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Abstract

We explore the effect of injecting back-
ground knowledge to different deep neural
network (DNN) configurations in order to
mitigate the problem of the scarcity of an-
notated data when applying these models
on datasets of low-resourced languages.
The background knowledge is encoded
in the form of lexicons and pre-trained
sub-word embeddings. The DNN mod-
els are evaluated on the task of detecting
code-switching and borrowing points in
non-standardised user-generated Algerian
texts. Overall results show that DNNs ben-
efit from adding background knowledge.
However, the gain varies between models
and categories. The proposed DNN archi-
tectures are generic and could be applied
to other low-resourced languages.

1 Introduction

Recent success of DNNs in various natural lan-
guage processing (NLP) tasks has attracted atten-
tion from the research community attempting to
extend their application to new tasks. Neverthe-
less, the large amount of labelled data required to
train DNNs limits their application to new tasks
and new languages because it is hard to find large
labelled corpora for these domains. The issue is
even more severe for low-resourced languages.

Another serious problem with most current
NLP approaches and systems is that they are
trained on well-edited standardised monolin-
gual corpora, such as the Wall Street Journal,
Wikipedia, etc. This could be explained by the
fact that for a long time NLP has been influenced
by the dominant descriptive linguistic theories af-
fected by the standard language ideology which
assumes that natural languages are uniform and

monolingual. However, standardisation is not uni-
versal (Milroy, 2001), meaning that not all lan-
guages are standardised. Therefore, lexical, struc-
tural and phonological variation is, for instance,
the norm in natural language and not an excep-
tion, meaning that well-edited texts do not really
reflect the natural usage of natural languages, but
only represent formal languages.

The discrepancy between the assumed unifor-
mity of language both in linguistic theory and
NLP and their variable nature is accentuated by
new technologies, such as social media platforms
and messaging services. These new communica-
tion platforms have facilitated the proliferation of
writing in non-standardised languages on the web,
such as colloquial Arabic or what is commonly re-
ferred to as dialectal Arabic. This is because in
interactive scenarios people usually use spoken-
like (colloquial) language or, in multilingual so-
cieties where people have access to several lin-
guistic codes at the same time, a mixture of lan-
guages/language varieties. Consequently, this new
kind of written data has created a serious problem
regarding the usability of the existing NLP tools
and approaches as they fail to properly process it,
even in the case of well-resourced languages.

The contribution of the paper is to explore how
to mitigate the problems (i) of the scarcity of anno-
tated data when using DNNs with low-resourced
languages, and to what extent can we take advan-
tage of the limited available resources, and (ii)
to provide NLP approaches and tools that would
be able to deal with non-standardised texts and
language-mixing. In particular, for (i) we investi-
gate what are the optimal ways of injecting avail-
able background knowledge to different configu-
rations of DNNs in order to improve their per-
formance. For (ii) we take the case of the lan-
guage used in Algeria as it poses serious chal-
lenges for the available NLP approaches and tools.
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It is a low-resourced multilingual colloquial lan-
guage. We chose the task of a word-level lan-
guage identification which is a first step towards
processing such texts. The task focuses on detect-
ing code-switching and borrowing points in a text
which represents the same utterance. Knowing
what parts of text belong to what language variety
allows to perform better qualitative and quantita-
tive analysis of such texts with other tools.

The paper is organised as follows: in Section 2
we briefly describe the complex linguistic situa-
tion in Algeria as a result of a language contact.
The section aims to explain the linguistic chal-
lenges of processing such texts and motivates our
choices based on established sociolinguistic theo-
ries. In Section 3 we present our available linguis-
tic resources and different DNN configurations. In
Section 4 we describe our experimental setup and
analyse the results. Finally, in Section 5 we com-
pare our contribution to previous related work.

2 Linguistic Background

In North Africa in general, and in Algeria in par-
ticular, intense language contact between various
related and unrelated languages has resulted in
a complex linguistic situation where several lan-
guages are used in a single communicative event.
A few cases of language contact have attracted
the attention of the linguistic community while the
monolingual norm dominates in linguistics. One
kind of language contact situation has been de-
scribed by Ferguson (1959) as diglossia which
refers to a situation where two linguistic systems
coexist in a functional distribution within the same
speech community. In another kind of language
contact situations, several languages coexist but
not in a well-defined functional distribution. This
situation is referred to as bilingualism (Sayahi,
2014) which could result from either informal con-
tact between coexisting languages like Berber and
Arabic, or from formal education where in addi-
tion to other language people learn French with
varying degrees of competence.

Based on the Fishman’s model (Fishman,
1967), North African Arabic, known as Maghrebi
Arabic, is classified as a linguistic situation in
the speech community characterised by diglossia
with bilingualism. The intense language contact
between related and unrelated languages has re-
sulted mainly in two widespread linguistic phe-
nomena: code-switching and borrowing. As de-

fined by Poplack and Meechan (1998), code-
switching is (ideally) integration of material from
one language to another without any phonological,
morphological or syntactic integration, whereas
borrowing is when material is integrated.

For computational purposes, we focus on
diglossic code-switching (Sayahi, 2014), which
happens between related languages such as
switching between Arabic varieties, and bilingual
code-switching, which happens between unrelated
languages such as switching between one Ara-
bic variety and other coexisting language such as
Berber, French or English. Regarding borrowing,
it is practically not possible to clearly distinguish
whether a word in one Arabic variety is integrated
into another variety or not because there are no
lexicons for Arabic varieties, except for the stan-
dard one, and we also do not have access to acous-
tic representations of words. Based on this, we
can practically focus only on bilingual borrowing
rather than on diglossic borrowing.
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b. Put a small towel in a cup of water and
dissolve Aspegic in it and cover him
with it, it is what I usually do. He will
feel quickly better.

As illustration, (1) is a user-generated utterance
which contains words in Modern Standard Arabic
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3 Linguistic Resources and Models

3.1 Linguistic Resources

We use the dataset by (Adouane and Dobnik,
2017) where each word is tagged with a label
identifying its category which could be a lan-
guage/language variety, including local Arabic va-
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rieties (ALG), Modern Standard Arabic (MSA),
French (FRC), Berber (BER), English (ENG),
non-Arabic words integrated in local Arabic or
what is referred to as borrowing (BOR), in addi-
tion to language independent categories such as
named entities (NER), digits (DIG) and interjec-
tions (SND). To the best of our knowledge this
is the only available labelled dataset for code-
switching and borrowing for Algerian. As the la-
belled dataset is small, we also collected a larger
unlabelled dataset from the same sources as the
authors of the labelled dataset, and pre-processed
them in the same way. Table 1 gives information
about the datasets where texts refer to social media
texts with an average length of 19 words, words
refer to linguistic words excluding other tokens
(digits, punctuation, emoticons), and types refer
to unique words.

Dataset #Texts #Words #Types
Labelled 10,590 213,792 57,054
Unlabelled 311,130 4,928,827 350,759

Table 1: Statistics about the datasets.

We also use the lexicons compiled by the authors
of the labelled dataset, with further cleaning. The
lexicons include lists of inflected words checked
manually, one list per category. Words belonging
to more than one category are not included. Ta-
ble 2 gives more information about the sizes of the
lexicons.

Category ALG MSA FRC BOR NER ENG BER

#Types 42,788 94,167 3,206 3,509 1,945 165 21,789

Table 2: Statistics about the lexicons.

3.2 Models
We approach the task of detecting code-switching
and borrowing points in text as a sequence tag-
ging problem where the aim is to assign a tag to
each word in the text depending on its context.
We use two DNN architectures, namely Recurrent
Neural Network (RNN) and Convolutional Neu-
ral Network (CNN) with different configurations
summarised in Figure 1.

The first option is to use an RNN to map char-
acter embeddings to tags directly. Alternatively,
we can use word embeddings. Word embedding

word embeddings

tags

FastTextLexicon char embeddings

CNN

RNN CNN RNN

Figure 1: A summary of possible tagging models.

can be any combination of (a) fixed lexicon infor-
mation (b) fasttext embeddings (c) a custom CNN
built from character embeddings. The word em-
beddings can be mapped to tags using either an
RNN or a CNN, or a simple dense layer with soft-
max activation.

Except for the pure Lexicon-based model, all
other models have access to characters and thus
to the internal structure of words (phoneme and
morphemes), which we expect to be predictive of
a particular variety. All models are trained end-
to-end, except for the fasttext embeddings and the
lexicon. We report only the configurations of mod-
els which give the best performance, with the fine-
tuned parameters, namely the number of units for
each RNN layer, dropout rate, the number of fea-
tures and the filter size for each CNN layer. The
parameters are fine-tuned on a separate develop-
ment set containing 1,000 texts (13,771 tokens).

3.2.1 Character-level RNN

The character-level RNN is composed of two
LSTM layers of 400 units each, with a dropout of
10%, followed by a dense layer with softmax acti-
vation. Due to the nature of RNNs, the network as-
signs one language variant per input symbol, and
thus per character — but the task is to predict a
tag for each word. To deal with this limitation, we
consider only the tag associated with the last char-
acter of a word.

3.2.2 Word-level RNN

The word-level RNN is composed of a standard
LSTM layer with 400 units with a dropout of 10%,
followed by a dense layer.

3.2.3 Character-level CNN

The character-level CNN is composed of two con-
volution layers with 60 features with a filter size
5, with a relu activation and a dropout of 10%, fol-
lowed by max pooling in the temporal dimension.
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3.2.4 Word-level CNN
The word-level CNN is composed of two convolu-
tion layers with a filter size 3, with a relu activation
and a dropout of 10%, followed by a dense layer
with softmax activation. The first layer uses 100
features and the second 60 features.

3.2.5 Lexicon-based Model
In order to take advantage of the available lexi-
cons, Table 2, we represent their words as one-hot
encoding vector, which we refer to as lexicon em-
beddings. The lexicon-based model is composed
of the lexicon embeddings followed by two con-
volution layers with a filter size 3, with a relu acti-
vation and a dropout of 10%, followed by a dense
layer with softmax activation. The first layer uses
100 features and the second 60 features.

3.2.6 FastText-based Model
In order to take advantage of the unlabelled
dataset, Table 1, containing a high level of mis-
spellings and spelling variation, we assume that
word embeddings that are based on sub-word in-
formation capture spelling variation and morpho-
logical information better than the embeddings
that take word as a unit. For this purpose we use
FastText library designed to train word embed-
dings where a word is represented as the sum of
its sub-strings (Bojanowski et al., 2016). We cre-
ated five fasttext embeddings trained on the unla-
belled dataset with different parameters. We found
that the optimal parameters are: word vector di-
mension of 300, and the range of the size of the
sub-strings representing a word between 3 and 6
characters, with a context size of 5 words, trained
on 20 epochs. The FastText-based model is com-
posed of the fasttext embeddings followed by two
convolution layers with filter size 3, with a relu ac-
tivation and a dropout of 10%, followed by a dense
layer with softmax activation. The first layer uses
100 features and the second 60 features.

4 Experimental Setup and Results

All models and configurations are evaluated under
the same conditions using 10-fold cross-validation
on the labelled dataset. As a baseline we take an
existing system (Adouane and Dobnik, 2017), a
classification-based system which uses a chain of
additional back-off strategies which involve lexi-
cons, linguistic rules, and finally the selection of
the most frequent category. We refer to this sys-
tem as the baseline.

First, we train the RNN and CNN models only
on the labelled data (supervised learning) with-
out any background knowledge. We also examine
the effect of the FastText-based and the Lexicon-
based models separately to quantify the contribu-
tion of each. Then we combine both models to
optimise their performance. Second, in order to
take advantage of all available linguistic resources,
we add to each of the RNN and the CNN mod-
els background knowledge in the form of (i) lex-
icon embeddings; (ii) fasttext embeddings; (iii) a
combination of both lexicon and fasttext embed-
dings; and (iv) bootstrap the unlabelled dataset
with the baseline system and train the best per-
forming DNN model on it to investigate whether
bootstrapping improves its performance.

All results are reported as the average perfor-
mance of the 10-fold cross-validation for each
model at epoch 100 using the parameters men-
tioned earlier. For short, we use FastText to refer
to the FastText-based model and fasttext to refer
to the fasttext embeddings, Lexicon to refer to the
Lexicon-based model and lexicon to refer to the
lexicon embeddings.

4.1 Models without Background Knowledge
In Table 3 we report the average error rate of the
experiments without background knowledge for
only the best performing RNN, CNN, Lexicon,
and FastText models.

Model ER (%)
1 Char-level RNN 13.38
2 Char-level CNN 8.18
3 FastText 16.46
4 Lexicon 20.62
5 FastText + Lexicon 9.21
6 Baseline 9.52

Table 3: Average error rate of the models without
background knowledge.

Results show that the baseline (6) outperforms the
Char-level RNN (1), FastText (3) and Lexicon (4)
models. However, the baseline is outperformed
by the Char-level CNN model (2) with 1.34% er-
ror reduction. Combining FastText and Lexicon
in one model (5) performs much better than using
each model separately, and slightly outperforms
the baseline by 0.31% error reduction.

In Figure 2 we report the average performance
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of each model per category, measured as precision,
recall, f-score and loss. Notice that we do not re-
port the loss for the baseline because of the way
the system was designed. The results show that
the baseline system performs better on the major-
ity categories, ALG and MSA, with an average f-
score of 91.91 and 90.44 respectively as well as on
non-linguistic categories like DIG and SND with
an average f-score of 97.17 and 93.88 respectively.

However, the baseline system performs less
well on the minority categories, BER and FRC
with an average f-score of 80.41 and 80.31 re-
spectively, and performs even worse on NER and
BOR with an average f-score of 72.55 and 64.70
respectively. It performs the worst on ENG with
an average f-score of 49.45. Regarding the minor-
ity categories, precision is high on BER (94.51%),
BOR (93.61%), FRC (92.97%) and lower on NER
(88.20%) and ENG (71.41%). However the re-
call is low on all categories BER (72.76%), FRC
(70.70%), NER (61.74%) and the lowest on BOR
(49.44%), and ENG (39.37%).

The error analysis of the baseline system shows
that the system is mostly confused between re-
lated language varieties like ALG-MSA as they
share a lot of words, as well as between varieties
that share lexically ambiguous words like FRC-
ALG, BOR-ALG, FRC-BOR, NER-ALG, BER-
ALG. Several words were neither seen in the train-
ing data nor were they covered by the available
lexicons which, given that the unknown words
are tagged as ALG, leads to confusions such as
ENG-ALG, NER-ALG, BER-ALG, BOR-ALG,
and FRC-ALG.
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b. Since they said that they will cut water
next week, I have bought a load of 20
bottles of Saida of 1.5 litre.

The MSA-NER confusion is mainly caused by
the fact that many NERs are simply common
nouns in MSA. For instance, �

èY J
 ª � could be an
adjective in the feminine form in MSA meaning
happy, or a feminine proper name, or something
else. In the context of example (2) it is NER as it
refers to the name of a product. The word AÓ means
water in ALG, but it is also used as a negation
particle in MSA and frequently in ALG, a relative

pronoun in MSA, and a noun meaning mother in
ALG. Likewise �

é«Q
�
¯ means bottle in ALG, but it

also means contest or competition in MSA.
The f-score and precision of the Char-level

RNN model is lower from the baseline on all cat-
egories, and the recall is better on BOR 64.11%
compared to only 49.44% on the baseline, and
FRC 72.12% compared to 70.70% respectively.
ENG, BER, NER, BOR and FRC are the hardest
categories to identify with the following respec-
tive loss values: -9.56, -6.72, -3.89, -3.57, -2.80,
and all categories are confused with ALG, the ma-
jority class.

The f-score of the Char-level CNN model is bet-
ter on SND, MSA, FRC, DIG, BOR, ALG com-
pared to the baseline, but it performs worse on
NER, ENG, BER. This could be contributed by
the worse recall on these categories which follows
the same trend as the f-score. However, in terms
of precision, the Char-level CNN model performs
better on ALG, BER, ENG and SND and worse
on the remaining categories, with the same kind of
confusions as the baseline.

The f-score of the FastText model is low on all
categories compared to the baseline. The same
holds for recall and precision except on BER
where the precision is better 96.18% compared
to 94.51% on the baseline. The model produces
the same kind of errors as the previous models,
but which are most similar to the Char-level CNN
model.

Compared to the baseline, the Lexicon model
performs better in terms of the f-score on BOR
(80.94 compared to 64.70), ENG (73.72 compared
to 49.45), and FRC (83.60 compared to 80.30).
However it performs significantly worse on BER
(18.31 compared to 80.41). This is likely because
of the limited coverage of the lexicons. The re-
sults also indicate the bias of the lexicons to those
categories that are more difficult to distinguish au-
tomatically. On the other hand, in terms of the re-
call, the Lexicon model outperforms the baseline
on all categories, except on ALG. In terms of the
precision, it is only better on ALG and ENG. The
model makes similar errors as the FastText model,
only more frequently.

Combining FastText and Lexicon models has
a positive effect as the f-score, recall and preci-
sion increase on all categories, mainly on BOR (f-
score of 47.10 to 84.74), ENG (F-score of 32.05 to
70.59) and NER (f-score of 58.90 to 80.35). The
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Figure 2: Average performance of each model per category.
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combined model makes the same errors as previ-
ous models but less frequently.

Overall, the results in this section show that
a simple Char-level CNN model outperforms the
more complicated baseline system which uses a
back-off strategy and extra resources. However
the Char-level CNN model performs worse on the
minority classes, particularly on NER, ENG and
BER. On the other hand, the other models perform
better on the minority classes in terms of recall, but
they perform worse on the remaining categories
because of the limited coverage of the lexicons or
because of lexical ambiguity. This means that the
performance of these models is in complementary
distribution. We will explore this observation in
the following section.

4.2 Models with Background Knowledge

One possible improvement of the models in Sec-
tion 4.1 is to inject information from the lexicons
and the knowledge encoded in the fasttext to the
DNN models. In Table 4 we report the average
error rate of only the best performing experiments
combining different models and resources.

Model ER (%)
1 Char-level RNN + lexicon 8.27
2 Word-level RNN + fasttext 8.20
3 Word-level RNN + fasttext + lexicon 5,34
4 Char-level CNN + lexicon 5.18
5 Word-level CNN + fasttext 9.75
6 Char-level CNN + lexicon + fasttext 6.23
7 Char-level CNN + lexicon + Bootstrapping 5.23
8 Baseline 9.52

Table 4: Average error rate of the models with
background knowledge.

The results show that RNN models (with original
error rate of 13.38% for Char-level RNN) benefit
from both adding the lexicon (1) and the fasttext
(2). The gain is even higher when combining both
with the Word-level RNN (3). The CNN mod-
els behave differently when adding lexicon and
fasttext. The Char-level CNN (4) performs best
with the lexicon with 3% error reduction. The
Word-level CNN (5) performs worse with fasttext
compared to basic Char-level CNN introducing a
1.57% increase in the error rate (Table 3). Also the
Char-level CNN (6) does not benefit from combin-
ing lexicon and fasttext. It appears that the latter
introduces noise that CNN is sensitive to. Like-
wise, additional bootstrapped training data does
not help the otherwise best performing Char-level

CNN + lexicon model (7). This may be also ex-
plained by the additional noise in the bootstrapped
data.

Figure 2 indicates that adding lexicon informa-
tion has a positive effect on the overall perfor-
mance of the RNN models. The gain from the
lexicons is noticeable on all categories where pre-
cision, recall and f-score increase, most impor-
tantly on BER, BOR, ENG, FRC and NER. The
same kind of errors are present as with the previ-
ous models but fewer in number. For instance the
number of errors between ALG-MSA drops from
1,077 to 724, and between FRC-ALG from 104 to
64.

Adding lexicon information to the Char-level
CNN model boosts its overall performance over
models not using lexicons. All the categories ben-
efit from the lexicon information and their f-score,
recall and precision increase, most importantly on
the minority categories such as ENG, with the
same errors but less frequent. However, adding
fasttext does not improve the performance of the
Word-level CNN model. Its average f-score de-
creases on all categories except on ENG where it
increases from 22.76 to 29.91.

Compared with the Char-level CNN + lexicon
model, adding fasttext to Char-level CNN does not
have the same positive effect. The only signifi-
cant gain is an increase in precision on ENG from
82.59% to 84.79%. Char-level CNN + fasttext +
lexicon model performs better than the FastText +
Lexicon model. It seems that fasttext does not help
the CNN model.

On the other hand, adding fasttext to an RNN
boosts its performance. The error rate drops to
13.38% (Char-level RNN) and 8.20% (Word-level
RNN). While the precision of each category im-
proves, the recall drops on both BOR and ENG
categories, by 3.35% and 1.97% respectively. The
f-score increases on all categories except on ENG
where it drops by 1.76%.

Examining the effect of lexicon and fasttext
on the RNN models, we find that the preci-
sion on the minority categories, chiefly BOR,
ENG, FRC, NER is higher when adding lexicon
(87.10%, 78.77%, 88.36%, and 86.77%) com-
pared to when adding fasttext (73.26%, 66.37%,
84.45% and 78.07%), but the precision on BER is
better when adding the fasttext (96.18% compared
to 91.51%). The same trend is observed for re-
call where BER is the only category that benefits
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from fasttext compared to lexicon (70.65% com-
pared to 66.47%). ENG is the category which is
most negatively effected when adding fasttext with
a drastic decrease of 36.45% (23.62% with fasttext
and 60.07% with lexicon), followed by BOR with
18.98% decrease, and NER with 7.54% decrease.
The f-scores have the same pattern as the recall.

A gain of adding lexicon to the Word-level
RNN + fasttext model is observed on all cate-
gories. While precision increases on all categories,
for example on ENG from 78.77% without the lex-
icon to 88.04% with the lexicon, it slightly de-
creases for NER from 86.77% to 85.97% and SND
from 99.00% to 98.86%. The recall and f-score in-
crease on all categories.

The gain from using the bootstrapped data is
mainly reflected in an increase in precision on the
minority categories such as ENG, BOR, FRC and
NER (93.04%, 96.71%, 96.68% and 93.85% com-
pared to 82.60%, 90.56%, 91.31% and 89.43% re-
spectively without using the bootstrapped data). In
terms of recall, the bootstrapped data only boosts
ALG and SND categories. The f-scores of the
model trained without the bootstrapped data are
better on all categories. The insignificant effect of
the bootstrapped data could be attributed to the ad-
ditional noise introduced by the baseline system.

5 Related Work

The emerging digitised multilingual data that
followed the introduction of new technologies
and communication services has attracted atten-
tion of the NLP research community in terms
of how to process such linguistic data that
resulted from language contact between sev-
eral related and unrelated languages, for ex-
ample in detection of code-switching where
mainly traditional sequence labelling methods are
used for Bengali-English-Hindi (Barman et al.,
2014a), Nepali-English (Barman et al., 2014b),
Spanish-English and MSA-Egyptian Arabic (Diab
et al., 2016), MSA-Moroccan Arabic (Samih
and Maier, 2016), MSA-Algerian Arabic-Berber-
French-English (Adouane and Dobnik, 2017), etc.

The work most closely related to ours is de-
scribed in (Samih et al., 2016) who used a super-
vised LSTM-RNN model combined with Condi-
tional Random Fields to detect switching points
between related languages (MSA - Egyptian Ara-
bic) trained on a small dataset from Twitter. How-
ever, the system was only evaluated on the major-

ity categories. Similarly, Kocmi and Bojar (2017)
proposed a supervised bidirectional LSTM-RNN
trained on artificially created multilingual edited
texts. These does not fully reflect all the complexi-
ties of real linguistic use in a multilingual scenario.

Adouane et al. (2018) propose a character-level
GRU-RNN on the same task as described here
backed by the available unlabelled data. They re-
port that their supervised RNN model performs
the best on labels with more representative sam-
ples. Adding neural language model that was pre-
trained on noisy unlabelled data does not help,
but bootstrapping the unlabelled data with another
system improves the performance of all their sys-
tems. In this work we use different DNN ar-
chitectures (RNNs and CNNs), and we aim to
examine the behaviour of each model when in-
jecting background knowledge in the form of en-
coded information from the available lexicons and
a pre-trained sub-word embeddings from unla-
belled data. Our goal is to take advantage of the
available NLP resources, with as little processing
as possible to mitigate the problem of scarce an-
notated data.

6 Conclusion

We have presented DNN models for detect-
ing code-switching and borrowing for an under-
resourced language. We investigated how to
improve these models by injecting background
knowledge in the form of lexicons and/or pre-
trained sub-word embeddings trained on an unla-
belled corpus, thus taking advantage of the scarce
NLP resources currently available. The results
show that the models behave differently for each
category of added knowledge. While adding in-
formation from the lexicons markedly improves
the performance of all models, adding knowledge
in the form of pre-trained sub-word embeddings
improves the RNN model more than the CNN
model. Bootstrapping does not bring a significant
overall contribution to performance of our mod-
els which is surprising given the previous reports
in the literature. However, it does boost preci-
sion of the minority categories. One future di-
rection worth exploring is how to deal with the
problem of misspellings and spelling variations to
reduce the irregularities in non-standardised user-
generated data as this appears to have a strong ef-
fect on the performance of RNN and CNN models.
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