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Abstract

Context plays an important role in human
language understanding, thus it may also be
useful for machines learning vector repre-
sentations of language. In this paper, we ex-
plore an asymmetric encoder-decoder struc-
ture for unsupervised context-based sen-
tence representation learning. We carefully
designed experiments to show that neither
an autoregressive decoder nor an RNN de-
coder is required. After that, we designed
a model which still keeps an RNN as the
encoder, while using a non-autoregressive
convolutional decoder. We further com-
bine a suite of effective designs to signifi-
cantly improve model efficiency while also
achieving better performance. Our model
is trained on two different large unlabelled
corpora, and in both cases the transferabil-
ity is evaluated on a set of downstream NLP
tasks. We empirically show that our model
is simple and fast while producing rich sen-
tence representations that excel in down-
stream tasks.

1 Introduction

Learning distributed representations of sentences is
an important and hard topic in both the deep learn-
ing and natural language processing communities,
since it requires machines to encode a sentence
with rich language content into a fixed-dimension
vector filled with real numbers. Our goal is to build
a distributed sentence encoder learnt in an unsu-
pervised fashion by exploiting the structure and
relationships in a large unlabelled corpus.

Numerous studies in human language process-
ing have supported that rich semantics of a word or
sentence can be inferred from its context (Harris,
1954; Firth, 1957). The idea of learning from the

co-occurrence (Turney and Pantel, 2010) was re-
cently successfully applied to vector representation
learning for words in Mikolov et al. (2013) and
Pennington et al. (2014).

A very recent successful application of the distri-
butional hypothesis (Harris, 1954) at the sentence-
level is the skip-thoughts model (Kiros et al., 2015).
The skip-thoughts model learns to encode the cur-
rent sentence and decode the surrounding two sen-
tences instead of the input sentence itself, which
achieves overall good performance on all tested
downstream NLP tasks that cover various topics.
The major issue is that the training takes too long
since there are two RNN decoders to reconstruct
the previous sentence and the next one indepen-
dently. Intuitively, given the current sentence, in-
ferring the previous sentence and inferring the next
one should be different, which supports the usage
of two independent decoders in the skip-thoughts
model. However, Tang et al. (2017) proposed the
skip-thought neighbour model, which only decodes
the next sentence based on the current one, and
has similar performance on downstream tasks com-
pared to that of their implementation of the skip-
thoughts model.

In the encoder-decoder models for learning sen-
tence representations, only the encoder will be used
to map sentences to vectors after training, which
implies that the quality of the generated language
is not our main concern. This leads to our two-
step experiment to check the necessity of apply-
ing an autoregressive model as the decoder. In
other words, since the decoder’s performance on
language modelling is not our main concern, it is
preferred to reduce the complexity of the decoder
to speed up the training process. In our experi-
ments, the first step is to check whether “teacher-
forcing” is required during training if we stick to
using an autoregressive model as the decoder, and
the second step is to check whether an autoregres-
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sive decoder is necessary to learn a good sentence
encoder. Briefly, the experimental results show that
an autoregressive decoder is indeed not essential
in learning a good sentence encoder; thus the two
findings of our experiments lead to our final model
design.

Our proposed model has an asymmetric encoder-
decoder structure, which keeps an RNN as the en-
coder and has a CNN as the decoder, and the model
explores using only the subsequent context infor-
mation as the supervision. The asymmetry in both
model architecture and training pair reduces a large
amount of the training time.

The contribution of our work is summarised as:

1. We design experiments to show that an au-
toregressive decoder or an RNN decoder is
not necessary in the encoder-decoder type of
models for learning sentence representations,
and based on our results, we present two find-
ings. Finding I: It is not necessary to input
the correct words into an autoregressive de-
coder for learning sentence representations.
Finding II: The model with an autoregressive
decoder performs similarly to the model with
a predict-all-words decoder.

2. The two findings above lead to our final model
design, which keeps an RNN encoder while
using a CNN decoder and learns to encode the
current sentence and decode the subsequent
contiguous words all at once.

3. With a suite of techniques, our model per-
forms decently on the downstream tasks, and
can be trained efficiently on a large unlabelled
corpus.

The following sections will introduce the com-
ponents in our “RNN-CNN” model, and discuss
our experimental design.

2 RNN-CNN Model

Our model is highly asymmetric in terms of both
the training pairs and the model structure. Specifi-
cally, our model has an RNN as the encoder, and a
CNN as the decoder. During training, the encoder
takes the i-th sentence Si as the input, and then pro-
duces a fixed-dimension vector zi as the sentence
representation; the decoder is applied to reconstruct
the paired target sequence Ti that contains the sub-
sequent contiguous words. The distance between

the generated sequence and the target one is mea-
sured by the cross-entropy loss at each position in
Ti. An illustration is in Figure 1. (For simplicity,
we omit the subscript i in this section.)

1. Encoder: The encoder is a bi-directional
Gated Recurrent Unit (GRU, Chung et al. (2014))1.
Suppose that an input sentence S contains M
words, which are {w1

s , w
2
s , ..., w

M
s }, and they are

transformed by an embedding matrix E ∈ Rde×|V |

to word vectors2. The bi-directional GRU takes one
word vector at a time, and processes the input sen-
tence in both the forward and backward directions;
both sets of hidden states are concatenated to form
the hidden state matrix H = [h1,h2, ...,hM ] ∈
Rdh×M , where dh is the dimension of the hidden
states hm =

[←−
hm;
−→
hm

]
(∀m ∈ {1, 2, ...,M}).

2. Representation: We aim to provide a model
with faster training speed and better transferability
than existing algorithms; thus we choose to apply
a parameter-free composition function, which is a
concatenation of the outputs from a global mean
pooling over time and a global max pooling over
time, on the computed sequence of hidden states
H. The composition function is represented as

z =

[
1

M

M∑
m=1

hm;MaxPool(H)

]
(1)

where MaxPool is the max operation on each
row of the matrix H, which outputs a vector with
dimension dh. Thus the representation z ∈ R2dh .

3. Decoder: The decoder is a 3-layer CNN
to reconstruct the paired target sequence T , which
needs to expand z, which can be considered as
a sequence with only one element, to a sequence
with T elements. Intuitively, the decoder could be
a stack of deconvolution layers. For fast training
speed, we optimised the architecture to make it pos-
sible to use fully-connected layers and convolution
layers in the decoder, since generally, convolution
layers run faster than deconvolution layers in mod-
ern deep learning frameworks.

Suppose that the target sequence T has N words,
which are {w1

t , w
2
t , ..., w

N
t }, the first layer of de-

convolution will expand z ∈ R2dh×1, into a feature
1We experimented with both Long-short Term Memory

(LSTM, Hochreiter and Schmidhuber (1997)) and GRU. Since
LSTM didn’t give us significant performance boost, and gen-
erally GRU runs faster than LSTM, in our experiments, we
stick to using GRU in the encoder.

2V is the vocabulary, and |V | is the number of unique
words in the vocabulary. de is the dimension of each word
vector.
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Figure 1: Our proposed model is composed of an RNN encoder, and a CNN decoder. During training, a
batch of sentences are sent to the model, and the RNN encoder computes a vector representation for each
of sentences; then the CNN decoder needs to reconstruct the paired target sequence, which contains 30
contiguous words right after the input sentence, given the vector representation. 300 is the dimension of
word vectors. 2dh is the dimension of the sentence representation which varies with the RNN encoder
size. (Better view in colour.)

map with N elements. It can be easily implemented
as a concatenation of outputs from N linear trans-
formations in parallel. Then the second and third
layer are 1D-convolution layers. The output feature
map is U = [u1,u2, ...,uN ] ∈ Rde×N , where de
is the dimension of the word vectors.

Note that our decoder is not an autoregressive
model and has high training efficiency. We will
discuss the reason for choosing this decoder which
we call a predict-all-words CNN decoder.

4. Objective: The training objective is to max-
imise the likelihood of the target sequence being
generated from the decoder. Since in our model,
each word is predicted independently, a softmax
layer is applied after the decoder to produce a prob-
ability distribution over words in V at each position,
thus the probability of generating a word wn

t in the
target sequence is defined as:

P (wn
t ) =

eE(wn
t )

>un∑
w∈V eE(w)>un , (2)

where, E(w) is the vector representation of w in
the embedding matrix E, and E(w)>un is the dot-
product between the word vector and the feature
vector produced by the decoder at position n . The
training objective is to minimise the sum of the
negative log-likelihood over all positions in the
target sequence T :

L(φ,θ) = − logP (T |S;φ,θ)

= −
N∑

n=1

logP (wn
t |w1

s , w
2
s , ..., w

M
s ;φ,θ), (3)

where φ and θ contain the parameters in the en-
coder and the decoder, respectively. The training
objective L(φ,θ) is summed over all sentences in
the training corpus.

3 Architecture Design

We use an encoder-decoder model and use con-
text for learning sentence representations in an un-
supervised fashion. Since the decoder won’t be
used after training, and the quality of the generated
sequences is not our main focus, it is important
to study the design of the decoder. Generally, a
fast training algorithm is preferred; thus proposing
a new decoder with high training efficiency and
also strong transferability is crucial for an encoder-
decoder model.

3.1 CNN as the decoder
Our design of the decoder is basically a 3-layer
ConvNet that predicts all words in the target se-
quence at once. In contrast, existing work, such as
skip-thoughts (Kiros et al., 2015), and CNN-LSTM
(Gan et al., 2017), use autoregressive RNNs as the
decoders. As known, an autoregressive model is
good at generating sequences with high quality,
such as language and speech. However, an autore-
gressive decoder seems to be unnecessary in an
encoder-decoder model for learning sentence repre-
sentations, since it won’t be used after training, and
it takes up a large portion of the training time to
compute the output and the gradient. Therefore, we
conducted experiments to test the necessity of us-
ing an autoregressive decoder in learning sentence
representations, and we had two findings.
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Decoder SICK-R SICK-E STS14 MSRP (Acc/F1) SST TREC

auto-regressive RNN as decoder
Teacher-Forcing 0.8530 82.6 0.51/0.50 74.1 / 81.7 82.5 88.2

Always Sampling 0.8576 83.2 0.55/0.53 74.7 / 81.3 80.6 87.0
Uniform Sampling 0.8559 82.9 0.54/0.53 74.0 / 81.8 81.0 87.4

auto-regressive CNN as decoder
Teacher-Forcing 0.8510 82.8 0.49/0.48 74.7 / 82.8 81.4 82.6

Always Sampling 0.8535 83.3 0.53/0.52 75.0 / 81.7 81.4 87.6
Uniform Sampling 0.8568 83.4 0.56/0.54 74.7 / 81.4 83.0 88.4

predict-all-words RNN as decoder
RNN 0.8508 82.8 0.58/0.55 74.2 / 82.8 81.6 88.8

predict-all-words CNN as decoder
CNN 0.8530 82.6 0.58/0.56 75.6 / 82.9 82.8 89.2

CNN-MaxOnly 0.8465 82.6 0.50/0.47 73.3 / 81.5 79.1 82.2
Double-sized RNN Encoder

CNN 0.8631 83.9 0.58/0.55 74.7 / 83.1 83.4 90.2
CNN-MaxOnly 0.8485 83.2 0.47/0.44 72.9 / 80.8 82.2 86.6

Table 1: The models here all have a bi-directional GRU as the encoder (dimensionality 300 in each
direction). The default way of producing the representation is a concatenation of outputs from a global
mean-pooling and a global max-pooling, while “·-MaxOnly” refers to the model with only global max-
pooling. Bold numbers are the best results among all presented models. We found that 1) inputting correct
words to an autoregressive decoder is not necessary; 2) predict-all-words decoders work roughly the same
as autoregressive decoders; 3) mean+max pooling provides stronger transferability than the max-pooling
alone does. The table supports our choice of the predict-all-words CNN decoder and the way of producing
vector representations from the bi-directional RNN encoder.

Finding I: It is not necessary to input the cor-
rect words into an autoregressive decoder for
learning sentence representations.

The experimental design was inspired by Bengio
et al. (2015). The model we designed for the ex-
periment has a bi-directional GRU as the encoder,
and an autoregressive decoder, including both RNN
and CNN. We started by analysing the effect of dif-
ferent sampling strategies of the input words on
learning an auto-regressive decoder.

We compared three sampling strategies of in-
put words in decoding the target sequence with an
autoregressive decoder: (1) Teacher-Forcing: the
decoder always gets the ground-truth words; (2)
Always Sampling: at time step t, a word is sam-
pled from the multinomial distribution predicted at
time step t− 1; (3) Uniform Sampling: a word is
uniformly sampled from the dictionary V , then fed
to the decoder at every time step.

The results are presented in Table 1 (top two sub-
parts). As we can see, the three decoding settings
do not differ significantly in terms of the perfor-
mance on selected downstream tasks, with RNN
or CNN as the decoder. The results show that, in
terms of learning good sentence representations,

the autoregressive decoder doesn’t require the cor-
rect ground-truth words as the inputs.

Finding II: The model with an autoregressive
decoder performs similarly to the model with a
predict-all-words decoder.

With Finding I, we conducted an experiment
to test whether the model needs an autoregressive
decoder at all. In this experiment, the goal is to
compare the performance of the predict-all-words
decoders and that of the autoregressive decoders
separate from the RNN/CNN distinction, thus we
designed a predict-all-words CNN decoder and
RNN decoder. The predict-all-words CNN decoder
is described in Section 2, which is a stack of three
convolutional layers, and all words are predicted
once at the output layer of the decoder. The predict-
all-words RNN decoder is built based on our CNN
decoder. To keep the number of parameters of the
two predict-all-words decoder roughly the same,
we replaced the last two convolutional layers with
a bidirectional GRU.

The results are also presented in Table 1 (3rd and
4th subparts). The performance of the predict-all-
words RNN decoder does not significantly differ
from that of any one of the autoregressive RNN de-
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coders, and the same situation can be also observed
in CNN decoders.

These two findings indeed support our choice of
using a predict-all-words CNN as the decoder, as
it brings the model high training efficiency while
maintaining strong transferability.

3.2 Mean+Max Pooling
Since the encoder is a bi-directional RNN in our
model, we have multiple ways to select/compute on
the generated hidden states to produce a sentence
representation. Instead of using the last hidden
state as the sentence representation as done in skip-
thoughts (Kiros et al., 2015) and SDAE (Hill et al.,
2016), we followed the idea proposed in Chen et al.
(2016). They built a model for supervised training
on the SNLI dataset (Bowman et al., 2015) that
concatenates the outputs from a global mean pool-
ing over time and a global max pooling over time
to serve as the sentence representation, and showed
a performance boost on the SNLI task. Conneau
et al. (2017) found that the model with global max
pooling function provides stronger transferability
than the model with a global mean pooling function
does.

In our proposed RNN-CNN model, we empir-
ically show that the mean+max pooling provides
stronger transferability than the max pooling alone
does, and the results are presented in the last two
sections of Table 1. The concatenation of a mean-
pooling and a max pooling function is actually
a parameter-free composition function, and the
computation load is negligible compared to all the
heavy matrix multiplications in the model. Also,
the non-linearity of the max pooling function aug-
ments the mean pooling function for constructing a
representation that captures a more complex com-
position of the syntactic information.

3.3 Tying Word Embeddings and Word
Prediction Layer

We choose to share the parameters in the word em-
bedding layer of the RNN encoder and the word
prediction layer of the CNN decoder. Tying was
shown in both Inan et al. (2016) and Press and Wolf
(2017), and it generally helped to learn a better lan-
guage model. In our model, tying also drastically
reduces the number of parameters, which could
potentially prevent overfitting.

Furthermore, we initialise the word embeddings
with pretrained word vectors, such as word2vec
(Mikolov et al., 2013) and GloVe (Pennington et al.,

2014), since it has been shown that these pretrained
word vectors can serve as a good initialisation for
deep learning models, and more likely lead to better
results than a random initialisation.

3.4 Study of the Hyperparameters in Our
Model Design

We studied hyperparameters in our model design
based on three out of 10 downstream tasks, which
are SICK-R, SICK-E (Marelli et al., 2014), and
STS14 (Agirre et al., 2014). The first model we
created, which is reported in Section 2, is a decent
design, and the following variations didn’t give us
much performance change except improvements
brought by increasing the dimensionality of the en-
coder. However, we think it is worth mentioning
the effect of hyperparameters in our model design.
We present the Table 1 in the supplementary mate-
rial and we summarise it as follows:
1. Decoding the next sentence performed similarly
to decoding the subsequent contiguous words.
2. Decoding the subsequent 30 words, which was
adopted from the skip-thought training code3, gave
reasonably good performance. More words for
decoding didn’t give us a significant performance
gain, and took longer to train.
3. Adding more layers into the decoder and en-
larging the dimension of the convolutional layers
indeed sightly improved the performance on the
three downstream tasks, but as training efficiency
is one of our main concerns, it wasn’t worth sacri-
ficing training efficiency for the minor performance
gain.
4. Increasing the dimensionality of the RNN en-
coder improved the model performance, and the ad-
ditional training time required was less than needed
for increasing the complexity in the CNN decoder.
We report results from both smallest and largest
models in Table 2.

4 Experiment Settings

The vocabulary for unsupervised training contains
the 20k most frequent words in BookCorpus. In
order to generalise the model trained with a rela-
tively small, fixed vocabulary to the much larger
set of all possible English words, we followed the
vocabulary expansion method proposed in Kiros
et al. (2015), which learns a linear mapping from
the pretrained word vectors to the learnt RNN word

3https://github.com/ryankiros/skip-thoughts/



74

Model Hrs SICK-R SICK-E STS14 MSRP TREC MR CR SUBJ MPQA SST
Measurement r Acc. r/ρ Acc./F1 Accuracy

Unsupervised training with unordered sentences
ParagraphVec 4 - - 0.42/0.43 72.9/81.1 59.4 60.2 66.9 76.3 70.7 -
word2vec BOW 2 0.8030 78.7 0.65/0.64 72.5/81.4 83.6 77.7 79.8 90.9 88.3 79.7
fastText BOW - 0.8000 77.9 0.63/0.62 72.4/81.2 81.8 76.5 78.9 91.6 87.4 78.8
SIF (GloVe+WR) - 0.8603 84.6 0.69/ - - / - - - - - - 82.2
GloVe BOW - 0.8000 78.6 0.54/0.56 72.1/80.9 83.6 78.7 78.5 91.6 87.6 79.8
SDAE 72 - - 0.37/0.38 73.7/80.7 78.4 74.6 78.0 90.8 86.9 -

Unsupervised training with ordered sentences - BookCorpus
FastSent 2 - - 0.63/0.64 72.2/80.3 76.8 70.8 78.4 88.7 80.6 -
FastSent+AE 2 - - 0.62/0.62 71.2/79.1 80.4 71.8 76.5 88.8 81.5 -
Skip-thoughts 336 0.8580 82.3 0.29/0.35 73.0/82.0 92.2 76.5 80.1 93.6 87.1 82.0
Skip-thought+LN 720 0.8580 79.5 0.44/0.45 - 88.4 79.4 83.1 93.7 89.3 82.9
combine CNN-LSTM - 0.8618 - - 76.5/83.8 92.6 77.8 82.1 93.6 89.4 -
small RNN-CNN† 20 0.8530 82.6 0.58/0.56 75.6/82.9 89.2 77.6 80.3 92.3 87.8 82.8
large RNN-CNN† 34 0.8698 85.2 0.59/0.57 75.1/83.2 92.2 79.7 81.9 94.0 88.7 84.1

Unsupervised training with ordered sentences - Amazon Book Review
small RNN-CNN† 21 0.8476 82.7 0.53/0.53 73.8/81.5 84.8 83.3 83.0 94.7 88.2 87.8
large RNN-CNN† 33 0.8616 84.3 0.51/0.51 75.7/82.8 90.8 85.3 86.8 95.3 89.0 88.3

Unsupervised training with ordered sentences - Amazon Review
BYTE m-LSTM 720 0.7920 - - 75.0/82.8 - 86.9 91.4 94.6 88.5 -

Supervised training - Transfer learning
DiscSent 8 - - - 75.0/ - 87.2 - - 93.0 - -
DisSent Books 8 - 0.8170 81.5 - -/ - 87.2 82.9 81.4 93.2 90.0 80.2
CaptionRep BOW 24 - - 0.46/0.42 - 72.2 61.9 69.3 77.4 70.8 -
DictRep BOW 24 - - 0.67/0.70 68.4/76.8 81.0 76.7 78.7 90.7 87.2 -
InferSent(SNLI) <24 0.8850 84.6 0.68/0.65 75.1/82.3 88.7 79.9 84.6 92.1 89.8 83.3
InferSent(AllNLI) <24 0.8840 86.3 0.70/0.67 76.2/83.1 88.2 81.1 86.3 92.4 90.2 84.6

Table 2: Related Work and Comparison. As presented, our designed asymmetric RNN-CNN model
has strong transferability, and is overall better than existing unsupervised models in terms of fast training
speed and good performance on evaluation tasks. “†”s refer to our models, and “small/large” refers to
the dimension of representation as 1200/4800. Bold numbers are the best ones among the models with
same training and transferring setting, and underlined numbers are best results among all transfer learning
models. The training time of each model was collected from the paper that proposed it.

vectors. Thus, the model benefits from the general-
isation ability of the pretrained word embeddings.

The downstream tasks for evaluation include se-
mantic relatedness (SICK, Marelli et al. (2014)),
paraphrase detection (MSRP, Dolan et al. (2004)),
question-type classification (TREC, Li and Roth
(2002)), and five benchmark sentiment and sub-
jective datasets, which include movie review sen-
timent (MR, Pang and Lee (2005), SST, Socher
et al. (2013)), customer product reviews (CR, Hu
and Liu (2004)), subjectivity/objectivity classifica-
tion (SUBJ, Pang and Lee (2004)), opinion polar-
ity (MPQA, Wiebe et al. (2005)), semantic textual
similarity (STS14, Agirre et al. (2014)), and SNLI
(Bowman et al., 2015). After unsupervised training,
the encoder is fixed, and applied as a representation

extractor on the 10 tasks.
To compare the effect of different corpora, we

also trained two models on Amazon Book Review
dataset (without ratings) which is the largest subset
of the Amazon Review dataset (McAuley et al.,
2015) with 142 million sentences, about twice as
large as BookCorpus.

Both training and evaluation of our models were
conducted in PyTorch4, and we used SentEval5

provided by Conneau et al. (2017) to evaluate the
transferability of our models. All the models were
trained for the same number of iterations with the
same batch size, and the performance was mea-
sured at the end of training for each of the models.

4http://pytorch.org/
5https://github.com/facebookresearch/SentEval
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5 Related work and Comparison

Table 2 presents the results on 9 evaluation tasks
of our proposed RNN-CNN models, and related
work. The “small RNN-CNN” refers to the model
with the dimension of representation as 1200, and
the “large RNN-CNN” refers to that as 4800. The
results of our “large RNN-CNN” model on SNLI
is presented in Table 3.

Model SNLI (Acc %)

Unsupervised Transfer Learning
Skip-thoughts (Vendrov et al.) 81.5
large RNN-CNN BookCorpus 81.7
large RNN-CNN Amazon 81.5

Supervised Training
ESIM (Chen et al.) 86.7
DIIN (Gong et al.) 88.9

Table 3: We implemented the same classifier as
mentioned in Vendrov et al. (2015) on top of the
features computed by our model. Our proposed
RNN-CNN model gets similar result on SNLI as
skip-thoughts, but with much less training time.

Our work was inspired by analysing the skip-
thoughts model (Kiros et al., 2015). The skip-
thoughts model successfully applied this form of
learning from the context information into unsu-
pervised representation learning for sentences, and
then, Ba et al. (2016) augmented the LSTM with
proposed layer-normalisation (Skip-thought+LN),
which improved the skip-thoughts model gener-
ally on downstream tasks. In contrast, Hill et al.
(2016) proposed the FastSent model which only
learns source and target word embeddings and is
an adaptation of Skip-gram (Mikolov et al., 2013)
to sentence-level learning without word order in-
formation. Gan et al. (2017) applied a CNN as the
encoder, but still applied LSTMs for decoding the
adjacent sentences, which is called CNN-LSTM.

Our RNN-CNN model falls in the same cate-
gory as it is an encoder-decoder model. Instead of
decoding the surrounding two sentences as in skip-
thoughts, FastSent and the compositional CNN-
LSTM, our model only decodes the subsequent
sequence with a fixed length. Compared with the
hierarchical CNN-LSTM, our model showed that,
with a proper model design, the context information
from the subsequent words is sufficient for learn-
ing sentence representations. Particularly, our pro-
posed small RNN-CNN model runs roughly three

times faster than our implemented skip-thoughts
model6 on the same GPU machine during training.

Proposed by Radford et al. (2017), BYTE m-
LSTM model uses a multiplicative LSTM unit
(Krause et al., 2016) to learn a language model.
This model is simple, providing next-byte predic-
tion, but achieves good results likely due to the
extremely large training corpus (Amazon Review
data, McAuley et al. (2015)) that is also highly re-
lated to many of the sentiment analysis downstream
tasks (domain matching).

We experimented with the Amazon Book review
dataset, the largest subset of the Amazon Review.
This subset is significantly smaller than the full
Amazon Review dataset but twice as large as Book-
Corpus. Our RNN-CNN model trained on the Ama-
zon Book review dataset resulted in performance
improvement on all single-sentence classification
tasks relative to that achieved with training under
BookCorpus.

Unordered sentences are also useful for learn-
ing representations of sentences. ParagraphVec
(Le and Mikolov, 2014) learns a fixed-dimension
vector for each sentence by predicting the words
within the given sentence. However, after train-
ing, the representation for a new sentence is hard to
derive, since it requires optimising the sentence rep-
resentation towards an objective. SDAE (Hill et al.,
2016) learns the sentence representations with a de-
noising auto-encoder model. Our proposed RNN-
CNN model trains faster than SDAE does, and also
because we utilised the sentence-level continuity
as a supervision which SDAE doesn’t, our model
largely performs better than SDAE.

Another transfer approach is to learn a super-
vised discriminative classifier by distinguishing
whether the sentence pair or triple comes from the
same context. Li and Hovy (2014) proposed a
model that learns to classify whether the input sen-
tence triplet contains three contiguous sentences.
DiscSent (Jernite et al., 2017) and DisSent (Nie
et al., 2017) both utilise the annotated explicit dis-
course relations, which is also good for learning
sentence representations. It is a very promising
research direction since the proposed models are
generally computational efficient and have clear
intuition, yet more investigations need to be done
to augment the performance.

Supervised training for transfer learning is
6We reimplemented the skip-thoughts model in PyTorch,

and it took roughly four days to train for only one epoch on
BookCorpus.
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also promising when a large amount of human-
annotated data is accessible. Conneau et al. (2017)
proposed the InferSent model, which applies
a bi-directional LSTM as the sentence encoder
with multiple fully-connected layers to classify
whether the hypothesis sentence entails the premise
sentence in SNLI (Bowman et al., 2015), and
MultiNLI (Williams et al., 2017). The trained
model demonstrates a very impressive transferabil-
ity on downstream tasks, including both supervised
and unsupervised. Our RNN-CNN model trained
on Amazon Book Review data in an unsupervised
way has better results on supervised tasks than
InferSent but slightly inferior results on seman-
tic relatedness tasks. We argue that labelling a
large amount of training data is time-consuming
and costly, while unsupervised learning provides
great performance at a fraction of the cost. It could
potentially be leveraged to initialise or more gener-
ally augment the costly human labelling, and make
the overall system less costly and more efficient.

6 Discussion

In Hill et al. (2016), internal consistency is mea-
sured on five single sentence classification tasks
(MR, CR, SUBJ, MPQA, TREC), MSRP and STS-
14, and was found to be only above the “acceptable”
threshold. They empirically showed that models
that worked well on supervised evaluation tasks
generally didn’t perform well on unsupervised ones.
This implies that we should consider supervised
and unsupervised evaluations separately, since each
group has higher internal consistency.

As presented in Table 2, the encoders that only
sum over pretrained word vectors perform better
overall than those with RNNs on unsupervised eval-
uation tasks, including STS14. In recent proposed
log-bilinear models, such as FastSent (Hill et al.,
2016) and SiameseBOW (Kenter et al., 2016), the
sentence representation is composed by summing
over all word representations, and the only tunable
parameters in the models are word vectors. These
resulting models perform very well on unsuper-
vised tasks. By augmenting the pretrained word
vectors with a weighted averaging process, and re-
moving the top few principal components, which
mainly encode frequently-used words, as proposed
in Arora et al. (2017) and Mu et al. (2018), the per-
formance on the unsupervised evaluation tasks gets
even better. Prior work suggests that incorporating
word-level information helps the model to perform

better on cosine distance based semantic textual
similarity tasks.

Our model predicts all words in the target se-
quence at once, without an autoregressive process,
and ties the word embedding layer in the encoder
with the prediction layer in the decoder, which ex-
plicitly uses the word vectors in the target sequence
as the supervision in training. Thus, our model
incorporates the word-level information by using
word vectors as the targets, and it improves the
model performance on STS14 compared to other
RNN-based encoders.

Arora et al. (2017) conducted an experiment to
show that the word order information is crucial in
getting better results on supervised tasks. In our
model, the encoder is still an RNN, which explicitly
utilises the word order information. We believe
that the combination of encoding a sentence with
its word order information and decoding all words
in a sentence independently inherently leverages
the benefits from both log-linear models and RNN-
based models.

7 Conclusion

Inspired by learning to exploit the contextual infor-
mation present in adjacent sentences, we proposed
an asymmetric encoder-decoder model with a suite
of techniques for improving context-based unsu-
pervised sentence representation learning. Since
we believe that a simple model will be faster in
training and easier to analyse, we opt to use simple
techniques in our proposed model, including 1) an
RNN as the encoder, and a predict-all-words CNN
as the decoder, 2) learning by inferring subsequent
contiguous words, 3) mean+max pooling, and 4)
tying word vectors with word prediction. With
thorough discussion and extensive evaluation, we
justify our decision making for each component
in our RNN-CNN model. In terms of the perfor-
mance and the efficiency of training, we justify
that our model is a fast and simple algorithm for
learning generic sentence representations from un-
labelled corpora. Further research will focus on
how to maximise the utility of the context informa-
tion, and how to design simple architectures to best
make use of it.
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