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Abstract

This paper describes the best performing
system for the shared task on Named En-
tity Recognition (NER) on code-switched
data for the language pair Spanish-English
(ENG-SPA). We introduce a gated neural
architecture for the NER task. Our final
model achieves an F1 score of 63.76%,
outperforming the baseline by 10%.

1 Introduction

Named Entity Recognition (NER) is an important
Natural Language Processing task, which involves
extracting named entities (i.e., Names of Persons,
Entities, Organizations etc.) from the provided
text, and the classification of entities into a certain
number of predefined categories. The extracted
entities provide us with the important information
about the content of the text (Nadeau and Sekine,
2007). For example, “New Delhi is famous for its
historical past.”. The extracted entity (New Delhi)
gives us an idea that the text is associated with the
location called New Delhi. The ability of NER to
extract this useful information makes it an essen-
tial part of the Information Extraction pipeline.

The social media platforms like Twitter, Reddit
etc. have become a massive source of information
due to their growth in the recent past. Perform-
ing NER on social texts can be challenging due
to the unstructured and colloquial nature of social
texts. Various attempts have been made in the past
to solve the problem of NER on social texts (Der-
czynski et al., 2017; Strauss et al., 2016). How-
ever, most of the previous systems were developed
to work with monolingual texts (Ritter et al., 2011;
Lin et al., 2017), ignoring the phenomena of code-
switching (i.e., switching between different lan-
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guages within a sentence), which is quite prevalent
in social media texts.

This paper describes our system for Named En-
tity Recognition Shared Task on English-Spanish
Code-switched tweets held at the ACL 2018
Workshop on Computational Approaches to Lin-
guistic Code-switching. The task involves catego-
rizing a token into 19 different categories. More
details about the task can be found in the task de-
scription paper (Aguilar et al., 2018).

We use a novel architecture based on gating
of character-based representations and word-based
representations of a token (Yang et al., 2016). The
character-based representation is generated using
a ‘Char CNN’ (Zhang et al., 2015) and the word-
based representation is generated using an LSTM
(Hochreiter and Schmidhuber, 1997). Further-
more, the activations from the last but one layer of
the neural networks, trained with different hyper-
parameters, are ensembled and then are passed
as features to a Conditional Random Field (CRF)
classifier for final predictions. We make use of
English Twitter embeddings (Godin et al., 2015),
aligned with the Spanish embeddings (Bojanowski
et al., 2016) as described in Section 2.1.

Our final submitted system achieves the best re-
sult on the shared task with 63.76% F1-score.

2 Proposed Approach

This section describes feature representations,
model description and the ensembling technique
in detail.

2.1 Feature Representation
The following representations are used to capture
overall information for each token: Word, Charac-
ter and Lexical representations.
Word Representation: Word representations are
created using concatenation of two separate repre-
sentations, one based on the pre-trained word vec-
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Figure 1: Final Architecture Of The System

tors and the other based on Part-of-Speech (POS)
tag embeddings.

For the word vector representation, we use
Spanish FastText word vectors (Bojanowski et al.,
2016) of 300-dimensions, trained on Wikipedia
and pre-trained word embeddings (Godin et al.,
2015) of 400-dimensions, trained on 400 million
tweets. We use a Principal Component Analy-
sis (PCA) based algorithm suggested by Raunak
(2017) to reduce the dimensions of the Twitter
word vectors. Since these word vectors are in dif-
ferent vector spaces, we use Singular Value De-
composition (SVD) (Smith et al., 2017) for align-
ing these two embeddings to represent them in a
single vector space.
For POS tagging, we use the CMU Part-of-Speech
tagger (Owoputi et al., 2013). Each POS tag is
represented as a vector of dimension dim. The

vectors corresponding to the POS tags are ini-
tialized randomly with uniform distribution range[

−
√
3/dim,

√
3/dim

]
as suggested by He et al.

(2015). The word vector corresponding to the to-
ken is concatenated with the vector corresponding
to the POS tag of the token to obtain the final vec-
tor representation.

For obtaining the label for each token, we pro-
vide a composite vector as an input to the model.
The composite vector is generated by concatena-
tion of word representations of adjacent tokens
(one on each side) with its own, same as a trigram.
Character Representation: At the character
level, we represent each token as a sequence of
character embeddings. These embeddings are ini-
tialized randomly with uniform distribution range,
similar to POS tag embeddings. In the model, they
are kept trainable to learn the representation cor-
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responding to each character. Each token is either
truncated or post-padded to generate a token of 20
characters.

Lexical Representation: We use the gazetteer
provided by Mishra and Diesner (2016) and some
Spanish gazetteers of our own to provide world
knowledge to our model. Top 1000 celebrity Twit-
ter handles from this list1 are also added. We rep-
resent gazetteer input for a token as a 19 dimen-
sional vector, one binary value corresponding to
each class. The binary bit represents the presence
(1) or absence (0) of the token in the gazetteer (i.e.
word list) of the respective class.

2.2 Model Description

BiLSTM for Word Representation: We use
Bidirectional LSTM (Dyer et al., 2015) in the
model to learn the contextual relationship between
the words. Word representations described earlier
are used as input to this layer. The BiLSTM layer
consists of two LSTM layers having 3 units each.
With one layer connected in the forward direction
and the other layer connected in the backward di-
rection, this captures the information from the past
and the future (Ma and Hovy, 2016). The outputs
of both forward and backward LSTM are then con-
catenated to produce a final single embedding for
the input token. We vary recurrent dropouts (Gal
and Ghahramani, 2016), input dropouts and out-
put dropouts as shown in the Table 1, across three
different models. The gate layer is fed with the
output of this layer (Xw).

Convolution Network for Character Repre-
sentation: We use a CNN-architecture to learn
the character based representation of a word. The
character embeddings of a token, denoted as Rd×l,
where d is the dimension of a single character’s
embedding and l is the max length of the token,
is fed to a 2-stacked convolutional layer, both
activated using ReLU function. Its results are
then pushed into a pooling layer. We applied
two different pooling techniques, specified in the
Table 1, across different models. The output of
the pooling layer serves as an input to a dense
layer, whose activation function (Char dense layer
activation) is varied as shown in Table 1. Finally,
we use the output of the dense layer (Xch) as an
input to the gate layer.

1https://gist.github.com/mbejda/
9c3353780270e7298763

Gate Layer: The concatenation of word
representations and POS tag embeddings is used
as input to a sigmoid dense layer. The value of the
sigmoid output controls the relative contribution
of the character and word representation in the
final representation of the token. Following the
work of Miyamoto and Cho (2016), the output
of this layer g is used to take the weighted
average of Bi-LSTM network output (Xg) and the
convolutional network output (Xch):

g = σ(vTg Xg + bg)

X = (1− g)Xch + gXg

where vg is the trainable weight vector, bg is the
bias and σ(·) is the sigmoid function. The result of
this layer X is then concatenated with the gazetteer
embeddings of the token.

Fully Connected Network: We use two fully
connected networks after the concatenation of the
gate network output and gazetteer embeddings.
The number of dense units is kept fixed to 100
each. The activation function is varied according
to Table 1 for producing different models.

Multitask Learning: Multitask learning has
been shown as a good way to regularize models
(Baxter, 2000; Collobert and Weston, 2008). Fol-
lowing the work of Aguilar et al. (2017), we split
the task into Named Entity (NE) categorization
(classifying a token into one of the NE classes)
and NE segmentation (classifying token as NE or
Not-NE). We passed the dense layer’s output as in-
put to these final classification layers. A softmax
layer with 19 classes is used for the categoriza-
tion task and a single sigmoid neuron is used for
the segmentation task as depicted in Figure 1. The
cross-entropy losses for these tasks are added to
yield total loss for the model.

2.3 Conditional Random Fields and
Ensembling

Linear-chain CRF classifier takes advantage of the
sequence information to tag a token with the most
probable label (Lafferty et al., 2001). Following
Aguilar et al. (2017), we use the activations of
second common dense layer as input feature vec-
tor for the CRF classifier. The CRF classifier pro-
duces better results than the normal softmax clas-
sification and also reduces the number of invalid
predictions (i.e., I-PER tag without a B-PER tag).
For preparing the model ensemble, we make use of

https://gist.github.com/mbejda/9c3353780270e7298763
https://gist.github.com/mbejda/9c3353780270e7298763
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Table 1: Hyper-parameters for the Models and Ensemble Results
Hyper-Parameters Model-1 Model-2 Model-3
POS and character embeddings dropout 0.500 0.500 0.247
POS embeddings dimension 50 128 128
Character embeddings dimension 100 128 128
Pooling layer ∗GAP GAP +GMP
Char dense layer activation ReLU ReLU tanh
Recurrent dropouts 0.500 0.500 0.823
BiLSTM input dropout - - 0.0654
BiLSTM output dropout 0.500 0.500 0.018
Dense layer activation ReLU ReLU tanh
Preprocessing of Test-data X Y Y
Optimiser #nadam nadam rmsprop
Results ( F1 score ) 61.18% 61.89% 60.23%
Overall Ensemble of Model1 + Model2 + Model3 (F1 Score) 63.76%
∗GAP :Global Average Pooling +GMP :Global Max Pooling
#nadam is adam rmsprop with nesterov momentum (Dozat, 2016)

unweighted averaging of the activations generated
by the networks described in Table 1.

2.4 Experimental Settings
2.4.1 Pre-processing
The data is pre-processed by doing the following
replacements: All URLs are replaced with 〈url〉.
All hashtags are replaced with 〈hashtag〉. Digits
are replaced with the 〈number〉 token. Apostro-
phes are removed. Finally, emoticons are replaced
with their respective meaning, for example, ‘:-)’
with 〈smile〉.

2.4.2 Hyper-parameters
Different hyper-parameters are used to produce
different models for ensembling. We set the fol-
lowing parameters as the same across all the mod-
els: 64 filters, kernel size of 3 and ReLU activation
in convolutional network (Section 2.2), along with
50 hidden units in the BiLSTM network (Section
2.2).

Other hyperparameters are set according to the
Table 1 for the respective models. All models are
trained for 15 epochs with a batch size of 512. The
CRF classifier is used with the following param-
eters: L1 penalty: 1.0, L2 penalty: 1e-3 for 80
epochs.
Hyper-parameters for Model-3 are obtained by a
random search using hyperas2. Hyper-parameters
for the other two models are set based on our
own experimental observations. All our models

2https://github.com/hyperopt/hyperopt

are implemented using the Deep Learning library
Keras3.

3 Results and Discussion

We compare our final results with the RNN base-
line, which is the official baseline of the task
(Aguilar et al., 2018). The major highlights of our
results are described below.

Table 2: Results in Different Categories
Models Used Precision Recall F1

Event 37.50% 13.33% 19.67%
Group 38.36% 28.87% 32.94%

Location 70.31% 72.45% 71.37%
Organization 58.14% 24.75% 34.72%

Other 11.11% 1.72% 2.99%
Person 79.26% 77.87% 78.56%
Product 63.43% 44.16% 52.07%

Time 30.67% 30.46% 30.56%
Title 31.85% 19.46% 24.16%

Overall 68.73% 59.47% 63.76%
Baseline - - 53.28%

• Our model achieves an F1-score of 63.76%,
which beats the baseline by around 10% on
the test set. Our results depict the effective-
ness of the use of gated neural architecture
for Named Entity Recognition. Our system
ranked first among the 8 systems submitted
for the task.

3https://github.com/keras-team/keras

https://github.com/hyperopt/hyperopt
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• The system performance on the various class
of entities is displayed in Table 2. Our model
shows poor performance in Title, Other and
Event categories. This may be attributed to
both the diverse set of patterns present, and
the unavailability of a large number of sam-
ples of these categories.

4 Conclusion

In this paper, we describe a gated neural network
for performing NER on code-switched social me-
dia text. Our model involves the usage of SVD to
align word representations of English and Span-
ish words. Furthermore, we also describe a novel
way of ensembling activations of the last but one
layer for achieving better results. Our model is
described in full detail in this paper to ensure the
replication of results. The final system performs
the best among all the participating systems.
In future, we would like to experiment with vari-
ous other ways of combining character and word
representations (e.g. Fine Grained Gating (Zhang
et al., 2015), Highway Networks (Liang et al.,
2017) etc.) for the NER task.
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