting Word Vectors to Semantic Lexicons. In
Proceedings of NAACL.

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins.
2000. Learning to forget: Continual prediction with
LSTM. Neural computation, 12(10):2451–2471.

Klaus Greff, Rupesh Kumar Srivastava, Jan Koutnı́k,
Bas R Steunebrink, and Jürgen Schmidhuber. 2016.
LSTM: A Search Space Odyssey. IEEE transac-
tions on neural networks and learning systems.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Ji Young Lee, Franck Dernoncourt, and Peter
Szolovits. 2017. Transfer Learning for Named-
Entity Recognition with Neural Networks. In arXiv,
page arXiv:1705.06273.

Kikuo Maekawa, Makoto Yamazaki, Toshinobu
Ogiso, Takehiko Maruyama, Hideki Ogura, Wakako
Kashino, Hanae Koiso, Masaya Yamaguchi, Makiro
Tanaka, and Yasuharu Den. 2014. Balanced corpus
of contemporary written japanese. Language Re-
sources and Evaluation, 48(2):345–371.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

65

Table 7: Standard Parameters for Word2vec
Model Names win emb batch20 emb batch100 emb epoch emb
Number of Units 200
Window Size 8 5 5 5
Batch Size 10 20 100 10
Epoch Number 10 10 10 20
Used Model skip-gram

Table 8: Corpus Data for Fine-tuning Experiments
Corpus Type Aim Genre Number of Sentences
Mainichi Shimbun Fine-tuning Word2vec 100,000
1993- Training Language Newspaper 100,000
1999 Test Model 10,000

Sinno Jialin Pan and Qiang Yang. 2009. A sur-
vey on transfer learning. IEEE TRANSACTIONS
ON KNOWLEDGE AND DATA ENGINEERING,
22(10):1345 – 1359.

Tobias Schnabel, Igor Labutov, David M Mimno, and
Thorsten Joachims. 2015. Evaluation methods for
unsupervised word embeddings. In EMNLP 2015,
pages 298–307.

Hiroyuki Shinnou, Masayuki Asahara, Kanako
Komiya, and Minoru Sasaki. 2017a. nwjc2vec:
Word Embedding Data Constructed from NIN-
JAL Web Japanese Corpus. Journal of Natural
Language Processing, 24(5):705–720.

Hiroyuki Shinnou, Kanako Komiya, and Minoru
Sasaki. 2017b. Supervised Word Sense Disam-
biguation using Forward Multilayered LSTM and
Word Embeddings (in Japanese). In IPSJ Natural
Language Processing Report, pages NL–232–4.

Shoma Yamaki, Hiroyuki Shinnou, Kanako Komiya,
and Minoru Sasaki. 2017. Construction of word em-
beddings using labeled data (in Japanese). In ANLP-
2017, pages 78–81.

Mo Yu and Mark Dredze. 2014. Improving Lexical
Embeddings with Semantic Knowledge. In ACL (2),
pages 545–550.

66

Table 9: Perplexities of Various Settings
epoch nwjc2vec base emb win emb batch20 emb batch100 emb epch emb

1 91.03 93.70 95.36 91.51 89.69 95.06
2 73.20 75.21 75.71 73.43 72.36 75.89
3 68.65 70.21 70.52 68.69 67.54 70.30
4 67.43 68.85 69.33 67.56 66.23* 68.46
5 67.52 68.84 69.51 67.70 66.35* 68.17
6 68.17 69.55 70.20 68.37 67.13* 68.54
7 69.08 70.37 71.11 69.37 68.17 69.29
8 70.06 71.48 72.22 70.56 69.37 70.36
9 71.09 72.71 73.40 71.80 70.58 71.49

10 72.18 73.92 74.66 73.06 71.82 72.68

Table 10: Perplexities of Sizes of Additional Corpora
epoch 100 thousand sentences 200 thousand sentences 300 thousand sentences

(batch100 emb)
1 89.69 89.55 87.94
2 72.36 71.50 70.28
3 67.54 66.96 65.83
4 66.23 65.65 64.61
5 66.35 65.62 64.75
6 67.13 66.27 65.44
7 68.17 67.32 66.45
8 69.37 68.46 67.56
9 70.58 69.64 68.78
10 71.82 70.89 69.92

67

Proceedings of the Workshop on Deep Learning Approaches for Low-Resource NLP, pages 68–76
Melbourne, Australia July 19, 2018. c©2018 Association for Computational Linguistics

Semi-Supervised Learning with Auxiliary Evaluation Component for
Large Scale e-Commerce Text Classification

Mingkuan Liu, Musen Wen, Selcuk Kopru, Xianjing Liu, Alan Lu
eBay Inc.,

2145 Hamilton Avenue, San Jose, CA, 95032, USA
{mingkliu,mwen,skopru,xianjliu,alalu}@ebay.com

Abstract

The lack of high-quality labeled training
data has been one of the critical challenges
facing many industrial machine learning
tasks. To tackle this challenge, in this pa-
per, we propose a semi-supervised learn-
ing method to utilize unlabeled data and
user feedback signals to improve the per-
formance of ML models. The method
employs a primary model Main and an
auxiliary evaluation model Eval, where
Main and Eval models are trained it-
eratively by automatically generating la-
beled data from unlabeled data and/or
users feedback signals. The proposed ap-
proach is applied to different text classi-
fication tasks. We report results on both
the publicly available Yahoo! Answers
dataset and our e-commerce product clas-
sification dataset. The experimental re-
sults show that the proposed method re-
duces the classification error rate by 4%
and up to 15% across various experimen-
tal setups and datasets. A detailed compar-
ison with other semi-supervised learning
approaches is also presented later in the
paper. The results from various text classi-
fication tasks demonstrate that our method
outperforms those developed in previous
related studies.

1 Introduction

There are many ways to improve the performance
of a machine learning model. Improving the train-
ing data is one such method. Obtaining high-
quality training data, such as human labeled data,
is usually expensive and time-consuming. Many
machine learning systems use unlabeled data or a
mixture of labeled and unlabeled data for train-

ing because it is cheaper and easier to collect
enormous amounts of unlabeled data. Industry-
deployed machine learning systems that serve mil-
lions of users generate vast amounts of unlabeled
data and noisy user feedback signals every day.
Those data and signals are very important and can
be utilized in the training of real-world machine
learning systems.

In this paper, we propose a new semi-supervised
learning method with a feedback loop to leverage
vast amounts of unlabeled data and feedback sig-
nals. In particular, we train two machine learn-
ing models iteratively. The main model, which
is represented as Main, performs the main task
at runtime. The auxiliary model, which is repre-
sented as Eval, works offline and it estimates the
correctness of the Main models output. The in-
formation available to the auxiliary model Eval is
much richer than the run-time model Main. Ex-
tra data, such as user feed-back data and session
context information, can be used when training the
auxiliary model. The idea is to control the false
positive rate of Eval to produce high-quality, au-
tomatically labeled data from unlabeled data. The
entire process runs iteratively and the performance
of both models is improved in an iterative man-
ner. The assumption of run-time Main model
has much fewer available information is due to the
business logic flow and/or UX design constraints
which limit the run-time Main model to collect
richer features in some industry setups.

In this paper, we use text classification experi-
ments to illustrate the proposed approach. How-
ever, this semi-supervised learning approach can
also be applied to other machine learning tasks,
such as machine translation and search relevance.

Different semi-supervised learning approaches
have been previously proposed to leverage unla-
beled data, including Blum and Mitchell (1998),
Weiss et al. (2016), Goodfellow et al. (2014) and

68

Cohn et al. (1996). Experimental results on the
public Yahoo! Answers dataset and on a new
public e-commerce dataset for product classifica-
tion demonstrate the advantages and potential of
the proposed framework compared with previous
work.

The contributions of this work are as follows:

• A new semi-supervised learning method with
the introducing of an auxiliary evaluation
component, and

• A scalable, cost-effective and efficient way to
convert vast amounts of unlabeled data into
high quality labeled data for supervised train-
ing purposes.

In section 2, we present the details of the pro-
posed semi-supervised learning approach in the
context of text classification tasks. In section 3,
the theoretical analysis of the proposed method is
provided. Next, we give an overview of related
works and highlight their differences compared to
our approach. Section 5 defines various experi-
mental setups and presents the results for two dif-
ferent datasets. Finally, we present the papers con-
clusions in section 6.

2 Proposed Method

2.1 Modeling Approach

The suggested method is based on a few observa-
tions from real-world machine learning systems.

• The main model Main that serves online
users may have limited information avail-
able at prediction time due to the business
logic flow or UX design constraints in indus-
try setups. Therefore, the predictions from
theMain component may contain errors and
cannot be used directly as labeled data for
model training purposes.

• The evaluation model Eval runs offline.
Hence, it can access much richer information
than the main task component without those
constraints. User feedback data, user behav-
ioral data, prior and post task session history
data, and the knowledge base about the users
main task constitute richer offline informa-
tion. All those data helps the Eval model
to reliably estimate whether Mains output is
acceptable or not.

• Large-scale supervised machine learning
methods typically need a larger amount of la-
beled training data for a good performance.
However, in reality, it is very expensive to
manually label millions of training data. On
the other hand, large scale machine learning
systems serving millions of users are generat-
ing millions of unlabeled data and user feed-
back signals every day that is not effectively
utilized.

The main idea of the proposed approach is to
train and deploy two parallel machine learning
models. The first model Main is used to serve
live user requests for the main task. The second
machine learning model Eval is used as an of-
fline model to estimate the accuracy of Mains
prediction. The Eval model utilizes additional
signals, such as user feedback signals, system logs
that are related to user sessions, the output confi-
dence scores from Main, etc. An EM-style iter-
ative process is applied to train Main and Eval
in a repeated manner. High-quality, automatically
labeled data are extracted from unlabeled data by
controlling the false positive rate and the false neg-
ative rate in Eval. Mathematical analysis (sec-
tion 3) and experiments (section 5) on different
datasets show that after multiple iterations, the ac-
curacy of Main can be improved substantially.

Algorithm 1 shows the details of the proposed
semi-supervised learning algorithm. The input
to the algorithm is an initial small set of labeled
data L, a large set of unlabeled data U and an
optional set of user feedback data F . The al-
gorithm leverages the auxiliary evaluation model
Eval and the optional user feedback dataF to pro-
duce high-quality, automatically labeled data AL
from a large amount of unlabeled data U . Once
the labeled data AL is extracted and added to the
training corpus C, we use a shallow neural net-
work1 to train model Main for the text classifica-
tion tasks.

2.2 Auxiliary Evaluation Model

The auxiliary evaluation model Eval is a binary
classifier that predicts whether the automatic la-
bel is correct or not. It is trained using gradient
boosting2. If the false positive rate of the eval-

1We use the FastText library Joulin et al. (2016) for the
shallow neural network implementation.

2We use the XGboost library Chen and Guestrin (2016)
for gradient boosting.

69

Algorithm 1 Proposed Algorithm
Given:
Labeled dataset L : {li}
Unlabeled dataset U : {ui}
Optional feedback data F : {fi}
Main = trainMainModel(L)
fpRate = false positive rate threshold
for k = 1 to MaxIter do
Eval = trainEvalModel(Main, L, F)
AL = emptyList()
for ui in U do
PCi = predClass(M , ui)
Score(PCi) = evalScore(E, ui, fi, PCi)
if Score(PCi) > (1− fpRate) then
AL.append(ui, PCi)

end if
end for
C = L + AL
M = trainMainModel(C)

end for

uation model Eval is controlled at a low thresh-
old, vast amounts of high-quality, automatically
labeled data can be extracted from the unlabeled
data.

For text classification tasks, the evaluation
model Eval leverages a variety of features. The
confidence score of the main model Mains pre-
diction, the n-gram language model related rank-
ing, the input sentence probability scores evalu-
ated by the language model fromMains predicted
class and the optional noisy user feedback sig-
nal about Mains output are the features used by
Eval. The language model related ranking and
input sentence probability scores are based on the
assumption that sentences belonging to the same
class are more similar than sentences belonging
to different classes. Thus, we train a language
model SLMi for each CLASSi using sentences
belonging to that class. If a sentence belongs to
CLASSi, its sentence probability that is evaluated
with SLMi should be higher than the sentence
probability evaluated withCLASSj , where i 6= j.
We use the trigram statistical language model3 to
train SLMi for each CLASSi.

Details on how to train the auxiliary evaluation
model Eval are described in Algorithm 2. The
input to the algorithm is the Main model, the la-
beled data L and the optional set of user feedback

3We use KenLM library Heafield (2011) to build and
query SLMs.

data F . For each example in L, based on lis la-
beled class, we create one positive training sam-
ple with the correct class and one negative train-
ing sample with a wrong class that is chosen ran-
domly. The features can be generated using the
aforementioned multiple signal sources, such as
Ms prediction confidence scores, the SLM rank-
ing scores and the optional user feedback.

Algorithm 2 Train Auxiliary Evaluation Model
Given:
Main model
Labeled data L : {li}
Optional feedback data F : {fi}
for lj in L do
CLASSi = class label of lj
Append lj to SLMCorpusi

end for
for i in AllClasses do
SLMi = trainSLM(SLMCorpusi)

end for
Corpusxgb = emptyList()
for lj in L do
CLASSi = class label of lj
XgbSample+ = getXgbFeatures(lj ,fj , M ,
SLMs, CLASSi)
XgbSample− = getXgbFeatures(lj ,fj , M ,
SLMs, CLASSk where k 6= i)
Corpusxgb.append(+, XgbSample+)
Corpusxgb.append(−, XgbSample−)

end for
Eval = trainXgbModel(Corpusxgb)

3 Theoretical Analysis

The EM-like semi-supervised learning approach
with an auxiliary evaluation component is de-
signed to tackle large scale ML problems. In sec-
tion 5, we will demonstrate that our framework has
a superior and consistently better performance in
various real-world machine learning tasks based
on the empirical results. In this section, we will
first analyze and highlight some mathematical as-
pects of this dual-player, semi-supervised learning
approach, and illustrate its deep connection to the
Expectation-Maximization algorithm.

Suppose we are given an initial set of N manu-
ally labeled text S(0), and our main task is to clas-
sify unseen text to a label. As described before,
we use a shallow neural network similar to Joulin
et al. (2016) to build the Main model. For this

70

purpose, according to Joulin et al. (2016), we want
to minimize the negative log-likelihood

− 1

N

N∑

1

ynlog (f (BAxn)) (1)

where xn is the normalized bag of features of the
nth text, yn is the category labels, andA andB are
the weight matrices. As part of the auxiliary evalu-
ation component Eval, we established a machine
learning system with richer context compared to
Main. The task of Eval is to estimate the prob-
ability that the given input text belongs to the cat-
egory predicted by Main. This probability is de-
fined as ptexti,cj .

ptexti,cj = P (Cj |texti) (2)

Notice that the entire purpose of the evaluation
system is to select newly labeled data to enrich
the training set of the main machine learning sys-
tem. Thus, the Eval model estimates the con-
fidence score of this prediction for each sample.
The whole learning process of Main → Eval it-
erates as described in the previous sections. The
dual system runs iteratively. We stress that it has
a close connection to the popular Expectation-
Maximization algorithm Dempster et al. (1977)
via the following result.

Theory 1. Given a two-player machine learning
system comprised of Main and Eval, the Main
model converges to the local minima of the neg-
ative log-likelihood with the controlled false posi-
tive rate given enough capacity.

Proof. Given a set of training data S(0) = (xi, yi),
i = 1, · · · , N , which are the observed features and
labels, let us denote a hidden variable zi ∈ {0, 1}
that is a variable indicating the quality of the ob-
servation. zi takes a value of 1 if the label for the
corresponding instance is correct or relevant, and
0 otherwise. Without the loss of generality, sup-
pose that the Main model is trained to maximize
the log-likelihood function:

` (Θ|X,Y) (3)

Using equation (1), equation (3) can be rewritten

as

` (Θ|X,Y) = log p (X,Y|Θ)

= log
∑

z

p (x, y, z|Θ)

= log
∑

z

p(z)
p (x, y, z|Θ)

p(z)

≥
∑

z

p(z) log
p (x, y, z|Θ)

p(z)

= Ep(z) log p (p(x, y, z|Θ)

+ Entropy[p(z)]

= L (p,Θ;X,Y)

(4)

where the inequality is obtained by Jensen’s in-
equality. The equality holds if and only if

p(z) = p(z|X, y,Θ)

The term Ep(z) log p (p(x, y, z|Θ) is the expected
complete log-likelihood (or, Q-function). The
two machine learning systems then iterate through
the following two steps. From a set of noisy data,
Eval performs similarly in the E-step of the EM
algorithm. For nthstep, (n = 1, 2, · · ·):

p(z)(n) = arg max
p

L
(
p,Θ(n−1);X,Y

)

= p(z|X, y,Θ(n−1))

(5)

Notice that the conditional distribution of the hid-
den variable z is not necessarily fully predictable
by the machine learning model even if the ob-
served data and the models parameters are given.
The evaluation system mainly provides a confi-
dence score of the correctness or confidence of the
prediction, which is defined by equation (5). By
properly controlling the false positive rate, we se-
lect only those new training examples with a good
estimate of p(z)(n) by the Eval model. This re-
sults in a set of filtered samples S(n) to be added
to our Main system for the next iteration. The
main system then performs the maximization step
role in the EM algorithm framework, which is the
M-step that follows:

Θ(n+1) = arg max
Θ

L
(
p(n),Θ;X,Y

)

= arg max
Θ

Ep(z)(n) log p (x, y, z|Θ)
(6)

over S(0) ∪ S(1) ∪ · · · ∪ S(n) which is read-
ily solvable from the main machine learning sys-
tem. Notice that in the M-step, it is not neces-
sary to find the optimal values over the whole pa-
rameter space. Using the monotonic convergence

71

property of the generalized EM algorithm, given
enough capacity, the Main system would even-
tually converge to its local optimum after enough
iterations.

In the e-commerce scenario, we have more in-
formative features in the offline Eval system, and
thus the evaluation system can have a very high ac-
curacy. According to the proof, the main machine
learning system eventually reaches a stable state.

4 Related Work

Various semi-supervised learning approaches have
been proposed to leverage unsupervised data to
improve the performance of machine learning sys-
tems Triguero et al. (2015).

Active learning Cohn et al. (1996); Nigam et al.
(1998); Beygelzimer et al. (2009), which is a spe-
cial kind of semi-supervised learning, provides
ways to actively select the most informative data
samples from a vast amount of unlabeled data. The
selected samples are then labeled by humans. In
this way, the total amount of data needed for man-
ual labeling is reduced to save resources. How to
handle the problem of label quality is one of the
active areas of active learning research. Zhang and
Chaudhuri (2015) studied the problem of active
learning where labels were obtained from strong
and weak labelers. In addition to the standard ac-
tive learning setting, they consider the problem
where they have extra weaker labelers that may
provide incorrect labels. Yan et al. (2016) stud-
ies the adaptive active learning problem where the
labeler can return incorrect labels and also abstain
from labeling.

Although active learning can significantly re-
duce the amount of manual labeling, it still re-
quires extra human labeling, which is costly and
time consuming. Compared with active learning,
our approach does not require any additional man-
ual labeling effort.

The self-labeled technique is another type of
semi-supervised approach to boost the models per-
formance by iteratively labeling parts of the un-
labeled data. This approach aims to obtain an
enlarged labeled set, which is based on its most
confident predictions, to classify unlabeled data.
Zhu and Goldberg (2009) divides the self-labeled
methods into self-training and co-training.

In the self-training process Triguero et al.
(2014); Yarowsky (1995), a model is trained with

an initially small number of human labeled exam-
ples that aim to predict unlabeled data. Then, it is
retrained with its most confident predictions, thus
enlarging its labeled training set. The process iter-
ates in the same manner.

In the co-training process Blum and Mitchell
(1998); Chen et al. (2011), two learning models
are trained separately to provide distinct views of
the data set by using different feature sets of the
data. These two models are initially trained with a
small amount of human labeled data, and then the
most confident predictions of one model on the un-
labeled data are used to construct the training data
for the other model. This process is repeated itera-
tively. Similar to our proposed approach, the self-
labeled method uses the EM-based iterative pro-
cess to boost the models accuracy and also does
not need any further manual labeling efforts.

The major difference between the self-labeled
approach and our approach is as follows. In the
self-labeled method, with either self-training or
co-training, all the models are main task machine
learning models. In our proposed approach, there
exists only one main-task model and another aux-
iliary evaluation model that runs offline. Using an
offline auxiliary evaluation model has the benefit
of utilizing offline information that is not avail-
able at prediction time. Thus, the auxiliary evalu-
ation model has a better estimation capability than
the main model regarding whether Mains output is
correct or not.

The Generative Adversarial Network Goodfel-
low et al. (2014) is another semi-supervised ap-
proach that tries to generate unlimited synthetic
fake samples that can mimic real data. The GAN
also builds two models, namely, the generative
model and the discriminative model, and puts
them against each other. The generative model
takes random inputs and tries to generate out-
put data that looks similar to real data. The dis-
criminative model takes input data from both the
generative model and real data and tries to cor-
rectly distinguish between them. The GAN has
been successfully applied to image and audio ar-
eas where the synthetic data is real-valued. It’s
quite challenging for the GAN to generate se-
quence of discrete tokens in the NLP domain. Yu
et al. (2017) has proposed the SeqGAN method
to address this challenge by directly performing
gradient policy update with reinforcement learn-
ing. Kusner and Hernández-Lobato (2016) pro-

72

posed an alternative method to address this chal-
lenge using the Gumbel-softmax distribution.

One of the differences between our approach
and GAN is that our approach relies on real un-
labeled data while the GAN generates plausible
data with random inputs. Another major differ-
ence is that the evaluation component in our ap-
proach tries to evaluate whether the main model
results are correct or not. Meanwhile, in the GAN
approach, the adversarial component learns to tell
whether the current data sample is real or fake.

5 Experiments

To illustrate the effectiveness of the proposed
semi-supervised learning method, we evaluate it
with different text classification tasks. We com-
pare the new method with a few other bench-
mark semi-supervised approaches using the pub-
lic Yahoo! Answers topic classification dataset
Zhang et al. (2015); Joulin et al. (2016) and our
e-commerce product categorization dataset.

5.1 Yahoo! Answers Dataset Experiments

The Yahoo! Answers topic classification dataset
contains 10 classes. Each class contains 140K
training samples and 6K testing samples. In this
dataset, the total number of training instances is
1.4M and total number of test instances is 60K
Zhang et al. (2015). We shuffle and split the orig-
inal 1.4 M labeled training data into two sets. The
first set contains 100K instances with labels and
is used as the initial labeled dataset L. The sec-
ond set contains 1.3 M instances and the labels are
deleted to form the unlabeled dataset U . The 60K
test samples are untouched as the blind test set T .

5.1.1 Results
Using the initial 100K labeled dataset L and 1.3
M unlabeled dataset U , we compare our approach
to the three benchmark approaches: supervised
learning, co-training and active-learning. In all ex-
periments, once the labeled training corpus for the
main model is derived, we use the shallow neural
network classifier described in Joulin et al. (2016)
to train Main.

1. 1.4M Supervised Learning: Use the entire
Yahoo! dataset and build a model similar to
Joulin et al. (2016). The accuracy is reported as
72.3%. This is the theoretical upper bound for
a semi-supervised learning training. Any pro-

posed method with less labeled data tries ap-
proach this accuracy.

2. 100K Supervised Learning: Use L dataset
and build a model similar to Joulin et al. (2016).
The accuracy for this model is 65.9%. This is
the lower bound result. Any proposed method
to leverage unlabeled data should outperform
this number as much as possible.

3. Co-Training: UseL to build two initial models
and useU data in a co-training setup to enhance
the initial models. The system converged to an
accuracy of 69.03% after 40 iterations.

4. Self-Training: Use L to train an initial model
and use this initial model to predict the labels
of U . In the next step, mix L and U with its
predictions to train a new model. Keep iter-
ating the predicting labels for U , mixing cor-
pus and training the classifier until the system
converges. In our experiments, the self-labeled
baseline converged after 30 iterations to an ac-
curacy of 67.5%.

5. Active Learning: Train the initial classifier L,
use it to evaluate and select the most informa-
tive samples from U and reveal their ground
truth labels. Then, update the classifier with the
mixed corpus of L and reveal the label samples.
As more samples get selected, the performance
of the active-learning algorithm improves. Fig
1 shows the improvements in the accuracy with
the increasing amount of manual labeling data.

0 200000 400000 600000 800000 1000000 1200000
Number of Sample Data Added

65

66

67

68

69

70

71

72

73

A
cc

u
ra

cy
 (
%

)

Active Learning

Figure 1: active learning accuracy w.r.t the number
of samples selected for labeling

73

6. EMAEC without Enriched Data: Use L and
U and apply Algorithm 1 and Algorithm 2 to
iteratively train Main and Eval. After ap-
proximately 20 iterations, Main can achieve
an accuracy of 70.42%. TheEval model yields
92.8% precision with 83.5% recall. At the
convergence stage, the system generated labels
for 1.12M instances in U with a false positive
rate of <8%. This approach automatically la-
bels the majority (>86%) of the U dataset with
high-quality (error rate <8%).

7. EMAEC with Enriched Data: The Yahoo!
dataset does not contain any additional user
session feedback data. To simulate the sce-
nario where user-provided feedback data is un-
reliable to produce 100% correct automatic la-
bels, we assume that user feedback data can be
simulated by randomly introducing noises to
the original ground truth labels in the dataset.
Thus, we first reveal all the ground truth labels
in U , and then randomly select x% of U . Next,
we randomly flip their correct labels into wrong
labels and then mix them with the remaining
instances in U . We call the mixed and blurred
dataset as B which is the U dataset with noisy
labels. We use the B dataset to simulate user
noisy feedback signals. In this experiment, we
use L, B, Algorithm 1 and Algorithm 2 to it-
eratively train Main and Eval. As expected,
the higher that the level of blurring is, the worse
that the system performs. The theoretical upper
bound for this experiment would be a classifier
trained with 100K + (1 − x%) * 1.3M ground
truth labeled data. Figure 2 demonstrates the
varying system performance varying with dif-
ferent noise level x%. We can see that user
feedback loop data can further improve the sys-
tem’s performance even if we introduce 50%
noise to B.

5.1.2 Discussion
The experimental results on the Yahoo! Answers
topic classification dataset are summarized in Ta-
ble 1. The results demonstrate that by starting with
only 100K labeled data and 1.3 M unlabeled data,
and by using an auxiliary evaluation component,
the systems accuracy can be increased from 65.9%
to 70.4%. Active learning can reach the same per-
formance only after adding another 400K manu-
ally labeled data.

0 10 20 30 40 50 60 70
Noise Added (%)

64

65

66

67

68

69

70

71

72

A
cc
u
ra
cy
 (

%
)

1.4M_SL

EMAECwEnrich_UBound

EMAECwEnrich

EMAECwoEnrich

CoTrain

SelfLabel

100K_SL

Figure 2: EMAEC with enriched data at different
noise levels and the comparison with other base-
lines.

Approach Accuracy Error Reduction
[%] [%]

100K Supervised Learning 65.90 0.000
Self-Training 67.57 4.888
Active Learning (extra 100K labeled) 68.23 6.85
Co-Training 69.04 9.208
Active Learning (extra 400K labeled) 70.48 13.436
EMAEC w/o Enriched Data 70.49 13.456
EMAEC w/ Enriched Data (20% noise) 71.33 15.913
Supervised Learning with 20% noise 57.8 -12.29
1.4M Supervised Learning 72.40 19.062

Table 1: Test accuracy and error reduction rate [%]
on the Yahoo! Answers dataset. The method pro-
posed in this study is printed in bold.

Moreover, the proposed approach can automat-
ically generate high-quality labels for over 86% of
the unlabeled data with an error rate less than 8%.

The results also show that by adding simu-
lated user feedback loop signals into the evalu-
ation component, the final system accuracy can
be further improved. Even with 50% label noise,
the system achieves 71.33% accuracy. The ac-
tive learning system can achieve the same accu-
racy only after adding extra 800K manually la-
beled data. It’s also worth noting that with the
same noisy blurred label dataset, the supervised
learning approach has much worse performance.
Its classifier accuracy significantly drops to 57.8%
with 100K golden label and 1.3M blurred labels at
20% noise level.

5.2 E-commerce Product Categorization
Dataset Experiments

The proposed method is derived to tackle large
scale text classification problems that occur in the
e-Commerce industry, where the challenge is that

74

we significantly lacked high-quality labeled data
for these problems. For example, the e-commerce
product categorization dataset contains product ti-
tles and 600 different categories for the product
titles. This dataset contains four different parts:
the product category description data for 600 cate-
gories, a 6K observation manually labeled initial
training dataset L, a 28K observation manually
labeled blind test set T , and a 3.5 million obser-
vation unlabeled dataset U that included rich user
feedback session data F . The main task here is to
predict the product category as soon as the online
user enters the product title. For example, the user
might enter a product title, such as green coach
bag to describe a product. The system should clas-
sify this input title into the most relevant product
category, such as ”women’s purse & bag”. The 3.5
million unlabeled user behavior dataset contains a
seller chosen category and a category suggested
by a machine learning model. We consider these
data to be unlabeled since the seller chosen cate-
gory has a greater than 30% error rate according
to our evaluations. The reason for this high error
rate is due to the fact that the users are not famil-
iar with the category tree or they just intentionally
select the wrong category to increase the chance
of selling their product. Note that for the main-
task system that runs online, only the product title
information is available to main-task model.

5.2.1 Results
With the initial 6K labeled dataset L, the 3.5M un-
labeled dataset U and the 3.5M feedback session
dataset F , we compare our proposed EMAEC ap-
proach with the auxiliary evaluation component
to a weak supervised learning baseline and co-
training baseline as described below. Similar to
the previous set of experiments, once the labeled
training corpus for the main model is derived, we
use the shallow neural network classifier described
in Joulin et al. (2016) to train Main.

1. Supervised Learning with Small Labeled
Data: We train a supervised baseline model
with the 6K labeled dataset L. This is the weak
baseline model. Any proposed method that
leverages unlabeled data U and session data F
should outperform this number.

2. Supervised Learning with Noisy Data: We
treat the 3.5M seller-chosen category as the cor-
rect labeled data from F , and then mix it with
the 6K labeled dataset L to train a supervised

Model Error Reduction Rate [%]
Supervised Learning with 6K Label Data 0.00
Supervised Learning with Noisy Data 12.30
Co-Training 15.20
EMAEC 19.23

Table 2: EMAEC gain in error reduction rate [%]
compared to the co-training baseline on the e-
commerce dataset

model. Total error reduction rate by adding
seller-chosen labels is 12.3%

3. Co-Training: Use L to build two initial mod-
els and use U data in a co-training setup to en-
hance the initial models. Different feature sets
from F are used to train two different models.
After approximately 30 iterations, the system
will converge to best performance. Total error
reduction rate for co-training is 15.2%.

4. EMAEC with Enriched Data: Build the ini-
tial classifier Main using L and F . Apply Al-
gorithm 1 and Algorithm 2 to iteratively train
the Main and Eval models. After approx-
imately 20 iterations, the main task classifier
Main converges to its best performance. To-
tal error reduction for our approach is 19.23%.

5.2.2 Discussions
The experiment results on the e-commerce prod-
uct categorization dataset are summarized in ta-
ble 2. The results demonstrate that our proposed
approach with the auxiliary evaluation compo-
nent outperforms the co-training approach sub-
stantially. The classification error rate is reduced
by 5%. This improvement is well aligned with the
results on the public Yahoo! Answers dataset.

6 Conclusions

In this paper, we proposed a semi-supervised
learning approach to tackle the challenge of lack-
ing high-quality labeled data. The experimental
results in text classification tasks with both open
source Yahoo! Answer data and our e-commerce
data show the effectiveness of the proposed ap-
proach. This general dual player machine learning
framework can also be applied to other machine
learning tasks, such as search ranking, speech
recognition, machine translation, etc.

The proposed method comes with advantages
and disadvantages over existing semi-supervised
learning approaches. The advantages have been

75

demonstrated in text classification tasks in that it
can automatically extract fairly high-quality pre-
dicted labeled data from massive unlabeled data.
Thus, it can further improve prediction accuracy
by adding those automatically enriched labeled
data into the original training corpus.

On the other side, a potential drawback could
be that its effectiveness may be limited by the
prediction performance of the auxiliary evaluation
model. If the auxiliary evaluation model is not
able to generate many labeled samples with low
false positive rate, the automatically enriched la-
beled data might not be well distributed to reflect
the real problems underlying data distribution. To
overcome this, we must rely on vast amounts of
real-world unlabeled data.

At last, we know that the GAN based approach
Goodfellow et al. (2014); Yu et al. (2017); and
Kusner and Hernández-Lobato (2016) can auto-
matically generate infinite amounts of fake data.
Combining the advantages of the GAN framework
and the proposed approach is a very interesting re-
search direction for us in the future.

References
Alina Beygelzimer, Sanjoy Dasgupta, and John Lang-

ford. 2009. Importance weighted active learning. In
Proceedings of the 26th annual international confer-
ence on machine learning, pages 49–56. ACM.

Avrim Blum and Tom Mitchell. 1998. Combining la-
beled and unlabeled data with co-training. In Pro-
ceedings of the eleventh annual conference on Com-
putational learning theory, pages 92–100. ACM.

Minmin Chen, Kilian Q Weinberger, and John Blitzer.
2011. Co-training for domain adaptation. In Ad-
vances in neural information processing systems,
pages 2456–2464.

Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A
scalable tree boosting system. In Proceedings of
the 22Nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
785–794. ACM.

David A Cohn, Zoubin Ghahramani, and Michael I Jor-
dan. 1996. Active learning with statistical models.
NIPS.

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977.
Maximum likelihood from incomplete data via the
em algorithm. JOURNAL OF THE ROYAL STATIS-
TICAL SOCIETY, SERIES B, 39(1):1–38.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-
gio. 2014. Generative adversarial nets. Advances in

neural information processing systems, pages 2672–
2680.

Kenneth Heafield. 2011. KenLM: faster and smaller
language model queries. In Proceedings of the
EMNLP 2011 Sixth Workshop on Statistical Ma-
chine Translation, pages 187–197, Edinburgh, Scot-
land, United Kingdom.

A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov.
2016. Bag of tricks for efficient text classification.
arXiv:1607.01759.

Matt J Kusner and José Miguel Hernández-Lobato.
2016. Gans for sequences of discrete elements with
the gumbel-softmax distribution. arXiv preprint
arXiv:1611.04051.

Kamal Nigam, Andrew McCallum, Sebastian Thrun,
Tom Mitchell, et al. 1998. Learning to classify text
from labeled and unlabeled documents. AAAI/IAAI,
792.

Isaac Triguero, Salvador Garca, and Francisco Herrera.
2015. Self-labeled techniques for semi-supervised
learning: Taxonomy, software and empirical study.
Knowledge and Information Systems.

Isaac Triguero, José A Sáez, Julián Luengo, Salvador
Garcı́a, and Francisco Herrera. 2014. On the char-
acterization of noise filters for self-training semi-
supervised in nearest neighbor classification. Neu-
rocomputing, 132:30–41.

Karl Weiss, Taghi M Khoshgoftaar, and DingDing
Wang. 2016. A survey of transfer learning. Jour-
nal of Big Data, 3(1):1–40.

Songbai Yan, Kamalika Chaudhuri, and Tara Javidi.
2016. Active learning from imperfect labelers. In
Advances in Neural Information Processing Sys-
tems, pages 2128–2136.

David Yarowsky. 1995. Unsupervised word sense dis-
ambiguation rivaling supervised methods. In Pro-
ceedings of the 33rd annual meeting on Association
for Computational Linguistics, pages 189–196. As-
sociation for Computational Linguistics.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu.
2017. Seqgan: Sequence generative adversarial nets
with policy gradient. In AAAI, pages 2852–2858.

Chicheng Zhang and Kamalika Chaudhuri. 2015. Ac-
tive learning from weak and strong labelers. In Ad-
vances in Neural Information Processing Systems,
pages 703–711.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. NIPS.

Xiaojin Zhu and Andrew B Goldberg. 2009. Intro-
duction to semi-supervised learning. Synthesis lec-
tures on artificial intelligence and machine learning,
3(1):1–130.

76

Proceedings of the Workshop on Deep Learning Approaches for Low-Resource NLP, pages 77–86
Melbourne, Australia July 19, 2018. c©2018 Association for Computational Linguistics

Low-rank passthrough neural networks

Antonio Valerio Miceli Barone ∗

School of Informatics, The University of Edinburgh
amiceli@inf.ed.ac.uk

Abstract

Various common deep learning architec-
tures, such as LSTMs, GRUs, Resnets
and Highway Networks, employ state
passthrough connections that support
training with high feed-forward depth
or recurrence over many time steps.
These “Passthrough Networks” architec-
tures also enable the decoupling of the
network state size from the number of
parameters of the network, a possibility
has been studied by Sak et al. (2014)
with their low-rank parametrization of
the LSTM. In this work we extend this
line of research, proposing effective,
low-rank and low-rank plus diagonal
matrix parametrizations for Passthrough
Networks which exploit this decoupling
property, reducing the data complexity
and memory requirements of the network
while preserving its memory capacity.
This is particularly beneficial in low-
resource settings as it supports expressive
models with a compact parametrization
less susceptible to overfitting. We present
competitive experimental results on sev-
eral tasks, including language modeling
and a near state of the art result on
sequential randomly-permuted MNIST
classification, a hard task on natural data.

1 Overview

Deep neural networks can perform non-trivial
computations by the repeated the application of
parametric non-linear transformation layers to
vectorial data. This staging of many computa-
tion steps can be done over a time dimension

∗Work partially done while affiliated with University of
Pisa.

for tasks involving sequential inputs or outputs of
varying length, yielding a recurrent neural net-
work, or over an intrinsic circuit depth dimension,
yielding a deep feed-forward neural network, or
both. Training these deep models is complicated
by the exploding and vanishing gradient problems
(Hochreiter, 1991; Bengio et al., 1994).

Various network architectures have been pro-
posed to ameliorate the vanishing gradient prob-
lem in the recurrent setting, such as the LSTM
(Hochreiter and Schmidhuber, 1997; Graves and
Schmidhuber, 2005), the GRU (Cho et al., 2014),
the RHN (Zilly et al., 2016), etc. Similar meth-
ods have also been applied in the feed-forward set-
ting with architectures such as Highway Networks
(Srivastava et al., 2015), Deep Residual Networks
(He et al., 2015), and so on. All these archi-
tectures are based on a single structural principle
which, in this work, we will refer to as the state
passthrough. We will thus refer to these architec-
tures as Passthrough Networks.

In many settings, especially low-resource natu-
ral language processing tasks, the main difficulty
in training neural networks is the trade-off be-
tween the network representation power and its
training data complexity, which is related to the
number of trainable parameters.

On one hand, the number of parameters can
be thought as the number of tunable “knobs” that
need to be set to represent a function, on the other
hand, it also constrains the size of the partial re-
sults that are propagated inside the network. In
typical fully connected networks, a layer acting on
a n-dimensional state vector has O(n2) parame-
ters stored in one or more matrices, but there can
be many functions of practical interest that are
simple enough to be represented by a relatively
small number of bits while still requiring some
sizable amount of memory in order to be com-
puted. Therefore, representing these functions on

77

a fully connected neural network can be wasteful
in terms of number of parameters. The full pa-
rameterization implies that, at each step, all the in-
formation in each state component can affect all
the information in any state component at the next
step. Classical physical systems, however, consist
of spatially separated parts with primarily local in-
teractions, long-distance interactions are possible
but they tend to be limited by propagation delays,
bandwidth and noise. Therefore it may be bene-
ficial to bias our model class towards models that
tend to adhere to these physical constraints by us-
ing a parametrization which reduces the number
of parameters required to represent them. This can
be accomplished by imposing some constraints on
the n×nmatrices that parametrize the state transi-
tions. One way of doing this is to impose a convo-
lutional structure on these matrices (LeCun et al.,
2004; Krizhevsky et al., 2012), which corresponds
to strict locality and periodicity constraints as in a
cellular automaton. These constraints work well in
certain domains such as vision, but may be overly
restrictive in other domains.

The state passthrough allows for a systematic
decoupling of the network state size from the num-
ber of parameters: since by default the state vector
passes mostly unaltered through the layers, each
layer can be made simple enough to be described
only by a small number of parameters without af-
fecting the overall memory capacity of the net-
work, effectively spreading the computation over
the depth or time dimension of the network, but
without making the network “thin”. This has
been exploited by some convolutional passthrough
architectures (Srivastava et al., 2015; He et al.,
2015; Kaiser and Sutskever, 2015), or architec-
tures with addressable read-write memory (Graves
et al., 2014; Danihelka et al., 2016).

In this work we propose simple but effective
low-dimensional parametrizations that exploit this
decoupling based on low-rank or low-rank plus di-
agonal matrix decompositions. Our approach ex-
tends the LSTM architecture with a single projec-
tion layer proposed by Sak et al. (2014) which has
been applied to speech recognition, natural lan-
guage modeling (Józefowicz et al., 2016), video
analysis (Sun et al., 2015), etc. We provide ex-
perimental evaluation of our approach on GRU
and LSTM architectures on various machine learn-
ing tasks, including a near state of the art result
for the hard task of sequential randomly-permuted

MNIST image recognition (Le et al., 2015).

2 Model

2.1 Passthrough networks

A (fixed-width) neural network can be described
as a dynamical system with a n-dimensional state
vector x(t) ∈ Rn that transforms an input u into
an output y over multiple time steps T .

Passthrough networks can be defined as net-
works where the state evolves according to a tran-
sition function f which has a special form such
that, at each step t the state vector x(t) is prop-
agated to the next step modified only by some
(nearly) linear, element-wise transformation.

We define a network to have a state passthrough
on x if x evolves as

x(t) = π(t)� τ(t) + x(t− 1)� γ(t) (1)

where π is the next state proposal, τ is the state
transform, γ is the state carry and � denotes
element-wise vector multiplication.

Additional non-passthrough state vectors may
be also present1.

As concrete example, we can describe the fully
connected Gated Recurrent Unit (GRU) by Cho
et al. (2014) as

ω(t) = σ(θWωu(t) + θUωx(t− 1))

γ(t) = σ(θWγu(t) + θUγx(t− 1))

τ(t) = 1⊗n − γ(t)
π(t) = g(θWπu(t) + θ(Uπ)(x(t− 1)� ω(t)))

(2)
where g is the hyperbolic tangent, σ is the lo-

gistic sigmoid, θWω , θWγ , θWπ ∈ Rn×m are input
parameter matrices and θUω , θUγ , θUπ ∈ Rn×n are
the recurrent parameter matrices (bias vectors θb

not shown). ω(t) is the reset gate which is specific
to the GRU architecture.

2.2 Low-rank passthrough networks

We can impose a low-rank constraint on the state
transition matrices by rewriting each of them as
the product of two matrices, where the inner di-
mension d is a model hyperparameter.

In the case of the GRU of eq. 2 we can redefine

1For instance the LSTM has a passthrough “cell” state and
a non-passthrough “hidden” state.

78

x̂ (t−1)

f γ

f τ

f π

+ x̂ (t)

x

W

a)

x

R

b)

L

x

R

c)

L

0

0

D

+

Figure 1: Left: Generic state passthrough hidden layer, optional per-timestep input u(t) is not shown.
Right: a) Full matrix parametrization. b) Low-rank parametrization. c) Low-rank plus diagonal
parametrization.

the recurrent parameter matrices as

θ(Uω) = θ(Lω) · θ(Rω)

θ(Uγ) = θ(Lγ) · θ(Rγ)

θ(Uπ) = θ(Lπ) · θ(Rπ)
(3)

where θ(L) ∈ Rn×d and θ(R),∈ Rd×n. When
d < n/2 this result in a reduction of the number
of trainable parameters of the model.

Even when n/2 ≤ d < n, while the total num-
ber of parameter increases, the number of degrees
of freedom of the model still decreases, because
low-rank factorization are unique only up to arbi-
trary d × d invertible matrices, thus the number
of independent degrees of freedom of a low-rank
layer is 2nd− d2.

This low-rank constraint can be thought as
a bandwidth constraint on the computation per-
formed at each step: the R matrices first project
the state into a smaller subspace, extracting the in-
formation needed for that specific step, then the L
matrices project it back to the original state space,
spreading the selected information to all the state
components that need to be updated.

In this parametrization, which we denote as un-
tied low-rank, we allow each parameter matrix to
be parametrized independently by a pair of R and
L matrices. This extends the approach of Sak
et al. (2014) for the LSTM architecture, which we
denote here as tied low-rank, where they instead
force the R matrices to be the same for all the
functions of the state transition.

A low-rank parametrization can be also applied
to the input matrices of recurrent neural networks,
in fact, the input embedding layer commonly used
in NLP applications results in a tied low-rank
parametrization of the input whenever the embed-
ding size is lower than the RNN state size.

Low-rank passthrough architectures are univer-
sal in that they retain the same representation
classes of their parent architectures. This equiva-
lence can be realized in the worst case by exploit-
ing a depth-rank tradeoff (e.g. either O(n) rank
and O(T) depth or O(1) rank and O(nT) depth)2.

2.3 Low-rank plus diagonal passthrough
networks

As we show in the experimental section, on some
tasks the low-rank constraint may prove to be ex-
cessively restrictive if the goal is to train a model
with fewer parameters than one with arbitrary ma-
trices. A simple extension is to add to each low-
rank parameter matrix a diagonal parameter ma-
trix, yielding a matrix that is full-rank but still
parametrized in a low-dimensional space. For in-
stance, for the GRU we modify eq. 3 to

θ(Uω) = θ(Lω) · θ(Rω) + θ(Dω)

θ(Uγ) = θ(Lγ) · θ(Rγ) + θ(Dγ)

θ(Uπ) = θ(Lπ) · θ(Rπ) + θ(Dπ)

(4)

2In the case of recurrent networks, depth is intended as
the recurrence depth (Zilly et al., 2016).

79

where θ(D) are trainable diagonal parameter ma-
trices.

It may seem that adding diagonal parameter ma-
trices is redundant in passthrough networks. After
all, the state passthrough itself can be considered
as a diagonal matrix applied to the state vector,
which is then additively combined to the new pro-
posed state computed by the fπ function. How-
ever, since the state passthrough completely skips
over all non-linear activation functions, these for-
mulations are not equivalent. In particular, the
low-rank plus diagonal parametrization may help
in recurrent neural networks which receive input
at each time step, since it allows each component
of the state vector to directly control how much
input signal is inserted into it at each step. We
demonstrate the effectiveness of this model for the
sequence copy, sequential MNIST and language
modeling tasks described in the experiments sec-
tion.

3 Experiments

We applied the Low-rank GRU (LR-GRU) and
Low-rank plus diagonal GRU (LRD-GRU) archi-
tectures to a subset of sequential benchmarks de-
scribed in the Unitary Evolution Recurrent Neu-
ral Networks (uRNN) article by Arjovsky et al.
(2015), specifically the memory task, the addi-
tion task and the sequential randomly permuted
MNIST task. For the memory tasks, we also con-
sidered two different variants proposed by Dani-
helka et al. (2016) and Henaff et al. (2016) which
are hard for the uRNN architecture. We chose to
compare against the uRNN architecture because
it set state of the art results in terms of both
data complexity and accuracy and because it is
an architecture with similar design objectives as
low-rank passthrough architectures, namely a low-
dimensional parametrization and the mitigation of
the vanishing gradient problem, but it is based on
quite different principles.

We also applied these architectures to a
character-level language modeling task on the
Penn Treebank corpus. For the language modeling
task, we also experimented with Low-rank plus di-
agonal LSTMs.

3.1 Memory task

The input of an instance of this task is a sequence
of T = N + 20 discrete symbols in a ten sym-
bol alphabet ai : i ∈ 0, . . . 9, encoded as one-hot

vectors. The first 10 symbols in the sequence are
“data” symbols i.i.d. sampled from a0, . . . , a7,
followed byN−1 “blank” a8 symbols, then a dis-
tinguished “run” symbol a9, followed by 10 more
“blank” a8 symbols. The desired output sequence
consists of N + 10 “blank” a8 symbols followed
by the 10 “data” symbols as they appeared in the
input sequence. Therefore the model has to re-
member the 10 “data” symbol string over the tem-
poral gap of size N , which is challenging for a
recurrent neural network when N is large. In our
experiment we set N = 500, which is the hard-
est setting explored in the uRNN work. The train-
ing set consists of 100, 000 training examples and
10, 000 validation/test examples. The architecture
is a GRU with a dense n × 10 output matrix fol-
lowed a (biased) softmax. We train to minimize
the cross-entropy loss.

We were able to solve this task using a GRU
with full recurrent matrices with state size n =
128, learning rate 1× 10−3, mini-batch size 20,
initial bias of the carry functions (the “update”
gates) 4.0, however this model has many more
parameters, nearly 50, 000 in the recurrent layer
only, than the uRNN work which has about 6, 500,
and it converges much more slowly than the
uRNN. We were not able to achieve convergence
with a pure low-rank model without exceeding
the number of parameters of the fully connected
model, but we achieved fast convergence with a
LRD-GRU model with d = 50, with other hyper-
parameters set as above. This model has still more
parameters (39, 168 in the recurrent layer, 41, 738
total) than the uRNN model and converges more
slowly but still reasonably fast, reaching test cross-
entropy < 1× 10−3 nats and almost perfect clas-
sification accuracy in less than 35, 000 updates.

In order to obtain a fair comparison, we also
train a uRNN model with state size n = 721, re-
sulting in approximately the same number of pa-
rameters as the LRD-GRU models. This model
very quickly reaches perfect accuracy on the train-
ing set in less than 2, 000 updates, but overfits
w.r.t. the test set.

We also consider two variants of this task which
are difficult for the uRNN model. For both these
tasks we used the same settings as above except
that the task size parameter is set at N = 100 for
consistency with the works that introduced these
variants. In the variant of Danihelka et al. (2016),
the length of the sequence to be remembered is

80

0 100 200 300 400 500 600
Minibatch number (hundreds)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Cr
os

s-
en

tr
op

y
(n

at
s)

Sequence copy with fixed lag N=500

LRD-GRU
URNN

0 100 200 300 400 500 600
Minibatch number (hundreds)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Cr
os

s-
en

tr
op

y
(n

at
s)

Variable-length sequence copy with fixed lag N=100

LRD-GRU
LRD-GRU-WN
URNN

0 100 200 300 400 500 600 700 800 900
Minibatch number (hundreds)

0.00

0.05

0.10

0.15

0.20

Cr
os

s-
en

tr
op

y
(n

at
s)

Sequence copy with variable lag N=100

LRD-GRU
LRD-GRU-WN
URNN

0 20 40 60 80 100 120 140 160
Minibatch number (hundreds)

0.0

0.2

0.4

0.6

0.8

1.0
M

ea
n

sq
ua

re
d

er
ro

r
Addition T=750

LR-GRU
LRD-GRU

0 1000 2000 3000 4000 5000
Minibatch number (hundreds)

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 %

Permuted sequential MNIST

n=128, d=24
n=512, d=4

0 2000 4000 6000 8000 10000
Minibatch number (hundreds)

0

20

40

60

80

100

Ac
cu

ra
cy

 %

Permuted sequential MNIST (low-rank plus diagonal)

n=64, d=24
n=128, d=24
n=256, d=24
n=128 (baseline)

Figure 2: Top row and middle left: LRD-GRU and uRNN on the sequence copy tasks, cross-entropy
on validation set. Middle right: LR-GRU and LRD-GRU on the addition task, mean squared error on
validation set. Bottom row: LR-GRU (left) and LRD-GRU (right) on the permuted sequential MNIST
task, accuracy on validation set, horizontal line indicates 90% accuracy.

81

randomly sampled between 1 and 10 for each se-
quence. They manage to achieve fast convergence
with their Associative LSTM architecture with
65, 505 parameters, and slower convergence with
standard LSTM models. Our LRD-GRU architec-
ture, which has less parameters than their Associa-
tive LSTM, performs comparably or better, reach-
ing test cross-entropy < 1× 10−3 nats and almost
perfect classification accuracy in less than 30, 000
updates. In the variant of Henaff et al. (2016),
the length of the sequence to be remembered is
fixed at 10 but the model is expected to copy it af-
ter a variable number of time steps randomly cho-
sen, for each sequence, between 1 and N = 100.
The authors achieve slow convergence with a stan-
dard LSTM model, while our LRD-GRU architec-
ture achieves fast convergence, reaching test cross-
entropy < 1× 10−3 nats and almost perfect clas-
sification accuracy in less than 38, 000 updates,
and perfect test accuracy in 87, 000 updates.

We further train uRNN models with state size
n = 721 on these variants of the memory task. We
found that the uRNN learns faster than the LRD-
GRU on the variable length, fixed lag task (Dani-
helka et al., 2016) but fails to converge within our
training time limit on the fixed length, variable lag
task (Henaff et al., 2016).

Training the LRD-GRU on these tasks in-
curs sometimes in numerical stability problems
as discussed in sec. 3.5.1. In order to sys-
temically address these issues, we also trained
models with weight normalization (Salimans and
Kingma, 2016) and weight row max-norm con-
straints. These models turned out to be more stable
and in fact converge faster, performing on par with
the uRNN on the variable length, fixed lag task.

Training curves are shown in figure 2 (top and
middle left).

3.2 Addition task

For each instance of this task, the input sequence
has length T and consists of two real-valued com-
ponents, at each step the first component is in-
dependently sampled from the interval [0, 1] with
uniform probability, the second component is
equal to zero everywhere except at two randomly
chosen time step, one in each half of the sequence,
where it is equal to one. The result is a single real
value computed from the final state which we want
to be equal to the sum of the two elements of the
first component of the sequence at the positions

where the second component was set at one. In
our experiment we set T = 750.

The training set consists of 100, 000 training ex-
amples and 10, 000 validation/test examples. We
use a LR-GRU and a LRD-GRU with 2× n input
matrix, n × 1 output matrix and (biased) identity
output activation. We train to minimize the mean
squared error loss. We use state size n = 128,
maximum rank d = 24. This results in approx-
imately 6, 140 parameters in the recurrent hidden
layer. Learning rate was set at 1× 10−3, mini-
batch size 20, initial bias of the carry functions
(the “update” gates) was set to 4.

We trained on 14, 500 mini-batches, obtaining a
mean squared error on the test set of 0.003 for both
parametrizations, which is a better result than the
one reported in the uRNN article, in terms of train-
ing time and final accuracy. The training curves
are shown in figure 2 (middle right).

3.3 Sequential MNIST task

This task consists of handwritten digit classifica-
tion on the MNIST dataset with the caveat that the
input is presented to the model one pixel value at
time, over T = 784 time steps. To further increase
the difficulty of the task, the inputs are reordered
according to a random permutation (fixed for all
the task instances).

We use LR-GRUs and a LRD-GRUs with 1×n
input matrix, n × 10 output matrix and (biased)
softmax output activation. Learning rate was set
at 5× 10−4, mini-batch size 20, initial bias of the
carry functions (the “update” gates) was set to 5.

Results are presented in table 1 and training
curves are shown in figure 2 (bottom row). All
these models except the one with the most extreme
bottleneck (n = 512, d = 4) exceed the reported
uRNN test accuracy of 91.4%, although they con-
verge more slowly (hundred of thousands updates
vs. tens of thousands of the uRNN). Also note that
the LRD-GRU is more accurate than the full-rank
GRU with the same state size, while the LR-GRU
is slightly less accurate (in terms of test accuracy),
indicating the utility of the diagonal component of
the parametrization for this task.

These are on par with more complex architec-
tures with time-skip connections (Zhang et al.,
2016) (reported test set accuracy 94.0%). To our
knowledge, at the time of this writing, the best
result on this task is the LSTM with recurrent
batch normalization by Cooijmans et al. (2016)

82

Table 1: Sequential permuted MNIST results

Architecture state size max rank params val. accuracy test accuracy

Baseline GRU 128 - 51.0 k 93.0% 92.8%
LR-GRU 128 24 20.2 k 93.4% 91.8%
LR-GRU 512 4 19.5 k 92.5% 91.3%
LRD-GRU 64 24 10.3 k 93.1% 91.9%
LRD-GRU 128 24 20.6 k 94.1% 93.5%
LRD-GRU 256 24 41.2 k 95.1% 94.7%

(reported test set accuracy 95.2%). The architec-
tural innovations of these works are orthogonal to
our own and in principle they can be combined to
it.

3.4 Character-level language modeling task
This standard benchmark task consist of predict-
ing the probability of the next character in a sen-
tence after having observed the previous charters.
Following Zaremba et al. (2014), we use the Penn
Treebank English corpus, with standard training,
validation and test splits. As a baseline we use a
single layer GRU either with no regularization or
regularized with Bayesian recurrent dropout (Gal,
2015).

In our experiments we primarily consider the
LRD-GRU, both with tied and untied projection
matrices. We set the state size and maximum rank
to either reduce the total number of parameters
compared to the baselines or to keep the number
of parameters approximately the same while in-
creasing the memory capacity. We also compare
with the LR-GRU. Results are shown in table 2.

Our LRD-GRU reduces the model per-character
perplexity (the base-2 exponential of the bits-per-
character entropy). Both the tied and untied ver-
sions perform equally when the state size is the
same, but the tied version performs better when
the number of parameters is kept the same, pre-
sumably due to the increased memory capacity of
the state vector. Our best model has an extreme
bottleneck, over a hundred of times smaller than
the state size, while the word-level language mod-
els trained by Józefowicz et al. (2016) use bottle-
necks of four to eight times smaller than the state
size. This difference is likely due to our usage of
the “plus diagonal” parametrization, in fact, the
plain LR-GRU with such an extreme bottleneck
fails to even approach the baselines.

In terms of absolute perplexity, our results are
worse than published ones (e.g. Graves (2013)),

although they may not be directly comparable
since published results generally use different
training and evaluation schemes, such as preserv-
ing the network state between different sentences.

We ran additional experiments using LSTM ar-
chitectures, similar to Graves (2013), although
we still could not obtain the same baseline per-
formance even using the Adam optimizer (using
SGD+momentum yields even worse results). In
fact, we obtained approximately the same perplex-
ity as our baseline GRU model with the same state
size.

We applied the Low-rank plus diagonal
parametrizations to our LSTM architecture main-
taining the same number of parameters as the
baseline. We obtained notable perplexity improve-
ments over the baseline.

3.5 Experimental details
3.5.1 Low-rank GRUs
In our experiments (except language modeling)
we optimized using RMSProp (Tieleman and Hin-
ton, 2012) with gradient component clipping at
1. Code is available online 3. Our code is based
on the published uRNN code4 (specifically, on
the LSTM implementation) by the original authors
for the sake of a fair comparison. In order to
achieve convergence on the memory task however,
we had to slightly modify the optimization proce-
dure, specifically we changed gradient component
clipping with gradient norm clipping (with NaN
detection and recovery), and we added a small
ε = 1× 10−8 term in the parameter update for-
mula. No modifications of the original optimizer
implementation were required for the other tasks.

In order to address the numerical instability is-
sues in the memory tasks, we also consider a vari-
ant of our LRD-GRU where apply weight nor-

3 https://github.com/Avmb/lowrank-gru
4https://github.com/amarshah/complex_

RNN

83

Table 2: Character-level language modeling results

Architecture dropout tied state size max rank params test char perplexity

Baseline GRU No - 1000 - 3.11 M 2.96
Baseline GRU Yes - 1000 - 3.11 M 2.92
Baseline GRU Yes - 3298 - 33.0 M 2.77
Baseline LSTM Yes - 1000 - 4.25 M 2.92

LRD-GRU No No 1000 64 0.49 M 2.92
LRD-GRU No No 3298 128 2.89 M 2.95
LRD-GRU Yes No 3298 128 2.89 M 2.86
LRD-GRU Yes No 5459 64 2.69 M 2.82
LRD-GRU Yes Yes 5459 64 1.99 M 2.81
LRD-GRU No Yes 1000 64 0.46 M 2.90
LRD-GRU Yes Yes 4480 128 2.78 M 2.86
LRD-GRU Yes Yes 6985 64 2.54 M 2.76
LR-GRU Yes Yes 6985 64 2.54 M 9.88
LRD-LSTM Yes No 1740 300 4.25 M 2.86

malization as described by Salimans and Kingma
(2016) to all the parameter matrices except the out-
put one and the diagonal matrices. All these ma-
trices have trainable scale parameters, except for
the projection (R) matrices. We further apply a
hard constraint on the matrices row norms by clip-
ping them at 10 after each update. We disable NaN
detection and recovery during training. The ratio-
nale behind this approach, in addition to the gen-
eral benefits of normalization, is that the low-rank
parametrization potentially introduces stability is-
sues because the model is invariant to the simulta-
neous multiplication of a row of an R-matrix by a
scalar s and the division of the corresponding col-
umn of the L-matrix by s, which in principle al-
lows the parameters of either matrix to grow very
large in magnitude, eventually resulting in over-
flows or other pathological behavior. The weight
row max-norm constraint can counter this prob-
lem. But the constraint alone could make the op-
timization problem harder by restricting and dis-
torting the parameter space. Fortunately we can
counter this by weight normalization which makes
the model invariant to the row-norms of the param-
eter matrices.

In the language modeling experiment, the char-
acter vocabulary size is 51, we use no character
embeddings. Training is performed with Adam
with learning rate 1× 10−3. Bayesian recurrent
dropout was adapted from the original LSTM ar-
chitecture of Gal (2015) to the GRU architecture
as in Sennrich et al. (2016).

Our implementation is based on the “dl4mt” tu-
torial5 and the Nematus neural machine translation
system 6. The code is available online 7.

3.5.2 Low-rank LSTMs
For our LSTM experiments, we modified the
implementation of LSTM language model with
Bayesian recurrent dropout by Gal (2015)8. In
order to match the setup of Graves (2013) more
closely, we used a vocabulary size of 49, no em-
bedding layer and one LSTM layer. We the Adam
optimizer with learning rate 2× 10−4. The low-
rank plus diagonal parametrization is applied on
the recurrence matrices as in the GRU models.
The code is available online9.

4 Conclusions

We proposed low-dimensional parametrizations
for passthrough neural networks based on low-
rank or low-rank plus diagonal decompositions
of the n × n matrices that occur in the hidden
layers. We experimentally compared our models
with state of the art models, obtaining competi-
tive results including a near state of the art for
the randomly-permuted sequential MNIST task,

5https://github.com/nyu-dl/
dl4mt-tutorial

6https://github.com/EdinburghNLP/
nematus

7https://github.com/Avmb/dl4mt-lm/
tree/master/lm

8https://github.com/yaringal/
BayesianRNN

9 https://github.com/Avmb/lowrank-lstm

84

and improvements over the baselines on a lan-
guage modeling task. We showed that the LRD
parametrization outperforms the LR parametriza-
tion in almost all task and never underpeforms it,
which highlight as the main contribution of this
work. Therefore recommend to always include a
diagonal parameter matrix whenever a low-rank
parametrization is used. We also presented a
weight row-norm constraint trick to improve op-
timization stability for these kind of architectures
with multiplicative symmetries.

References
Martin Arjovsky, Amar Shah, and Yoshua Bengio.

2015. Unitary evolution recurrent neural networks.
CoRR, abs/1511.06464.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gra-
dient descent is difficult. Neural Networks, IEEE
Transactions on, 5(2):157–166.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Fethi Bougares, Holger Schwenk, and Yoshua
Bengio. 2014. Learning phrase representations
using rnn encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078.

T. Cooijmans, N. Ballas, C. Laurent, Ç. Gülçehre, and
A. Courville. 2016. Recurrent Batch Normalization.
ArXiv e-prints.

I. Danihelka, G. Wayne, B. Uria, N. Kalchbrenner,
and A. Graves. 2016. Associative Long Short-Term
Memory. ArXiv e-prints.

Yarin Gal. 2015. A theoretically grounded applica-
tion of dropout in recurrent neural networks. arXiv
preprint arXiv:1512.05287.

Alex Graves. 2013. Generating sequences with
recurrent neural networks. arXiv preprint
arXiv:1308.0850.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works, 18(5):602–610.

Alex Graves, Greg Wayne, and Ivo Danihelka.
2014. Neural turing machines. arXiv preprint
arXiv:1410.5401.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Deep residual learning for image recog-
nition. arXiv preprint arXiv:1512.03385.

M. Henaff, A. Szlam, and Y. LeCun. 2016. Orthogonal
RNNs and Long-Memory Tasks. ArXiv e-prints.

Sepp Hochreiter. 1991. Untersuchungen zu dynamis-
chen neuronalen netzen. Diploma, Technische Uni-
versität München.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Rafal Józefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring
the limits of language modeling. arXiv preprint
arXiv:1602.02410.

Lukasz Kaiser and Ilya Sutskever. 2015. Neural gpus
learn algorithms. CoRR, abs/1511.08228.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep con-
volutional neural networks. In Advances in neural
information processing systems, pages 1097–1105.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hin-
ton. 2015. A simple way to initialize recurrent
networks of rectified linear units. arXiv preprint
arXiv:1504.00941.

Yann LeCun, Fu Jie Huang, and Leon Bottou. 2004.
Learning methods for generic object recognition
with invariance to pose and lighting. In Computer
Vision and Pattern Recognition, 2004. CVPR 2004.
Proceedings of the 2004 IEEE Computer Society
Conference on, volume 2, pages II–97. IEEE.

Hasim Sak, Andrew W Senior, and Françoise Bea-
ufays. 2014. Long short-term memory recurrent
neural network architectures for large scale acoustic
modeling. In INTERSPEECH, pages 338–342.

Tim Salimans and Diederik P Kingma. 2016. Weight
normalization: A simple reparameterization to ac-
celerate training of deep neural networks. arXiv
preprint arXiv:1602.07868.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Edinburgh neural machine translation sys-
tems for wmt 16. arXiv preprint arXiv:1606.02891.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen
Schmidhuber. 2015. Highway networks. arXiv
preprint arXiv:1505.00387.

Chen Sun, Sanketh Shetty, Rahul Sukthankar, and
Ram Nevatia. 2015. Temporal localization of fine-
grained actions in videos by domain transfer from
web images. In Proceedings of the 23rd Annual
ACM Conference on Multimedia Conference, pages
371–380. ACM.

Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture
6.5 - rmsprop,.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329.

85

Saizheng Zhang, Yuhuai Wu, Tong Che, Zhouhan
Lin, Roland Memisevic, Ruslan Salakhutdinov, and
Yoshua Bengio. 2016. Architectural complex-
ity measures of recurrent neural networks. arXiv
preprint arXiv:1602.08210.

Julian Georg Zilly, Rupesh Kumar Srivastava,
Jan Koutnı́k, and Jürgen Schmidhuber. 2016.
Recurrent highway networks. arXiv preprint
arXiv:1607.03474.

86

Author Index

Abisena, Bagas, 43
Augenstein, Isabelle, 1

Bedrick, Steven, 25
Bingel, Joachim, 19
Bjerva, Johannes, 1
Bollmann, Marcel, 19

Dudy, Shiran, 25
Dutta Chowdhury, Koel, 33

Hasanuzzaman, Mohammed, 33
Hedderich, Michael A., 12

Ikhwantri, Fariz, 43

Kameswara Sarma, Prathusha, 51
Kann, Katharina, 1
Klakow, Dietrich, 12
Komiya, Kanako, 60
Kopru, Selcuk, 68
Kurniawan, Kemal, 43

Liang, Yingyu, 51
Liu, Mingkuan, 68
Liu, Qun, 33
Liu, Xianjing, 68
Louvan, Samuel, 43
Lu, Alan, 68

Mahendra, Rahmad, 43
Miceli Barone, Antonio Valerio, 77

Plank, Barbara, 1

Rachman, Valdi, 43

Søgaard, Anders, 1, 19
Sethares, Bill, 51
Shinnou, Hiroyuki, 60

Wen, Musen, 68
Wicaksono, Alfan Farizki, 43

87

	Program
	Character-level Supervision for Low-resource POS Tagging
	Training a Neural Network in a Low-Resource Setting on Automatically Annotated Noisy Data
	Multi-task learning for historical text normalization: Size matters
	Compositional Language Modeling for Icon-Based Augmentative and Alternative Communication
	Multimodal Neural Machine Translation for Low-resource Language Pairs using Synthetic Data
	Multi-Task Active Learning for Neural Semantic Role Labeling on Low Resource Conversational Corpus
	Domain Adapted Word Embeddings for Improved Sentiment Classification
	Investigating Effective Parameters for Fine-tuning of Word Embeddings Using Only a Small Corpus
	Semi-Supervised Learning with Auxiliary Evaluation Component for Large Scale e-Commerce Text Classification
	Low-rank passthrough neural networks

