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Abstract

Knowledge Graph (KG) embedding
projects entities and relations into low
dimensional vector space, which has been
successfully applied in KG completion
task. The previous embedding approaches
only model entities and their relations,
ignoring a large number of entities’
numeric attributes in KGs. In this paper,
we propose a new KG embedding model
which jointly model entity relations and
numeric attributes. Our approach com-
bines an attribute embedding model with
a translation-based structure embedding
model, which learns the embeddings of
entities, relations, and attributes simulta-
neously. Experiments of link prediction
on YAGO and Freebase show that the
performance is effectively improved by
adding entities’ numeric attributes in the
embedding model.

1 Introduction

Recently, a number of Knowledge Graphs
(KGs) have been created, such as DBpe-
dia (Lehmann, 2015), YAGO (Mahdisoltani
et al., 2015), and Freebase (Bollacker et al.,
2008). KGs encode structured informa-
tion of entities in the form of triplets (e.g.
〈Microsoft, isLocatedIn, UnitedStates〉), and
have been successfully applied in many real-
world applications. Although KGs contain a huge
amount of triplets, most of them are incomplete.
In order to further expand KGs, much work on KG
completion has been done, which aims to predict
new triplets based on the existing ones in KGs. A
promising group of research for KG completion
is known as KG embedding. KG embedding
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approaches project entities and relations into a
continuous vector space while preserving the orig-
inal knowledge in the KG. KG embedding models
achieve good performance in KG completion in
terms of efficiency and scalability. TransE is a
representative KG embedding approach (Bordes
et al., 2013), which projects both entities and
relations into the same vector space: if a triplet
〈head entity, relation, tail entity〉 (denoted as
〈h, r, t〉) holds, TransE wants that h + r ≈ t.
The embeddings are learned by minimizing a
margin-based ranking criterion over the training
set. TransE model is simple but powerful, and
it gets promising results on link prediction and
triple classification problems. There are several
enhanced model of TransE, including TransR (Lin
et al., 2015), TransH (Wang et al., 2014) and
TransD (Ji et al., 2015) etc. By introducing new
representations of relational translation, later
approaches achieve better performance at the
cost of increasing model complexity. Recent
surveys (Wang et al., 2017; Nickel et al., 2016)
give detailed introduction and comparison of
various KG embedding approaches.

However, most of the existing KG em-
bedding approaches only model relational
triplets (i.e. triplets of entity relations),
while ignoring a large number of attributive
triplets (i.e. triplets of entity attributes, e.g.
〈Microsoft, wasFoundedOnDate, 1975〉)
in KGs. attributive triplets describe various
attributes of entities, such as ages of people or
areas of a city. There are a huge number of
attributive triplets in real KGs, and we believe
that information encoded in these triplets is also
useful for predicting entity relations. Having
the above motivation, we propose a new KG
embedding approach that jointly model entity
relations and entities’ numeric attributes. Our
approach consists of two component models,
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structure embedding model and attribute embed-
ding model. The structure embedding model
is a translational distance model that preserves
the knowledge of entity relations; the attribute
embedding model is a regression-based model
that preserves the knowledge of entity attributes.
Two component models are jointly optimized
to get the embeddings of entities, relations, and
attributes. Experiments of link prediction on
YAGO and Freebase show that the performance is
effectively improved by adding entities’ numeric
attributes in the embedding model.

2 Our Approach

To effectively utilize numeric attributes of entities
in KG embedding, we propose TransEA, which
combine a new attribute embedding model with
the structure embedding model of TransE. Two
component models in TransEA share the embed-
dings of entities, and they are jointly optimized in
the training process.

2.1 Structure Embedding

The structure embedding directly adopts the
translation-based method in TransE to model the
relational triplets in KGs. Both Entities and rela-
tions in a KG are represented in the same vector
space Rd. In a triplet 〈h, r, t〉, the relation is con-
sidered as a translation vector r, which connects
the vector of entities h and t with low error, i.e.
h + r ≈ t. The score function of a given triplet
〈h, r, t〉 is defined as

fr(h, t) = −||h+ r− t||1/2 (1)

||x||1/2 denotes either the L1 or L2 norm. For all
the relational triplets in the KG, the loss function
of the structure embedding is defined as:

LR =
∑

〈h,r,t〉∈S

∑
〈h′,r,t′〉∈S′

[γ+fr(h, t)−fr(h′, t′)]+

(2)
where [x]+ = max{0, x}, S′ denotes the set
of negative triplets constructed by corrupting
〈h, r, t〉, i.e. replacing h or t with a randomly
chosen entity in KG; γ > 0 is a margin hyper-
parameter separating positive and negative triplets.

2.2 Attribute Embedding

Attribute embedding model takes all the attribu-
tive triplets in a KG as input, and learns embed-
dings of entities and attributes. Both entities and

attributes are represented as vectors in space Rd.
In an attributive triplet 〈e, a, v〉, e is an entity, a is
an attribute, and v is the value of the entity’s at-
tribute. In our approach, we only consider attribu-
tive triplets containing numeric values or values
can be easily converted into numeric ones. For a
triplet 〈e, a, v〉, we define a score function as

fa(e, v) = −||a> · e+ ba − v||1/2 (3)

where a and e are vectors of attribute a and entity
e, ba is a bias for attribute a. The idea of this score
function is to predict the attribute value by a linear
regression model of attribute a; the vector a and
bias ba are the parameters of the regression model.
For all the attributive triplets in the KG, the loss
function of the attribute embedding is defined as:

LA =
∑

〈e,a,v〉∈T

fa(e, v) (4)

where T is the set of all attributive triplets with
numeric values in the KG.

2.3 Joint Model

To combine the above two component models,
TransEA minimizes the following loss function:

L = (1− α) · LR + α · LA (5)

where α is a hyper-parameter that balances the im-
portance of structure and attribute embedding. In
the joint model, we let the embeddings of entities
shared by two component models. Entities, rela-
tions, and attributes are all represented by vectors
in Rd. We implement our approach by using Ten-
sorFlow1, and the loss function is minimized by
performing stochastic gradient descent.

3 Experiments

3.1 Datasets

The following two datasets are used in the experi-
ments, Table 1 shows their detail information.

YG58K. YG58K is a subset of YAGO3
(Mahdisoltani et al., 2015) which contains about
58K entities. YG58K is built by removing enti-
ties from YAGO3 that appear less than 25 times
or have no attributive triplets. All the remain-
ing triplets are then randomly split into train-
ing/validation/test sets.

1https://www.tensorflow.org
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FB15K. FB15K is a subset of triplets extracted
from Freebase2. This subset of Freebase was
originally used in (Bordes et al., 2013), and then
widely used for evaluating KB completion ap-
proaches. Since our approach consumes attribu-
tive triplets, we extract all the attributive triplets
of entities in FB15K from Freebase to build the
evaluation dataset.

Datasets YG58K FB15K
# Relational Triplets 497783 592213
# Attributive Triplets 130287 24034
# Entities 58130 14951
# Relations 32 1345
# Attributes 24 336
# Train Sets 399480 483142
# Valid Sets 49171 59071
# Test Sets 49132 50000

Table 1: Statistics of datasets

3.2 Experimental setup
In the experiments, Mean Rank (the mean rank of
the original correct entity), Hits@k (the proportion
of the original correct entity to the top k entities),
and MRR (the mean reciprocal rank) are used as
evaluation metrics. Given a testing triplet 〈h, r, t〉,
we replace the head h by every entity in the KGs
and calculate dissimilarity measures according to
the score function fr. Ranking the scores in as-
cending order, then we get the rank of the original
correct triplet to compute the evaluation metrics.
And we repeat the procedure when removing the
tail t instead of the head h. We name the evalu-
ation setting as “Raw”. While corrupted triplets
that appear in the train/valid/test sets (except the
original correct one) may underestimate the met-
rics, we also filter out those corrupted triplets be-
fore getting the rank of each testing triplet and we
call this process “Filter”.

Because our approach is built based on TransE,
we compare our approach with TransE to see
whether adding attribute embedding in the model
improves the performance of link prediction. For
TransE and TransEA, we consider the learning
rate λ among {0.1, 0.01, 0.001}, the margin γ
among {1, 2, 4, 10}, the dimensions of embed-
ding d among {20, 50, 100, 150}, the types of
norm in two score functions among {L1, L2},
and α among {0.2, 0.3, 0.4, 0.5, 0.6}. Based
on the mean rank in validation set, we select
the best configurations for two approaches. On

2https://everest.hds.utc.fr/doku.php?id=en:transe

the YG58K dataset, the best parameter config-
uration for TransE is (λ = 0.1, γ = 4, d =
50, fr = L1, fa = L1), and for TransEA is
(λ = 0.001, γ = 4, d = 50, fr = L1, fa =
L1, α = 0.6). On the FB15K dataset, the best pa-
rameter configuration for TransE is(λ = 0.01, γ =
1, d = 50, fr = L1, fa = L1), and for TransEA
is (λ = 0.001, γ = 2, d = 100, fr = L1, fa =
L1, α = 0.3).

3.3 Results

Table 2 shows the results of link prediction on
YG58K and FB15K datasets. The results of pre-
dicting head and tail entities are outlined sepa-
rately, and we also report the overall results by
considering prediction of both head and tail en-
tity. According to the overall results, TransEA out-
performs TransE on both two datasets in terms of
all the three metrics. TransEA gets lower Mean
Ranks by about 10 on YG58K dataset; the MRR
and Hits@k of two approaches are very close,
TransEA gets slightly better results, the improve-
ments of MRR and Hits@k are 0.1-0.2% and 0-
0.3%. On FB15K dataset, TransEA gets lower
Mean Ranks by 13, and it also gets better re-
sults than TransE according to MRR, Hits@10 and
Hits@3.

Table 3 shows the results of different relational
categories. In general, TransEA has superiority on
two datasets, except one-to-many relation for re-
placing head entity on YG58K. And the improve-
ments on FB15K are larger than YG58K.

In order to figure out which relations are
predicted more accurately by TransEA, Table
4 lists the top 5 improved relations in terms
of Hits@10 on YG58K. It shows the best im-
provement of Hits@10 is 25% for the relation
isInterestedIn. The second one is 12.5%
for hasAcademicAdvisor, and the third
is 6.3% for worteMusicFor. Entities of
these three relations have plenty of numeric
attributes (wasBornOnDate, diedOnDate
) describing people, we believe they are helpful
to improving the embeddings of entity relations.
Entities in relational triplets about livesIn,
(e.g. 〈HankAzaria, livesIn,NewY ork〉), also
have some numeric attributes (hasLatitude,
hasLongtude, hasNumberOfPeople,
etc), therefore TransEA gets a 5% improvement
of Hits@10.

On FB15K dataset, five relations have 100%



135

Dataset Entity Model Mean Rank MRR(%) Hits@10(%) Hits@3(%) Hits@1(%)
Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter

YG58K

Head TransE 950 731 3.1 5.2 9.1 15.4 4.1 8.4 1.0 3.2
TransEA 944 723 3.1 5.4 9.4 16.0 4.1 8.5 1.1 3.4

Tail TransE 240 234 8.4 10.2 27.0 31.9 12.2 17.0 4.5 6.5
TransEA 229 223 8.5 10.5 27.6 32.7 12.4 17.6 4.7 6.8

All TransE 595 482 5.7 7.7 18.0 23.7 8.2 12.7 2.8 4.8
TransEA 586 473 5.8 7.9 18.5 24.3 8.2 13.0 2.9 5.1

FB15K

Head TransE 240 115 14.5 25.2 47.0 68.7 26.2 52.4 11.8 30.6
TransEA 225 100 15.1 28.1 49.5 74.0 28.0 60.1 11.8 34.8

Tail TransE 168 87 17.6 28.2 54.8 75.1 32.8 58.9 16.4 35.7
TransEA 157 76 18.2 30.9 57.5 80.5 34.5 66.6 16.3 40.0

All TransE 204 101 16.0 26.7 50.9 71.9 29.5 55.7 14.1 33.1
TransEA 191 88 16.7 29.5 53.5 77.3 31.3 63.3 14.0 37.4

Table 2: Link prediction results

DATASETS
TASK Predicting Head(Hits@10) Prediction Tail(Hits@10)

REL.CAT 1-to-1 1-to-N N-to-1 N-to-N 1-to-1 1-to-N N-to-1 N-to-N

YG58K TransE 61.4 45.5 15.4 15.5 62.0 18.2 31.9 31.1
TransEA 63.9 36.4 16.0 16.0 63.3 22.7 32.7 31.9

FB15K TransE 78.1 93.8 68.7 72.3 78.0 42.1 75.1 75.6
TransEA 84.3 95.5 74.0 77.6 83.3 52.4 80.5 81.1

Table 3: Hits@10(%) by relational category in the filtered evaluation setting. (N. stand for MANY)

Relation TransE TransEA

isInterestedIn 50.0 75.0
hasAcademicAdvisor 31.3 43.8
wroteMusicFor 12.5 18.8
livesIn 23.8 28.8
hasNeighbor 48.1 52.8

Table 4: Top 5 relations of promoted Hits@10 and
their Hits@10(%) on YG58K

Relation TransE TransEA

business/brand/company 24 2
base/celebrity/restaurant 249 4
base/celebrity/product 24 2
music/artists supported 44 3
sports/competition/country 24 4

Table 5: Top 5 relations of promoted Hit@10 and
their Mean Rank on FB15K

improvements of Hits@10, because TransE
does not correctly predict any correct triplets
in the top 10 ranked ones. We find that these
relations only have one single sample in the
test sets, so Table 5 lists the Mean Rank of
them. Obviously, TransEA improves their Mean
Rank a lot. Entities in triplets of the five rela-
tions have only a few attributes. For example,
the relation business/brand/company
only has one numeric attributive triplet about

organization/dateFounded. And the
relation music/artists supported
has two triplets with numeric attributes
person/dateOfBirth and one triplet
with person/heightMeters. Therefore, the
quality of predicted links can be improved as well
even with only a small number of entities numeric
attributes.

4 Conclusion

In this paper, we propose TransEA, an embed-
ding approach which jointly models relational
and attributive triplets in KGs. TransEA com-
bines an attribute embedding model with the
translation-based embedding model in TransE.
Experiments on YAGO and Freebase show that
TransEA achieves better performance than TransE
in link prediction task. In the future, we will study
how to predict missing attribute values in KGs
based on KG embedding.
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