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Abstract

This paper describes the system for the
Named Entity Recognition Shared Task
of the Third Workshop on Computational
Approaches to Linguistic Code-Switching
(CALCS) submitted by the Bilingual An-
notations Tasks (BATs) research group of
the University of Texas. Our system uses
several features to train a Conditional Ran-
dom Field (CRF) model for classifying in-
put words as Named Entities (NEs) us-
ing the Inside-Outside-Beginning (IOB)
tagging scheme. We participated in the
Modern Standard Arabic-Egyptian Arabic
(MSA-EGY) and English-Spanish (ENG-
SPA) tasks, achieving weighted average F-
scores of 65.62 and 54.16 respectively. We
also describe the performance of a deep
neural network (NN) trained on a subset
of the CRF features, which did not surpass
CRF performance.

1 Introduction & Prior Approaches

Named entity recognition (NER) and classifica-
tion are essential tasks in information extrac-
tion (Nadeau and Sekine, 2007). However, NER
in texts in which multiple languages are repre-
sented is not straightforward because NEs can be
language-specific (e.g., Estados Unidos in Span-
ish vs. United States) or language-neutral but re-
gionally specific (e.g., Los Angeles) or even mixed
(e.g., Nueva York in Spanish) (Çetinoglu, 2016;
Guzman et al., 2016). The task is further com-
plicated by the fact that names of companies, in-
stitutions and brands in one language can be com-
mon nouns in another (e.g, Toro is a brand name
for a U.S. company but toro in Spanish means
bull’). These challenges confound the already
difficult task of working with multilingual texts,

which can be considered resource scarce’ with re-
spect to the availability of NLP tools (Riaz, 2010;
Zirikly and Diab, 2015; Sitaram and Black, 2016;
Guzmán et al., 2017). But NER in multilingual
communication is essential given that multilin-
gualism is common throughout the world, and, for
many speakers, language mixing is a shared prac-
tice and one that can be prevalent in social media
like Twitter (Jurgens et al., 2014; Jamatia et al.,
2015, 2016; Vilares et al., 2015).

2 Data Description

Over 62k Tweets were collected and manually
annotated for NEs to be used in this shared
task (Aguilar et al., 2018). The annotators la-
beled each NE using one of ten tags: PERSON,
LOCATION, ORGANIZATION, PRODUCT, GROUP,
EVENT, TIME, TITLE, OTHER, or NOT-NE. All to-
kens are tagged using the IOB scheme while ignor-
ing hashtags and @-mentions, i.e. Louis Vuitton is
tagged with B-ORG and I-ORG but @RideAlong
is tagged as O. NEs can occur in all languages
and, since this is Twitter data, can frequently be
misspelled or missing orthographic features that
would ease identification. The Tweets were di-
vided into training, development, and test sets and
released to the participants of the shared task along
with tools for preprocessing of the Tweets.

3 Approach & Methodology

3.1 Conditional Random Field

One approach we used to perform NE recogni-
tion in this shared task was the usage of condi-
tional random fields (Lafferty et al., 2001), a tech-
nique used for sequence labeling. More specifi-
cally, python-crfsuite (Peng and Korobov, 2014)
was used, a Python wrapper around CRFsuite
(Okazaki, 2007), an implementation of CRFs in
C/C++. CRFs work by looking at several words



121

and their features and expected classification (in
this case the NE classification) as examples and
using the information gained to predict classifica-
tions on future data that has not been seen before.
For our use of CRFsuite, the values of 1.0 for L1
and 0.001 for L2 regularization (from the NER ex-
ample provided by the package) were used with a
total of 150 training iterations. All other parame-
ters were left at their default values.

3.1.1 Features Used
Several different features of the tweets as whole
and individual tokens were used as input, some of
which rely on external resources to generate. Ini-
tially we developed our features on the ENG-SPA
dataset. Interestingly many of the features used for
ENG-SPA performed well on the MSA-EGY data.
Inspiration for the features used was drawn from
various papers from the First Workshop on CALCS
(Chittaranjan et al., 2014; Lin et al., 2014). The
features used can be grouped into five categories:

1. Word features: lowercase copy of the word,
its two last characters, length, whether it is
the first word or not, whether this word is all
alphanumeric characters (only for the MSA-
EGY dataset), if this word is made up of dig-
its or not, and if the word contains emoji.

2. Capitalization: is the word all uppercase or
title case?

3. Language tags: off-the-shelf taggers from the
Natural Language Toolkit (NLTK) (Bird and
Loper, 2004) were used to perform NE and
part of speech (POS) tagging on one tweet at
a time and the tags were applied to individual
tokens.

4. Language detection: in the ENG-SPA
dataset only, language detection on entire
tweets was done using langdetect, a Python
port (Danilák, 2017) of language-detection
(Nakatani, 2010) originally written in Java.
Probabilities of the tweet being English or
Spanish rounded to 2 digits after the decimal
point were used. If the tweet was classified
as neither English or Spanish, the probabil-
ity was set to be 0. For example, “Quiero un
roadtrip asap” was falsely classified as Ro-
manian.

5. Twitter functionality: does the overall tweet
contain an @mention or #hashtag? Is this

word itself one of the two? Is this a URL?

A subset of the features mentioned above were
applied to the next and previous words and used
as features to classify the current word: the word
in lowercase form, its last two characters, if it is
the first word, title case, uppercase, a URL, @-
mention, or #hashtag, if it contains an emoji, its
NE and POS tag classification by NTLK.

Additional features have been experimented
with and their results are included in section 4.
These features include the last three characters of
the word, whether it contains a digit (not if it is
a digit itself), or if it is made up of exclusively
ASCII characters.

3.2 Deep / Wide Model
The deep and wide architectures have had recent
success for the use of recommendation engines
(Cheng et al., 2016), but here we adapt it for the
use of NER. Deep and wide architectures have
the benefit of embedding categorical variables in
a vector space allowing for unseen feature combi-
nations and the use of cross-product feature trans-
formations for effective and interpretable features.
This combination of cross-product feature combi-
nations and dense embeddings allows for deep and
wide models to memorize and generalize to the
input data while reducing feature engineering ef-
forts.

Figure 1: layers in wide (left) and deep (right)
models

3.2.1 Training process
The model was trained using Tensorflow, an open-
source machine learning framework designed by
Google (Abadi et al., 2016). The classifier pro-
vides a general purpose wide and deep learning
model for users to train. The wide model is a
pre-built linear classifier which attempts to clas-
sify each word in a particular tweet based on val-
ues from their linear combinations.

The deep model used a pre-built neural net-
work to classify the data by letting its features
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propagate through the network. Using Python,
Tweets from the tsv file were first parsed into a
internal data model where the features are com-
puted as properties of the individual words. The
model outputs a csv file with each feature listed
as a column that can be conveniently passed to
the DNNLinearCombinedClassifier. We
used a subset of the CRF features including the
word itself, capitalization of the word, word type,
and the adjacent words.

The wide portion of the model enables NER
tagging through linear properties. Features were
inputted as the base column to provide informa-
tion to the activation layer of the neural network.
Some features such as the word, word’s capital-
ization, word’s type were cross validated as a set
and hence would make the model recognize that
these grouped features would have dependencies
among themselves. Implementing a neural net-
work, the deep model greatly increased the train-
ing time with a ratio of roughly 1:20 per iteration.
The models did not perform well against the CRF
possibly due to a lack of features, hence the CRF
was used in the final submission of the project.

4 Results & Analysis

4.1 CRF Performance

Our submission for the shared task was evaluated
using both the harmonic mean F1 and the sur-
face forms F1 metrics (Derczynski et al., 2017)
on each dataset. In line with the baseline perfor-
mance, our system performs better on the MSA-
EGY data than the ENG-SPA data despite the
difference in data size. The scores on the two
challenges were 65.62 for MSA-EGY and 54.16
for ENG-SPA. After the shared task submission
closed, we continued experimenting with different
features. The F1-scores (computed using scikit-
learn (Pedregosa et al., 2011)) of the CRF trained
on the training data set and evaluated on the test-
ing set using various configurations of features are
shown in table 2. These results are different from
those submitted to the competition as they were
evaluated on a different data set.

Inclusion or omission of certain features af-
fected the two sets of data differently: for exam-
ple including the ASCII feature improves scores
for ENG-SPA but decreases that for MSA-EGY.
The last row (special) shows an attempt to max-
imize the score by combining successful individ-
ual features and while scores do increase, this at-

tempt does not perform as well as expected. For
ENG-SPA the submitted configuration excluding
POS and NE seems to work best while the submit-
ted configuration with a combination of changes
(shown in table 1) works best for MSA-EGY go-
ing by F1-score.

Table 1 shows the features that were modified
for use. An asterisk (*) indicates that this is a
change compared to the submitted configuration
a. Rows not included are features that remained
unchanged throughout.

4.2 NN Performance
As shown in table 3, the F1-score was subopti-
mal due to a low recall score. Two different mod-
els, one implementing only the wide portion and
the other implementing the deep and wide models
were trained with features extracted from the data
set. Three different variants of the features and the
results are displayed in table 2. Surprisingly, the
wide model showed an overall better performance
than the wide and deep model. This may be due
to a lack of the features extracted from the dataset
for the deep learning to build on. The lack of recall
may occur due to the same reason, which eventu-
ally leads to the rejection of this model.

5 Conclusion

In this paper, we described the University of Texas
BATs research group’s submission for the CALCS
2018 Shared Task for NER. We found that some
features improved results of the CRF model on
one language combination, but not on the other. In
both cases, our CRF model outperformed the base-
line NER performance. However, training an NN
using the same features as the CRF did not signif-
icantly improve F1-scores, but further feature en-
gineering on or combination of both models could
improve the performance.
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ENG-SPA MSA-EGY
Features a b c d e f g h a b c d e f g h
en prob X X * X X X X
es prob X X * X X X X
ar prob X* X*
last 3 chars X* X* X* X*
has emoji X X X X * X X * X X X X * X X *
ascii X* X* X*
NE X X X X X * X * X X X X X * X *
POS X X X X X * X * X X X X X * X *
two words X* X X X X X X * X

Table 1: Feature configurations

ENG-SPA MSA-EGY
Configuration precision recall F1-score precision recall F1-score
a (submission) 0.69 0.25 0.32 0.86 0.68 0.76
b (include last 3 characters) 0.67 0.26 0.33 0.84 0.7 0.76
c (toggle language probabilities) 0.49 0.24 0.31 0.86 0.68 0.76
d (check for ascii) 0.73 0.25 0.34 0.86 0.67 0.75
e (no emoji) 0.71 0.25 0.33 0.87 0.68 0.76
f (exclude POS and NE tags) 0.69 0.27 0.34 0.86 0.68 0.76
g (toggle surrounding two words) 0.50 0.23 0.30 0.84 0.65 0.73
h (special) 0.63 0.27 0.33 0.84 0.71 0.77

Table 2: Performance of CRF on various configurations

ENG-SPA (Wide model only) ENG-SPA (Deep + Wide model)
Configuration precision recall F1-score precision recall F1-score
original 0.23 0.03 0.05 0.22 0.0373 0.06
excluding next word 0.28 0.04 0.07 0.13 0.02 0.03
excluding next word and length 0.31 0.04 0.07 0.13 0.03 0.05

Table 3: Performance of NN on various configurations
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Rodrı́guez. 2015. Sentiment analysis on monolin-
gual, multilingual and code-switching twitter cor-
pora. In Proceedings of the 6th Workshop on Com-
putational Approaches to Subjectivity, Sentiment
and Social Media Analysis, pages 2–8.

https://doi.org/10.1145/2988450.2988454
https://doi.org/10.1145/2988450.2988454
https://github.com/Mimino666/langdetect
https://github.com/Mimino666/langdetect
http://aclweb.org/anthology/W17-4418
http://aclweb.org/anthology/W17-4418
http://aclweb.org/anthology/W17-4418
https://github.com/shuyo/language-detection
https://github.com/shuyo/language-detection
http://www.chokkan.org/software/crfsuite/
http://www.chokkan.org/software/crfsuite/
https://python-crfsuite.readthedocs.org/
https://python-crfsuite.readthedocs.org/


125

Ayah Zirikly and Mona Diab. 2015. Named entity
recognition for arabic social media. In Proceedings
of the 1st Workshop on Vector Space Modeling for
Natural Language Processing, pages 176–185.


