
ACL 2018

Representation Learning for NLP

Proceedings of the Third Workshop

July 20, 2018
Melbourne, Australia

Sponsors:

c©2018 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-948087-43-8

ii

Introduction

The ACL 2018 Workshop on Representation Learning for NLP (RepL4NLP) takes place on Friday, July
20, 2018 in Melbourne, Australia, immediately following the 56th Annual Meeting of the Association
for Computational Linguistics (ACL). The workshop is generously sponsored by Facebook, Salesforce,
ASAPP, DeepMind, Microsoft Research, and Naver.

Repl4NLP is organised by Isabelle Augenstein, Kris Cao, He He, Felix Hill, Spandana Gella, Jamie
Kiros, Hongyuan Mei and Dipendra Misra, and advised by Kyunghyun Cho, Edward Grefenstette, Karl
Moritz Hermann and Laura Rimell.

The 3rd Workshop on Representation Learning for NLP aims to continue the success of the 1st Workshop
on Representation Learning for NLP, which received about 50 submissions and over 250 attendees and
was the second most attended collocated event at ACL 2016 in Berlin, Germany after WMT; and the 2nd
Workshop on Representation Learning for NLP at ACL 2017 in Vancouver, Canada.

The workshop has a focus on vector space models of meaning, compositionality, and the application of
deep neural networks and spectral methods to NLP. It provides a forum for discussing recent advances
on these topics, as well as future research directions in linguistically motivated vector-based models in
NLP.

iii

Organizers:

Isabelle Augenstein, University of Copenhagen
Kris Cao, University of Cambridge
He He, Stanford University
Felix Hill, DeepMind
Spandana Gella, University of Edinburgh
Jamie Kiros, University of Toronto
Hongyuan Mei, Johns Hopkins University
Dipendra Misra, Cornell University

Senior Advisors:

Kyunghyun Cho, NYU and FAIR
Edward Grefenstette, DeepMind
Karl Moritz Hermann, DeepMind
Laura Rimell, DeepMind

Program Committee:

Eneko Agirre, University of the Basque Country
Yoav Artzi, Cornell University
Mohit Bansal, UNC Chapel Hill
Meriem Beloucif, HKUST
Jonathan Berant, Tel-Aviv
Johannes Bjerva, University of Copenhagen
Jan Buys, Oxford University
Xilun Chen, Cornell University
Eunsol Choi, University of Washington
Heeyoul Choi, Handong Global University
Junyoung Chung, University of Montreal
Manuel Ciosici, Aarhus University
Stephen Clark, DeepMind
Marco Damonte, University of Edinburgh
Desmond Elliot, University of Edinburgh
Katrin Erk, University of Texas
Orhan Firat, Middle East Technical University
Lucie Flekova, Amazon Research
Kevin Gimpel, TTI-Chicago
Caglar Gulcehre, University of Montreal
Gholamreza Haffari, Monash University
Mohit Iyyer, AI2
Katharina Kann, LMU
Arzoo Katiyar, Cornell University
Miryam de Lhoneux, Uppsala University
Tegan Maharaj, Polytechnique Montreal
Ana Marasovic, Heidelberg, University
Yishu Miao, Oxford University
Todor Mihaylov, Heidelberg University

v

Pasquale Minervini, UCL
Nikita Nangia, NYU
Shashi Narayan, University of Edinburgh
Thien Huu Nguyen, NYU
Robert Östling, Stockholm University
Alexander Panchenko, University of Hamburg
Matthew Peters, AI2
Barbara Plank, University of Groningen
Marek Rei, University of Cambridge
Roi Reichart, Technion
Alan Ritter, Ohio State University
Diarmuid Ó Séaghdha, Apple
Holger Schwenk, Facebook Research
Tianze Shi, Cornell University
Vered Shwartz, Bar-Ilan University
Ashudeep Singh, Cornell University
Richard Socher, Salesforce
Mark Steedman, University of Edinburgh
Karl Stratos, Columbia University
Sam Thomson, CMU
Ivan Titov, University of Edinburgh
Shubham Toshniwal, TTIC
Andreas Vlachos, Sheffield
Pontus Stenetorp, UCL
Anders Søgaard, University of Copenhagen
Jörg Tiedemann, University of Helsinki
Chris Quirk, Microsoft Research
Lyle Ungar, University of Pennsylvania
Eva Maria Vecchi, University of Cambridge
Dirk Weissenborn, German Research Center for AI
Tsung-Hsien Wen, University of Cambridge
Yi Yang, Bloomberg LP
Helen Yannakoudakis, University of Cambridge

Invited Speaker:

Yejin Choi, University of Washington
Trevor Cohn, University of Melbourne
Margaret Mitchell, Google Research
Yoav Goldberg, Bar Ilan University

vi

Table of Contents

Corpus Specificity in LSA and Word2vec: The Role of Out-of-Domain Documents
Edgar Altszyler, Mariano Sigman and Diego Fernandez Slezak . 1

Hierarchical Convolutional Attention Networks for Text Classification
Shang Gao, Arvind Ramanathan and Georgia Tourassi .11

Extrofitting: Enriching Word Representation and its Vector Space with Semantic Lexicons
Hwiyeol Jo and Stanley Jungkyu Choi . 24

Chat Discrimination for Intelligent Conversational Agents with a Hybrid CNN-LMTGRU Network
Dennis Singh Moirangthem and Minho Lee . 30

Text Completion using Context-Integrated Dependency Parsing
Amr Rekaby Salama, Özge Alacam and Wolfgang Menzel . 41

Quantum-Inspired Complex Word Embedding
Qiuchi Li, Sagar Uprety, Benyou Wang and Dawei Song . 50

Natural Language Inference with Definition Embedding Considering Context On the Fly
Kosuke Nishida, Kyosuke Nishida, Hisako Asano and Junji Tomita . 58

Comparison of Representations of Named Entities for Document Classification
Lidia Pivovarova and Roman Yangarber . 64

Speeding up Context-based Sentence Representation Learning with Non-autoregressive Convolutional
Decoding

Shuai Tang, Hailin Jin, Chen Fang, Zhaowen Wang and Virginia de Sa . 69

Connecting Supervised and Unsupervised Sentence Embeddings
Gil Levi . 79

A Hybrid Learning Scheme for Chinese Word Embedding
Wenfan Chen and Weiguo Sheng . 84

Unsupervised Random Walk Sentence Embeddings: A Strong but Simple Baseline
Kawin Ethayarajh .91

Evaluating Word Embeddings in Multi-label Classification Using Fine-Grained Name Typing
Yadollah Yaghoobzadeh, Katharina Kann and Hinrich Schütze . 101

A Dense Vector Representation for Open-Domain Relation Tuples
Ade Romadhony, Alfan Farizki Wicaksono, Ayu Purwarianti and Dwi Hendratmo Widyantoro 107

Exploiting Common Characters in Chinese and Japanese to Learn Cross-Lingual Word Embeddings via
Matrix Factorization

Jilei Wang, Shiying Luo, Weiyan Shi, Tao Dai and Shu-Tao Xia . 113

WordNet Embeddings
Chakaveh Saedi, António Branco, João António Rodrigues and João Silva.122

Knowledge Graph Embedding with Numeric Attributes of Entities
Yanrong Wu and Zhichun Wang . 132

vii

Injecting Lexical Contrast into Word Vectors by Guiding Vector Space Specialisation
Ivan Vulić . 137

Characters or Morphemes: How to Represent Words?
Ahmet Üstün, Murathan Kurfalı and Burcu Can . 144

Learning Hierarchical Structures On-The-Fly with a Recurrent-Recursive Model for Sequences
Athul Paul Jacob, Zhouhan Lin, Alessandro Sordoni and Yoshua Bengio . 154

Limitations of Cross-Lingual Learning from Image Search
Mareike Hartmann and Anders Søgaard . 159

Learning Semantic Textual Similarity from Conversations
Yinfei Yang, Steve Yuan, Daniel Cer, Sheng-Yi Kong, Noah Constant, Petr Pilar, Heming Ge,

Yun-hsuan Sung, Brian Strope and Ray Kurzweil . 164

Multilingual Seq2seq Training with Similarity Loss for Cross-Lingual Document Classification
Katherine Yu, Haoran Li and Barlas Oguz . 175

LSTMs Exploit Linguistic Attributes of Data
Nelson F. Liu, Omer Levy, Roy Schwartz, Chenhao Tan and Noah A. Smith 180

Learning Distributional Token Representations from Visual Features
Samuel Broscheit . 187

Jointly Embedding Entities and Text with Distant Supervision
Denis Newman-Griffis, Albert M. Lai and Eric Fosler-Lussier . 195

A Sequence-to-Sequence Model for Semantic Role Labeling
Angel Daza and Anette Frank . 207

Predicting Concreteness and Imageability of Words Within and Across Languages via Word Embeddings
Nikola Ljubešić, Darja Fišer and Anita Peti-Stantić . 217

viii

Workshop Program

Friday, July 20, 2018

09:30–09:45 Welcome and Opening Remarks

09:45–14:45 Keynote Session

09:45–10:30 Invited Talk 1
Yejin Choi

10:30–11:00 Coffee Break

11:00–11:45 Invited Talk 2
Trevor Cohn

11:45–12:30 Invited Talk 3
Margaret Mitchell

12:30–14:00 Lunch

14:00–14:45 Invited Talk 4
Yoav Goldberg

14:45–15:00 Outstanding Papers Spotlight Presentations

ix

Friday, July 20, 2018 (continued)

15:00–16:30 Poster Session (including Coffee Break from 15:30-16:00) + Drinks Reception

Corpus Specificity in LSA and Word2vec: The Role of Out-of-Domain Documents
Edgar Altszyler, Mariano Sigman and Diego Fernandez Slezak

Hierarchical Convolutional Attention Networks for Text Classification
Shang Gao, Arvind Ramanathan and Georgia Tourassi

Extrofitting: Enriching Word Representation and its Vector Space with Semantic
Lexicons
Hwiyeol Jo and Stanley Jungkyu Choi

Chat Discrimination for Intelligent Conversational Agents with a Hybrid CNN-
LMTGRU Network
Dennis Singh Moirangthem and Minho Lee

Text Completion using Context-Integrated Dependency Parsing
Amr Rekaby Salama, Özge Alacam and Wolfgang Menzel

Quantum-Inspired Complex Word Embedding
Qiuchi Li, Sagar Uprety, Benyou Wang and Dawei Song

Natural Language Inference with Definition Embedding Considering Context On
the Fly
Kosuke Nishida, Kyosuke Nishida, Hisako Asano and Junji Tomita

Comparison of Representations of Named Entities for Document Classification
Lidia Pivovarova and Roman Yangarber

Speeding up Context-based Sentence Representation Learning with Non-
autoregressive Convolutional Decoding
Shuai Tang, Hailin Jin, Chen Fang, Zhaowen Wang and Virginia de Sa

Connecting Supervised and Unsupervised Sentence Embeddings
Gil Levi

A Hybrid Learning Scheme for Chinese Word Embedding
Wenfan Chen and Weiguo Sheng

x

Friday, July 20, 2018 (continued)

Unsupervised Random Walk Sentence Embeddings: A Strong but Simple Baseline
Kawin Ethayarajh

Evaluating Word Embeddings in Multi-label Classification Using Fine-Grained
Name Typing
Yadollah Yaghoobzadeh, Katharina Kann and Hinrich Schütze

A Dense Vector Representation for Open-Domain Relation Tuples
Ade Romadhony, Alfan Farizki Wicaksono, Ayu Purwarianti and Dwi Hendratmo
Widyantoro

Exploiting Common Characters in Chinese and Japanese to Learn Cross-Lingual
Word Embeddings via Matrix Factorization
Jilei Wang, Shiying Luo, Weiyan Shi, Tao Dai and Shu-Tao Xia

WordNet Embeddings
Chakaveh Saedi, António Branco, João António Rodrigues and João Silva

Knowledge Graph Embedding with Numeric Attributes of Entities
Yanrong Wu and Zhichun Wang

Injecting Lexical Contrast into Word Vectors by Guiding Vector Space Specialisa-
tion
Ivan Vulić

Characters or Morphemes: How to Represent Words?
Ahmet Üstün, Murathan Kurfalı and Burcu Can

Learning Hierarchical Structures On-The-Fly with a Recurrent-Recursive Model
for Sequences
Athul Paul Jacob, Zhouhan Lin, Alessandro Sordoni and Yoshua Bengio

Limitations of Cross-Lingual Learning from Image Search
Mareike Hartmann and Anders Søgaard

Learning Semantic Textual Similarity from Conversations
Yinfei Yang, Steve Yuan, Daniel Cer, Sheng-Yi Kong, Noah Constant, Petr Pilar,
Heming Ge, Yun-hsuan Sung, Brian Strope and Ray Kurzweil

Multilingual Seq2seq Training with Similarity Loss for Cross-Lingual Document
Classification
Katherine Yu, Haoran Li and Barlas Oguz

xi

Friday, July 20, 2018 (continued)

LSTMs Exploit Linguistic Attributes of Data
Nelson F. Liu, Omer Levy, Roy Schwartz, Chenhao Tan and Noah A. Smith

Learning Distributional Token Representations from Visual Features
Samuel Broscheit

Jointly Embedding Entities and Text with Distant Supervision
Denis Newman-Griffis, Albert M. Lai and Eric Fosler-Lussier

A Sequence-to-Sequence Model for Semantic Role Labeling
Angel Daza and Anette Frank

Predicting Concreteness and Imageability of Words Within and Across Languages
via Word Embeddings
Nikola Ljubešić, Darja Fišer and Anita Peti-Stantić

16:30–17:30 Panel Discussion

17:30–17:40 Closing Remarks + Best Paper Awards Announcement

xii

Proceedings of the 3rd Workshop on Representation Learning for NLP, pages 1–10
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

Corpus specificity in LSA and word2vec: the role of out-of-domain
documents

Edgar Altszyler
UBA, FCEyN, DC.

ICC, UBA-CONICET
ealtszyler@dc.uba.ar

Mariano Sigman
U. Torcuato Di Tella - CONICET.

msigman@utdt.edu

Diego Fernández Slezak
UBA, FCEyN, DC,

ICC, UBA-CONICET
dfslezak@dc.uba.ar

Abstract

Despite the popularity of word embed-
dings, the precise way by which they ac-
quire semantic relations between words re-
main unclear. In the present article, we in-
vestigate whether LSA and word2vec ca-
pacity to identify relevant semantic rela-
tions increases with corpus size. One in-
tuitive hypothesis is that the capacity to
identify relevant associations should in-
crease as the amount of data increases.
However, if corpus size grows in topics
which are not specific to the domain of in-
terest, signal to noise ratio may weaken.
Here we investigate the effect of corpus
specificity and size in word-embeddings,
and for this, we study two ways for pro-
gressive elimination of documents: the
elimination of random documents vs. the
elimination of documents unrelated to a
specific task. We show that word2vec
can take advantage of all the documents,
obtaining its best performance when it
is trained with the whole corpus. On
the contrary, the specialization (removal
of out-of-domain documents) of the train-
ing corpus, accompanied by a decrease of
dimensionality, can increase LSA word-
representation quality while speeding up
the processing time. From a cognitive-
modeling point of view, we point out
that LSA’s word-knowledge acquisitions
may not be efficiently exploiting higher-
order co-occurrences and global relations,
whereas word2vec does.

1 Introduction

The main idea behind corpus-based semantic rep-
resentation is that words with similar meanings

tend to occur in similar contexts (Harris, 1954).
This proposition is called distributional hypothe-
sis and provides a practical framework to under-
stand and compute the semantic relationship be-
tween words. Based in the distributional hypothe-
sis, Latent Semantic Analysis (LSA) (Deerwester
et al., 1990; Landauer and Dumais, 1997; Hu et al.,
2007) and word2vec (Mikolov et al., 2013a,b), are
one of the most important methods for word mean-
ing representation, which describes each word in a
vectorial space, where words with similar mean-
ings are located close to each other.

Word embeddings have been applied in a wide
variety of areas such as information retrieval
(Deerwester et al., 1990), psychiatry (Altszyler
et al., 2018; Carrillo et al., 2018), treatment op-
timization(Corcoran et al., 2018), literature (Diuk
et al., 2012) and cognitive sciences (Landauer
and Dumais, 1997; Denhière and Lemaire, 2004;
Lemaire and Denhi, 2004; Diuk et al., 2012).

LSA takes as input a training Corpus formed by
a collection of documents. Then a word by doc-
ument co-occurrence matrix is constructed, which
contains the distribution of occurrence of the dif-
ferent words along the documents. Then, usually,
a mathematical transformation is applied to reduce
the weight of uninformative high-frequency words
in the words-documents matrix (Dumais, 1991).
Finally, a linear dimensionality reduction is imple-
mented by a truncated Singular Value Decomposi-
tion, SVD, which projects every word in a sub-
space of a predefined number of dimensions, k.
The success of LSA in capturing the latent mean-
ing of words comes from this low-dimensional
mapping. This representation improvement can be
explained as a consequence of the elimination of
the noisiest dimensions (Turney and Pantel, 2010).

Word2vec consists of two neural network mod-
els, Continuous Bag of Words (CBOW) and Skip-
gram. To train the models, a sliding window is

1

moved along the corpus. In the CBOW scheme,
in each step, the neural network is trained to pre-
dict the center word (the word in the center of the
window based) given the context words (the other
words in the window). While in the skip-gram
scheme, the model is trained to predict the context
words based on the central word. In the present
paper, we use the skip-gram, which has produced
better performance in Mikolov et al. (2013b).

Despite the development of new word represen-
tation methods, LSA is still intensively used and
has been shown that produce better performances
than word2vec methods in small to medium size
training corpus (Altszyler et al., 2017).

1.1 Training Corpus Size and Specificity in
Word-embeddings

Over the last years, great effort has been devoted
to understanding how to choose the right parame-
ter settings for different tasks (Quesada, 2011; Du-
mais, 2003; Landauer and Dumais, 1997; Lapesa
and Evert, 2014; Bradford, 2008; Nakov et al.,
2003; Baroni et al., 2014). However, considerably
lesser attention has been given to study how dif-
ferent corpus used as input for training may affect
the performance. Here we ask a simple question
on the property of the corpus: is there a monotonic
relation between corpus size and the performance?
More precisely, what happens if the topic of ad-
ditional documents differs from the topics in the
specific task? Previous studies have surprisingly
shown some contradictory results on this simple
question.

On the one hand, in the foundational work,
Landauer and Dumais (1997) compare the word-
knowledge acquisition between LSA and that of
children’s. This acquisition process may be pro-
duced by 1) direct learning, enhancing the incor-
poration of new words by reading texts that ex-
plicitly contain them; or 2) indirect learning, en-
hancing the incorporation of new words by read-
ing texts that do not contain them. To do that,
they evaluate LSA semantic representation trained
with different size corpus in multiple-choice syn-
onym questions extracted from the TOEFL exam.
This test consists of 80 multiple-choice questions,
in which its requested to identify the synonym of
a word between 4 options. In order to train the
LSA, Landauer and Dumais used the TASA cor-
pus (Zeno et al., 1995).

Landauer and Dumais (1997) randomly re-

placed exam-words in the corpus with non-sense
words and varied the number of corpus’ docu-
ments selecting nested sub-samples of the total
corpus. They concluded that LSA improves its
performance on the exam both when training with
documents with exam-words and without them.
However, as could be expected, they observed a
greater effect when training with exam-words. It
is worth mentioning that the replacement of exam-
words with non-sense words may create incorrect
documents, thus, making the algorithm acquire
word-knowledge from documents which should
have an exam-word but do not. In the Results sec-
tion, we will study this indirect word acquisition
in the TOEFL test without using non-sense words.

Along the same line, Lemaire and Den-
hiere (2006) studied the effect of high-order co-
occurrences in LSA semantic similarity, which
goes further in the study of Landauer’s indirect
word acquisition.

In their work, Lemaire and Denhiere (2006)
measure how the similarity between 28 pairs of
words (such as bee/honey and buy/shop) changes
when a 400-dimensions LSA is trained with a
growing number of paragraphs. Furthermore, they
identify for this task the marginal contribution of
the first, second and third order of co-occurrence
as the number of paragraphs is increased. In this
experiment, they found that not only does the first
order of co-occurrence contribute to the semantic
closeness of the word pairs, but also the second
and the third order promote an increment on pairs
similarity. It is worth noting that Landauer’s indi-
rect word acquisition can be understood in terms
of paragraphs without either of the words in a pair,
and containing a third or more order co-occurrence
link.

So, the conclusion from Lemaire and Denhiere
(2006) and Landauer and Dumais (1997) studies
suggest that increasing corpus size results in a
gain, even if this increase is in topics which are un-
related for the relevant semantic directions which
are pertinent for the task.

However, a different conclusion seems to result
from other sets of studies. Stone et al. (2006) have
studied the effect of Corpus size and specificity
in a document similarity rating task. They found
that training LSA with smaller subcorpus selected
for the specific task domain maintains or even im-
proves LSA performance. This corresponds to the
intuition of noise filtering, when removing infor-

2

mation from irrelevant dimensions results in im-
provements of performance.

In addition, Olde et al. (2002) have studied the
effect of selecting specific subcorpus in an auto-
matic exam evaluation task. They created sev-
eral subcorpus from a Physics corpus, progres-
sively discarding documents unrelated to the spe-
cific questions. Their results showed small differ-
ences in the performance between the LSA trained
with original corpus and the LSA trained with the
more specific subcorpus.

It is well known that the number of LSA di-
mensions (k) is a key parameter to be duly ad-
justed in order to eliminate the noisiest dimen-
sions (Landauer and Dumais, 1997; Turney and
Pantel, 2010). Excessively high k values may not
eliminate enough noisy dimensions, while exces-
sively low k values may not have enough dimen-
sions to generate a proper representation. In this
context, we hypothesize that when out-of-domain
documents are discarded, the number of dimen-
sions needed to represent the data should be lower,
thus, k must be decreased.

Regarding word2vec, Cardellino and Alemany
(2017) and Dusserre and Padró (2017) have shown
that word2vec trained with a specific corpus can
produce better performance in semantic tasks than
when it is trained with a bigger and general cor-
pus. Despite these works point out the relevance
of domain-specific corpora, they do not study the
specificity in isolation, as they compare corpus
from different sources.

In this article, we set to investigate the effect
of the specificity and size of training corpus in
word-embeddings, and how this interacts with the
number of dimensions. To measure the semantic
representations quality we have used two different
tasks: the TOEFL exam, and a categorization test.
The corpus evaluation method consists in the com-
parison between two ways of progressive elimina-
tion of documents: the elimination of random doc-
uments vs the elimination of out-of-domain docu-
ments (unrelated to the specific task). In addition,
we have varied k within a wide range of values.

As we show, LSA’s dimensionality plays a key
role in the LSA representation when the corpus
analysis is made. In particular, we observe that
both, discarding out-of-domain documents and de-
creasing the number of dimensions produces an
increase in the algorithm performance. In one
of the two tasks, discarding out-of-domain docu-

ments without the decrease of k results in the com-
plete opposite behavior, showing a strong perfor-
mance reduction. On the other hand, word2vec
shows in all cases a performance reduction when
discarding out-of-domain, which suggests an ex-
ploitation of higher-order word co-occurrences.

Our contribution in understanding the effect
of out-of-domain documents in word-embeddings
knowledge acquisitions is valuable from two dif-
ferent perspectives:

• From an operational point of view: we show
that LSA’s performance can be enhanced
when: (1) its training corpus is cleaned from
out-of-domain documents, and (2) a reduc-
tion of LSA’s dimensions number is applied.
Furthermore, the reduction of both the cor-
pus size and the number of dimensions tend
to speed up the processing time. On the other
hand, word2vec can take advantage of all the
documents, obtaining its best performance
when it is trained with the whole corpus.

• From a cognitive modeling point of view:
we point out that LSA’s word-knowledge ac-
quisition does not take advantage of indirect
learning, while word2vec does. This throws
light upon models capabilities and limita-
tions in modeling human cognitive tasks,
such as: human word-learning (Landauer
and Dumais, 1997; Lemaire and Denhiere,
2006; Landauer, 2007), semantic memory
(Denhière and Lemaire, 2004; Kintsch and
Mangalath, 2011; Landauer, 2007) and words
classification (Laham, 1997).

2 Methods

We used TASA corpus (Zeno et al., 1995) in all
experiments. TASA is a commonly used linguistic
corpus consisting of more than 37 thousand educa-
tional texts from USA K12 curriculum. We word-
tokenized each document, discarding punctuation
marks, numbers, and symbols. Then, we trans-
formed each word to lowercase and eliminated
stopwords, using the stoplist in NLTK Python
package (Bird et al., 2009). TASA corpus contains
more than 5 million words in its cleaned version.

In each experiment, the training corpus size was
changed by discarding documents in two different
ways:

• Random documents discarding: The desired
number of documents (n) contained in the

3

subcorpus is preselected. Then, documents
are randomly eliminated from the original
corpus until there are exactly n documents.
If any of the test words (i.e. words that ap-
pear in the specific task) does not appear at
least once in the remaining corpus, one doc-
ument is randomly replaced with one of the
discarded documents that contains the miss-
ing word.

• Out-of-domain documents discarding: The
desired number of documents (n) contained
in the subcorpus is preselected. Then, only
documents with no test words are eliminated
from the original corpus until there are ex-
actly n documents. Here, n must be greater
than or equal to the number of documents that
contain at least one of the test words.

Both, LSA and Skip-gram word-embeddings were
generated with Gensim Python library (Řehůřek
and Sojka, 2010). In LSA implementation, a Log-
Entropy transformation was applied before the
truncated Singular Value Decomposition. In Skip-
gram implementation, we discarded tokens with
frequency higher than 10−3, and we set the win-
dow size and negative sampling parameters to 15
(which were found to be maximal in two semantic
tasks over TASA corpus (Altszyler et al., 2017)).
In all cases, word-embeddings dimensions values
were varied to study its dependency.

The semantic similarity (S) of two words was
calculated using the cosine similarity measure
between their respective vectorial representation
(v1,v2),

S(v1,v2) = cos(v1,v2) =
v1.v2

‖v1‖.‖v2‖
(1)

The semantic distances between two words
d(v1,v2) is calculated as 1 minus the semantic
similarity (d(v1,v2) = 1− S(v1,v2)).

Word-embeddings knowledge acquisition was
tested in two different tasks: a semantic catego-
rization test and the TOEFL test.

2.1 Semantic categorization test

In this test we measured the capabilities of the
model to represent the semantic categories used
by Patel et al. (1997) (such as drinks, countries,
tools and clothes). The test is composed of 53 cat-
egories with 10 words each. In order to measure
how well the word i is grouped vis-à-vis the other

words in its semantic category we used the Silhou-
ette Coefficients, s(i) (Rousseeuw, 1987),

s(i) =
b(i)− a(i)

max{a(i), b(i)} , (2)

where a(i) is the mean distance of word i with
all other words within the same category, and b(i)
is the minimum mean distance of word i to any
words within another category (i.e. the mean dis-
tance to the neighboring category). In other words,
Silhouette Coefficients measure how close is a
word to its own category words compared to the
closeness to neighboring words. The Silhouette
Score is computed as the mean value of all Silhou-
ette Coefficients. The score takes values between
-1 and 1, higher values reporting localized cat-
egories with larger distances between categories,
representing better clustering.

The high number of test words (530) and the
high frequency of some of them leaves only a few
documents with no test words. This makes varied
corpus size range in the out-of-domain documents
discarding very small. To avoid this, we tested
only on the 10 least frequent categories. The fre-
quency of a question is measured as the number
of documents in which at least one word from this
category appears.

2.2 TOEFL test
The TOEFL test was introduced by Landauer
and Dumais (1997) to evaluate the quality of
semantic representations. This test consists of
80 multiple-choice questions, in which it is re-
quested to identify the synonym of a target word
between 4 options. For example: select the
most semantically similar to “enormously” be-
tween this words: “tremendously”, “appropri-
ately”, “uniquely” and “decidedly”. The perfor-
mance of this test was measured by the percentage
of correct responses.

Again, The high number of test words (400) and
the high frequency of some of them leaves few
documents with no test words. So we performed
the test only on the 20 least frequent questions in
order to have out-of-domain documents to discard.

3 Results

3.1 Semantic categorization Test
In Figure 1 we show the LSA (top panel) and
word2vec (bottom panel) categorization perfor-
mance with both documents discarding methods.

4

For each corpus size and document discarding
method, we took 10 subcorpus samples (in total
we consider 90 subcorpus + the complete corpus).
In each corpus/subcorpus, we trained LSA and
word2vec with a wide range of dimension values,
using in each case the dimension that produces the
best mean performance.

In both cases, performance decreases when doc-
uments are randomly discarded (orange dashed
lines). However, LSA and word2vec have differ-
ent behavior in the out-of-domain document dis-
carding method (blue solid lines). While LSA pro-
duces better scores with increasing specificity, the
word2vec performance decreases in the same situ-
ation.

LSA’s maximum performance is obtained using
20 dimensions and removing all out-of-domain
documents in the training corpus. While, when all
the corpus is used the best number of dimensions
is 100. These results show that performance for a
specific task may be increased by “cleaning” the
training corpus of out-of-domain documents. But,
in order to enhance the performance, the elimi-
nation of out-of-domain documents should be ac-
companied by a decrease of the number of LSA
dimensions. For example, fixing the number of
dimensions to 100 the performance result in a re-
duction of 55%. We also point out that this tech-
nical subtlety has not been taken into account in
previous results that reported the presence of indi-
rect learning in LSA (Landauer and Dumais, 1997;
Lemaire and Denhiere, 2006).

Figure 2 shows the results disaggregated by
number of dimensions. It can be seen that in all
cases the performance decreases when documents
are randomly discarded (bottom panels). How-
ever, in the case of LSA, the dependency with the
number of out-of-domain documents varied with
the number of dimensions (top left panel). In
the cases of 300, 500 and 1000 dimensions, the
performance decreases when out-of-domain doc-
uments are eliminated. In contrast, we obtain the
opposite behavior in the cases of 5, 10, 20 dimen-
sions, in which the elimination of out-of-domain
documents increases LSA’s categorization perfor-
mance.

Consider the case when k is fixed in the value
that maximizes the performance with the entire
corpus (around k = 100). When the corpus is
“cleaned” of out-of-domain documents, the re-
maining corpus will have not only fewer docu-

103 104

0.10

0.15

0.20

0.25

0.30

Si
lh
ou

et
te
 S
co

re

Latent Semantic Analysis
Document discarding

out-of-domain
random

103 104

Corpus Size (# of documents)

−0.3

−0.2

−0.1

0.0

0.1

0.2

Si
lh
ou

et
te
 S
co

re

Word2vec
Document di carding

out-of-domain
random

Figure 1: Semantic categorization test analysis.
Silhouette Score vs corpus size for with both docu-
ments discarding methods: random document dis-
carding (orange dashed lines) and out-of-domain
documents discarding (blue solid lines). The
shown Silhouette Score values and their error bars
are, respectively, the mean values and the standard
error of the mean of 10 samples. In most of the
dots, the error bars are not visible, this is because
their length is smaller than the dot size. The di-
mension was varied among {5, 10, 20, 50, 100,
300, 500, 1000} for LSA and among {5, 10, 20,
50, 100, 300, 500} for word2vec. Due to the high
computational effort, in the case of word2vec we
avoid using 1000 dimensions.

ments, but also less topic diversity among texts.
Thus, the number of dimensions (k) needed to gen-
erate a proper semantic representation should be
reduced. As k is fixed in high values, LSA may not
eliminate enough noisy dimensions, leading to a
decrease in the performance. This effect becomes

5

104−0.1

0.0

0.1

0.2

0.3

0.4
Si

lh
ou

et
te

 S
co

re
LSA out-of-domain discarding

5
10
20

50
100
300

500
1000

103 104

Corpus Size (# of documen s)
−0.2

−0.1

0.0

0.1

0.2

Si
lh

ou
e

 e
 S

co
re

LSA random discarding
5
10
20

50
100
300

500
1000

1040.00

0.05

0.10

0.15

0.20

Word2vec ou -of-domain discarding
5
10
20

50
100

300
500

103 104

Corpus Size (# of documen s)

−0.3

−0.2

−0.1

0.0

0.1

0.2
Word2vec random discarding

5
10
20

50
100

300
500

Figure 2: Semantic categorization test analysis disaggregated by number of dimensions. Categorization
performance (Silhouette Score) vs corpus size, by number of dimensions. Both document variation
methods are shown: out-of-domain documents discarding (top panels) and random document discarding
(bottom panels). The shown scores values and their error bars are, respectively, the mean values and the
standard error of the mean of 10 samples.

larger when the selected k is high, as it can be seen
for k = 300, 500, 1000. On the other hand, con-
sider the case when k is fixed in the value that max-
imizes the performance with the “cleaned” corpus
(around k = 20). The presence of out-of-domain
documents in the complete corpus increase the
topic diversity. As k is fixed in low values, the
LSA will not have enough dimensions to represent
all the intrinsic complexity of the whole corpus.
So, when the corpus is “cleaned” of out-of-domain
documents, the performance should increase.

On the other hand, in the case of word2vec,
the performance decrease, with almost all dimen-
sion values, when out-of-domain documents are
eliminated. Moreover, the discarding of out-of-
domain documents do not require a considerable
decrease of the number of dimensions. These find-
ings supports the idea that individual dimensions
of word2vec do not encode latent semantic do-
mains, however, more analysis must be done in

these direction (see Baroni et al. (2014) discus-
sion).

3.2 TOEFL Test

In Figure 3 we show the TOEFL correct answer
fraction vs the corpus size. We varied the corpus
size by both methods: the out-of-domain docu-
ments discarding and the Random document dis-
carding. As in the categorization test procedure, a
wide range of dimension values where tested, us-
ing in each case the dimension that produces the
best mean performance.

In both models, performance decreases when
documents are randomly discarded (orange dashed
lines in figure 3). For LSA, the elimination of
out-of-domain documents does not produce a sig-
nificant performance variation, which shows that
LSA can not take advantage of out-of-domain doc-
ument. This results are in contradiction with Lan-
dauer and Dumais (1997) observation of indirect

6

103 104

30

40

50

m
ea

n
co

rre
ct

 a
ns

we
r (

%
)

Latent Semantic Analysis
Document discarding

out-of-domain
random

103 104

Corpus Size (# of documents)

35

40

45

50

m
ea

n
co

rre
ct

 a
ns

we
r (

%
)

Word2vec
Document discarding

out-of-domain
random

Figure 3: TOEFL test analysis. Correct answer
percentage vs corpus size with both document
variation methods: Random document discard-
ing (orange dashed lines) and the out-of-domain
documents discarding (blue solid lines). The
shown Silhouette Score values and their error bars
are,respectively, the mean values and the standard
error of the mean of 10 samples. The dimension
was varied among {5, 10, 20, 50, 100, 300, 500,
1000} for LSA and among {5, 10, 20, 50, 100,
300, 500} for word2vec. Due to the high compu-
tational effort, in the case of word2vec we avoid
using 1000 dimensions.

learning. We believe that this difference is due to
the lack of adjustment in the number of dimen-
sions. On the other hand, word2vec has the same
behaviour as in the categorization test. The perfor-
mance when the out-of-domain documents are dis-
carded show a small downward trend (not signifi-
cant, with p-val=0.31 in a two-sided Kolmogorov-
Smirnov test), but not as pronounced as in random

document discard method. Unlike the categoriza-
tion test, the performance measure in the TOEFL
Test present a high variability (see Figure 4). This
observation is consistent with the large fluctua-
tions shown in Landauer and Dumais (1997). De-
spite this, we consider relevant to use this test in
order to be able to compare with Landauer and Du-
mais (1997) results.

4 Conclusion and Discussion

Despite the popularity of word-embeddings in
several semantic representation task, the way by
which they acquire new semantic relations be-
tween words is unclear. In particular, for the
case of LSA there are two opposite visions about
the effect of incorporating out-of-domain docu-
ments. From one point of view, training LSA with
a specific subcorpus, cleaned of documents unre-
lated to the specific task increases the performance
(Stone et al., 2006). From the other point of view,
the presence of unrelated documents improves the
representations. The second view point is sup-
ported by the conception that the SVD in LSA can
capture high-order co-occurrence words relations
(Landauer and Dumais, 1997; Lemaire and Den-
hiere, 2006; Turney and Pantel, 2010). Based on
this, LSA is used as a plausible model of human
semantic memory given that it can capture indirect
relations (high-order word co-occurrences).

In the present article we studied the effect of
out-of-domain documents in LSA and word2vec
semantic representations construction. We com-
pared two ways of progressive elimination of doc-
uments: the elimination of random documents vs
the elimination of out-of-domain documents. The
semantic representations quality was measured in
two different tasks: a semantic categorization test
and a TOEFL exam. Additionally, we have varied
a large range of word-embedding dimensions (k).

We have shown that word2vec can take advan-
tage of all the documents, obtaining its best per-
formance when it is trained with the whole cor-
pus. On the contrary, LSA’s word-representation
quality increases with a specialization of the train-
ing corpus (removal of out-of-domain document)
accompanied by a decrease of k. Furthermore,
we have shown that the specialization without
the decrease of k can produce a strong perfor-
mance reduction. Thus, we point out the need to
vary k when the corpus size dependency is stud-
ied. From a cognitive modeling point of view, we

7

10435

40

45

50

55

60
m
ea
n
co
rre

ct
 a
ns
we

r (
%
)

LSA out-of-domain discarding
5
10
20

50
100
300

500
1000

103 104
Corpus Size (# of documents)

30

40

50

m
ea
n
co
rre

ct
 a
ns
we

r (
%
)

LSA random discarding
5
10
20

50
100
300

500
1000

104
35

40

45

50

Word2vec out-of-domain discarding
5
10
20

50
100

300
500

103 104
Corpus Size (# of documents)

30

35

40

45

50
Word2vec random discarding

5
10
20

50
100

300
500

Figure 4: TOEFL test analysis disaggregated by number of dimensions. Correct answer percentage vs
corpus size, by number of dimensions. Both document variation methods are shown: out-of-domain
documents discarding (top panels) and random document discarding (bottom panels). The shown scores
values and their error bars are, respectively, the mean values and the standard error of the mean of 10
samples.

point out that LSA’s word-knowledge acquisitions
does not take advantage of indirect learning (high-
order word co-occurrences), while word2vec does.
This throws light upon word-embeddings capabil-
ities and limitations in modeling human cognitive
tasks, such as: human word-learning (Landauer
and Dumais, 1997; Lemaire and Denhiere, 2006;
Landauer, 2007), semantic memory (Denhière and
Lemaire, 2004; Kintsch and Mangalath, 2011;
Landauer, 2007) and words classification (Laham,
1997).

Acknowledgments

This research was supported by Consejo Nacional
de Investigaciones Cientficas y Tcni-cas (CON-
ICET), Universidad de Buenos Aires, and Agencia
Nacional de Promocin Cientfica y Tecnolgica. We
also want to thank LSA and NLP Research Labs,
University of Colorado at Boulder for shearing ac-
cess to the TOEFL word set.

References

Edgar Altszyler, Ariel Berenstein, David Milne,
Rafael A. Calvo, and Diego Fernandez Slezak. 2018.
Using contextual information for automatic triage
of posts in a peer-support forum. In Proceedings
of the Fifth Workshop on Computational Linguistics
and Clinical Psychology: From Linguistic Signal to
Clinical Reality.

Edgar Altszyler, Sidarta Ribeiro, Mariano Sigman,
and Diego Fernández Slezak. 2017. The in-
terpretation of dream meaning: Resolving ambi-
guity using latent semantic analysis in a small
corpus of text. Consciousness and Cognition
https://doi.org/10.1016/j.concog.2017.09.004.

Marco Baroni, Georgiana Dinu, and Germán
Kruszewski. 2014. Don’t count, predict! a
systematic comparison of context-counting vs.
context-predicting semantic vectors. In ACL (1).
pages 238–247.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python. ”
O’Reilly Media, Inc.”.

8

Roger B. Bradford. 2008. An empirical study
of required dimensionality for large-scale la-
tent semantic indexing applications. Proceed-
ings of the 17th ACM, CIKM pages 153–162.
https://doi.org/10.1145/1458082.1458105.

Cristian Cardellino and Laura Alonso Alemany. 2017.
Disjoint semi-supervised spanish verb sense disam-
biguation using word embeddings. In ASAI, Simpo-
sio Argentino de Inteligencia Artificial.

Facundo Carrillo, Mariano Sigman, Diego Fernández
Slezak, Philip Ashton, Lily Fitzgerald, Jack Stroud,
David J Nutt, and Robin L Carhart-Harris. 2018.
Natural speech algorithm applied to baseline inter-
view data can predict which patients will respond to
psilocybin for treatment-resistant depression. Jour-
nal of Affective Disorders 230:84–86.

Cheryl M Corcoran, Facundo Carrillo, Diego
Fernández-Slezak, Gillinder Bedi, Casimir Klim,
Daniel C Javitt, Carrie E Bearden, and Guillermo A
Cecchi. 2018. Prediction of psychosis across pro-
tocols and risk cohorts using automated language
analysis. World Psychiatry 17(1):67–75.

Scott Deerwester, Susan T Dumais, Thomas Landauer,
George Furnas, and Richard. Harshman. 1990. In-
dexing by latent semantic analysis. JAsIs 41(6).

G Denhière and B Lemaire. 2004. A Computational
Model of Children’s Semantic Memory. Proc 26
thAnnual Meeting of the Cognitive Science Society
pages 297–302.

Carlos G. Diuk, D. Fernandez Slezak, I. Raskovsky,
M. Sigman, and G. a. Cecchi. 2012. A quan-
titative philology of introspection. Frontiers
in Integrative Neuroscience 6(September):1–12.
https://doi.org/10.3389/fnint.2012.00080.

Susan Dumais. 1991. Improving the retrieval of infor-
mation from external sources. Behavior Research
Methods, Instruments, & Computers 23(2):229–236.
https://doi.org/10.3758/BF03203370.

Susan Dumais. 2003. Data-driven approaches to infor-
mation access. Cognitive Science 27(3):491 – 524.
https://doi.org/http://dx.doi.org/10.1016/S0364-
0213(03)00013-2.

Emmanuelle Dusserre and Muntsa Padró. 2017. Big-
ger does not mean better! we prefer specificity. In
IWCS 201712th International Conference on Com-
putational SemanticsShort papers.

Z. Harris. 1954. Word Distributional structure
23(10):146162.

X Hu, Z Cai, P Wiemer-Hastings, a Graesser,
and D McNamara. 2007. Strengths, limi-
tations, and extensions of LSA. Handbook
of Latent Semantic Analysis pages 401–426.
https://doi.org/10.1164/rccm.201012-2079ED.

Walter Kintsch and Praful Mangalath. 2011. The
construction of meaning. Topics in Cognitive Sci-
ence 3(2):346–370. https://doi.org/10.1111/j.1756-
8765.2010.01107.x.

D Laham. 1997. Latent Semantic Analysis approaches
to categorization. Proceedings of the 19th an-
nual conference of the Cognitive Science Society
(1984):979.

Thomas K Landauer. 2007. Lsa as a theory of meaning.
Handbook of latent semantic analysis pages 3–34.

Thomas K. Landauer and Susan T. Dumais. 1997. A
solution to Plato’s problem: The latent semantic
analysis theory of acquisition, induction, and rep-
resentation of knowledge. Psychological Review
104(2):211–240. https://doi.org/10.1037/0033-
295X.104.2.211.

Gabriella Lapesa and Stefan Evert. 2014. A large scale
evaluation of distributional semantic models: Pa-
rameters, interactions and model selection. Transac-
tions of the Association for Computational Linguis-
tics 2:531–545.

Benoı̂t Lemaire and Guy Denhi. 2004. Incremental
Construction of an Associative Network from a Cor-
pus. 26th Annual Meeting of the Cognitive Science
Society pages 825–830.

Benoit Lemaire and Guy Denhiere. 2006. Effects of
High-Order Co-occurrences on Word Semantic Sim-
ilarity. Current psychology letters 1(18):1–12.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Distributed Representations of Words
and Phrases and their Compositionality. Nips pages
1–9. https://doi.org/10.1162/jmlr.2003.3.4-5.951.

Tomas Mikolov, Greg Corrado, Kai Chen, and
Jeffrey Dean. 2013b. Efficient Estimation of
Word Representations in Vector Space. Proceed-
ings of the International Conference on Learn-
ing Representations (ICLR 2013) pages 1–12.
https://doi.org/10.1162/153244303322533223.

Preslav Nakov, Elena Valchanova, and Galia Angelova.
2003. Towards a Deeper Understanding of the LSA
Performance. Proceedings of Recent Advances in
Natural Language Processing 2(2):311–318.

Brent A Olde, Donald R Franceschetti, Ashish Kar-
navat, Arthur C Graesser, and Tutoring Research
Group. 2002. The right stuff: do you need to san-
itize your corpus when using latent semantic analy-
sis? Proceedings of the 24th annual meeting of the
cognitive science society .

Malti Patel, John A. Bullinaria, and Joseph P Levy.
1997. Extracting semantic representations from
large text corpora. Proceedings of the 4th Neural
Computation and Psychology Workshop pages 199–
212.

J. Quesada. 2011. Creating your own LSA space, Erl-
baum, chapter 1.

9

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks. ELRA, Valletta,
Malta, pages 45–50. http://is.muni.cz/
publication/884893/en.

Peter J. Rousseeuw. 1987. Silhouettes: A graphical aid
to the interpretation and validation of cluster analy-
sis. Journal of Computational and Applied Math-
ematics 20:53–65. https://doi.org/10.1016/0377-
0427(87)90125-7.

Benjamin P Stone, Simon J Dennis, Peter J Kwantes,
Drdc Toronto, and Sheppard Ave W. 2006. A Sys-
tematic Comparison of Semantic Models on Human
Similarity Rating Data : The Effectiveness of Sub-
spacing pages 1813–1818.

Peter D. Turney and Patrick Pantel. 2010. From fre-
quency to meaning: Vector space models of se-
mantics. Journal of Artificial Intelligence Research
37:141–188. https://doi.org/10.1613/jair.2934.

S. Zeno, S. Ivens, and R.and Duvvuri R. Millard. 1995.
The educator’s word frequency guide. Brewster.

10

Proceedings of the 3rd Workshop on Representation Learning for NLP, pages 11–23
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

Hierarchical Convolutional Attention Networks for Text Classification

Shang Gao, Arvind Ramanathan, and Georgia Tourassi
{gaos, ramanathana, tourassig}@ornl.gov

Computational Science and Engineering Division
Oak Ridge National Laboratory

Oak Ridge, TN, USA

Abstract

Recent work in machine translation has
demonstrated that self-attention mecha-
nisms can be used in place of recurrent
neural networks to increase training speed
without sacrificing model accuracy. We
propose combining this approach with the
benefits of convolutional filters and a hi-
erarchical structure to create a document
classification model that is both highly ac-
curate and fast to train – we name our
method Hierarchical Convolutional Atten-
tion Networks. We demonstrate the effec-
tiveness of this architecture by surpassing
the accuracy of the current state-of-the-art
on several classification tasks while being
twice as fast to train.

1 Introduction

Text classification is an important research area
in natural language processing (NLP). Traditional
text classification approaches utilize features gen-
erated from vector space models such as bag-of-
words or term frequency-inverse document fre-
quency (TF-IDF) (Sebastiani, 2005). More re-
cently, deep learning approaches have been shown
to outperform traditional approaches based on
vector space models (Zhang et al., 2015; Tang
et al., 2014). These newer deep learning ap-
proaches typically rely on architectures based off
convolutional neural networks (CNNs) or recur-
rent neural networks (RNNs) (Young et al., 2017).

RNNs, which are designed to learn patterns over
sequential data, have been successfully applied to-
wards various NLP tasks (Liu et al., 2016; Irsoy
and Cardie, 2014; Cho et al., 2014). In NLP, RNNs
typically process one word at a time and learn
features based on complex sequences of words.
While RNNs are capable of capturing linguistic

patterns useful for NLP tasks, especially over long
segments of text, they can be slow to train com-
pared to other deep learning architectures – in or-
der to calculate the gradients associated with any
given word in a sequence, an RNN must back-
propogate through all previous words in that se-
quence, resulting in backpropogation functions far
more complex than those in feedforward or convo-
lutional architectures.

CNNs, traditionally used for computer vision,
have also been applied to NLP tasks with notable
success (Zeng et al., 2014; Dos Santos and Gatti,
2014; Wang et al., 2012). Unlike RNNs, which
learn patterns across an entire sequence of text,
CNNs use a sliding window that examines only a
few words/characters at a time. Thus, CNNs learn
features based on the most salient combinations
of X words/characters where X is determined by
the window size used; unlike RNNs, CNNs are
less capable of capturing linguistic features across
long distances. Despite this shortcoming, CNNs
can often be as effective as RNNs in many basic
NLP tasks (Yin et al., 2017). Furthermore, CNNs
are generally faster to train than RNNs.

In this paper, we introduce Hierarchical Con-
volutional Attention Networks (HCANs), an ar-
chitecture based off self-attention that can capture
linguistic relationships over long sequences like
RNNs while still being fast to train like CNNs.
HCANs can achieve accuracy that surpasses the
current state-of-the-art on several classification
tasks while being twice as fast to train.

2 Related Work

In 2014, Kim (2014) proposed one of the first
CNNs for text classification. Kim’s CNN used
three parallel convolutional layers; these process
a sentence using a sliding window that examines
three, four, and five words at a time. The three

11

convolutions then feed into a maxpool across the
entire sentence, which selects the most potent fea-
tures in each convolution and concatenates them
into a single feature vector. Finally, the selected
features are fed into a dense softmax layer for clas-
sification. Due to its simplicity and strong per-
formance in many tasks, Kim’s CNN architecture
is still commonly used today in many text classi-
fication tasks (Qiu et al., 2017; Gehrmann et al.,
2017).

One shortcoming of Kim’s CNN approach is
that it cannot find linguistic patterns beyond a
fixed window size, which may harm performance
for complex NLP tasks. Attempts have been made
to mitigate this issue by increasing the CNN depth
and using local maxpooling to increase the recep-
tive field (Conneau et al., 2017). However, Le
et al. (2017) showed that increasing CNN depth
helps the performance of character-level CNNs but
not word-level CNNs. They further demonstrated
that a shallow word-level CNN similar to Kim’s
proposed structure can outperform much deeper
and more complex CNN architectures on a wide
range of text classification tasks.

The current state-of-the-art in text classification
are Hierarchical Attention Networks (HANs), de-
veloped by Yang et al. (2016). Whereas the previ-
ous approaches mentioned are all based on CNNs,
HANs utilize RNNs. HANs use a hierarchical
structure in which each hierarchy uses the same ar-
chitecture – a bidirectional RNN with gated recur-
rent units (GRUs) (Chung et al., 2014), followed
by an attention mechanism that creates a weighted
sum of the RNN outputs at each timestep. The
HAN processes documents by first breaking a long
document into its sentence components, then pro-
cessing each sentence individually before process-
ing the entire document. By breaking a document
into smaller, more manageable chunks, the HAN
can better locate and extract critical information
useful for classification. This approach surpassed
the performance of all previous approaches across
several text classification tasks. However, com-
pared to CNN-based approaches, HANs are much
slower to train because they utilize RNNs.

In 2017, Vaswani et al. (2017) created a deep
learning model for machine translation based en-
tirely on self-attention mechanisms (Cheng et al.,
2016; Lin et al., 2017; Paulus et al., 2017). Tra-
ditionally, CNN or RNN layers are used to ex-
tract meaningful features from words or images;

attention is applied afterwards to the output of the
CNN or RNN layers to help the network focus on
features that are most salient (Luong et al., 2015;
Xu et al., 2015; Hermann et al., 2015). How-
ever, Vaswani showed that self-attention could
be applied directly on raw word embeddings to
extract important relations and apply meaning-
ful transformations on words. Like RNNs, this
attention-based approach can capture relationships
over long distances; unlike RNNs, this approach
utilizes a feedforward architecture and is much
faster to train. Vaswani achieved state-of-the-
art results in machine translation using 10x-100x
fewer trainable parameters than previous state-of-
the-art models.

We hypothesize that a similar self-attention-
based architecture can achieve both fast and ac-
curate performance in text classification tasks.
In the following section, we show how we
adapt the attention-based architecture developed
by Vaswani for machine translation into an effec-
tive approach for text classification.

3 Hierarchical Convolutional Attention
Network

The overall structure of our HCAN is shown in
Figure 1. The components and structure of our
HCAN are described in greater detail in the fol-
lowing subsections.

3.1 Scaled Dot Product Attention
Suppose we have a sequence of word embeddings
Einput ∈ Rl×d, where l is the length of the se-
quence, d is the embedding dimension, and einputi

is the i-th word embedding in the sequence.
Self-attention, sometimes referred to as intra-

attention, compares each entry einputi to every en-
try einputi in that same sequence; this allows for the
discovery of relationships between entries in the
sequence. Self-attention outputs a new sequence
Eoutput ∈ Rl×d in which each entry eoutputi is a
weighted average of all entries einputi in the in-
put sequence. Each entry eoutputi should contain
within it the most pertinent information to that en-
try from all entries in the input sequence einputi .

Attention(Q,K, V) = softmax(
QKT

√
d

)V (1)

Scaled-dot-product attention (Figure 2, Equa-
tion 1) is a type of self-attention developed by
Vaswani et al. that was shown to work well

12

W
ord H

ierarchy

Doc Embedding Softmax

Elementwise Multiply, Layer Normalization

Convolutional Multihead
Self-Attention (ELU)

we1 we2 we3 we4 we5

Convolutional Multihead
Self-Attention (tanh)

Convolutional Multihead Target Attention

Sentence H
ierarchy

+wp1 +wp2 +wp3 +wp4 +wp5

Elementwise Multiply, Layer Normalization

Convolutional Multihead
Self-Attention (ELU)

se1 se2 se3 se4 se5

Convolutional Multihead
Self-Attention (tanh)

Convolutional Multihead Target Attention

+sp1 +sp2 +sp3 +sp4 +sp5

Figure 1: Architecture for our Hierarchical Con-
volutional Attention Network (HCAN).

in machine translation. Scaled-dot-product atten-
tion utilizes three word embedding matrices – the
‘query’ embeddings Q ∈ Rl×d, the ‘key’ em-
beddings K ∈ Rl×d, and the ‘value’ embeddings
V ∈ Rl×d.

In the most basic implementation of self-
attention, Q, K, and V can all be substituted by
the same sequence of word embeddings Einput ∈
Rl×d. Q and K are used to create a weight ma-
trix QKT based on the similarity of entries in
the sequence. Vaswani et al. found that scaling
this weight matrix by a factor of

√
d yields bet-

ter performance for higher-dimensional word em-
beddings. Once this weight matrix is scaled and
normalized, it is multiplied with V to create a new
output sequence Eoutput ∈ Rl×d in which each
entry eoutputi is a weighted average of all entries
einputi in the input sequence.

3.2 Convolutional Feature Extraction

Rather than use the same Einput for Q, K, and V ,
we can use a function to extract different features

from Einput for each of the Q, K, and V embed-
dings. This allows for more expressive compar-
ison between entries in a sequence; for example,
certain features may be useful when comparing Q
andK but may not be necessary when creating the
output sequence from V . For our feature extrac-
tor function, we use a 1D convolution with d fil-
ter maps and a window size of three words, which
provides more context for each center word when
extracting important features (Equation 2).

Q = ELU(Conv1D(E,W q) + bq)

K = ELU(Conv1D(E,W k) + bk)

V = ELU(Conv1D(E,W v) + bv)

(2)

In the equation above, Conv1D(A,B) is a 1D con-
volution operation with A as the input as B as the
filter, {Q,K, V,E} ∈ Rl×d, {W q,W k,W v} ∈
R3×d×d, and {bq, bk, bv} ∈ Rd.

We found exponential linear units (ELUs)
(Clevert et al., 2016) to perform better than rec-
tified linear units (ReLUs) and other activation
functions. Unlike ReLUs, ELUs can output nega-
tive values, which allows for more complex inter-
actions between the Q and K embeddings when
calculating word weights – each word can be as-
signed a large range of both positive and negative
values before being sent into the softmax function.

3.3 Convolutional Multihead Self-Attention
For each entry in the output sequence, scaled dot
product attention calculates a set of weights that
is used to create a weighted average; the same
weights are applied across all d dimensions of
the V embeddings. To expand the capabilities of
scaled dot product attention, Vaswani et al. in-
troduced multihead attention. Rather than using
a single attention function across all d dimensions
of the embeddings, multihead attention uses h par-
allel attention functions, each of which attends to
a different portion of the embedding dimension.
This allows different portions of the embeddings
to be combined using different weights so that the
final output sequence can be constructed from a
more expressive combination. Vaswani demon-
strated that multihead attention performs better
than regular scaled dot product attention for ma-
chine translation.

MultiHead(Q,K, V) = [head1, ..., headh]

where headi = Attention(Qi,Ki, Vi)

(3)

13

Matmul

Q K.T V

Scale

Softmax

Matmul

Conv1D Conv1D

Q K V

Conv1D

Scaled Dot Product Attention

Split Split Split

Concat

T Conv1D

K V

Conv1D

Scaled Dot Product Attention

Split Split Split

Concat

Scaled Dot Product Attention Convolutional Multihead
Self-Attention

Convolutional Multihead
Target Attention

Figure 2: Scaled dot product attention, convolutional multihead self-attention, and convolutional multi-
head target attention.

Our implementation convolutional multihead
self-attention (Figure 2, Equation 3) is based on
the multihead attention developed by Vaswani.
After using convolution to generate the Q, K,
and V embeddings, we split each of the Q, K,
and V embeddings into h sub-embeddings such
that {Qi,Ki, Vi} ∈ Rl×d/h. Each triplet of sub-
embeddings is then fed into their own scaled dot
product attention function. The final output is the
concatenation of the outputs headi ∈ Rl×d/h from
the individual scaled dot product attention func-
tions to form an output sequence Eoutput ∈ Rl×d.

3.4 Capturing Complex Word Relationships

In general, attention mechanisms are designed to
produce a weighted average of an input sequence.
Unfortunately, when trying to capture the overall
content within a linguistic sequence, a weighted
average may not be sufficient. Two examples of
this are negation and scaling. In negation, a word
sequence such as ‘was not the case’ may reverse
the meaning of words in another part the sequence
(i.e. multiply those embeddings by -1). Similarly
in scaling, a word sequence such as ‘to a high
degree’ may increase the polarity of another part
of the sequence (i.e. multiply those embeddings
by some positive value). Attention mechanisms,
which only create weighted averages, are not de-
signed to capture these interactions.

To better capture these types of linguistic in-
teractions, we test the effectiveness of using two
convolutional multihead self-attentions in parallel
and performing elementwise multiplication on the
outputs (Figure 1, Equation 4). This allows the

network to capture more complex interactions be-
tween elements in the sequence and expands the
expressiveness of the final output beyond that of a
simple weighted average.

Parallel(E) = MultiHead(Qa,Ka, V a)

�MultiHead(Qb,Kb, V b)

where Qa = ELU(Conv1D(E,W qa) + bqa)

Ka = ELU(Conv1D(E,W ka) + bka)

V a = ELU(Conv1D(E,W va) + bva)

Qb = ELU(Conv1D(E,W qb) + bqb)

Kb = ELU(Conv1D(E,W kb) + bkb)

V b = tanh(Conv1D(E,W vb) + bvb)

(4)

Because tanh outputs a value between -1 and 1, it
is used to generate the V embeddings for the sec-
ond self-attention to prevent the final output from
becoming too small or large after multiplying the
outputs from the two self-attention mechanisms.

3.5 Convolutional Multihead
Target-Attention

The output of our convolutional multihead self-
attention is a new output sequence Eoutput ∈
Rl×d in which l is based on the length of the in-
put sequence. For classification purposes, we re-
quire that each sequence regardless of its length
be represented by a single fixed-length vector V ∈
R1×d. We therefore introduce convolutional mul-
tihead target-attention, which utilizes the concepts
from multihead convolutional self-attention but

14

operates like the traditional attention mechanism
that is used on the outputs of a RNN.

Target(E) = MultiHead(T,K, V)

where K = ELU(Conv1D(E,W k) + bk)

V = ELU(Conv1D(E,W v) + bv)

(5)

In convolutional multihead target-attention
(Figure 2, Equation 5), instead of comparing the
entries in a sequence Einput ∈ Rl×d to each
other, we compare them to a learnable target vec-
tor T ∈ R1×d that represents the most critical in-
formation to look for given a specific task – the
content in this vector is learned through backpro-
pogation based on the task at hand. The output is a
single weighted average Eoutput ∈ R1×d that cap-
tures the most critical content across the sequence.
This final output vector may then be fed into a soft-
max and used for classification purposes.

3.6 Positional Embeddings
RNN-based approaches for text processing can in-
herently account for word order when extracting
features. However, feedforward and convolution-
based approaches such as our implementation of
convolutional multihead self-attention do not have
this capability. One way to address this prob-
lem is by adding positional embeddings P ∈
Rl×d (Gehring et al., 2017; dos Santos et al.,
2015). Positional embeddings are vector repre-
sentations of the absolute position of an entry in
a sequence. These are added directly to each
word/sentence embedding in the input sequence
before the sequence is fed into the convolutional
multihead self-attention. We use randomly initial-
ized embeddings that are learned during training;
we found that these provide a slight boost toward
classification accuracy.

3.7 Hierarchical Structure
In their work on HANs, Yang et al. attained state-
of-the-art performance by utilizing a hierarchical
structure that first breaks up documents into sen-
tences. The lower hierarchy reads in word em-
beddings from a given sentence and outputs a sen-
tence embedding representing the content within
that sentence, and the upper hierarchy reads in the
sentence embeddings created from the lower hi-
erarchy and outputs a document embedding rep-
resenting the content of the entire document; this
document embedding is then used for classifica-
tion. In our experiments, we test the effective-

ness of our HCAN with and without this hierar-
chical structure. We expect that, like with RNNs,
self-attention has difficulty capturing meaningful
semantic relationships over very long sequences
with too many entries; using a hierarchical struc-
ture to break down long sequences into more man-
ageable chunks mitigates this issue.

Each hierarchy in our HCAN consists of two
parallel convolutional multihead self-attentions
followed by a convolutional multihead target at-
tention (Figure 1). Positional embeddings are
added to the inputs of each hierarchy to allow
the network to identify relationships based on
word/sentence positions. We tried increasing the
depth within each hierarchy by using multiple lay-
ers of self-attentions but found that this did not im-
prove model accuracy.

3.8 Regularization
To regularize our network, we apply dropout of 0.1
on the normalized attention weights (produced by
scaling QKT by

√
d and then applying softmax)

within every scaled dot product attention. Further-
more, we apply dropout of 0.1 on the word and
sentence embeddings after the positional embed-
dings have been added, which has been shown to
be effective in other NLP applications (Peng et al.,
2015).

We also apply layer normalization (Ba et al.,
2016) after the elementwise multiplication of
the two parallel convolutional multihead self-
attentions (Figure 1). This not only applies a reg-
ularization effect, but also speeds up the rate of
convergence. Layer normalization is used instead
of batch normalization because layer normaliza-
tion is still effective with very small batch sizes.

4 Experiments

4.1 Datasets
We evaluate the performance of the HCAN on four
classification tasks using three datasets (Table 1).

The Yelp reviews dataset 1 consists of over 4.7
million Yelp reviews of various businesses col-
lected over 12 metropolitan areas. For our task,
we use only reviews from 2016 (approximately 1
million reviews) and try to predict the rating 1-5.

The Amazon reviews dataset (McAuley and
Leskovec, 2013) consists of 83.68 million Ama-
zon product reviews from different product cat-
egories spanning May 1996 to July 2014. For

1https://www.yelp.com/dataset

15

Table 1: Dataset Descriptions
Dataset Classes Documents Vocabulary Task Description
Yelp Reviews 2016 5 1,033,037 72,880 Sentiment Analysis
Amazon Reviews Sentiment 5 500,000 67,802 Sentiment Analysis
Amazon Reviews Category 10 500,000 67,802 Topic Classification
Pubmed 8 800,000 182,167 Topic Classification

our evaluation, we selected 10 popular categories
and extracted 50,000 randomly selected reviews
from each: books, electronics, clothing, home and
kitchen, sports and outdoors, health, video games,
tools, pet supplies, and food. We use this dataset
for two separate classification tasks – sentiment
analysis (1-5) and product classification.

The Pubmed dataset 2 consists of more than
26 million citations, abstracts, and other metadata
from biomedical literature dating back to 1964.
For our experiments, we use Pubmed abstracts as-
sociated with 8 common medical subject heading
(MeSH) labels: metabolism, physiology, genetics,
chemistry, pathology, surgery, psychology, and di-
agnosis. We only use abstracts that are associated
with a single label, yielding a final selection of
800,000 abstracts, 100,000 for each label.

4.2 Baselines and Hyperparameters

As a baseline, we test the performance of two tra-
ditional machine learning classifiers that do not
utilize deep learning: Naive Bayes (NB) and logis-
tic regression (LR). For logistic regression, we use
L1 regularization with a penalty strength of 1.0.

We also compare the performance of our HCAN
to that of two other deep learning models. First,
we test a word-level shallow-and-wide CNN using
an architecture similar to that developed by Kim
(2014) for sentence classification. We use three
parallel convolution layers with 3-, 4-, and 5-word
windows, all with 100 feature maps. These feed
into a temporal maxpool across the entire docu-
ment and the result is concatenated. We apply 50%
dropout on the concatenated vector and feed this
vector into a softmax classifier. This simple archi-
tecture has been shown to outperform many deeper
and more complex CNN-based models (Le et al.,
2017).

We also test the performance of HANs (Yang
et al., 2016), which are the current state-of-the-art.
For our HAN, we use the same optimized hyper-
parameters as those used by Yang – each hierarchy

2https://www.ncbi.nlm.nih.gov/pubmed/

is composed of a bi-directional GRU with 50 units
and an attention mechanism with a hidden layer of
200 neurons.

For the HCAN, we tuned the hyperparameters
on the Yelp 2013 dataset. We tuned the atten-
tion embedding size d and the number of attention
heads h used in our scaled dot-product attention.
We use embedding size 512 and 8 heads for our
final implementation.

4.3 Setup Details
For each dataset, we lowercase all characters and
remove non-alphanumerics other than periods, ex-
clamation marks, and questions marks (used to
split documents into sentences). For the traditional
machine learning approaches that utilize TFIDF
features, we generate unigrams and bigrams with
a minimum document frequency of 5. For deep
learning models that utilize word embeddings, we
train Word2Vec embeddings using a minimum
word frequency of 5 and a dimension size of 512.

The deep learning models are all trained on a
single document at a time with no batching. This
configuration allows for variable length input so
that long documents do not need to be cut short
and short documents do not need to be padded.
All models are trained using the Adam optimizer
(Kingma and Ba, 2015) with learning rate 2E-5,
beta1 0.9, and beta2 0.99.

We split each dataset into train, validation, and
test sets using stratified 80/10/10 splitting. The
TFIDF-based models are fitted on the train sets
and evaluated on the test sets. The deep learn-
ing models are trained on the train set, and ev-
ery 50,000 documents we evaluate on the valida-
tion set until the model converges. We save the
model parameters with the highest validation ac-
curacy and use those parameters to evaluate on the
test set.

4.4 Results
The results of our experiments are displayed in Ta-
ble 2. For each deep learning model, we record the
final test accuracy, average time to train on a single

16

Table 2: Test set accuracy, mean training time for a single document, and total training time on each task

Classifier Yelp 2016 Amazon
Sentiment

Amazon
Category Pubmed

Naive Bayes
63.12
–, 1.8s

61.66
–, 0.8s

88.14
–, 1.3s

75.81
–, 4.2s

Logistic Regression
71.31

–, 306s
67.57

–, 101s
88.69

–, 173s
78.57

–, 463s

Word shallow-and-wide CNN
74.44

17ms, 9hr
70.75

15ms, 5hr
88.20

15ms, 5hr
78.15

35ms, 22hr

Hierarchical Attention Network
76.30

96ms, 67hr
72.56

97ms, 35hr
89.68

113ms, 37hr
79.89

167ms, 110hr
Conv Attention Network
(One Self-Attention, Maxpool)

75.01
19ms, 13hr

71.24
19ms, 8hr

89.27
19ms, 8hr

79.21
38ms, 25hr

Conv Attention Network
(One Self-Attention, Target Attention)

75.17
21ms, 14hr

71.45
21ms, 9hr

89.35
21ms, 9hr

79.70
39ms, 26hr

Conv Attention Network
(Two Self-Attentions, Maxpool)

75.21
23ms, 15hr

71.45
22ms, 9hr

89.41
22ms, 9hr

79.86
41ms, 27hr

Conv Attention Network
(Two Self-Attentions, Target Attention)

75.25
25ms, 17hr

71.78
24ms, 10hr

89.71
24ms, 10hr

79.95
43ms, 29hr

Hiearchical Conv Attention Network
(One Self-Attention, Maxpool)

75.00
24ms, 16hr

71.09
23ms, 9hr

88.85
23ms, 9hr

79.31
42ms, 28hr

Hierarchical Conv Attention Network
(One Self-Attention, Target Attention)

75.75
34ms, 23hr

72.33
29ms, 12hr

89.55
29ms, 12hr

79.91
47ms, 31hr

Hiearchical Conv Attention Network
(Two Self-Attentions, Maxpool)

75.54
31ms, 21hr

72.43
31ms, 13hr

89.34
31ms, 13hr

80.09
50ms, 33hr

Hierarchical Conv Attention Network
(Two Self-Attentions, Target Attention)

76.51
49ms, 32hr

72.85
38ms, 16hr

89.89
38ms, 16hr

80.13
53ms, 35hr

0 10 20 30
Hours

62.5

65.0

67.5

70.0

72.5

75.0

Va
lid

 A
cc

cnn
hcan
han

Figure 3: Validation accuracy vs time on Amazon
sentiment analysis task.

document, and total time to converge. For timing,
all models were trained on a single NVIDIA TI-
TAN X GPU.

In all four tasks, the HCAN achieves the highest
test accuracy. Furthermore, HCANs process docu-
ments and converge more than twice as fast as the

HAN (Figure 3). Within the HCAN, using a hi-
erarchical structure achieves better accuracy than
not using a hierarchical structure, using two paral-
lel self-attentions achieves better accuracy than us-
ing a single self-attention, and using target atten-
tion outperforms using maxpool, especially when
using a hierarchical structure.

We note that the difference in accuracy between
the deep learning approaches and traditional ma-
chine learning approaches is greater in the senti-
ment classification tasks than in the topic classifi-
cation tasks. We expect that this is because sen-
timent classification requires more semantic nu-
ance, which can be difficult to capture via TFIDF
features. On the other hand, topic classification
may require the presence of only a few specific
words to indicate a specific topic.

5 Discussion

Based on our results, we see that the two
best performing architectures are the HCAN and
the HAN. Unlike the shallow-and-wide CNN,

17

Figure 4: Attention weights assigned to a sample Yelp review by one attention head. The top portion
shows the attention weights assigned to each word and sentence by the convolutional multihead target-
attention. The bottom portion shows the attention weights assigned to the word ”loved” in sentence 3 by
the convolutional multihead self-attention.

HCANs and HANs utilize a hierarchical struc-
ture that first breaks a document down into its
constituent sentences. Using this structure, the
networks first locate the most critical information
within each sentence and then establish the rela-
tionships between the critical information found
from each sentence. Our results suggest that this
approach works better for text classification than
scanning the entire document in one single pass to
look for key features.

On our tasks, we see that the HCAN achieves
similar performance with the HAN but trains
much faster. We attribute this to the fact that
HCANs utilize a self-attention-based architecture
instead of an RNN-based architecture to extract
features. Self-attention utilizes a feed-forward
structure, whereas an RNN must backpropagate
onto itself over time. When computing gradients,
this means that much more calculation is required
for RNN-based architectures. For our HCAN, we
utilized a self-attention mechanism with a width of
512 neurons and were able to perform faster than
our HAN that used an RNN with only 50 GRUs.

Another important implication of self-attention
is that it is easier to parallelize than RNNs. Self-
attention utilizes a fixed number of feed-forward
steps that remain the same regardless of the length
of the input sequences. This makes it simple to
split the model parameters associated with self-
attention across multiple GPUs even when pro-
cessing multiple documents of different lengths.
On the other hand, the number of operations for
an RNN is dependent on the length of the input
sequence. This makes it challenging to efficiently
split RNN parameters across multiple GPUs when
dealing with a mini-batch of documents that vary

in length (Huang et al., 2013).
Utilizing an attention-based approach also in-

creases the interpretability of the model. By ex-
amining the attention weights assigned to each
word/sentence by the target attention mechanisms
in each hierarchy of the HCAN, we can locate
the words/sentences in a document that contribute
most to its final label (Figure 4). Furthermore,
we can also examine the attention weights as-
signed to each word/sentence in the self-attention
mechanisms to establish how the HCAN is finding
relationships between individual words/sentences
when extracting important features (Figure 4).

Our results show that using two parallel self-
attention mechanisms results in higher accuracy
than using a single self-attention mechanism.
Upon analyzing the attention weights assigned by
the self-attention mechanisms, we found that us-
ing two parallel self-attentions captures more rela-
tionships involving modifier words than one single
self-attention mechanism alone (Figure 5). Fur-
thermore, we analyzed the documents that two
parallel self-attentions classified correctly but one
single self-attention did not. In sentiment analysis
tasks, we found that many of these documents (1)
begin positively but conclude negatively or vice
versa, (2) contain a mix of positive and negative
words, or (3) contain words that scale the mean-
ing of another word or phrase (Supplementary A).
This supports our hypothesis that two parallel self-
attentions better distinguishes complex word rela-
tionships like scaling and negation.

To better understand how the HCAN functions
in comparison with the HAN, we compared the
attention weights assigned to each word/sentence
by the target attention mechanisms in the two net-

18

Figure 5: Self-attention weights assigned to a sample word ‘it’ by (top) HCAN with a single self-attention
and (bottom) HCAN with two parallel self-attentions. With two self-attentions, the first self-attention
captures the relationship between ‘it’ and ‘doesnt’ and the second self-attention captures the relationship
between ‘it’ and ‘chop’. This is a more nuanced negation relationship that isn’t captured when using a
single self-attention.

works. We found the HCAN weight assignments
to be more spread out than those from the HAN
(Supplementary B). Further analysis revealed that
the self-attention mechanisms in the HCAN dis-
tribute the meaning of important keywords across
many other words before the sequence is fed into
the target attention mechanism, thus resulting in
the wider distribution of attention weights.

6 Conclusion

In this work, we introduced a new self-attention-
based text classification architecture, HCANs, and
compared its performance with the current state-
of-the-art, HANS, in four classification tasks:
Yelp review sentiment, Amazon review sentiment,
Amazon review product category, and Pubmed ab-
stract topic. In all four tasks HCANs achieved
slightly better performance than HANs while be-
ing more than twice as fast to train. Our re-
sults show that in time-critical NLP tasks, self-
attention-based architectures may be able to re-
place RNN-based architectures to reduce training
time without sacrificing accuracy. Moving for-
ward, we plan to explore efficient implementations
of data and model parallelism for self-attention-
based architectures such as the HCAN. The code
for our experiments is available online at https:
//code.ornl.gov/v33/HCAN/.

Acknowledgments

This work has been supported in part by the
Joint Design of Advanced Computing Solutions
for Cancer (JDACS4C) program established by
the U.S. Department of Energy (DOE) and the
National Cancer Institute (NCI) of the National
Institutes of Health. This work was performed
under the auspices of the U.S. Department of
Energy by Argonne National Laboratory under
Contract DE-AC02-06-CH11357, Lawrence Liv-
ermore National Laboratory under Contract DE-
AC52-07NA27344, Los Alamos National Labo-
ratory under Contract DE-AC5206NA25396, and
Oak Ridge National Laboratory under Contract
DE-AC05-00OR22725. This research was sup-
ported by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. De-
partment of Energy Office of Science and the Na-
tional Nuclear Security Administration. This re-
search used resources of the Oak Ridge Leader-
ship Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725.

19

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450 .

Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016.
Long short-term memory-networks for machine
reading. pages 551–561.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation pages 1724–1734.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555 .

Djork-Arn Clevert, Thomas Unterthiner, and Sepp
Hochreiter. 2016. Fast and accurate deep network
learning by exponential linear units (elus). ICLR .

Alexis Conneau, Holger Schwenk, Loc Barrault, and
Yann Lecun. 2017. Very deep convolutional net-
works for text classification. In ACL-EACL. pages
1107–1116.

Cı́cero Nogueira Dos Santos and Maira Gatti. 2014.
Deep convolutional neural networks for sentiment
analysis of short texts. In COLING. pages 69–78.

Cicero Nogueira dos Santos, Bing Xiang, and Bowen
Zhou. 2015. Classifying relations by ranking with
convolutional neural networks pages 626–634.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N. Dauphin. 2017. Convolutional
sequence to sequence learning. ICML pages 1243–
1252.

Sebastian Gehrmann, Franck Dernoncourt, Yeran Li,
Eric T Carlson, Joy T Wu, Jonathan Welt, John
Foote Jr, Edward T Moseley, David W Grant,
Patrick D Tyler, et al. 2017. Comparing rule-based
and deep learning models for patient phenotyping.
arXiv preprint arXiv:1703.08705 .

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In NIPS. pages
1693–1701.

Zhiheng Huang, Geoffrey Zweig, Michael Levit,
Benoit Dumoulin, Barlas Oguz, and Shawn Chang.
2013. Accelerating recurrent neural network train-
ing via two stage classes and parallelization. In
Proc IEEE Workshop Autom Speech Recognit Un-
derst. IEEE, pages 326–331.

Ozan Irsoy and Claire Cardie. 2014. Opinion mining
with deep recurrent neural networks. In EMNLP.
pages 720–728.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP. pages 1746–
1751.

Diederik P. Kingma and Jimmy Lei Ba. 2015. Adam:
A method for stochastic optimization. ICLR .

Hoa T. Le, Christophe Cerisara, and Alexandre Denis.
2017. Do convolutional networks need to be deep
for text classification? CoRR abs/1707.04108.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. In ICLR.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016.
Recurrent neural network for text classification with
multi-task learning. IJCAI pages 2873–2879.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation pages 1412–1421.

Julian McAuley and Jure Leskovec. 2013. Hidden fac-
tors and hidden topics: understanding rating dimen-
sions with review text. In ACM conference on Rec-
ommender systems. ACM, pages 165–172.

Romain Paulus, Caiming Xiong, and Richard Socher.
2017. A deep reinforced model for abstractive sum-
marization. arXiv preprint arXiv:1705.04304 .

Hao Peng, Lili Mou, Ge Li, Yunchuan Chen, Yangyang
Lu, and Zhi Jin. 2015. A comparative study on regu-
larization strategies for embedding-based neural net-
works. In EMNLP. pages 2106–2111.

J Qiu, HJ Yoon, PA Fearn, et al. 2017. Deep learn-
ing for automated extraction of primary sites from
cancer pathology reports. IEEE J Biomed Health
Inform .

Fabrizio Sebastiani. 2005. Text categorization. In En-
cyclopedia of Database Technologies and Applica-
tions, IGI Global, pages 683–687.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting
Liu, and Bing Qin. 2014. Learning sentiment-
specific word embedding for twitter sentiment clas-
sification. In ACL. pages 1555–1565.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Llion
Jones, Jakob Uszkoreit, Aidan N Gomez, and ukasz
Kaiser. 2017. Attention is all you need. NIPS .

Tao Wang, David J Wu, Adam Coates, and Andrew Y
Ng. 2012. End-to-end text recognition with con-
volutional neural networks. In ICPR. IEEE, pages
3304–3308.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. 2015. Show, attend and tell:
Neural image caption generation with visual atten-
tion. In ICML. pages 2048–2057.

20

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alexander J Smola, and Eduard H Hovy. 2016. Hi-
erarchical attention networks for document classifi-
cation. In HLT-NAACL. pages 1480–1489.

Wenpeng Yin, Katharina Kann, Mo Yu, and Hinrich
Schütze. 2017. Comparative study of cnn and rnn
for natural language processing. arXiv preprint
arXiv:1702.01923 .

Tom Young, Devamanyu Hazarika, Soujanya Poria,
and Erik Cambria. 2017. Recent trends in deep
learning based natural language processing. arXiv
preprint arXiv:1708.02709 .

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou,
Jun Zhao, et al. 2014. Relation classification via
convolutional deep neural network. In COLING.
pages 2335–2344.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In NIPS. pages 649–657.

21

A Yelp Reviews Misclassified by Single Self-Attention

The following are examples of Yelp reviews that were misclassified when using a single self-attention
mechanism but correctly classified when using two parallel self-attention mechanisms. Note in many of
these reviews, one section of the review negates or scales the meaning in another section.

i got this at a grocery store thinking it would be great since i only drink a little bit of wine or
sake at a time . i ended up giving it away to goodwill after a few months because it doesnt
really help the wine or sake at least not for weeks like im prone to need between glasses and
it is annoying to use the plastic thingy trying to get it tight and worrying that youre going to
break the bottle . i think a nice reusable cork kind of gadget would do just as good a job take
up less drawer space and look prettier in the bottle .

for those of you who criticized this book for lack of a plot i can only assume that you are much
more suited to books in the mystery thriller genre . i loved it and found the characters very real
and compelling . if you are a reader who likes books about relationships you are going to love
it too .

i hesitated buying this grill because there were so many negative reviews . im glad i decided
to buy the grill . weve used it 5 times so far . to address some of the negative reviews . you
can cook with the grill on both high and low with the cover closed . in the instructions you
are actually directed to clean the grill for the first time with the burners on high and the cover
closed . the stand is excellent . weve been using this at the beach . the stand and fold out
tables save packing additional cargo in the car . as far as cleaning i dont know what people are
expecting . its a bbq it gets dirty . the grates clean up real nice with brillo . the chrome area
under the grill plates cleans up with a fantastic type cleaner .

a feel good read . dean koontz does this type of book very very well . no horrid monsters
except for the unscrupulous government people so dont expect nightmares from this one . it
does have its suspense however .

its fun in the begining . but the levels get harder and game play is not as fun . it got so hard it
was not much fun to play . and has not much varity in it .

B Comparing Attention Weights from HAN and HCAN

The attention weights assigned by the target-attention for the HAN (Figure 6) are more focused on
keywords than for the HCAN (Figure 7). This is because the self-attention in the HCAN redistributes the
content of important keywords across other words before the sequence is sent into the target-attention
(Figure 8).

Figure 6: HAN target-attention weights assigned to a sample Yelp review. We see that the weights are
primarily focused on sentiment keywords.

22

Figure 7: HCAN target-attention weights assigned to a sample Yelp review. We see that the weights are
more spread out than in the HAN target-attention.

Figure 8: HCAN self-attention weights assigned to the words ”the” and ”only” in a sample Yelp review
sentence. We see that meaning from sentiment keywords are redistributed among other words. In the two
example shown above, we see that ”best” is reassigned to ”the” and ”awesome” is reassigned to ”only”.
Therefore, the HCAN target-attention weighs the words ”the” and ”only” higher because they contain
content from sentiment keywords.

23

Proceedings of the 3rd Workshop on Representation Learning for NLP, pages 24–29
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

Extrofitting: Enriching Word Representation and its Vector Space
with Semantic Lexicons

Hwiyeol Jo
AI Lab, LG Electronics

hwiyeolj@gmail.com

Stanley Jungkyu Choi
AI Lab, LG Electronics

stanley.choi@lge.com

Abstract

We propose post-processing method for
enriching not only word representation but
also its vector space using semantic lex-
icons, which we call extrofitting. The
method consists of 3 steps as follows: (i)
Expanding 1 or more dimension(s) on all
the word vectors, filling with their repre-
sentative value. (ii) Transferring seman-
tic knowledge by averaging each repre-
sentative values of synonyms and filling
them in the expanded dimension(s). These
two steps make representations of the syn-
onyms close together. (iii) Projecting the
vector space using Linear Discriminant
Analysis, which eliminates the expanded
dimension(s) with semantic knowledge.
When experimenting with GloVe, we find
that our method outperforms Faruqui’s
retrofitting on some of word similarity
task. We also report further analysis on
our method in respect to word vector di-
mensions, vocabulary size as well as other
well-known pretrained word vectors (e.g.,
Word2Vec, Fasttext).

1 Introduction

As a method to represent natural language on com-
puter, researchers have utilized distributed word
representation. The distributed word representa-
tion is to represent a word as n-dimensional float
vector, hypothesizing that some or all of the di-
mensions may capture semantic meaning of the
word. The representation has worked well in
various NLP tasks, substituting one-hot represen-
tation (Turian et al., 2010). Two major algo-
rithms learning the distributed word representa-
tion are CBOW (Continuous Bag-of-Words) and
skip-gram (Mikolov et al., 2013b). Both CBOW

and skip-gram learn the representation using one
hidden neural networks. The difference is that
CBOW learns the representation of a center word
from neighbor words whereas skip-gram gets the
representation of neighbor words from a center
word. Therefore, the algorithms have to depend
on word order, because their objective function
is to maximize the probability of occurrence of
neighbor words given the center word. Then a
problem occurs because the word representations
do not have any information to distinguish syn-
onyms and antonyms. For example, worthy and
desirable should be mapped closely on the
vector space as well as agree and disagree
should be mapped apart, although they occur on a
very similar pattern. Researchers have focused on
the problem, and their main approaches are to use
semantic lexicons (Faruqui et al., 2014; Mrkšić
et al., 2016; Speer et al., 2017; Vulić et al., 2017;
Camacho-Collados et al., 2015). One of the suc-
cessful works is Faruqui’s retrofitting1, which can
be summarized as pulling word vectors of syn-
onyms close together by weighted averaging the
word vectors on a fixed vector space (it will be
explained in Section 2.1). The retrofitting greatly
improves word similarity between synonyms, and
the result not only corresponds with human intu-
ition on words but also performs better on docu-
ment classification tasks with comparison to origi-
nal word embeddings (Kiela et al., 2015). From
the idea of retrofitting, our method hypothesize
that we can enrich not only word representation
but also its vector space using semantic lexicons2.
We call our method as extrofitting, which retrofits
word vectors by expanding its dimensions.

1The retrofitting codes are available at
https://github.com/mfaruqui/retrofitting

2Our codes are available at
https://github.com/HwiyeolJo/
Extrofitting

24

2 Backgrounds

2.1 Retrofitting
Retrofitting (Faruqui et al., 2014) is a post-
processing method to enrich word vectors us-
ing synonyms in semantic lexicons. The algo-
rithm learns the word embedding matrix Q =
{q1, q2, . . . , qn}with the objective function Ψ(Q):

Ψ(Q) =
n∑

i=1

[α||qi− q̂i||2 +
∑

(i,j)∈E
βij ||qi− qj ||2]

(1)
where an original word vector is qi, its synonym
vector is qj , and inferred word vector is q̂i. The hy-
perparameter α and β control the relative strengths
of associations. The q̂i can be derived by the fol-

lowing online update: q̂i =

∑
j:(i,j)∈E

βijqj+αiqi∑
j:(i,j)∈E

βij+αi

2.2 Linear Discriminant Analysis (LDA)
LDA (Welling, 2005) is one of the dimension re-
duction algorithms that project data into different
vector space, while minimizing the loss of class in-
formation as much as possible. As a result, the al-
gorithm finds linear vector spaces which minimize
the distance of data in the same class as well as
maximize the distance among the different class.
The algorithm can be summarized as follows:
Calculating between-class scatter matrix SB
and within-class scatter matrix SW .
When we denote data as x, classes as c, SB and
SW can be formulated as follows:

SB =
∑

c

(µi − µ)(µi − µ)T , (2)

SW =
∑

c

∑

i∈c
(xi − µc)(xi − µc)T , (3)

where the overall average of x is µ, and the partial
average in class i is denoted by µi.
Maximizing the objective function J(w).
The objective function J(w) that we should maxi-
mize can be defined as

J(w) =
|UTSBU |
|UTSWU |

, (4)

and its solution can be reduced to find U that satis-
fies S−1W SB = UΛUT . Therefore, U is derived by
eigen-decomposition of S−1Wi

SB; choosing q eigen
vectors which have the top-q eigen values, and
composing transform matrix of U .
Transforming data onto new vector space
Using transform matrix U , we can get transformed
data by y = UTx

3 Enriching Representations of Word
Vector and The Vector Space

3.1 Expanding Word Vector with
Enrichment

We simply enrich the word vectors by expanding
dimension(s) that add 1 or more dimension to orig-
inal vectors, filling with its representative value ri,
which can be a mean value. We denote an original
word vectors as qi = (e1, e2, · · · , eD) where D de-
notes the number of word vector dimension. Then,
the representative value ri can be formulated as
ri = mean(e1, e2, · · · , eD). Intuitively, if we ex-
pand more additional dimensions, the word vec-
tors will strengthen its own meaning. Likewise,
the ratio of the number of expanded dimension to
the number of original dimensions will affect the
meaning of the word vectors.

3.2 Transferring Semantic Knowledge
To transfer semantic knowledge on the represen-
tative value ri, we also take a simple approach of
averaging all the representative values of each syn-
onym pair, substituting each of its previous value.
We get the synonym pairs from lexicons we intro-
duced in Section 3. The transferred representative
value r̄i can be formulated as r̄i =

∑
s∈L rs/N

where L refers to the lexicon consisting of syn-
onym pairs s, and N is the number of synonyms.
This manipulation makes the representation of the
synonym pairs close to one another.

3.3 Enriching Vector Space
With the enriched vectors and the semantic knowl-
edge, we perform Linear Discriminant Analysis
for dimension reduction as well as clustering the
synonyms from semantic knowledge. LDA finds
new vector spaces to cluster and differentiate the
labeled data, which are synonym pairs in this ex-
periment. We can get the extrofitted word embed-
ding matrix w̄ as follows:

Q̄ = LDA(Q⊕ r̄, l) (5)

where Q is the word embedding matrix composed
of word vectors q and l is the index of the synonym
pair. We implement our method using Python2.7
with scikit-learn (Pedregosa et al., 2011).

4 Experiment Data

4.1 Pretrained Word Vectors
GloVe (Pennington et al., 2014) has lots of varia-
tions in respect to word dimension, number of to-

25

MEN-3k WS353 SL-999 RG-65 #Extrofitted #Vocab.
glove.6B.300d 0.7486 0.5170 0.3705 0.7693 - 0.4M
+ PPDB 0.7949 0.5826 0.4387 0.8177 67,729 -
+ WordNetsyn 0.7884 0.5805 0.4409 0.7943 55,388 -
+ WordNetall 0.7893 0.5714 0.4353 0.8010 55,388 -
+ FrameNet 0.7840 0.5837 0.4376 0.8187 7,592 -
glove.42B.300d 0.7435 0.5516 0.3738 0.8172 - 1.9M
+ PPDB 0.8292 0.6613 0.4896 0.8362 76,631 -
+ WordNetsyn 0.8230 0.6605 0.4884 0.8634 70,411 -
+ WordNetall 0.8223 0.6638 0.4858 0.8561 70,411 -
+ FrameNet 0.8123 0.6448 0.4601 0.8556 7,809 -

Table 1: Spearman’s correlation of extrofitted word vectors for word similarity tasks using semantic
lexicon. Our method improves pretrained GloVe in different vocabulary size.

kens, and train sources. We used glove.6B trained
on Wikipedia+Gigawords and glove.42B.300d

trained on Common Crawl. The other pre-
trained GloVe do not fit in our experiment be-
cause they have different word dimension or are
case-sensitive. We also use 300-dimensional
Word2Vec (Mikolov et al., 2013a) with negative
sampling trained on GoogleNews corpus. Fast-
text (Bojanowski et al., 2016) is an extension
of Word2Vec, which utilizes subword informa-
tion to represent an original word. We used
300-dimensional pretrained Fasttext trained on
Wikipedia (wiki.en.vec), using skip-gram.

4.2 Semantic Lexicons

We borrow the semantic lexicons from
retrofitting (Faruqui et al., 2014). Faruqui
et al. extracted the synonyms from PPDB (Gan-
itkevitch et al., 2013) by finding a word that
more than two words in another language are
corresponding with. Retrofitting also used Word-
Net (Miller, 1995) database which grouped words
into set of synonyms (synsets). We used two
versions of WordNet lexicon, one which consists
of synonym only (WordNetsyn) and the other
with additional hypernyms, hyponyms included
(WordNetall). Lastly, synonyms were extracted
from FrameNet (Baker et al., 1998), which
contains more than 200,000 manually annotated
sentences linked to semantic frames. Faruqui
et al. regarded words as synonyms if the words
can be grouped with any of the frames.

4.3 Evaluation Data

We evaluate our methods on word similarity tasks
using 4 different kinds of dataset. MEN-3k (Bruni

et al., 2014) consists of 3000-word pairs rated
from 0 to 50. WordSim-353 (Finkelstein et al.,
2001) consists of 353-word pairs rated from 0 to
10. SimLex-999 (Hill et al., 2015) includes 999-
word pairs rated from 0 to 10. RG-65 (Ruben-
stein and Goodenough, 1965) has 65 words paired
scored from 0 to 4. MEN-3k and WordSim-353
were split into train (or dev) set and test set, but
we combined them together solely for evaluation
purpose. The other datasets have lots of out-of-
vocabulary, so we disregard them for future work.

5 Experiments on Word Similarity Task

The word similarity task is to calculate Spear-
man’s correlation (Daniel, 1990) between two
words as word vector format. We first apply ex-
trofitting to GloVe from different data sources and
present the result in Table 1. The result shows that
although the number of the extrofitted word with
FrameNet is less than the other lexicons, its per-
formance is on par with other lexicons. We can
also ensure that our method improves the perfor-
mance of original pretrained word vectors.
Next, we perform extrofitting on GloVe in dif-
ferent word dimension and compare the perfor-
mance with retrofitting. We use WordNetall lex-
icon on both retrofitting and extrofitting to com-
pare the performances in the ideal environment
for retrofitting. We present the results in Ta-
ble 2. We can demonstrate that our method out-
performs retrofitting on some of word similar-
ity tasks, MEN-3k and WordSim-353. We be-
lieve that extrofitting on SimLex-999 and RG-
65 is less powerful because all word pairs in
the datasets are included on WordNetall lexicon.
Since retrofitting forces the word similarity to be

26

MEN-3k WS353 SL-999 RG-65 Lexicon
glove.6B.50d 0.6574 0.4193 0.2646 0.5948 -
+ Retrofitting 0.6773 0.4121 0.3761 0.7027 WordNetall
+ Extrofitting 0.6876 0.4859 0.2926 0.6743 WordNetall
glove.6B.100d 0.6932 0.4488 0.2975 0.6762 -
+ Retrofitting 0.7052 0.4428 0.4065 0.7863 WordNetall
+ Extrofitting 0.7447 0.5337 0.3733 0.7341 WordNetall
glove.6B.200d 0.7244 0.4866 0.3403 0.7128 -
+ Retrofitting 0.7397 0.4799 0.4415 0.8123 WordNetall
+ Extrofitting 0.7689 0.5416 0.4120 0.7389 WordNetall
glove.6B.300d 0.7486 0.5130 0.3705 0.7693 -
+ Retrofitting 0.7681 0.5232 0.4701 0.8499 WordNetall
+ Extrofitting 0.7893 0.5714 0.4353 0.8010 WordNetall

Table 2: Comparison of Spearman’s correlation of retrofitted or extrofitted word vectors for word simi-
larity tasks. Our method, extrofitting, outperforms retrofitting on MEN-3k and WordSim-353.

Figure 1: Plots of nearest top-100 words of cue words in different post-processing methods. We choose
two cue words; one is included in semantic lexicons (love; left), and another is not (soo; right)

improved by weighted averaging their word vec-
tors, it is prone to be overfitted on semantic lex-
icons. On the other hand, extrofitting also uses
synonyms to improve word similarity but it works
differently that extrofitting projects the synonyms
both close together on a new vector space and far
from the other words. Therefore, our method can
make more generalized word representation than
retrofitting. We plot top-100 nearest words using
t-SNE (Maaten and Hinton, 2008), as shown in
Figure 1. We can find that retrofitting strongly col-
lects synonym words together whereas extrofitting
weakly disperses the words, resulting loss in co-
sine similarity score. However, the result of ex-

trofitting can be interpreted as generalization that
the word vectors strengthen its own meaning by
being far away from each other, still keeping
synonyms relatively close together (see Table 3).
When we list up top-10 nearest words, extrofitting
shows more favorable results than retrofitting. We
can also observe that extrofitting even can be ap-
plied to words which are not included in semantic
lexicons.
Lastly, we apply extrofitting to other well-known
pretrained word vectors trained by different algo-
rithms (see Subsection 4.1). The result is pre-
sented in Table 4. Extrofitting can be also applied
to Word2Vec and Fasttext, enriching their word

27

Cue Word Method Top-10 Nearest Words(Cosine Similarity Score)

love

glove.42B.300d
loved(.7745), i(.7338), loves(.7311), know(.7286), loving(.7263),

really(.7196), always(.7193), want(.7192), hope(.7127), think(.7110)

+ Retrofitting
loved(.7857), know(.7826), like(.7781), want(.7736), i(.7707),

feel(.7549), wish(.7549), think(.7491), enjoy(.7453), loving(.7451)

+ Extrofitting
loved(.6008), adore(.5949), hate(.5949), luv(.5562), loving(.5391),

loooove(.5321), looooove(.5233), loveeee(.5195), want(.5171), looove(.5107)

soo

glove.42B.300d
sooo(.8394), soooo(.7938), sooooo(.7715), soooooo(.7359), sooooooo(.6844),

haha(.6574), hahah(.6320), damn(.6247), omg(.6244), hahaha(.6219)

+ Retrofitting
sooo(.8394), soooo(.7938), sooooo(.7715), soooooo(.7359),

haha(.6574), hahah(.6320), omg(.6244), hahaha(.6219), sooooooo(.6189)

+ Extrofitting
sooo(.8329), soooo(.7896), sooooo(.7774), soooooo(.7560), sooooooo(.7256),

soooooooo(.6867), sooooooooo(.6796), soooooooooo(.6517),

tooo(.6493), sooooooooooo(.6423)

Table 3: List of top-10 nearest words of cue words in different post-processing methods. We show cosine
similarity scores of two words included in semantic lexicon (love) or not (soo).

MEN-3k WS353 SL-999 RG-65 #Extrofitted #Vocab.
w2v-google-news 0.7764 0.6156 0.4475 0.7558 - 3.0M
+ PPDB 0.7883 0.5935 0.4799 0.7877 63,825 -
+ WordNetsyn 0.7821 0.6004 0.4741 0.7844 64,248 -
+ WordNetall 0.7782 0.6051 0.4733 0.7782 64,248 -
+ FrameNet 0.7784 0.6025 0.4651 0.7650 7,559 -
wiki.en.vec 0.7654 0.6301 0.3803 0.8005 - 2.5M
+ PPDB 0.7737 0.6363 0.4133 0.7723 69,237 -
+ WordNetsyn 0.7599 0.6326 0.4135 0.7633 70,542 -
+ WordNetall 0.7569 0.6421 0.4093 0.7459 70,542 -
+ FrameNet 0.7594 0.6323 0.4051 0.7740 7,637 -

Table 4: Spearman’s correlation of extrofitted word vectors for word similarity tasks on pretrained word
vectors by Word2Vec and Fasttext. Extrofitting can be applied to other kinds of pretrained word vector.

representations except on WordSim-353 and RG-
65, respectively. We find that our method can dis-
tort the well-established word embeddings. How-
ever, our results are noteworthy in that extrofitting
can be applied to other kinds of pretrained word
vectors for further enrichment.

6 Conclusion

We propose post-processing method for enriching
not only word representation but also its vector
space using semantic lexicons, which we call ex-
trofitting. Our method takes a simple approach
that (i) expanding word dimension (ii) transfer-
ring semantic knowledge on the word vectors (iii)
projecting the vector space with enrichment. We
show that our method outperforms another post-
processing method, retrofitting, on some of word
similarity task. Our method is robust in respect to

the dimension of word vector and the size of vo-
cabulary, only including an explainable hyperpa-
rameter; the number of dimension to be expanded.
Further, our method does not depend on the or-
der of synonym pairs. As a future work, we will
do further research about our method to generalize
and improve its performance; First, we can exper-
iment on other word similarity datasets for gen-
eralization. Second, we can also utilize Autoen-
coder (Bengio et al., 2009) for non-linear projec-
tion with a constraint of preserving spatial infor-
mation of each dimension of word vector.

Acknowledgments

Thanks for Jaeyoung Kim to discuss this idea.
Also, greatly appreciate the reviewers for critical
comments.

28

References
Collin F Baker, Charles J Fillmore, and John B Lowe.

1998. The berkeley framenet project. In Proceed-
ings of the 17th international conference on Compu-
tational linguistics-Volume 1, pages 86–90. Associ-
ation for Computational Linguistics.

Yoshua Bengio et al. 2009. Learning deep architec-
tures for ai. Foundations and trends R© in Machine
Learning, 2(1):1–127.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Elia Bruni, N Tram, Marco Baroni, et al. 2014. Multi-
modal distributional semantics. The Journal of Arti-
ficial Intelligence Research, 49:1–47.

José Camacho-Collados, Mohammad Taher Pilehvar,
and Roberto Navigli. 2015. Nasari: a novel ap-
proach to a semantically-aware representation of
items. In Proceedings of the 2015 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 567–577.

Wayne W Daniel. 1990. Spearman rank correlation
coefficient. Applied nonparametric statistics, pages
358–365.

Manaal Faruqui, Jesse Dodge, Sujay K Jauhar, Chris
Dyer, Eduard Hovy, and Noah A Smith. 2014.
Retrofitting word vectors to semantic lexicons.
arXiv preprint arXiv:1411.4166.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Ey-
tan Ruppin. 2001. Placing search in context: The
concept revisited. In Proceedings of the 10th inter-
national conference on World Wide Web, pages 406–
414. ACM.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. Ppdb: The paraphrase
database. In Proceedings of the 2013 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 758–764.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics, 41(4):665–695.

Douwe Kiela, Felix Hill, and Stephen Clark. 2015.
Specializing word embeddings for similarity or re-
latedness. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Process-
ing, pages 2044–2048.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

Nikola Mrkšić, Diarmuid O Séaghdha, Blaise Thom-
son, Milica Gašić, Lina Rojas-Barahona, Pei-
Hao Su, David Vandyke, Tsung-Hsien Wen, and
Steve Young. 2016. Counter-fitting word vec-
tors to linguistic constraints. arXiv preprint
arXiv:1603.00892.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Herbert Rubenstein and John B Goodenough. 1965.
Contextual correlates of synonymy. Communica-
tions of the ACM, 8(10):627–633.

Robert Speer, Joshua Chin, and Catherine Havasi.
2017. Conceptnet 5.5: An open multilingual graph
of general knowledge. In AAAI, pages 4444–4451.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method
for semi-supervised learning. In Proceedings of the
48th annual meeting of the association for compu-
tational linguistics, pages 384–394. Association for
Computational Linguistics.

Ivan Vulić, Nikola Mrkšić, and Anna Korhonen. 2017.
Cross-lingual induction and transfer of verb classes
based on word vector space specialisation. arXiv
preprint arXiv:1707.06945.

Max Welling. 2005. Fisher linear discriminant analy-
sis. Department of Computer Science, University of
Toronto, 3(1).

29

Proceedings of the 3rd Workshop on Representation Learning for NLP, pages 30–40
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

Chat Discrimination for Intelligent Conversational Agents with a Hybrid
CNN-LMTGRU Network

Dennis Singh Moirangthem and Minho Lee
School of Electronics Engineering
Kyungpook National University

Daegu, South Korea
{mdennissingh,mholee}@gmail.com

Abstract

Recently, intelligent dialog systems and
smart assistants have attracted the atten-
tion of many, and development of novel
dialogue agents have become a research
challenge. Intelligent agents that can han-
dle both domain-specific task-oriented and
open-domain chit-chat dialogs are one of
the major requirements in the current sys-
tems. In order to address this issue and
to realize such smart hybrid dialogue sys-
tems, we develop a model to discrimi-
nate user utterance between task-oriented
and chit-chat conversations. We introduce
a hybrid of convolutional neural network
(CNN) and a lateral multiple timescale
gated recurrent units (LMTGRU) that can
represent multiple temporal scale depen-
dencies for the discrimination task. With
the help of the combined slow and fast
units of the LMTGRU, our model effec-
tively determines whether a user will have
a chit-chat conversation or a task-specific
conversation with the system. We also
show that the LMTGRU structure helps
the model to perform well on longer text
inputs. We address the lack of dataset
by constructing a dataset using Twitter
and Maluuba Frames data. The results
of the experiments demonstrate that the
proposed hybrid network outperforms the
conventional models on the chat discrimi-
nation task as well as performed compara-
ble to the baselines on various benchmark
datasets.

1 Introduction

Dialogue systems can be classified as domain-
specific task-oriented and open-domain chit-chat

dialog systems (Williams and Young, 2007; Wal-
lace, 2009). The task-oriented dialog systems help
users complete tasks in specific domains. The
chit-chat dialog systems enable users to have an
open-ended chat conversations with the system.
While most of the functionalities offered by the
two types of systems are complementary to each
other, there have been very little efforts made to
combine these two type of systems. Therefore, the
potential of chat agents have been limited.

Recently, intelligent assistants have become
popular with the integration of such systems in
smartphones and home appliances. These intel-
ligent assistants typically perform various tasks
including weather forecast alerts, alarm settings,
web search, and so on. Moreover, such assis-
tants need to have the ability to perform chit-
chat conversation with the users. This has led to
the need for the development of novel and hy-
brid multi-domain task-oriented agents and open-
domain chit-chat agents.

In order to develop such hybrid agents, we have
to determine whether a user will have a chit-chat
with the system or the user is looking for a task
completion. For example, if a user says “Hi, how
are you doing?”, then the user can be considered
to have a chat with the system. Alternatively, if
the user says “I want a flight to Los Angeles,” then
the user is looking for a completion of a specific
task. We address this task as a binary classification
problem and call this task as chat discrimination.

Chat discrimination has not been sufficiently in-
vestigated in recent times. This is mainly because
there are not enough studies to develop hybrids
of task-oriented and chit-chat agents. Although
task-oriented and chit-chat agents have long re-
search histories, they do not require chat discrim-
ination. We usually assume that the users of task-
oriented agents will have task-oriented conversa-
tions with the systems and the users of chit-chat

30

agents will always have non task-specific conver-
sations with the systems. In a recent study, re-
searchers in (Akasaki and Kaji, 2017) have tried
chat detection using conventional classifiers with
the help of a newly created dataset in Japanese lan-
guage. But this dataset has not been released for
further research or comparison.

In this work, we develop a hybrid network for
chat discrimination by combining a convolutional
neural network (CNN) and a gated recurrent unit
(GRU). CNNs have been proven to be suitable for
text classification problems (Kim, 2014; Johnson
and Zhang, 2015a,b). Moreover, the temporal hi-
erarchy concept with multiple timescale gated re-
current unit (MTGRU) (Kim et al., 2016) has also
been proven to perform well in language model-
ing (Moirangthem and Lee, 2017; Moirangthem
et al., 2017) and summarization (Kim et al., 2016)
tasks. The MTGRU is known to handle long
term dependency better with the help of the vary-
ing timescales to represent multiple composition-
alities of language. The temporal hierarchy ap-
proach has also been shown to eliminate the
need for complex structures and normalization
techniques (Cooijmans et al., 2017; Krueger and
Memisevic, 2016; Chung et al., 2017; Ha et al.,
2017), and thereby increasing the computational
efficiency of the model.

For our classification model, we develop a
lateral multiple timescale structure. Our pro-
posed lateral multiple timescale gated recurrent
unit (LMTGRU) is significantly different from the
conventional hierarchical MTGRU structure. The
conventional MTGRU is most effective for han-
dling long term dependencies in very long text in-
puts for applications such as summarization but
performs comparable to vanilla GRU with shorter
text inputs. Unlike the hierarchical architecture,
the lateral connections in an LMTGRU will en-
able encoding of rich features that have different
temporal dependencies from the input utterances
in order to help classify the information correctly.
LMTGRU follows a lateral (branch or root) archi-
tecture where the slow and fast units are directly
connected to the inputs and the final output of the
units are combined to form the final representa-
tion. This structure enables all the layers with dif-
ferent timescales to capture relevant features di-
rectly from the inputs unlike hierarchical multi-
layer structures. Since the data consist of utter-
ances as input, and the input to the RNN is rep-

resented as higher order features from the CNN,
LMTGRU proves to be more suitable for this task.

Our major contributions are as follows:

• We introduce a hybrid CNN-LMTGRU struc-
ture to build rich features from input texts to
classify utterances correctly.

• The LMTGRU architecture enables our
model to perform well on longer text se-
quences with the help of the slow layer as
well as maintain comparable performance on
shorter sequences.

• To address the lack of dataset, we cre-
ate a dataset using Twitter data (Microsoft
Research Social Media Conversation Cor-
pus) (Sordoni et al., 2015) for chit-chat con-
versations and Maluuba Frames data (El Asri
et al., 2017) for task-oriented conversations.

• In order to demonstrate that the proposed
model performs well on other text classifi-
cation tasks and to compare it to the ex-
isting baselines, we report the performance
on various sentence classification benchmark
datasets. The results of our experiments
demonstrate that the proposed model per-
forms well on the benchmark datasets as
well.

2 Related Work

Although there have been enough studies for task-
oriented and chit-chat agents independently, de-
veloping hybrid models of the two types of agents
has not been explored enough. Therefore, few at-
tempts have been made to develop a chat discrim-
ination model.

Niculescu and Banchs (2015) tried to combine
task-oriented agents and chit-chat agents, but the
authors did not have a clear way to automatically
determine when to switch back to the chit-chat
agent. Lee et al. (2009) proposed to combine task-
oriented and chit-chat agents with the help of an
example-based dialogue manager, but it is difficult
to integrate the current state-of-the-art deep learn-
ing model based classifiers as a component in such
a framework.

Wang et al. (2014) and Sarikaya (2017) pro-
posed to combine a multi-domain task-oriented
agents and chit-chat agents using machine-
learning-based frameworks. Robichaud et al.
(2014); Sarikaya et al. (2016) approached domain

31

classification as ranking between alternate ”di-
alog experts”. In a recent study, Akasaki and
Kaji (2017) tried chat detection using conventional
classifiers with the help of a newly created dataset
in Japanese language. They used concatenated
features from multiple feature extractors for the
classification. An end-to-end model was not ex-
plored. Moreover, the dataset has not been re-
leased for further research or comparison.

Deep learning based models have achieved
great success in many NLP tasks, including learn-
ing distributed word, sentence and document rep-
resentation (Mikolov et al., 2013; Le and Mikolov,
2014), parsing (Socher et al., 2013), statistical
machine translation (Cho et al., 2014), sentiment
classification (Kim, 2014), etc. Learning dis-
tributed sentence representation through neural
network models requires little external domain
knowledge and can reach satisfactory results in re-
lated tasks like sentiment classification, text cate-
gorization etc.

In recent sentence representation learning
works, neural network models are constructed
upon either the input word sequences or the trans-
formed syntactic parse tree. Among them, convo-
lutional neural network (CNN) and recurrent neu-
ral network (RNN) are two popular ones. The ca-
pability of capturing local correlations along with
extracting higher-level correlations through pool-
ing empowers CNN to model sentences naturally
from consecutive context windows. Kim (2014)
proposed a CNN architecture with multiple filters
and multiple channels for text classification.

RNNs are able to deal with variable-length in-
put sequences and discover long-term dependen-
cies. Various variants of RNNs have been pro-
posed to better store and access memories. The
most popular variants are long short-term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
and GRU (Cho et al., 2014). Recently proposed
MTGRU (Kim et al., 2016), inspired by the con-
cept of temporal hierarchy found in the human
brain (Botvinick, 2007; Meunier et al., 2010),
demonstrates the ability to capture multiple com-
positionalities similar to the findings of Ding et al.
(2016). This better representation learning capa-
bility enhances the ability of the network to model
longer sequences of text.

In this paper, we develop a hybrid of CNN and
LMTGRU in a unified architecture for semantic
sequence modeling. We apply CNN to text data

and feed the features directly to the LMTGRU,
and hence our architecture enables the network to
learn multiple temporal scale dependencies from
higher-order features. We hypothesize that the
combination of slow and fast features will be ben-
eficial for the chat discrimination task.

3 Proposed Model

We formulate chat discrimination as a binary clas-
sification problem. In this section, we explain the
proposed hybrid classifier model shown in Fig-
ure 1.

3.1 The Convolutional Neural Network
Layer

The CNN layer shown in Figure 1 is implemented
using a single convolution and max-pooling layer
and use a rectified linear unit (ReLU) as the non-
linear activation function following Kim (2014).
Let xi ∈ Rd be the word vector of dimension d
corresponding to the i-th word in the input utter-
ance. An utterance of length n, which are padded
if necessary, can be represented as

x1:n = x1 ⊕ x2 ⊕ . . .⊕ xn, (1)

where ⊕ is the concatenation operator. Let
xi:i+j be to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation
involves a filter w ∈ Rhd, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h−1 by

ci = f(w · xi:i+h−1 + b). (2)

Here b ∈ R is a bias term and f is a
non-linear function. This filter is applied to
each possible window of words in the sentence
{x1:h,x2:h+1, . . . ,xn−h+1:n} to produce a feature
map

c = [c1, c2, . . . , cn−h+1], (3)

with c ∈ Rn−h+1. A max pooling operation (Col-
lobert et al., 2011) over the feature map is applied,
which takes the maximum value ĉ = max{c} as
the feature corresponding to this particular filter.
The idea is to capture only the most important fea-
tures.

The processes described above is for one fea-
ture being extracted from one filter. The pro-
posed CNN model includes a number of fil-
ters with multiple window sizes to obtain vari-
ous features. These features are then split into

32

Figure 1: The proposed CNN-LMTGRU classifier. The input to the model is “How are you doing today?”

n/max pool size outputs and are passed on to the
LMTGRU layer.

3.2 The Lateral MTGRU Layer

For this classification task, we implement a lat-
eral multiple timescale architecture where half of
the MTGRU units are fast and the remaining half
are slow as shown in Figure 1. The fast and slow
units can capture different temporal dependencies
from the input sequence. The fast timescale layer
can capture fast changing features (e.g. character
or word) whereas slower timescales can represent
phrase or sentence level features (Moirangthem
et al., 2017). The proposed LMTGRU struc-
ture follows a lateral (branch or root) architecture
where the slow and fast units are directly con-
nected to the inputs. This lateral architecture is
different from the conventional MTGRU with a hi-
erarchical layer architecture, since the LMTGRU
does not follow a multilayer structure. The LMT-
GRU structure is implemented using multiple sin-
gle layer MTGRU networks whose timescales are
different and the input to each layer comes directly
from the input features. And the final output rep-
resentation features of each layer are combined to
form the penultimate representation of the input
sequence that includes both fast and slow features.

The multiple timescales in an MTGRU network

is implemented by applying a timescale variable
at the end of a conventional GRU unit, essentially
adding another gating unit that modulates the mix-
ture of the past and current hidden states. In an
MTGRU, each step takes as input xt,ht−1 and
produces the hidden ht. The timescale τ added
to the activation ht of the MTGRU is shown in
Eq. (4). τ is used to control the timescale of each
GRU cell. Larger τ results in slower cell outputs
but it makes the cell focus on the slow features and
vice-versa. The timescale variable τ is scalar and
one τ controls the slow cells and another τ con-
trols the fast cells. We initialize the τ for each
group of cells, e.g. larger τ for slow cells and
smaller τ for fast cells. The τ is made as a train-
able variable like any other weight of the network
and is optimized during the training based on the
final loss. An MTGRU cell is illustrated in Fig-
ure 2.

rt = σ(Wxrxt +Whrht−1)

zt = σ(Wxzxt +Whzht−1)

ut = tanh(Wxuxt +Whu(rt � ht−1))

h̃t = ztht−1 + (1− zt)ut
ht = h̃t

1

τ
+ (1− 1

τ
)ht−1

(4)

where σ(·) and tanh(·) are the sigmoid and tan-
gent hyperbolic activation functions, � denotes

33

Figure 2: A Multiple Timescale Gated Recurrent
Unit. The τ parameter is set for each layer and it
controls the timescale of the layer.

the element-wise multiplication operator, and rt,
zt are referred to as reset, update gates respec-
tively. ut and h̃t are the candidate activation and
candidate hidden state of the MTGRU.

The proposed CNN-LMTGRU hybrid network
consists of a CNN layer followed by a fast and a
slow LMTGRU layer. The fast units as well as the
slow units are directly connected to the CNN fea-
tures. Finally the combined last hidden representa-
tion of the LMTGRU is passed to a fully connected
softmax layer whose output is the probability dis-
tribution over the labels.

4 Chat Discrimination Dataset

Chat discrimination task requires a chat dataset
like the one shown in Table 1. We address the lack
of such a dataset by using the Microsoft Research
Social Media Conversation Corpus1 and Maluuba
Frames2 datasets. Microsoft Research Social Me-
dia Conversation Corpus is a collection of con-
versational snippets extracted from Twitter logs.
The advantage of using this dataset is that it has
been evaluated by crowd sourced annotators mea-
suring quality of the response. These data are suit-
able for detecting open-domain non-task oriented
chats. On the other hand, we use the Maluuba
Frames dataset for the domain task-specific con-
versations. This corpus is for the travel agent do-
main where the users can inquire the agent and ask
for booking of hotels and flights. The dialogs were
recorded using 12 participants over a period of 20
days. We process the data to utilize only the user
utterances in our chat discrimination dataset. Fi-
nally, we have 20,532 utterances with 10,266 in

1https://www.microsoft.com/en-us/
download/details.aspx?id=52375

2https://datasets.maluuba.com/Frames

each class. We divide the data into 10% for vali-
dation, 10% for test, and the remaining for train.

5 Experiments and Results

We evaluate the performance of the proposed
method and compare it to the conventional mod-
els using our chat discrimination dataset. In or-
der to demonstrate that the proposed model per-
forms well on other text classification datasets and
to compare it to the existing baselines, we report
the performance on various sentence classification
benchmark datasets as well.

5.1 Experiment settings
We trained the proposed CNN-LMTGRU model
in an end-to-end fashion, where we do not use any
pre-trained word embedding. An embedding of
size 300 was used for the model and was trained
with the model. We used 128 filters of sizes
{3, 4, 5} for the CNN.

We used 300 units of MTGRU where half of the
units are fast and the remaining are slow units to
construct the LMTGRU structure. The τ for the
fast units and the slow units were initialized to 1.0
and 1.25, respectively. We follow Moirangthem
et al. (2017) to initialize the timescale parameter.
In order to control the τ during training, we set
the lower bound to 1.0 using clip by value. This
is done as the fastest layer should have a τ of 1.0,
however there is no upper bound for the slow lay-
ers. After training, the final τ values are 1.16 and
1.37 for the fast and the slow layers, respectively.
The learning rate to update the τ , which is differ-
ent from the global learning rate, is set to 0.00001
in order to avoid large changes in the timescale.

We used the RMSprop Optimizer (Tieleman
and Hinton, 2012) to perform stochastic gradient
descent with the decay set to 0.9 and the global
learning rate to 0.001. For regularization we em-
ploy dropout of 0.5 on the final CNN output as
well as in the LMTGRU layers to avoid overfit-
ting. We utilized the validation performance for
early stopping of the training for better general-
ization.

5.2 Baseline Models
The baseline models implemented for the compar-
ison using our chat discrimination dataset are de-
scribed as follows:

CNN We used the same parameters as before ex-
cept the number of filters were increased to

34

Type Example
Chit-Chat Let’s meet at the coffee place and talk about you.

What is your hobby?
I will visit my parents for the vacation.
I like pop music.
Do you like soccer?
I don’t know you, but you seem to be a serious person.

Task-oriented Hello, I am looking to book a trip for 2 adults and 6 children.
We are departing from Kochi for Denver.
When would I be leaving for each of them?
I would like to spend as much time in Denver as my budget will allow.
Do these packages have different departure dates?
Ok, I would like to purchase the trip with the 4-star hotel.

Table 1: Example utterances of the two kinds of conversations.

256. We followed (Kim, 2014) and used a
fully connected softmax layer for the binary
classification.

LSTM/GRU The same parameters were used as
before except the number of hidden units is
increased to 500. The LSTM/GRU takes ev-
ery word vector in a sequence as input and
the final representation is passed to a softmax
layer for classification.

LMTGRU This LMTGRU model consists of a
fast and a slow layer with 250 hidden units
in each layer. The remaining settings are the
same as the LSTM/GRU model.

CNN-LSTM/GRU This structure is almost iden-
tical to the proposed model, but instead of the
LMTGRU, LSTM/GRU is used for compari-
son. The parameters remain the same.

5.3 Evaluation on Benchmark Datasets
Following Kim (2014), we test our model on
various benchmarks. Summary statistics of the
datasets are given below.

• MR: Movie reviews with one sentence per re-
view. This binary classification task involves
detecting positive/negative reviews (Pang and
Lee, 2005). The average sequence length is
20 and the dataset size is 10, 662.

• SST-1: This is the Stanford Sentiment Tree-
bank is an extension of MR with multiple
labels (very positive, positive, neutral, nega-
tive, very negative) (Socher et al., 2013). The
average sequence length is 18 and the dataset
size is 11, 855.

• SST-2: This is similar to SST-1 but with bi-
nary labels. The average sequence length is
19 and the dataset size is 9, 613.

• Subj: Subjectivity dataset consists of sen-
tences with binary labels (subjective or ob-
jective). The average sequence length is 23
and the dataset size is 10, 000 (Pang and Lee,
2004).

• TREC: The TREC task is a classification
task to classify 6 types of question (questions
about person, location, numeric information,
etc.). The average sequence length is 10 and
the dataset size is 5, 952 (Li and Roth, 2002).

• CR: Customer reviews of various products
with positive/negative labels. The average se-
quence length is 19 and the dataset size is
3, 775 (Hu and Liu, 2004).

• MPQA: Opinion polarity detection is a sub-
task of the MPQA dataset with 2 classes. The
average sequence length is 3 and the dataset
size is 10, 606 (Wiebe et al., 2005).

For the evaluation on the benchmark datasets,
we implemented a CNN-LMTGRU model that is
identical to the one described in Section 5.1. The
data for train, validation, and test for the bench-
mark datasets follow the previous works (Kim,
2014; Kalchbrenner et al., 2014).

5.4 Results
Table 2 illustrates the classification performance
of the various models. The performance is given
in accuracy and the results show that the pro-
posed hybrid CNN-LMTGRU model outperforms

35

Model Accuracy (%)
CNN 91.12
LSTM 89.67
GRU 90.56
LMTGRU 90.64

CNN-LSTM 92.31
CNN-GRU 93.01
Proposed CNN-LMTGRU 94.69

Table 2: Chat classification results on the test set.

Steps

0 100 200 300 400 500 600 700 800 900

A
c
c
u
ra

c
y
 (

%
)

40

50

60

70

80

90

100

CNN-LMTGRU

CNN-GRU

CNN-LSTM

Figure 3: Classification accuracy curve on the val-
idation set of the proposed method and the hybrid
baseline models.

the baseline models. The performance curve of the
hybrid models is shown in Figure 3, respectively.

In order to differentiate the performance of the
proposed CNN-LMTGRU model and the CNN-
GRU model, we divide the test data of the dia-
log classification dataset according to the length
of the texts. Figure 4 shows the comparison of
the performance accuracy on different lengths of
test data. It can be seen that the LMTGRU struc-
ture enables the model to outperform GRU on
longer text inputs and there is no significant per-
formance degradation with the increase in input
length. Whereas, the performance of GRU drops
significantly with longer text inputs.

Table 3 shows the result of the comparison
of our model with various other models using
publicly available sentence classification datasets.
These results illustrate that our proposed model ei-
ther performed comparable to or outperformed ex-
isting models.

6 Discussion

When we look at the results illustrated in Table 2,
the performance of the proposed CNN-LMTGRU
increased significantly compared to CNN-GRU.
As shown in Eq. (4), we know that if τ is close
to 1, which is the case of a fast LMTGRU layer,

Length of input in words

1~10 words 11~20 words 20 and above words

A
c

c
u

ra
c

c
y

 i
n

 %

91

92

93

94

95

96

97
Comparison of performance based on length of input

CNN-LMTGRU

CNN-GRU

Figure 4: Classification performance comparison
based on the length of input.

the model becomes a vanilla GRU. Therefore, a
vanilla GRU is considered as a fast layer and
hence, a CNN-GRU network can be considered as
a network with only fast units. The difference in
performance when we have all the RNN units as
fast, i.e. CNN-GRU, and when we have a combi-
nation of slow and fast units, i.e. CNN-LMTGRU,
show the effectiveness of the multiple timescale
approach. The results in Figure 4 also show the
significance of the features from slow and fast lay-
ers, where the fast features helps maintain the per-
formance with shorter text inputs and the slow
features enable the model to perform significantly
better with longer text inputs. This confirms our
hypotheses that the proposed LMTGRU with the
help of both slow and fast units can help encode
different dynamic features in order to help clas-
sify the sentences and utterances correctly. The
results indicate that the LMTGRU architecture in-
creases the capability of the model to learn multi-
ple temporal dependencies better for the discrimi-
nation task. The results also demonstrate that our
hybrid CNN-LMTGRU network performs signifi-
cantly better than the existing hybrid models.

The results in Table 3 shows that our model per-
formed fairly comparable to the baseline models.
The enhanced performance of the proposed model
in both SST-2 (average length of 19 words) and
MPQA (average length of 3 words) over the base-
line models also confirms our hypothesis that the
rich features of the slow and fast layers help in
the discrimination task even with diverse sequence
lengths. However, for some of the datasets such as
TREC, our end-to-end learning model cannot out-
perform the conventional models like SVM due to
the limited size of the dataset.

The increased ability of the proposed model to

36

Model MR SST-1 SST-2 Subj TREC CR MPQA
CNN-static (Kim, 2014) 81.0 45.5 86.8 93.0 92.8 84.7 89.6
CNN-non-static (Kim, 2014) 81.5 48.0 87.2 93.4 93.6 84.3 89.5
CNN-multichannel (Kim, 2014) 81.1 47.4 88.1 93.2 92.2 85.0 89.4
RAE (Socher et al., 2011) 77.7 43.2 82.4 − − − 86.4
MV-RNN (Socher et al., 2012) 79.0 44.4 82.9 − − − −
RNTN (Socher et al., 2013) − 45.7 85.4 − − − −
DCNN (Kalchbrenner et al., 2014) − 48.5 86.8 − 93.0 − −
Paragraph-Vec (Le and Mikolov, 2014) − 48.7 87.8 − − − −
CCAE (Hermann and Blunsom, 2013) 77.8 − − − − − 87.2
Sent-Parser (Dong et al., 2015) 79.5 − − − − − 86.3
NBSVM (Wang and Manning, 2012) 79.4 − − 93.2 − 81.8 86.3
MNB (Wang and Manning, 2012) 79.0 − − 93.6 − 80.0 86.3
G-Dropout (Wang and Manning, 2013) 79.0 − − 93.4 − 82.1 86.1
F-Dropout (Wang and Manning, 2013) 79.1 − − 93.6 − 81.9 86.3
Tree-CRF (Nakagawa et al., 2010) 77.3 − − − − 81.4 86.1
CRF-PR (Yang and Cardie, 2014) − − − − − 82.7 −
SVMS (Silva et al., 2011) − − − − 95.0 − −
Proposed CNN-LMTGRU 80.9 48.4 89.4 93.4 93.8 84.8 90.8

Table 3: Results of our CNN-LMTGRU model against other methods on various sentence classification
benchmark datasets.

discriminate between open-domain chit-chat con-
versations and domain-specific task-oriented utter-
ances will definitely help in the development of
hybrid intelligent dialog systems that can handle
both types of conversation. Moreover, with the
help of this kind of classifier, the chat agents can
dynamically switch between utterances in order to
conduct a more natural and intelligent conversa-
tion with the users.

7 Conclusion and Future Work

This paper addressed the issue of discriminating
conversations for combining domain-specific task-
oriented agents and open-domain chit-chat agents.
We developed a hybrid model consisting of a CNN
and an LMTRGU network to classify the conver-
sations. The proposed LMTGRU was able to ef-
fectively determine the type of conversation that
a user will have with a dialog system. Moreover,
we addressed the lack of dataset by constructing
a dataset with chit-chat conversations and a task-
oriented conversation corpus. We also evaluated
the performance of the proposed hybrid model on
various benchmark sentence classification datasets
in order to compare to several existing models.
The results of our experiments illustrated that the
proposed end-to-end learning hybrid network with
multiple timescales not only performed signifi-

cantly better in case of longer texts inputs but also
maintained good performance in case of shorter
texts.

In the future, we plan to develop a more sophis-
ticated dialog discrimination model to handle user
utterances that are ambiguous in nature. It will be
difficult for the standard classifiers to determine
the actual type of conversation in such cases. One
of the possible solution is to instruct the chat agent
to follow up with clarification questions in case of
ambiguity (Schlöder and Fernández, 2015). An-
other solution is to utilize contextual information
by using previous dialogs from the system (Xu
and Sarikaya, 2014). We plan to integrate fea-
tures from the previous utterances for classifica-
tion. This can be achieved by integrating the lat-
eral architecture of an LMTGRU and the hier-
archical organization of MTGRU along with the
CNN features from the current and previous utter-
ances to make the decision.

Although the studies on conversational agents
have made significant progress in the recent years,
it is still difficult for the systems to have a flu-
ent conversation with the users (Higashinaka et al.,
2015). We further plan to utilize the chat discrim-
ination model to develop a hybrid system in order
to improve such dialog agents. This will also al-
low us to evaluate the effectiveness of our model

37

for this application.

Acknowledgments

This work was partly supported by the Na-
tional Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIP) (No.
NRF-2017M3C1B6071400)(40%), by the Insti-
tute for Information & communications Tech-
nology Promotion(IITP) grant funded by the
Korea government(MSIT) (R7124-16-0004, De-
velopment of Intelligent Interaction Technology
Based on Context Awareness and Human Inten-
tion Understanding)(30%), and by the Technology
Innovation Program: Industrial Strategic Technol-
ogy Development Program (10073162) funded By
the Ministry of Trade, Industry & Energy(MOTIE,
Korea)(30%).

References
Satoshi Akasaki and Nobuhiro Kaji. 2017. Chat de-

tection in an intelligent assistant: Combining task-
oriented and non-task-oriented spoken dialogue sys-
tems. arXiv preprint arXiv:1705.00746 .

Matthew M Botvinick. 2007. Multilevel structure in
behaviour and in the brain: a model of fuster’s hier-
archy. Philosophical Transactions of the Royal So-
ciety B: Biological Sciences 362(1485):1615–26.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. 2014. Learning phrase representa-
tions using RNN encoder-decoder for statistical ma-
chine translation. CoRR abs/1406.1078.

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio.
2017. Hierarchical multiscale recurrent neural net-
works. In Proceeding of the International Confer-
ence on Learning Representations.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research
12(Aug):2493–2537.

Tim Cooijmans, Nicolas Ballas, César Laurent, Çağlar
Gülçehre, and Aaron Courville. 2017. Recurrent
batch normalization. In Proceeding of the Interna-
tional Conference on Learning Representations.

Nai Ding, Lucia Melloni, Hang Zhang, Xing Tian, and
David Poeppel. 2016. Cortical tracking of hierarchi-
cal linguistic structures in connected speech. Nature
neuroscience 19(1):158–164.

Li Dong, Furu Wei, Shujie Liu, Ming Zhou, and
Ke Xu. 2015. A statistical parsing framework for
sentiment classification. Computational Linguistics
41(2):293–336.

Layla El Asri, Hannes Schulz, Shikhar Sharma,
Jeremie Zumer, Justin Harris, Emery Fine, Rahul
Mehrotra, and Kaheer Suleman. 2017. Frames: A
corpus for adding memory to goal-oriented dialogue
systems. arXiv preprint arXiv:1704.00057 .

David Ha, Andrew Dai, and Quoc V Le. 2017. Hyper-
networks. In Proceeding of the International Con-
ference on Learning Representations.

Karl Moritz Hermann and Phil Blunsom. 2013. The
role of syntax in vector space models of composi-
tional semantics. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). volume 1, pages
894–904.

Ryuichiro Higashinaka, Kotaro Funakoshi, Masahiro
Araki, Hiroshi Tsukahara, Yuka Kobayashi, and
Masahiro Mizukami. 2015. Towards taxonomy of
errors in chat-oriented dialogue systems. In SIG-
DIAL Conference. pages 87–95.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining. ACM, pages 168–
177.

Rie Johnson and Tong Zhang. 2015a. Effective use
of word order for text categorization with convolu-
tional neural networks pages 103–112.

Rie Johnson and Tong Zhang. 2015b. Semi-supervised
convolutional neural networks for text categoriza-
tion via region embedding. In Advances in neural
information processing systems. pages 919–927.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). vol-
ume 1, pages 655–665.

Minsoo Kim, Moirangthem Dennis Singh, and Minho
Lee. 2016. Towards abstraction from extraction:
Multiple timescale gated recurrent unit for summa-
rization. In 1st Rep4NLP. Association for Computa-
tional Linguistics, pages 70–77.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP. Association for
Computational Linguistics, pages 1746–1751.

David Krueger and Roland Memisevic. 2016. Regular-
izing rnns by stabilizing activations. In Proceeding
of the International Conference on Learning Repre-
sentations.

Quoc V Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In ICML.
volume 14, pages 1188–1196.

38

Cheongjae Lee, Sangkeun Jung, Seokhwan Kim, and
Gary Geunbae Lee. 2009. Example-based dialog
modeling for practical multi-domain dialog system.
Speech Communication 51(5):466–484.

Xin Li and Dan Roth. 2002. Learning question classi-
fiers. In Proceedings of the 19th international con-
ference on Computational linguistics-Volume 1. As-
sociation for Computational Linguistics, pages 1–7.

D. Meunier, R. Lambiotte, A. Fornito, K. D. Ersche,
and E. T. Bullmore. 2010. Hierarchical modularity
in human brain functional networks. ArXiv e-prints
.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, Curran Associates, Inc., pages 3111–3119.

Dennis Singh Moirangthem and Minho Lee. 2017.
Temporal hierarchies in multilayer gated recurrent
neural networks for language models. In Neural
Networks (IJCNN), 2017 International Joint Confer-
ence on. IEEE, pages 2152–2157.

Dennis Singh Moirangthem, Jegyung Son, and Minho
Lee. 2017. Representing compositionality based on
multiple timescales gated recurrent neural networks
with adaptive temporal hierarchy for character-level
language models. In Proceedings of the 2nd Work-
shop on Representation Learning for NLP. Associa-
tion for Computational Linguistics, pages 131–138.

Tetsuji Nakagawa, Kentaro Inui, and Sadao Kurohashi.
2010. Dependency tree-based sentiment classifica-
tion using crfs with hidden variables. In Human
Language Technologies: The 2010 Annual Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics. Association for
Computational Linguistics, pages 786–794.

Andreea I Niculescu and Rafael E Banchs. 2015.
Strategies to cope with errors in human-machine
spoken interactions: using chatbots as back-off
mechanism for task-oriented dialogues. Proceed-
ings of ERRARE, Sinaia, Romania .

Bo Pang and Lillian Lee. 2004. A sentimental educa-
tion: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Proceedings of
the 42nd annual meeting on Association for Compu-
tational Linguistics. Association for Computational
Linguistics, page 271.

Bo Pang and Lillian Lee. 2005. Seeing stars: Ex-
ploiting class relationships for sentiment categoriza-
tion with respect to rating scales. In Proceedings of
the 43rd annual meeting on association for compu-
tational linguistics. Association for Computational
Linguistics, pages 115–124.

Jean-Philippe Robichaud, Paul A Crook, Puyang Xu,
Omar Zia Khan, and Ruhi Sarikaya. 2014. Hy-
potheses ranking for robust domain classification
and tracking in dialogue systems. In Fifteenth An-
nual Conference of the International Speech Com-
munication Association.

Ruhi Sarikaya. 2017. The technology behind personal
digital assistants: An overview of the system archi-
tecture and key components. IEEE Signal Process-
ing Magazine 34(1):67–81.

Ruhi Sarikaya, Paul A Crook, Alex Marin, Minwoo
Jeong, Jean-Philippe Robichaud, Asli Celikyilmaz,
Young-Bum Kim, Alexandre Rochette, Omar Zia
Khan, Xiaohu Liu, et al. 2016. An overview of
end-to-end language understanding and dialog man-
agement for personal digital assistants. In Spoken
Language Technology Workshop (SLT), 2016 IEEE.
IEEE, pages 391–397.

Julian J Schlöder and Raquel Fernández. 2015. Clar-
ifying intentions in dialogue: A corpus study. In
IWCS. pages 46–51.

Joao Silva, Luı́sa Coheur, Ana Cristina Mendes, and
Andreas Wichert. 2011. From symbolic to sub-
symbolic information in question classification. Ar-
tificial Intelligence Review 35(2):137–154.

Richard Socher, Brody Huval, Christopher D Manning,
and Andrew Y Ng. 2012. Semantic compositional-
ity through recursive matrix-vector spaces. In Pro-
ceedings of the 2012 joint conference on empirical
methods in natural language processing and compu-
tational natural language learning. Association for
Computational Linguistics, pages 1201–1211.

Richard Socher, Jeffrey Pennington, Eric H Huang,
Andrew Y Ng, and Christopher D Manning. 2011.
Semi-supervised recursive autoencoders for predict-
ing sentiment distributions. In Proceedings of the
conference on empirical methods in natural lan-
guage processing. Association for Computational
Linguistics, pages 151–161.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 conference on
empirical methods in natural language processing.
pages 1631–1642.

Alessandro Sordoni, Michel Galley, Michael Auli,
Chris Brockett, Yangfeng Ji, Margaret Mitchell,
Jian-Yun Nie, Jianfeng Gao, and Bill Dolan. 2015.
A neural network approach to context-sensitive gen-
eration of conversational responses. In NAACL–
HLT . Association for Computational Linguistics.

Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture
6.5-rmsprop: Divide the gradient by a running av-
erage of its recent magnitude. COURSERA: Neural
networks for machine learning 4(2):26–31.

39

Richard S Wallace. 2009. The anatomy of alice. Pars-
ing the Turing Test pages 181–210.

Sida Wang and Christopher Manning. 2013. Fast
dropout training. In international conference on ma-
chine learning. pages 118–126.

Sida Wang and Christopher D Manning. 2012. Base-
lines and bigrams: Simple, good sentiment and topic
classification. In Proceedings of the 50th Annual
Meeting of the Association for Computational Lin-
guistics: Short Papers-Volume 2. Association for
Computational Linguistics, pages 90–94.

Zhuoran Wang, Hongliang Chen, Guanchun Wang,
Hao Tian, Hua Wu, and Haifeng Wang. 2014. Policy
learning for domain selection in an extensible multi-
domain spoken dialogue system. In EMNLP. Asso-
ciation for Computational Linguistics, pages 57–67.

Janyce Wiebe, Theresa Wilson, and Claire Cardie.
2005. Annotating expressions of opinions and emo-
tions in language. Language resources and evalua-
tion 39(2-3):165–210.

Jason D Williams and Steve Young. 2007. Partially
observable markov decision processes for spoken
dialog systems. Computer Speech & Language
21(2):393–422.

Puyang Xu and Ruhi Sarikaya. 2014. Contextual do-
main classification in spoken language understand-
ing systems using recurrent neural network. In
Acoustics, Speech and Signal Processing (ICASSP),
2014 IEEE International Conference on. IEEE,
pages 136–140.

Bishan Yang and Claire Cardie. 2014. Context-aware
learning for sentence-level sentiment analysis with
posterior regularization. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). vol-
ume 1, pages 325–335.

40

Proceedings of the 3rd Workshop on Representation Learning for NLP, pages 41–49
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

Text Completion using a Context-Integrating Dependency Parser

Amr Rekaby Salama ∗
Department of Informatics

Universität Hamburg
Germany

Özge Alaçam ∗

Department of Informatics
Universität Hamburg

Germany
{salama,alacam,menzel}@informatik.uni-hamburg.de

Wolfgang Menzel
Department of Informatics

Universität Hamburg
Germany

Abstract

Incomplete linguistic input, i.e. due to
a noisy environment, is one of the chal-
lenges that a successful communication
system has to deal with. In this paper,
we study text completion with a data set
composed of sentences with gaps where a
successful completion cannot be achieved
through a uni-modal (language-based) ap-
proach. We present a solution based on
a context-integrating dependency parser
incorporating an additional non-linguistic
modality. An incompleteness in one chan-
nel is compensated by information from
another one and the parser learns the as-
sociation between the two modalities from
a multiple level knowledge representation.
We examined several model variations by
adjusting the degree of influence of dif-
ferent modalities in the decision making
on possible filler words and their exact
reference to a non-linguistic context ele-
ment. Our model is able to fill the gap
with 95.4% word and 95.2% exact refer-
ence accuracy hence the successful predic-
tion can be achieved not only on the word
level (such as mug) but also with respect to
the correct identification of its context ref-
erence (such as mug 2 among several mug
instances).

1 Introduction

Text completion/prediction is a crucial element of
communication systems, due to its role in increas-
ing the fluency and the effectiveness of the com-
munication in scenarios where the environment
is noisy, or the communication partner suffers

∗*These authors contributed equally to this work

from a motor, or cognitive impairment (Garay-
Vitoria and Abascal, 2004). In this study, we
tackle the problem of compensating the incom-
pleteness of the verbal channel by additional in-
formation from visual modality. This capability
for multi-modal integration can be a very specific
yet crucial feature in resolving references and/or
performing commands for i.e. a helper robot that
aids people in their daily activities. To the au-
thors’ knowledge, there is no multi-modal data set
for a text completion task that systematically ad-
dresses challenging linguistic structures (i.e. syn-
tactic or referential ambiguities) for environments
where helper robots, who have access to visual in-
formation, would be employed.

The completion is performed by predicting
tenable fillers for the missing, unknown, or
vague parts in the input sentences through vary-
ing techniques, using single or hybrid methods.
The prediction process utilizes the available re-
sources, usually linguistic information (morpho-
logical, syntactic, and semantic properties). It
can also use additional information sources such
as the linguistic, or visual context (Garay-Vitoria
and Abascal, 2006). If only the linguistic level is
available, a language model can be used to pre-
dict the probability of a syntactic category in a
certain context (Asnani et al., 2015; Bickel et al.,
2005). N-grams is a popular method for this task
since they provide very robust predictions for lo-
cal dependencies. Nevertheless, they loose their
power for structures with long-range dependen-
cies. Furthermore, if there are multiple instances
of the same object class (c.f. Figure 1), a text
completion based on N-gram could not differen-
tiate between them to select the proper instance
reference. As shown in several studies (Mirowski
and Vlachos, 2015; Gubbins and Vlachos, 2013),
a language model employing the syntactic depen-
dencies of a sentence brings the relevant contexts

41

closer. Using the Microsoft Research Sentence
Completion Challenge (Zweig and Burges, 2012),
Gubbins and Vlachos (2013) have showed that in-
corporating syntactic information leads to gram-
matically better options for a semantic text com-
pletion task.

On the other hand, semantic clustering or clas-
sification (like in ontologies) can be used to derive
predictions on the semantic level. However, when
it comes to the description of daily activities, con-
textual information coming from another modality
would be more beneficial, since linguistic distribu-
tions alone could hardly contribute enough clues
to distinguish the action of washing a pan from
washing a mug, which is a crucial difference for
helper robots.

A popular trick in natural language processing
consists in training a model on one task, and then
apply it to an entirely different one. We adopt
this method by training a multi-modal dependency
parser using noise-free sentences combined with a
description of their visual context. In the second
step, we make use of the trained parser to predict
the best fillers of the gaps (guided by the context
modality).

The paper starts by introducing our multi-modal
approach for the text completion task. In section
3, we present the experimental setup including
the compiled dataset. The implementation is de-
scribed in section 4. Experimental results are pre-
sented and discussed in section 5. Conclusions are
drawn and future directions of research are pointed
out at the end of the paper.

2 A Multi-Modal Approach for a Text
Completion Task

Although closing the gaps in a sentence based only
on a language model is a simple way to tackle
the issue, in extremely ambiguous situations, gap
reconstruction is almost impossible on a purely
unimodal base. In this paper, we work on multi-
modal data that consists of linguistic and context
information. The linguistic part is provided by
natural language sentences that refer to a partic-
ular visual scene. The context information is a
meta-data description of that scene. Per input sen-
tence, the context channel contains a set of context
relations: (argument, relation type, predicate)
where relation type is one of a predefined set of
accepted relations, such as agent or theme while
Predicate and Argument are tokens of the input

sentence. The complexity of the text completion
task is controlled by creating challenging scenes
along the following dimensions:

• Each scene is composed of different compo-
nents (i.e., persons and objects).

• A scene might contain multiple instances of
the same class (i.e., a blue mug (id: mug 1)
and a green mug (id: mug 2).

• The different instances are taking part in var-
ious relations (more details are given in Sec-
tion 2.2).

In a series of experiments, we assess the po-
tential of a context-integrating dependency parser
for correctly solving the text completion task. We
not only try to determine whether we can fill the
gap in the sentence with the correct word but also
whether it is possible to correctly determine the
exact reference to an entity in the context descrip-
tion given the contextual information, in particular
if the linguistic input is noisy and a token of the in-
put sentence is missing. At this stage of research,
we work only on one gap per sentence.

2.1 Context-integrating Dependency Parser

Dependency parsing is an essential NLP task that
determines the syntactic structure of the input sen-
tence in form of a dependency tree. Each token of
the input is represented as a tree node. The tree
consists of the dependency relations between each
word of the sentence and its head word (Nivre,
2004).

The standard input of a parser is a natural lan-
guage sentence. To supply such a parser with ad-
ditional information required for text completion
in a multi-modal environment we have to make it
sensitive to cues from the context.

In our previous research (Salama and Menzel,
2018, 2017), we have introduced a multi-modal
dependency parser adopting the graph-based ap-
proach of Eisner (1996) and Mcdonald and Pereira
(2006). Our model, called RBG-2, extends the
RBG parser (Zhang et al., 2014) by enabling
multi-channel input providing the parsing process
with context information in addition to the nat-
ural language sentence. Integration is achieved
by combining features from both input channels
during the normal training procedure of the RBG
parser.

42

2.2 The Data Set

In order to test how the model behaves for differ-
ent linguistic structures, we used the nine different
grammatical templates1 given in Table 1 featur-
ing active/passive voice, PP-attachments, relative
clause (RC) attachments, and conjunctions. They
are combined with several actions performed by
different agents. The dependency structures are
represented in the CONLL-X format. The data set
consists of 429 individual sentences for 20 differ-
ent visual scenes. We performed a 10-fold cross
validation and introduced exactly one gap for ei-
ther a noun, verb or adjective into each test sen-
tence obtaining 1457 test sentences in total.

2.2.1 Linguistic Structures

In this section, we examplify the nine grammtical
templates used in our data-set. The following ex-
amples belong to the scene in Figure 1:

• T1. RC2 Attachment Ambiguity-1
T1A. Active voice in RC. “It is a mug on a vit-
rine that the woman damages.”
Either the relative clause is low-attached (the
woman damages the vitrine) or high-attached
(the woman damages the mug).
T1B. Passive voice in RC.“It is a mug on a vit-
rine that is damaged by the woman.”

• T2. RC Attachment Ambiguity-2
T2A. Active voice. “The woman damages the
vitrine with a mug on it.”
T2B. Passive voice. “The vitrine with a mug on
it is damaged by the woman.”

• T3. RC Attachment Ambiguity with a Geni-
tive Object-3
T3A. Active voice in RC.“The woman removes
the label of the medicine that lies on the shelf ”
T3B. Passive voice in RC. “The label of the
medicine that lies on the shelf is removed by
the woman.”

• T4. Scope Ambiguity
“There are a mug, a candle and books [that
lie/lying] on the vitrine.”

• T5. Simple Imperative sentence
“bring me the mug [that lies/lying] on the vit-
rine [that the woman cleans].”

1inspired by the experimental setup of pyscholinguistic
research

2Relative Clause

• T6. Imperative sentence with modifiers
“bring me the blue mug [that lies/lying] on the
vitrine [that the woman cleans].”

2.2.2 Context Representations
The visual information of a picture is represented
in a knowledge base that contains the relation-
ships between objects, characters and actions in
the scene. This information has been manually
annotated as triplets composed of argument, rela-
tion type and predicate. Currently, we consider six
different context relations, namely agent, theme,
location, next-to, part-of/own, as well as property
assignments for color, material, shape etc. (e.g., a
blue mug or a ceramic vase). Figure 1 exemplifies
the context annotations of a visual scene with an
additional concept map representation (bottom).
In this scene, the woman is the agent, who per-
forms the cleaning action, the vitrine is the theme,
i.e. the entity undergoing a change of state, caused
by the action. The entire data set and source code
can be accessed from https://github.com/
rekaby/MD-TC.V1.0

For the current study, the pictures, as the one
given in Figure 1, serve illustrative purposes, be-
cause the computational model does only have
access to the manually annotated representations.
An automatic relation extraction is not within the
scope of this study.

The different semantic roles are distributed in
the data set as follows; Agent (%13.6), Theme
(%13.6), Location (%33.1), Next to (%9.8), Prop-
erty (%19.5), Own (%10.3). Table 2 presents a
statistics for the amount of contextual information
per scene.

3 Implementation

RBG-2 parser starts by creating a fully connected
graph representing the input tokens as nodes. The
parser decodes a minimum spanning tree out of
the graph maximizing the aggregated scores of the
arcs. The scores are calculated by combining the
weights of linguistic features and context features
between the pair of tokens as follows:

y = max
y∈T (x,c)

n∑

i=1

ωl.f(xi, xj , y)+ωc.f̂(ci, cj , y)

(1)
Where y is the best dependency tree, T (x, c) is a
set of all possible dependency trees for input sen-
tence X and context c. The linguistic feature vec-
tor between node xi and its dependency head xj is

43

Types Templates Sentences Gaps Gap Types

T1A PRO1nom VP1 NP1acc NP2gen, WDT*acc PRO2nom VP2 41 130 NP(114), VP(16)
T1B PRO1nom VP1 NP1acc NP2gen, WDT*acc PRO2nom VP2 40 130 NP(115), VP(15)
T2A PROnom VP1 NP1nom,pl. NP1nom,pl., WDT acc,pl. VP2 PP1 50 177 NP(153), VP(24)
T2B PROnom VP1 NP1nom,pl. NP1nom,pl., WDT acc,pl. VP2 PP1 50 177 NP(153), VP(24)
T3A NPit−cleft VP1 NP1nom NP2dat, WDT dat PRO3rd-sing. ADV VP2 36 177 NP(139), VP(36), ADJ(2)
T3B NPit−cleft VP1 NP1nom NP2dat, WDT dat PRO3rd-sing. ADV VP2 29 145 NP(113), VP(30), ADJ(2)
T4 EX Vaux NP1nom (CONJ NP2) WDT*nom VP1 Prep. NP3 58 156 NP(154), VP(0), ADJ(2)
T5 VP1 (Prodat NP1 (WDT) VP2 Prep. NP2 63 141 NP(137), VP(1), ADJ(3)
T6 VP1 (Prodat (Adj1) NP1 (WDT) VP2 Prep. (ADJ2) NP2 62 224 NP(135), VP(9), ADJ(80)
Total 429 1457 NP(1213), VP(155), ADJ(89)

Table 1: POS templates, the number of sentences and gaps for each sentence types, and the number of
gaps for each POS category

Items Mean
Relations (Min.=28, Max.=41) 34.8

Context entities (Min.=30, Max.=41) 35.6
Unique entities 5 (Min.=21, Max.=28) 25

Table 2: Complexity of the contextual information
for the visual scenes in the data set

f(xi, xj , y) with weights ωl. The context feature
vector is f̂(ci, cj , y) with weights ωc.

We build the context features using combi-
nations of the predicates’ and arguments’ POS,
lemma, and word. So far, we only use first-order
features for both channels. That means, only in-
formation about immediately connected nodes in
the graph (head-child relationships) is accounted
for, but more complex, indirect connections (sib-
lings, grantchilds, etc.) are ignored. We add the
context features to the graph arc only if the pair of
nodes (words) has a context relation in between.
Using no higher-order features makes the learn-
ing process faster and simpler but introduces some
limitations as discussed in the result section. Each
record in the training data set consists of a com-
plete input sentence, a set of context relations such
as in Figure 1, and an exact context reference for
each sentence token (if it exists in the context de-
scription).

In the testing (text completion) phase, the in-
put sentence is incomplete (containing exactly one
gap) while the context information is the same as
in the training phase except the mapping between
the input sentence and context references is miss-
ing as well. E.g. in the sentence “The vitrine next
to sofa is cleaned by the GAP” accompanying the
scene in Figure 1, we have multiple goals to deter-
mine

Algorithm 1 Text Completion Workflow using
RBG-2

TR-L← Training data (complete sentences).
TR-C← Training data (context).
TE-L← Testing data(sentences with gaps).
TE-C← Testing data (context).
model← train RBG-2(TR-L, TR-C)
for each pair TE-Li,TE-Ci do

bestF illerScore← −Inf .
for each component TE-Cij ∈ TE-Ci do

for each POSt ∈ POS tags do
TE-Li ← SetGap(TE-Cij ,POSt).
score← parse(model,TE-Li)
if score > bestF illerScore then

bestF illerScore← score.
bestF iller ← TE-Cij .
bestPOS ← POSt.

TE-Li ← fillGap(bestFiller,bestPOS).

• the filler word (woman),

• the context filler reference (woman 2),

• the context filler reference for all the other non-
gap tokens in the input (if they exist). They are
{vitrine 2, sofa 1, clean 1},

• the POS tag of the filler (NN).

As shown in Algorithm 1, we train our data-driven
RGB-2 parser on the multi-modal training set de-
scribed above to learn the associations between the
context knowledge representation and the the de-
pendency structures. In the testing phase, we fill
the gap by all the possible context components
and parse the sentence in a multi-modal setup.
We also iterate over different POS tags for the
filler to compare the resulting dependency tree
scores. The best filler (word, context-reference,
and POS) means that this word/context-reference

44

Figure 1: The corresponding image4 for the sentences above and the semantic representations of the
actions and relations in the image

is the best matching one that combines two per-
spectives: grammatical correctness and compati-
bility with the context information.

Although the ratio of contextual features to syn-
tactic ones (first-order features) is 1:2.3, which is
not high, trying all the possible context elements
is rather expensive. For each sentence, we need to
build G∗C ∗P ∗M dependency trees that have to
be ranked to find the best one. Here, G is the num-
ber of gaps (1 in our experiments), C the number
of context entities (35.6 in average), P the number
of PoS tags (3) and M =

∏N
i=1Mi, where Mi is

the count of possible candidates references and N
the number of sentence tokens with probable con-
text references.

The search space could be reduced by avoiding
irregular combinations of POS and filler words. In
this stage of research, however, we do not prune it
at all.

3.1 Context Data Preprocessing

In a preprocessing phase, we enrich the context in-
formation by inferring new relations from the orig-
inal ones (colored red in Figure 1 and Figure 2).
We have used two kinds of inferred relations:

Location to Agent/Theme: If we have a con-
text relation such as (X,Location, Y), this might
appear in the linguistic modality in two different
forms having either direct or indirect syntactic de-
pendency. For example, mug and vitrine as in
Figure 2A and 2B have a direct syntactic depen-
dency and context relation respectively. In other
sentence forms as in Figure 2C and 2D, there is no
direct correspondence between the linguistic de-
pendency and the context relation. Contextually,
the two tokens are related through the Location
relation, but syntactically they are daughters of the
same action lie (no direct dependency). In this
form, the Location relation is presented in the lin-

45

Figure 2: Location Inferred Agent/Theme Rela-
tions: A and C) dependency trees, B) original con-
text information, D) original and inferred context
relations

guistic modality using the verb to lie, which does
not appear as a predicate in the context descrip-
tion.

To enrich the context repreresentation with in-
formation corresponding directly to the linguis-
tic one, we define a set of verbs (LV) that have
a location meaning (i.e., lie, stand, hang). From
any location relation (X,Location, Y), we in-
fer another two relations (X,Agent, LVi) and
(X,Theme, LVi), where LVi ∈ LV and LVi is
a token in the input sentence.

Location to Next To relations: Given each
pair of location relations (X,Location, Z)
and (Y, Location, Z) we infer new relation
(X,Next − To, Y), where X,Y, Z ∈ W , W is
the set of the input tokens. The inferred relations
are added to the original list of the context input.
In the rest of this paper, we use (IC) to refer to
the Inferred Context relations and (OC) for the
Original Context relations.

3.2 Model Variations

Varying syntactic/context’s weight ratios (S2C):
In the testing phase, we experiment with different
ratios giving more influence (weight) to the con-
text relations than to the linguistic ones. We assess
different ratios (1to1,1to5, 1to10, and 1to25).

Original/Inferred relations’ weight ratio
(OC2IC): Similar to S2C, in the testing phase, we
give more weight to the original relations than to
the inferred ones by assigning the OC2IC ratio to
5to1.

4 Results

In order to show the effect of contextual informa-
tion and to optimize the performance of the current
model, we carried out several experiments with
different parameters of the model by keeping the
data set constant. We used 18 scenes (386 sen-
tences in average) for training and kept the remain-
ing 2 scenes (146 sentences on average) for test
using a 10-fold cross-validation. In case the gap
can be filled with more than one reference (< 5%
of our dataset), we consider any possible one of
them as correct. We used five evaluation metrics
as listed below.

• POS-tag Accuracy

• Filler Word Accuracy

• Exact Filler Identification (EFI) Accuracy (i.e
mug 1 in contrast to mug 2)

• Non-gap Identification Accuracy, for all the
other tokens in the input sentence.

• Complete Sentence Identification Accuracy

• Dependency Tree Accuracy (unlabeled attach-
ment score, UAS)

Table 3 presents the results obtained from dif-
ferent variations of the model described in the
previous section. We test a uni-modal parser
(linguistic-only) only to show that the data set in-
deed is consisting of sentences, where reference
resolution/text completion cannot be achieved on
a purely uni-modal sense. For that purpose, the
contribution of contextual information is turned
off. Because of the uniform structure of the train-
ing dataset, the POS and dependency tree accura-
cies are very high 97.6% and 95.6% respectively.
However, the model’s prediction performance is
drastically low for the gap words; 13.5% for the
filler word and 7.8% for the exact filler identifica-
tion.

As described in Section 3.2, the first model
is based on having equal weights (S2C-1to1) for
both syntactic (S) and contextual features (C) and
the weights of original contextual (OC) features to
the inferred features (IC) are kept equal as well
(OC2IC-1to1). Giving equal weights leads to ap-
prox. 83% accuracy in both filler word and ex-
act filler ID predictions, while increasing the in-
fluence of the context resulted in 95% accuracy6.

6The other models with weights > 5 produced almost
similar results.

46

Furthermore, giving more weight to the original
relations over the inferred ones resulted in lower
accuracy, therefore OCtoIC-1to1 variation is cho-
sen as the standard for the analysis in this sec-
tion. It is apparent from Table 3, a higher influence
of the context is beneficial for a correct reference
prediction. However, it should be noted that giv-
ing more weight to contextual features causes the
model to be less sensitive about choosing a cor-
rect dependency tree. A closer look at the differ-
ences between the predictions of the S2C-1to5 and
S2C-1to10 variations showed that 60 instances ei-
ther in the dependency tree or in the filler ID were
observed in the results. While S2C-1to5 builds
51 correct dependency trees and 43 correct refer-
ences, S2C-1to10 chooses the correct dependency
tree in only 12 instances, but even if the depen-
dency tree is wrong, it fills the gap correctly in 48
out of 60 instances.

95 inaccurate EFI in 73 test sentences were ob-
served. False predictions of the model variations
can be categorized into several groups:

Inferred Relations. 60% of the inaccurate pre-
dictions occurred within this category. As ex-
plained in the Section 3.1, a phrase like “an
entity-1 that lies on an entity-2” can be resolved
due to an inferred relation. However, for sen-
tences containing structures like “an entity-1 that
lie/stand/hang(s) next to an entity-2” with a gap in
a position of entity-2, the model prefers the most
plausible filler that has a location relation (either
original or inferred) with the entity-1 instead of
having a next to relation with it.

A Chain of Relations. This problem arises
when for example there is a chain of location re-
lations among the entities (7.4%), i.e. (bird 1,
Location, cage 1), and (cage 1, Location,
chest 1) with a description “It is a cage on a chest
that the man cleans” with a gap in a chest posi-
tion. While the S2C-1to5 model correctly fills the
gap, S2C-1to10 chooses bird for the gap position.
Assigning more weight to the context information
leads to similar scores for the various entities of
the chain, which may cause some wrong filler pre-
dictions.

Less represented PP associations. Syntacti-
cally, all prepositions (with, of, on and next to)
have the same PoS tag but semantically they differ.
While preposition of is associated with the own re-
lation, and preposition next to with next-to, there
are two prepositions which are related to the lo-

cation relation; on/in and with. The distribution of
them is as follows; with: 21.3%, and on/in/under7:
78.7%. As shown in Figure 3, the most likely
association between syntactic and contextual fea-
tures (w.r.t. location relations) is head to argu-
ment and dependent to predicate. This association
is flipped for the prepositional phrase like “entity-
2 with entity-1 on it”. Regardless of giving more
influence to the context in that case, the model
makes the prediction more strongly biased to the
canonical direction of prepositional phrases result-
ing a wrong text prediction.

A Verb in a Noun Position. This error oc-
curs irrespective of the linguistic structure if more
weight (1to10 or 1to25) is given to the context
(6.3%). As an example, a gap in the shelf posi-
tion in the sentence “There are a cat, a flower and
books on the shelf” is filled with chase, caused by
the (cat 1, Theme, chase 1) relation. In that case,
a stronger contextual influence overrides the syn-
tactic form of the PP-attachment, and favors a ref-
erence with the theme relation, which has a consis-
tent syntactic representation; its argument always
points to the predicate. The goal to find syntac-
tically correct PP-attachment is overruled by the
more powerful features of the context relations,
and so chase is selected considering that a cat is
the only entity with a theme relation among oth-
ers.

Far-Attachments. Far-attachments of the rela-
tive clauses or prepositional phrases are not that
frequent as short-attachments, yet they are gram-
matically correct and occur in a data set. The re-
sults indicate that giving more influence to con-
textual information (S2C-1to10 and 1to25) helps
to correctly fill the gap, while a model with lower
weight for the contextual information (S2C-1to1
and -1to5) tends to choose the wrong reference
for the gap position. To illustrate, the sentence
“It is a blanket on a couch that is grasped by the
woman” refers to one instance of a blanket class,
and the context contains two instances: blanket 1
and blanket 2, where blanket 2 is the theme of the
grasp action. When the gap is in the couch po-
sition, S2C-1to5 chooses a dependency tree with
a short attachment of the RC. It attaches the gap
to the action grasp and thus fills it with blanket 2.
This is consistent with the theme relation in the
context, resulting a sentence “It is a blanket 1 on

7excluding the occurrences of “on/in/under” in the reflex-
ive phrases as in “with a mug on it”

47

Model Variations PoS Filler Word EFI Non-Gap Complete DP-UAS
Sentence

Uni-model (linguistic only) 97.58 13.50 7.75 62.05 2.21 95.60
S2C Weight (1to1) + OC2IC Weight (1to1) 98.34 83.53 83.11 97.35 83.60 95.60
S2C Weight (1to5) + OC2IC Weight (1to1) 98.89 95.36 95.22 99.24 94.67 95.11

S2C Weight (1to10) + OC2IC Weight (1to1) 98.48 95.57 95.50 99.07 94.81 94.80
S2C Weight (1to25) + OC2IC Weight (1to1) 98.13 95.57 95.50 99.36 94.81 94.51
S2C Weight (1to5) + OC2IC Weight (5to1) 98.82 92.39 92.32 98.85 91.76 95.05

Table 3: The results of the different model variations

Figure 3: Syntactic/Context feature association for the prepositions on and with

a blanket 2 that is grasped by the woman”8. If
the context had only one blanket, that instance of
the blanket had to be assigned to a non-gap blan-
ket position in the sentence, and then the model is
forced to switch to another dependency tree with
a lower score but a better alignment. On the other
hand, a 1to10 model gives more influence to the
context, resulting in a correct completion even if
the dependency structure is wrong. This may indi-
cate that in order to deal with more challenging
contexts or less represented linguistic structures
(like far-attachments) increasing the influence of
the contextual information would be beneficial.

Contextually Challenging Cases. This cate-
gory covers 10.5% of the errors. To illustrate,
lets consider a context, which contains two differ-
ent roles for the same agent man 1 together with
a sentence like “The handle of the mug on the
counter is hold by the man”; namely an action
wash with a theme relation to a mug and another
action hold with a theme relation to a handle. An-
other relevant relation for this sentence is (mug 1,
Own, handle 1). If in such a case the gap is in the
verb position, the model can choose the alternative
actions associated with a mug instead of forcing a
far-attachment which is also favored contextually.

5 Conclusion and Future Directions

In this paper, we present a data set for sentence
completion consisting of problematic instances,
which can not be effectively handled using linguis-
tic features alone. We apply a context-integrating

8Our assumption is not using same context reference
twice

dependency parser to solve this problem. There
are number of assumptions and constraints of the
current model. First, allowed gaps are only nouns,
verbs and adjectives. Pronouns are not used as a
possible gap filler. Furthermore, each individual
instance is allowed to occur in the sentence once9,
thus a context reference (i.e. mug 1) can not be
assigned to more than one token of the input sen-
tence. Morever, the set of context relations is re-
stricted to the the six relations. Further studies will
need to cover more variety to relax these limita-
tions.

The results indicate that incorporating contex-
tual information and giving a strong enough influ-
ence to them helps to solve a majority of the prob-
lems concerning different sentence structures with
conjunctions, relative clauses or PP-attachments.
There are still some challenging situations origi-
nating from high degrees of linguistic or contex-
tual complexity, which need to be addressed in fu-
ture work. Furthermore, we plan to address noisier
linguistic input with multiple gaps in a sentence as
well as mismatches between the sentence and its
contextual information. We also target reference
resolution at the earliest time possible by employ-
ing incremental processing.

Acknowledgments

This research was partially funded by the Ger-
man Research Foundation - DFG Transregio SFB
169: Cross-Modal Learning, and German Aca-
demic Exchange Service (DAAD).

9This constraint is not based on linguistic phenomena, it
is just the design decision for the current solution

48

References
Kavita Asnani, Douglas Vaz, Tanay PrabhuDesai,

Surabhi Borgikar, Megha Bisht, Sharvari Bhosale,
and Nikhil Balaji. 2015. Sentence completion us-
ing text prediction systems. In Proceedings of the
3rd International Conference on Frontiers of Intelli-
gent Computing: Theory and Applications (FICTA)
2014. Springer, pages 397–404.

Steffen Bickel, Peter Haider, and Tobias Scheffer.
2005. Learning to complete sentences. In European
Conference on Machine Learning. Springer, pages
497–504.

Jason M. Eisner. 1996. Three new probabilis-
tic models for dependency parsing: An explo-
ration. In Proceedings of the 16th Conference
on Computational Linguistics - Volume 1. As-
sociation for Computational Linguistics, Strouds-
burg, PA, USA, COLING ’96, pages 340–345.
https://doi.org/10.3115/992628.992688.

Nestor Garay-Vitoria and Julio Abascal. 2004. A com-
parison of prediction techniques to enhance the com-
munication rate. In ERCIM Workshop on User In-
terfaces for All. Springer, pages 400–417.

Nestor Garay-Vitoria and Julio Abascal. 2006. Text
prediction systems: a survey. Universal Access in
the Information Society 4(3):188–203.

Joseph Gubbins and Andreas Vlachos. 2013. De-
pendency language models for sentence completion.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing. pages
1405–1410.

Ryan Mcdonald and Fernando Pereira. 2006. Online
learning of approximate dependency parsing algo-
rithms. In In Proc. of EACL. pages 81–88.

Piotr Mirowski and Andreas Vlachos. 2015. Depen-
dency recurrent neural language models for sentence
completion. arXiv preprint arXiv:1507.01193 .

Joakim Nivre. 2004. Incrementality in determin-
istic dependency parsing. In Proceedings of
the Workshop on Incremental Parsing: Bringing
Engineering and Cognition Together. Associa-
tion for Computational Linguistics, Stroudsburg,
PA, USA, IncrementParsing ’04, pages 50–57.
http://dl.acm.org/citation.cfm?id=1613148.1613156.

Amr Rekaby Salama and Wolfgang Menzel. 2017.
Multimodal graph-based dependency parsing of nat-
ural language. In Proceedings of the International
Conference on Advanced Intelligent Systems and In-
formatics 2016. Springer International Publishing,
pages 22–31.

Amr Rekaby Salama and Wolfgang Menzel. 2018.
Learning Context-Integration in a Dependency
Parser for Natural Language, Springer International
Publishing, pages 545–569.

Yuan Zhang, Tao Lei, Regina Barzilay, Tommi
Jaakkola, and Amir Globerson. 2014. Steps
to excellence: Simple inference with refined
scoring of dependency trees. In Proceedings
of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1:
Long Papers). Association for Computational Lin-
guistics, Baltimore, Maryland, pages 197–207.
http://www.aclweb.org/anthology/P14-1019.

Geoffrey Zweig and Chris JC Burges. 2012. A chal-
lenge set for advancing language modeling. In Pro-
ceedings of the NAACL-HLT 2012 Workshop: Will
We Ever Really Replace the N-gram Model? On the
Future of Language Modeling for HLT . Association
for Computational Linguistics, pages 29–36.

49

Proceedings of the 3rd Workshop on Representation Learning for NLP, pages 50–57
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

Quantum-inspired Complex Word Embedding

Qiuchi Li∗
University of Padova

Padova, Italy
qiuchili@dei.unipd.it

Sagar Uprety∗
The Open University
Milton Keynes, UK

sagar.uprety@open.ac.uk

Benyou Wang
University of Padova

Padova, Italy
wabyking@163.com

Dawei Song
The Open University
Milton Keynes, UK

Beijing Institute of Technology
Beijing, China

dawei.song@open.ac.uk

Abstract

A challenging task for word embeddings is
to capture the emergent meaning or polar-
ity of a combination of individual words.
For example, existing approaches in word
embeddings will assign high probabilities
to the words ”Penguin” and ”Fly” if they
frequently co-occur, but it fails to cap-
ture the fact that they occur in an opposite
sense - Penguins do not fly. We hypothe-
size that humans do not associate a single
polarity or sentiment to each word. The
word contributes to the overall polarity of
a combination of words depending upon
which other words it is combined with.
This is analogous to the behavior of mi-
croscopic particles which exist in all pos-
sible states at the same time and interfere
with each other to give rise to new states
depending upon their relative phases. We
make use of the Hilbert Space representa-
tion of such particles in Quantum Mechan-
ics where we subscribe a relative phase to
each word, which is a complex number,
and investigate two such quantum inspired
models to derive the meaning of a combi-
nation of words. The proposed models 1

achieve better performances than state-of-
the-art non-quantum models on the binary
sentence classification task.

1 Introduction

Word embeddings (Bengio et al., 2003; Mikolov
et al., 2013; Pennington et al., 2014) are the

∗Corresponding author
1https://github.com/complexembedding/

complex word embedding.git

current state of art techniques to form seman-
tic representations of words based on their con-
texts. They have been successfully used in vari-
ous downstream tasks such as text classification,
text generation, etc. Building on word embed-
dings, various unsupervised (Kiros et al., 2015;
Hill et al., 2016a) and supervised (Conneau et al.,
2017) models for sentence embeddings have been
proposed. The general idea behind word embed-
dings is to use word co-occurrence as the basis of
semantic relationship between words. This natu-
rally brings about the difficulty for word embed-
ding approaches in capturing the emergent mean-
ing of a combination of words, such as a phrase or
a sentence. For example, the phrase ”ivory tower”
can hardly be modeled as a semantic combination
of ”ivory” and ”tower”. Or, the high frequency of
occurrence of the words ”Penguin” and ”Fly” fails
to suggest that they are negative correlated.

In the field of information retrieval (IR), various
models based on the mathematical framework of
Quantum Theory have been applied to capture and
represent dependencies between words (Sordoni
et al., 2013; Xie et al., 2015; Zhang et al., 2018),
inspired by the pioneering work of Van Rijsber-
gen (2004). Sordoni et al. (2013) models a seg-
ment of text as a quantum mixed state, represented
by a positive semi-definite matrix called density
matrix in a Hilbert Space, whose non-diagonal
entries entail word relations in a quantum man-
ner(Quantum Interference). The resulting Quan-
tum Language Model (QLM) outperforms various
classical models on ad-hoc retrieval tasks. Xie
et al. (2015) captures Unconditional Pure Depen-
dence (UPD) (Hou et al., 2013) between words
in a quantum way by demonstrating the equiva-
lence relation between UPD and Quantum Entan-

50

glement (QE) and providing a way to incorporate
UPD information into QLM, leading to improved
performance over the original QLM. Zhang et al.
(2018) develops a well-performing question an-
swering (QA) system by extracting various fea-
tures and learning to compare the density matrices
between a question and an answer.

The successful application of quantum-inspired
models onto IR tasks (Wang et al., 2016) to some
extent demonstrates the non-classical nature of
word dependency relations. However, all these
models simplify the space of interest to be space
of real vectors Rn, with the representation of a
word or a text segment being a real-valued vec-
tor or matrix, largely due to the lack of proper
textual features corresponding to the imaginary
part. Since quantum phenomena cannot be faith-
fully expressed without complex numbers, these
models are theoretically limited. In a recent
work, Aerts et al. (2017) presents a theoretical
quantum framework for modeling a collection of
documents called QWeb, in which a concept is
represented as a state in a Hilbert Space, and con-
cept combination is represented as a superposi-
tion of the concept states. Under this framework,
the complex phases of each concept have a nat-
ural correspondence to the extent of interference
between concepts. However, the framework has
not given rise to any applicable models onto IR or
NLP tasks to the authors’ knowledge.

Inspired by the potential of quantum-inspired
models to represent word relations, we seek to
build quantum models to represent words and
word combinations, and explore the use of com-
plex numbers in the modeling process. Our model
is built on top of two hypothesis: I) A word is a lin-
ear combination of latent concepts with complex
weights. II) A combination of words is viewed
as a complex combination of word states, either a
superposition state or a mixed state. The first hy-
pothesis agrees with QWeb, but here we concretize
a concept in QWeb to be a word. The second hy-
pothesis is an extension of both QWeb and the
work by Zhang et al. (2018), because QWeb re-
stricts a combination of concepts to be a superpo-
sition state while the work by Zhang et al. (2018)
assumes that a sentence is a complex mixture of
word projectors.

This study sets foot in sentence-level analy-
sis, and treats a sentence as a combination of
words. We intend to model a word as a quan-

tum state containing two parts: amplitudes and
complex phases, and expect to capture the low-
level word co-occurrence information by the am-
plitudes, while using the phases to represent the
emergent meaning or polarity when a word is com-
bined with other words. We investigate on two
models to represent the combination of words, ei-
ther as a superposition of word states or as a mix-
ture of word projectors. The effectiveness of the
two models are evaluated on 5 benchmarking bi-
nary sentence classification datasets, and the re-
sults show that the mixture model outperforms
state-of-the-art word embedding approaches.

The motivation behind this paper stems from
an analogy with Quantum Physics. Consider the
phrase ”Penguins fly”. If we model it along
the lines of the famous double slit experiment in
Quantum Physics, the two slits corresponds to hu-
man interpretation of words ”Penguins” and ”Fly”
(Verb sense of Fly). When only one slit is open
at a time, the waves corresponding to the individ-
ual word will go through the slit and register onto
the screen. The screen is made of a set of polarity
detectors judging opinion or sentiment polarities.

In Figure 1.a the human mind sees the word
’Penguins’ alone and detects it as a neutral word
with a very high probability. This is analogous to
the double slit experiment with one slit open. The
same is the case for the word ’Fly’ considered in
isolation. By classical logic, when the two words
are taken together as a phrase ’Penguins fly’, the
human mind should assign a high probability of it
being neutral again. However, we know that it is a
false statement (Figure 1.c).

Different from classical representation, this
study hypothesizes that the combination of words
can be viewed as a superposition or complex mix-
ture of quantum entities which gives rise to a new
state. In this way, the emerging meaning or po-
larity of a combination of words will manifest
in the interference between words, and be cap-
tured inherently in the density matrix representa-
tion. For example, two or more words having a
neutral sense individually may combine to give a
negative sense, just like the case in the analogy
given above.

2 Hilbert Space Representation of Words
and Sentences

The section introduces the proposed quantum
framework for representing words and sentences.

51

(a) Figure 1.a (b) Figure 1.b

(c) Figure 1.c

Our research scope is currently limited to sen-
tence and word level analysis. However, our pro-
posed model is potentially capable of representing
higher-level concepts such as paragraphs and doc-
uments, which we will investigate in the future.
To be consistent with the quantum framework, we
use Dirac notations, in which a unit vector ~µ and
its transpose ~µT are denoted as ket |u〉 and bra 〈u|
respectively.

Suppose there are n independent latent concepts
in the text collection, we then model words and
sentences as quantum concepts defined on an n-
dimensional Hilbert Space Hn, where latent con-
cepts form a set of pure orthonormal states of
the space. Using Dirac notations, the concepts
are denoted as {|Ci〉}ni=1. Intuitively, latent con-
cepts correspond to the contexts in which words
are used.

Each word t is modeled as a superposition
state (Nielsen and Chuang, 2011) in the n-
dimensional Hilbert Space Hn. Equivalently,
it can be viewed as a linear combination of
{|Ci〉}ni=1 with complex weights, i.e. |t〉 =∑n

k=1 e
iθkwk|Ck〉, in which {wi}ni=1 are real-

valued amplitudes with wi > 0 and
∑n

i=1w
2
i = 1,

and θi ∈ [−π, π], i = 1, 2, ..., n are the corre-
sponding complex phases. This representation can

be seen as a generalization of previous word em-
bedding approaches (Bengio et al., 2003; Mikolov
et al., 2013; Pennington et al., 2014) in that it can
be regarded as a complex embedding with unitary
length of word vectors. A word has many dif-
ferent contexts associated with it. For example,
’Penguin’ is associated with ’Bird’, ’Antarctica’,
’Snow’, etc. When a quantum particle(e.g. elec-
tron) is said to be in a superposition state, it exists
in a new state(e.g. position) of all of its possible
outcomes(at all positions) at the same time. A par-
ticular outcome is observed upon measurement.
Similarly a word exists in all of its contexts at the
same time and depending upon its interaction with
other words in a combination, a particular context
is materialized. Note that because of reduced di-
mensionality, the contexts are latent concepts.

A sentence is a non-classical combination of
words. Since each word is a superposition of la-
tent concepts, a sentence s is also a non-classical
combination of latent concepts {|Ci〉}ni=1. It is
represented by a n by n density matrix ρ which
is positive semi-definite with unitary trace: ρ ≥ 0,
Tr(ρ) = 1. The real diagonal values of ρ reflects the
strength of concepts in the sentence, whereas the
non-diagonal values encodes correlations between
concepts in a quantum manner. The density ma-

52

trix can be computed from the word states either
directly or through a training strategy.

Our proposed approach is related to but largely
differs from Sordoni et al. (2013) and Zhang et al.
(2018). Sordoni et al. (2013) models queries and
documents as density matrices and provides a
training method for constructing density matrices
from texts. Zhang et al. (2018) directly computes
the density matrix of a sentence and put it into an
end-to-end neural network for handling the Ques-
tion Answering (QA) task. Both works view a
segment of texts as a mixed state (Nielsen and
Chuang, 2011) and use real-valued density matrix
as a representation. Our study also directly com-
putes the sentence representation from the word
superposition states. However, different from both
works, our study explores on treating a sentence
as either a strictly mixed state or a superposition
state. In either case, it can be represented as a
complex density matrix with complex values for
non-diagonal entries.

On top of the obtained sentence representation,
different quantum operations can be applied to
achieve a particular NLP target at hand. For sen-
tence classification tasks, one can perform projec-
tive measurements onto the sentence representa-
tion to determine the sentiment polarity; for sen-
tence text similarity task, the amplitude of the in-
ner product between a sentence pair may provide
evidence for judging to what extent they are simi-
lar to each other. Projective measurements and in-
ner products are methods to compute probabilities
in Quantum Theory (Nielsen and Chuang, 2011).

3 Complex Embedding Network for Text
Classification

In this paper, we build a complex embedding net-
work for text classification on the basis of Hilbert
Space representation for words and sentences. The
end-to-end network accepts a sentence sequence
as input and computes its classification label in the
procedure shown by Figure 2:

The input one-hot sequence is passed through
an embedding layer with a complex valued lookup
table, which maps each word into a complex vec-
tor representing its superposition state, resulting in
a sequence of complex embedding vectors. Then
the density matrix of the sentence is computed
from the complex embedding vectors. Finally, a
square projection matrix takes control of the mea-
surement. For any sentence state ρ, the mea-

surement probability is computed through Born’s
rule (Born, 1926):

p = Tr(Pρ) (1)

Where P is a projection matrix satisfying P 2 =
P, P = P T . The value of p determines the class
of this sentence. The lookup table determining the
complex embedding for each word is learned by
feeding the network with a sufficient number of
training data.

The crucial step of the process falls on how to
compute the sentence density matrix from the se-
quence of complex word embeddings. As no pre-
vious research has attempted to build complex net-
works for text classification task, we investigate on
two approaches for this step:

I) A sentence is viewed as a linear combination
of all word vectors in the sentence, i.e. |S〉 =∑m

l=1 λl|tl〉
||∑m

l=1 λl|tl〉||2
, with

∑m
l=1 λl = 1. Here λls are

real-valued weights indicating the relative degree
of importance for each word in the sentence, and
the state is divided by its 2-norm in order to guar-
antee it is a legal quantum state (i.e.,with unit
length). The sentence is then a pure superposi-
tion state and the density matrix can be computed
simply as ρ = |S〉〈S|.

II) A sentence is viewed as a classical mix-
ture of the word states in the sentence, i.e. ρ =∑m

l=1 λl|tl〉〈tl|, with
∑m

l=1 λl = 1. Here |tl〉〈tl| is
the density matrix representing the superposition
state of a word tl. This equation guarantees the
obtained ρ is a legal density matrix without any
further normalization.

The constructed density matrix representing a
sentence has real values for diagonal entries and
non-zero complex values for non-diagonal entries.
Intuitively, the diagonal entries tell us something
about the distribution of latent concepts in the
sentence, whereas the non-diagonal values en-
tail information regarding the emergent meanings.
Consider a very simple example where the com-
plex phases represent positive, neutral or negative
senses. Independently, both the words ”Penguin”
and ”Fly” have neutral sense, θP = θF = 0. When
they are combined together in a sentence, then sen-
tence density matrix has a negative-phased com-
plex value in the entry corresponding to them, i.e.
θPF < 0. Therefore, the combination of these
two words will have a negative complex phase, im-
plying the negative sense ”Penguins cannot fly”.

53

Figure 2: The process diagram of the proposed complex embedding network. |V | is the vocabulary size,
n is the embedding dimension, m is the maximum length of a sentence

In practice, the connections between words are
much more complicated, but we believe that by
feeding the above-mentioned models with enough
data, the constructed density matrix will be able
to effectively capture and represent the emergent
meanings of sentences.

The above-mentioned approaches lead to two
different models, resulting in different embed-
dings learned from the same training data. Hence
we name them as complex embedding superposi-
tion (CE-Sup) network and complex embedding
mixture (CE-Mix) network respectively. For sake
of simplicity, we assign equal importance of each
word in the sentence representation in both mod-
els, i.e. λl = 1

m , l = 1, 2, ...,m. In a relevant
research, Zhang et al. (2018) learns the values
of λls in the training framework, while enforcing
the word embeddings |tl〉s to be fixed. By fixing
λls and learning |tl〉s from the data, this paper is
essentially aiming at obtaining better representa-
tion of each word from the training data, whereas
Zhang et al.’s work directly takes existing word
vectors trained from external corpus. It would be
interesting to see what a co-training of |tl〉s and
λls will bring about in future works.

4 Experimental Setup

The experiments are conducted on five bench-
marking datasets for binary text classification:
Customer Review dataset (CR) (Hu and Liu,
2014), Opinion polarity dataset (MPQA) (Wiebe
et al., 2005), Sentence Subjectivity dataset

(SUBJ) (Pang and Lee, 2005), Movie Review
dataset (MR) (Pang and Lee, 2005), and Stanford
Sentiment Treebank (SST) dataset 2. The statistics
for the datasets are shown in Table 1.

Table 1: Dataset Statistics

Dataset #Count Task Classes
CR 4k product reviews pos/neg
MPQA 11k opinion polarity pos/neg
SUBJ 10k subjectivity subj/obj
MR 11k movie reviews pos/neg
SST 70k movie reviews pos/neg

In this paper, we compare the classification ac-
curacy of our proposed Complex Embedding Su-
perposition (CE-Sup) network and Complex Em-
bedding Mixture (CE-Mix) network with three ex-
isting unsupervised representation training mod-
els, Unigram-TFIDF and fastText Bag-of-Words
(BOW), as well as two existing supervised rep-
resentation training models, namely CaptionRep
BOW (Hill et al., 2016b) and DictRep BOW (Hill
et al., 2016c). We directly take the performances
of these systems on the 5 datasets from existing
works. Since the performances for CaptionRep
and DictRep are not available on SST, we use the
performance of another model called Paragraph-
Phrase (Bansal and Livescu, 2016). For a fair
comparison, we also implement an end-to-end su-
pervised real embedding network (Real-Embed),

2https://nlp.stanford.edu/sentiment/index.html

54

where each word is mapped to a real-valued vector
in the embedding layer, based on which the sen-
tence representation is obtained by averaging the
embedding vectors for all words in the sentence,
and a fully connected layer maps the sentence vec-
tor to the classification label. CE-mixture, CE-
Superposition and Real-Embed are trained and
tested in a completely identical process.

For the construction of training, validation and
test data, they are readily available for SST
dataset, and for the other four datasets we ran-
domly split the whole data into 8:1:1 for training,
validation and test data respectively. The embed-
ding dimension is set to be 100. We use batch
training with batch size being 32 for SST and 16
for the other datasets. We adopt Adam as the opti-
mizer and use the default parameters for Adam in
Keras 3.

The experiments are implemented in Keras and
Tensorflow 4 under Python 3.6.4. The experiment
is run on a desktop with NVidia Quadro M4000
and 16GB RAM.

5 Results and Discussion

In this study, we seek to answer the following two
research questions:

RQ1. Do the proposed quantum-inspired complex
embedding models outperform state-of-the
art non-quantum approaches?

RQ2. Out of the two proposed model in this study,
which one performs better?

Table 2 presents the classification accuracy val-
ues of all models experimented in this paper,
where the bold values indicate the best-performing
models for each dataset. It can be clearly seen
from the table that CE-Mix is the best-performing
model, because it occupies the highest accuracy
value on 4 out of 5 benchmarking datasets, and
on the remaining dataset it performs only slightly
worse than the best-performed model.

In order to make the results more convincing,
we also conduct two-tailed p-tests on the perfor-
mances. The hypotheses are:

H0. There is no difference between two groups
of performances on a particular dataset.

3https://keras.io/
4https://www.tensorflow.org/

H1. There is a difference between two groups of
performances on a particular dataset.

We use the threshold 0.05 to accept or reject
the null hypothesis: when the obtained p-value <
0.05, the null hypothesis is rejected; when p-value
>0.05, the null hypothesis is accepted.

Regarding RQ1, it can be observed that CE-Sup
and CE-Mix achieves consistently higher or com-
parable accuracy than non-quantum models under
experiment. It illustrates the superiority of com-
plex embedding network over traditional language
model (Unigram-TFIDF) (p-value < 0.05 on all
datasets, rejecting the null hypothesis, and so
forth), unsupervised embeddings trained from ex-
ternal corpus (word2vec, fastText) (p-value< 0.05
on all datasets except MPQA), as well as super-
vised embedding methods (CaptionRep, DictRep
and Paragram-Phrase) (p-value< on all datasets
except MPQA). The fair comparison with real em-
bedding network (p-value < 0.05 on all datasets)
confirms the superiority of complex embedding
over real embedding techniques.

Regarding RQ2, out of the two complex em-
bedding models proposed in this study, CE-Mix
performs consistently but insignificantly (p-value
> 0.05) better than CE-Sup in all datasets. Even
though it is yet a fully convincing evidence, this
result provides us with some intuition that it seems
better to model a sentence as a classical mixture of
word projectors rather than as a superposition state
of latent concepts. For future work we will evalu-
ate the performances of these two models on other
datasets as well as other tasks to reach a more solid
conclusion.

6 Conclusion and Future Work

This paper attempts to address the challenge of
representing the combinatory meaning of words
for word embedding. The successful applica-
tions of quantum-based models in IR tasks in-
spires us to construct Hilbert Space representation
of words and sentences, and explore to build two
quantum models for solving sentence classifica-
tion task. The experimental result on five bench-
marking datasets demonstrates their effectiveness.

This work contributes to the fields of both word
embeddings and quantum-inspired IR. On the one
hand, our work can be interpreted as an improved
embedding approach, which tackles the challenge

55

Table 2: Experimental Results in percentage(%). The best performed value for each dataset is in bold.

Model CR MPQA MR SST SUBJ
Unigram-TFIDF 79.2 82.4 73.7 - 90.3
word2vec BOW 79.8 88.3 77.7 79.7 90.9
fastText BOW 78.9 87.4 76.5 78.8 91.6

CaptionRep BOW 69.3 70.8 61.9 - 77.4
DictRep BOW 78.7 87.2 76.7 - 90.7

Paragram-Phrase - - - 79.7 -
Real-Embed 77.5 84.7 77.0 80.0 92.0

CE-Sup 80.0 85.7 78.4 82.6 92.6
CE-Mix 81.1 86.6 79.8 83.3 92.8

of capturing the emergent meaning of a combi-
nation of words. On the other hand, this can be
viewed as a pioneering study on quantum-inspired
language models with complex numbers, and also
an trial effort to adopt the theoretical QWeb frame-
work onto an application context.

For future work, it is necessary to conduct a
more comprehensive evaluation of the proposed
models, either by evaluating on more datasets or
by evaluating the qualities of the trained complex
embeddings. We are also looking forward to seek
additional ways to model a sentence based on the
word states, and the application of the models onto
other NLP tasks.

ACKNOWLEDGEMENT

This work is supported by the Quantum Access
and Retrieval Theory (QUARTZ) project, which
has received funding from the European Union’s
Horizon 2020 research and innovation programme
under the Marie Skodowska-Curie grant agree-
ment No. 721321.

References
Diederik Aerts, Jonito Aerts Arguelles, Lester Beltran,

Lyneth Beltran, Isaac Distrito, Massimiliano Sas-
soli de Bianchi, Sandro Sozzo, and Tomas Veloz.
2017. Towards a Quantum World Wide Web.
arXiv:1703.06642 [quant-ph] ArXiv: 1703.06642.
http://arxiv.org/abs/1703.06642.

John Wieting Mohit Bansal and Kevin Gimpel Karen
Livescu. 2016. TOWARDS UNIVERSAL PARA-
PHRASTIC SENTENCE EMBEDDINGS page 19.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. J. Mach. Learn. Res. 3:1137–1155.
http://dl.acm.org/citation.cfm?id=944919.944966.

Max Born. 1926. Zur Quantenmechanik der Sto\s
svorgnge. Zeitschrift fr Physik 37(12):863–867.
https://doi.org/10.1007/BF01397477.

Alexis Conneau, Douwe Kiela, Holger Schwenk,
Loı̈c Barrault, and Antoine Bordes. 2017. Su-
pervised learning of universal sentence represen-
tations from natural language inference data. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics, pages 670–680.
http://aclweb.org/anthology/D17-1070.

Felix Hill, Kyunghyun Cho, and Anna Korhonen.
2016a. Learning distributed representations of sen-
tences from unlabelled data. CoRR abs/1602.03483.
http://arxiv.org/abs/1602.03483.

Felix Hill, Kyunghyun Cho, and Anna Korhonen.
2016b. Learning Distributed Representations
of Sentences from Unlabelled Data. In Pro-
ceedings of the 2016 Conference of the North
American Chapter of the Association for Com-
putational Linguistics: Human Language Tech-
nologies. Association for Computational Linguis-
tics, San Diego, California, pages 1367–1377.
http://www.aclweb.org/anthology/N16-1162.

Felix Hill, KyungHyun Cho, Anna Korho-
nen, and Yoshua Bengio. 2016c. Learning
to Understand Phrases by Embedding the
Dictionary. Transactions of the Associa-
tion for Computational Linguistics 4:17–30.
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/
article/view/711.

Yuexian Hou, Xiaozhao Zhao, Dawei Song, and Wen-
jie Li. 2013. Mining Pure High-order Word Asso-
ciations via Information Geometry for Information
Retrieval. ACM Trans. Inf. Syst. 31(3):12:1–12:32.
https://doi.org/10.1145/2493175.2493177.

Minqing Hu and Bing Liu. 2014. Mining and Summa-
rizing Customer Reviews page 10.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S. Zemel, Antonio Torralba, Raquel
Urtasun, and Sanja Fidler. 2015. Skip-thought

56

vectors. In Proceedings of the 28th Inter-
national Conference on Neural Information
Processing Systems - Volume 2. MIT Press, Cam-
bridge, MA, USA, NIPS’15, pages 3294–3302.
http://dl.acm.org/citation.cfm?id=2969442.2969607.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg
Corrado, and Jeffrey Dean. 2013. Distributed
representations of words and phrases and their
compositionality. In Proceedings of the 26th
International Conference on Neural Information
Processing Systems - Volume 2. Curran As-
sociates Inc., USA, NIPS’13, pages 3111–3119.
http://dl.acm.org/citation.cfm?id=2999792.2999959.

Michael A. Nielsen and Isaac L. Chuang. 2011. Quan-
tum Computation and Quantum Information: 10th
Anniversary Edition. Cambridge University Press,
New York, NY, USA, 10th edition.

Bo Pang and Lillian Lee. 2005. Seeing stars: ex-
ploiting class relationships for sentiment catego-
rization with respect to rating scales. Associa-
tion for Computational Linguistics, pages 115–124.
https://doi.org/10.3115/1219840.1219855.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP. volume 14, pages 1532–
1543.

Alessandro Sordoni, Jian-Yun Nie, and Yoshua Bengio.
2013. Modeling Term Dependencies with Quantum
Language Models for IR. In Proceedings of the 36th
International ACM SIGIR Conference on Research
and Development in Information Retrieval. ACM,
New York, NY, USA, SIGIR ’13, pages 653–662.
https://doi.org/10.1145/2484028.2484098.

Cornelis Joost Van Rijsbergen. 2004. The geometry of
information retrieval. Cambridge University Press.

Benyou Wang, Peng Zhang, Jingfei Li, Dawei Song,
Yuexian Hou, and Zhenguo Shang. 2016. Explo-
ration of quantum interference in document rele-
vance judgement discrepancy. Entropy 18(4):144.

Janyce Wiebe, Theresa Wilson, and Claire Cardie.
2005. Annotating Expressions of Opinions
and Emotions in Language. Language Re-
sources and Evaluation 39(2-3):165–210.
https://doi.org/10.1007/s10579-005-7880-9.

Mengjiao Xie, Yuexian Hou, Peng Zhang, Jingfei Li,
Wenjie Li, and Dawei Song. 2015. Modeling Quan-
tum Entanglements in Quantum Language Models.
In Proceedings of the 24th International Conference
on Artificial Intelligence. AAAI Press, Buenos
Aires, Argentina, IJCAI’15, pages 1362–1368.
http://dl.acm.org/citation.cfm?id=2832415.2832439.

Peng Zhang, Jiabin Niu, Zhan Su, Benyou Wang,
Liqun Ma, and Dawei Song. 2018. End-to-End
Quantum-like Language Models with Application to
Question Answering .

57

Proceedings of the 3rd Workshop on Representation Learning for NLP, pages 58–63
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

Natural Language Inference with Definition Embedding
Considering Context On the Fly

Kosuke Nishida, Kyosuke Nishida, Hisako Asano, Junji Tomita
NTT Media Intelligence Laboratories, NTT Corporation

1-1 Hikarinooka Yokosuka, Kanagawa, Japan
nishida.kosuke@lab.ntt.co.jp

Abstract

Natural language inference (NLI) is one
of the most important tasks in NLP. In
this study, we propose a novel method us-
ing word dictionaries, which are pairs of a
word and its definition, as external knowl-
edge. Our neural definition embedding
mechanism encodes input sentences with
the definitions of each word of the sen-
tences on the fly. It can encode definitions
of words considering the context of the in-
put sentences by using an attention mech-
anism. We evaluated our method using
WordNet as a dictionary and confirmed
that it performed better than baseline mod-
els when using the full or a subset of 100d
GloVe as word embeddings.

1 Introduction

Recognition of the entailment relationship be-
tween two sentences is one of the most impor-
tant tasks in the field of natural language process-
ing. An understanding of entailment relationships
among sentences is useful for performing tasks
such as question answering, information retrieval,
and summarization.

The task of recognizing the entailment relation-
ship between two sentences is called recognizing
textual entailment (RTE) or natural language in-
ference (NLI). NLI has recently been getting more
attention from researchers, owing to the release of
large-scale corpora such as SNLI (Bowman et al.,
2015) and MNLI (Williams et al., 2018).

These corpora consist of pairs of sentences,
such as ‘A soccer game with multiple males
playing.’ and ‘Some men are playing a sport.’, and
ground-truth labels. Each label is a judgment of
whether the latter sentence, which is the premise,

is inferred from the former one, which is the hy-
pothesis. In this example, the label is ‘entailment’.

In this study, we propose a novel method that
uses word dictionaries as external knowledge.
Word dictionaries are useful for domain adapta-
tion, where we need to understand rare or novel
words in which we do not have good embedding
representations. For NLI, there is related work
that does use dictionaries (Bahdanau et al., 2017).
In it, a definition embedding method is proposed
that obtains representations of out-of-vocabulary
(OOV) words from dictionaries on the fly. In this
method, however, the description of a word is con-
verted into the same embedding anytime without
considering the context of the input sentences.

On the other hand, we consider that word repre-
sentation from dictionaries should reflect the con-
text of the input sentences. In the dictionary, we
can explain the meaning of a word from many as-
pects. However, the required information varies
depending on the context of the input sentences.
This problem also occurs for pre-trained word em-
beddings, which are usually fixed for all contexts
in the previous studies.

The proposed method can obtain different rep-
resentations of words according to the contexts
of the input sentences. It introduces an attention
mechanism that improves the encoded representa-
tions of each word in input sentences, by using the
encoded word definitions of each word in the input
sentences. Moreover, unlike Bahdanau’s method,
it obtains the representation of all words from dic-
tionaries on the fly in order to improve the repre-
sentations of non-OOV words.

2 Task Definition

We follow the task definition of SNLI (Bowman
et al., 2015) and MNLI (Williams et al., 2018). We
define a dictionary as follows.

58

Def. 1 (Dictionary). A dictionary D has the fol-
lowing components.

Headword y is an arbitrary token. Definition
Dy is represented as a token sequence that de-
fines the headword y. This study assumes that
each headword has only one definition. For a poly-
semic headword with multiple definitions, we use
the concatenation of the definitions. Vocabulary
VD is the set of all headwords in the dictionary.

3 Related Work

Bahdanau et al. (2017) proposed a method that en-
ables dictionary information to be used in NLP
tasks, such as NLI, reading comprehension, and
language modeling. Their method can obtain the
embeddings of OOV words efficiently, because
they obtain the definition embeddings for only
OOV words instead of the random embeddings of
the words. Our method is similar to theirs, but our
purpose is different; we refine word embeddings
considering the contexts of input sentences for all
words.

The definition embedding is also useful for
other tasks. Hill et al. (2016) used the defini-
tion embedding to understand the phrases. They
presented two applications: reverse dictionaries
and crossword question answering. They tack-
led these applications with phrase embeddings ob-
tained from their definitions. Long et al. (2016)
used the encoding of the word definition for the
initialization of TransE (Bordes et al., 2013),
which obtains the embedding of the relationship
between two entities.

There is related work that uses other external
resources for refining word representations. For
NLI, Chen et al. (2017a) proposed a model that
uses a knowledge graph to reflect word relation-
ships (e.g., synonymy, hypernymy). Their method
achieved state-of-the-art performance on SNLI;
however, it cannot handle the definition descrip-
tion of each word.

Moreover, there are general frameworks to re-
fine word embeddings by using external knowl-
edge. Weissenborn et al. (2017) proposed a
method that refines the word embedding by encod-
ing the text transformation of ConceptNet (Speer
and Havasi, 2012). McCann et al. (2017) pro-
posed context vectors (CoVe), which uses a RNN
encoder trained on machine translation datasets to
introduce context information to the word embed-
ding. Peters et al. (2018) proposed the Embed-

dings from Language Models (ELMo), which ob-
tains contextualized word representations. They
used the states of the middle layers in the deep lan-
guage model. These methods are also effective at
the NLI task.

4 Existing Methods

This section outlines the existing NLI models and
describes the conventional model that uses a dic-
tionary as external knowledge.

4.1 NLI model
In the architecture of a general NLI model (Bow-
man et al., 2015; Rocktäschel et al., 2016; Chen
et al., 2017b), the input of the model is a pair
of token sequences {Xs = (xs1, · · · , xsls) : s ∈
{P, H}}, where ls is the length of Xs. s ∈ {P, H}
means a premise or hypothesis.

We call the following two layers together the
Encoder.

Encoder Word Embedding Layer (WEL)
This layer takes Xs as input. Let e(y) ∈ Rne be
the embedding of token y. It outputs a vector se-
quence Es = (e(xs1), · · · , e(xsls)) ∈ Rne×ls .

Encoder Context Embedding Layer (CEL)
This layer converts the vector sequence Es into
a contextualized vector sequence, Cs = f(Es) ∈
Rnc×ls . The most common approach is to use an
RNN as f .

The encoder outputs CP and CH for the
premise and hypothesis sentences, respectively.

Decoder The input of the decoder is a pair of
vector sequences {CP , CH}. The decoder outputs
the score vector of the classification labels.

4.2 Definition Embedding Mechanism
We summarize the definition embedding mecha-
nism (DEM) (Bahdanau et al., 2017) as it relates to
NLI. They proposed dictionary embedding mech-
anisms with many variations, such as mean pool-
ing or an RNN. We select one of their models with
an RNN, because we also use an RNN for the def-
inition embedding.

The DEM acts on each premise and hypothesis.
Its input is a token sequence Xs and the encoder
word embedding sequence Es. The output is E′s,
and E′s is passed to the encoder CEL instead of
Es. E′s is obtained by adding Es to the final state
of the RNN encoding of the definition. The sizes
of Es and E′s are each ne × ls.

59

5 Proposed Method

We propose a novel DEM considering the con-
texts of the input sentences. Our contributions are
threefold. First, we introduce an attention mecha-
nism. Second, we implement the mechanism after
the encoder. Third, we consider definition embed-
dings of words including non-OOV ones.

The input is a token sequence Xs together
with the encoder word and context embedding se-
quence Es and Cs, and the output is C ′s. C ′s is
passed to the decoder instead of Cs, where the
sizes of Cs and C ′s are each nc× ls. The proposed
mechanism has the following layers.

Definition Extracting Layer Let V s be the set
of target tokens of the definition embedding which
are in both the token sequence Xs and the vocab-
ulary of the dictionary VD. The definition Dy of
token y ∈ V s is obtained from the dictionary D.
Let my be the length of Dy. This layer outputs
a set of target tokens V s and a set of definitions
{Dy : y ∈ V s}.

Definition WEL This layer has the same pa-
rameters as the encoder WEL. For each ele-
ment of Dy, it outputs a vector sequence Ey =
(e(dy1), · · · , e(dymy)) ∈ Rne×my .

Definition CEL This layer has the same model
as the encoder CEL. Parameters are not shared
with the encoder CEL. It converts the vector se-
quence Ey into the output of this layer Cy =
f(Ey) ∈ Rnc×my .

Definition Attention Layer This layer obtains a
fixed-length vector representation of definitionDy

with an attention mechanism. It takes the outputs
of the previous layersEy,Cy,Cs, andC s̄ as input,
where s̄ ∈ {P, H} indicates that either the premise
or hypothesis is different from s.

For Cy ∈ Rnc×my , Cs ∈ Rnc×ls , we define an
attention matrixAy,s = 1√

nc
Cs>Cy, and an atten-

tion vector ay,s =
(

1
ls

∑
iA

y,s
ij

)
j=1,··· ,my

∈ Rmy .

The attention vector ay,s represents the extent that
each token in definition Dy is related with the in-
put sentence Xs. The attended definition vector to
the input sentence Xs is

hy,s =
∑

i
softmaxi(ay,s)c

y
i ∈ Rnc ,

where cyi is the i-th state of the definition context
embedding Cy.

The last state of the definition context embed-
ding is cymy ∈ Rnc . The output of this layer is
a linear combination of the enhancements (Chen
et al., 2017b) of the attended definition vectors,

zy = [cymy
, hs,y,a, hs,y,a − cymy

, hs,y,a � cymy
,

hs̄,y,a, hs̄,y,a − cymy
, hs̄,y,a � cymy

]w,
(1)

where w ∈ R7 is a trainable parameter and � is
the element-wise product. nc is the size of zy.

Output Layer The output of the proposed
mechanism is expressed as

c′si =

{
csi + zx

s
i (xsi ∈ V s)

csi otherwise
. (2)

The decoder receives C ′s instead of Cs.
Algorithm 1 is the pseudo code of the definition

embedding mechanism.
The above explanation only covers the case of

NLI. However, the proposed method can be ap-
plied to any number of input sentences, because
Equation (1) can take an arbitrary number of ar-
guments. Therefore, it is applicable to other tasks
that have text inputs, such as question answering
and machine translation.

Algorithm 1 Definition Embedding
Input: Xs, Es, Cs, C s̄

Output: C ′s
1: V s, {Dy : y ∈ V s} ← Def. Ext.(Xs)
2: for all y in V s do
3: Ey ← Def. Word Emb.(Dy)
4: Cy ← Def. Context Emb.(Ey)
5: zy ← Def. Att.(Ey, Cy, Cs, C s̄)
6: end for
7: C ′s ← Output(Es, Cs, V s, {zy : y ∈ V s})

6 Experiments

This section describes the results of the evaluation
of the proposed method.

6.1 Experimental Setup
We chose ESIM (Chen et al., 2017b) and one of
the methods in Bahdanau et al. (2017) (BDN) as
the baseline models. ESIM is based on the model
in Section 4.1. BDN and our method each add
a DEM to ESIM. In BDN, the target tokens of
the definition embedding are not contained in the
pre-trained word embedding vocabulary, because

60

[a] SNLI, de = 100 [b] MNLI, de = 100 [c] SNLI, de = 300 [d] MNLI, de = 300

Figure 1: Classification accuracy of each model in the not-many-OOV setting. The vertical axis is accu-
racy, and the horizontal axis is the number of the vocabulary entries of the dictionary. The performance
of ESIM and BDN was constant because their dictionary size is less than 1000.

BDN intends to supplement the embeddings of
OOV words. However, in our method, the target
tokens do not depend on a pre-trained word em-
bedding vocabulary, because we intend to improve
the representation of all the words by considering
the context.

Our experiments were on the SNLI and MNLI
benchmarks. For MNLI, we used a matched do-
main development dataset as our development data
and a mismatched domain development dataset as
our test data. The tokenizer was spaCy (Honni-
bal and Montani, 2018). The word embeddings
were pre-trained 100d GloVe 6B vectors and 300d
GloVe 840B vectors (Jeffrey Pennington and Man-
ning, 2014). The embeddings were fixed during
training, because we were interested in the differ-
ence in representation between pre-trained embed-
dings with and without dictionary information.

We used the vocabulary and definitions in
WordNet (Miller, 1995) as dictionaries. For pol-
ysemic words with multiple definitions, we used
the top-5 definitions connected in descending or-
der of frequency of synsets, which are provided
by WordNet. The number of headwords that ap-
pear in SNLI is 24103, and 45225 in MNLI.

The other settings are described in Appendix A.

6.2 Results

Does the proposed method refine the OOV
word embedding? In order to investigate the ef-
fectiveness of our method against OOV words, we
restricted the vocabulary of the 100d GloVe em-
bedding to the most common 3000 words in each
dataset and considered the other words as OOV
(many-OOV setting). The word embeddings of the
OOV words were randomly initialized according
to a Gaussian distribution and fixed during train-
ing.

Table 1 shows the results. When there were
many OOV words, our method improved test ac-

SNLI MNLI
ESIM 82.5 69.8
BDN 83.7 69.7

Proposed 83.9 71.3

Table 1: Test accuracy in the many-OOV setting

curacy by 1.4% in SNLI and 1.5% in MNLI. In
contrast, BDN did not improve accuracy in MNLI.

Does the larger dictionary bring higher accu-
racy? We also evaluated our method with the
whole 100d GloVe embedding (not-many-OOV
setting). In this experiment, we used the whole
vocabulary of WordNet or restricted the WordNet
vocabulary to the 1000 and 10000 most common
words in the each dataset.

Figures 1a and 1b show the results when using
100d GloVe. We confirmed that the larger dictio-
nary raises accuracy. We think that the pre-trained
GloVe embeddings for the frequent words were
more appropriate than those for the rare words.
This means that our method was effective for
words that had relatively poor embeddings and oc-
cur sufficiently often in the training data.

We confirmed that the threefold originality of
our method contributed to the improvement in the
whole WordNet setting. The proposed method us-
ing the whole WordNet achieved the higher test
accuracy on each dataset. The improvement from
ESIM was 1.0% in SNLI and 0.8% in MNLI.
Moreover, our method without the definition at-
tention mechanism performed worse by 0.4% in
SNLI and 0.5% in MNLI in comparison with the
method with it. This implies that our definition
embedding layer plays an important role in the
definition embedding. In particular, the imple-
mentation of the attention mechanism after the en-
coder, which is essential to reflecting the context
of input sentences, contributes to a refined repre-
sentation.

BDN did not perform well. The number of

61

OOV words in SNLI (MNLI) is 415 (913); there-
fore, BDN could not sufficiently train the repre-
sentations of the words with the sentences in the
datasets.

Does the improvement depend on the quality of
the word embedding? Figures 1c and 1d show
the results when using 300d GloVe. In this setting,
our method provided no significant improvement.
It performed slightly better (worse) than ESIM in
SNLI (MNLI). BDN, as well, did not perform bet-
ter than ESIM. We think the 300d GloVe has suffi-
ciently correct embeddings for most of the words
in SNLI and MNLI, because it was created from a
much larger corpora (340 billion tokens) than that
of the 100d one (eight billion tokens).

To summarize the experimental results for the
first and third research questions, the effectiveness
of our method is dependent on the quality and cov-
erage of word embeddings. That is, our method is
effective for rare or novel words.

7 Conclusion

We proposed a novel definition embedding
method. The method considers the contexts of the
input sentences with an attention mechanism for
the definition embeddings. It considers the defi-
nition embeddings of words including non-OOV
words. Experimental results showed that it is ef-
fective for rare or novel words that do not have
good pre-trained word embeddings.

References

Dzmitry Bahdanau, Tom Bosc, Stanislaw Jastrzebski,
Edward Grefenstette, Pascal Vincent, and Yoshua
Bengio. 2017. Learning to compute word embed-
dings on the fly. arXiv preprint arXiv:1706.00286
.

Steven Bird, Ewan Klein, and Edward Loper.
2009. Natural Language Processing with Python.
O’Reilly Media, Inc.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In NIPS. pages 2787–2795.

Samuel R. Bowman, Gabor Angeli, Christopher
Potts, and Christopher D. Manning. 2015. A
large annotated corpus for learning natural lan-
guage inference. In EMNLP. pages 632–642.
https://doi.org/10.18653/v1/D15-1075.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Diana
Inkpen, and Si Wei. 2017a. Natural language in-
ference with external knowledge. arXiv preprint
arXiv:1711.04289 .

Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017b. Enhanced LSTM
for natural language inference. In ACL. pages 1657–
1668. https://doi.org/10.18653/v1/P17-1152.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In AISTATS. pages 249–256.

Felix Hill, Kyunghyun Cho, Anna Korhonen, and
Yoshua Bengio. 2016. Learning to understand
phrases by embedding the dictionary. Transactions
of ACL 4:17–30.

Matthew Honnibal and Ines Montani. 2018. spaCy 2:
Natural language understanding with bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear .

Richard Socher Jeffrey Pennington and Christopher D.
Manning. 2014. GloVe: Global vectors for word
representation. In EMNLP. pages 1532–1543.
https://doi.org/10.3115/v1/D14-1162.

Tao Lei and Yu Zhang. 2017. Training RNNs as fast as
CNNs. arXiv preprint arXiv:1709.02755 .

Teng Long, Ryan Lowe, Jackie Chi Kit Che-
ung, and Doina Precup. 2016. Leveraging
lexical resources for learning entity embed-
dings in multi-relational data. pages 112–117.
https://doi.org/10.18653/v1/P16-2019.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in translation: Con-
textualized word vectors. In NIPS.

George A. Miller. 1995. WordNet: A lexical
database for english. Commun. ACM 38(11):39–41.
https://doi.org/10.1145/219717.219748.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.
In NIPS Workshop Autodiff .

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In NAACL.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz
Hermann, Tomáš Kočiskỳ, and Phil Blunsom. 2016.
Reasoning about entailment with neural attention.
In ICLR.

Robert Speer and Catherine Havasi. 2012. Represent-
ing general relational knowledge in conceptnet 5. In
LREC. pages 3679–3686.

62

Dirk Weissenborn, Tomas Kocisky, and Chris Dyer.
2017. Dynamic integration of background knowl-
edge in neural NLU systems. arXiv preprint
arXiv:1706.02596 .

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2018. A broad-coverage challenge corpus
for sentence understanding through inference. In
NAACL.

Matthew D. Zeiler. 2012. ADADELTA: an adap-
tive learning rate method. arXiv preprint
arXiv:1212.5701 .

A Details of the Implementation

The section describes our implementation so that
our experiments can be reproduced.

We implemented our method in PyTorch
(Paszke et al., 2017) and trained it on one Nvidia
GeForce GTX 1080 GPU. The RNNs in the en-
coder, decoder, and definition embedding mecha-
nism were two-layer bi-directional simple recur-
rent units (SRUs) (Lei and Zhang, 2017). The size
of the output of the RNN was nc = 2ne. The acti-
vation function in the RNN was the tanh function.
Dropout with a keep ratio of 0.8 was applied to the
same layer as ESIM and the definition embedding
layer.

The parameters of the weights were initialized
using the Xavier normal initializer (Glorot and
Bengio, 2010), and the parameters of the biases
were initialized as zero vectors. Word embeddings
not contained in pre-trained GloVe were random-
ized according to a Gaussian distribution.

The mini-batch size was set to 16. The opti-
mizer was Adadelta (Zeiler, 2012) with an initial
learning rate of 0.075 and ρ of 0.9. Early stopping
with a patience of 7 was used to avoid overfitting.

We removed words whose definition length
was one and stop words in the Natural Language
Toolkit (Bird et al., 2009) from the vocabulary of
the dictionary.

63

Proceedings of the 3rd Workshop on Representation Learning for NLP, pages 64–68
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

Comparison of Representations of Named Entities for Multi-label
Document Classification with Convolutional Neural Networks

Lidia Pivovarova and Roman Yangarber
University of Helsinki, Finland

Department of Computer Science
first.last@cs.helsinki.fi

Abstract

We explore representations for multi-
token names in the context of the
Reuters topic and sector classification
tasks (RCV1). We find that: the best way
to treat names is to split them into tokens
and use each token as a separate feature;
NEs have more impact on sector classifica-
tion than on topic classification; replacing
all NEs with special entity-type tokens is
not an effective strategy; representing to-
kens by different embeddings for proper
names vs. common nouns does not im-
prove results. We highlight the improve-
ments over state-of-the-art results that our
CNN models yield.

1 Introduction

This paper addresses large-scale multi-class text
classification tasks: categorizing articles in the
Reuters news corpus (RCV1) according to topic
and to industry sectors. A topic is a broad news
category, e.g., “Economics,” “Sport,” “Health.”
A sector defines a narrower business area, e.g.,
“Banking,” “Telecommunications,” “Insurance.”

We use convolutional neural networks (CNNs),
which take word embeddings as input. Typically
word embeddings are built by treating a corpus as
a sequence of tokens, where named entities (NEs)
receive no special treatment. Yet NEs may be im-
portant features in some classification tasks: com-
panies, e.g., are often linked to particular industry
sectors, and certain industries are linked to loca-
tions. Thus company and location names may be
important features for sector classification.

RCV1 is much smaller than corpora typically
used to build word embeddings. Thus we utilize
external resources—a corpus of approximately 10
million business news articles, collected using the

PULS news monitoring system (Pivovarova et al.,
2013). While nominally RCV1 contains gen-
eral news, it is skewed toward business; many of
the topic labels are business-related (“Markets”,
“Commodities”, “Share Capital,” etc.). Thus, we
expect our business corpus to help in learning fea-
tures for the Reuters classification tasks.

We compare several NE representation to find
the most suitable name features for each task. We
use the PULS NER system (Grishman et al., 2003;
Huttunen et al., 2002a,b) to find NEs and their
types—company, location, person, etc. We com-
pare various representations of NEs, by building
embeddings, and training CNNs to find the best
representation. We also compare building embed-
dings on the RCV1 corpus vs. using much larger
external corpora.

2 Data and Prior Work

RCV1 (Lewis et al., 2004) is a corpus of about
800K Reuters articles from 1996–1997 with man-
ually assigned sector and topic labels. Both clas-
sifications are multi-label—each document may
have zero or more labels. While all documents
have topic labels, only 350K have sector labels.

While RCV1 appears frequently in published
research, few authors tackle the full-scale classi-
fication problem. Typically they use subsets of the
data: (Daniely et al., 2017; Duchi et al., 2011) use
only the four most general topic labels; (Dredze
et al., 2008) use 6 sector categories to explore bi-
nary classification, (Daniels and Metaxas, 2017)
use a subset of 6K articles. Even when the entire
dataset is used, the training-text split varies across
papers, because the “original” split (Lewis et al.,
2004) is impractical for most purposes: 23K in-
stances for training, and 780K for testing.

Another problem that complicates comparison
is the lack of consistency in evaluation metrics

64

A

US

appeals

Court

 revived

a

civil

suit

accusing

Apple

of

creating

a

monopoly

text representation
with word embeddings

first convolutional layer
with multiple filter widths

feature maps feature mapssecond convolutional layer
with multiple filter widths

max-pooling fully-connected layer
with dropout and sigmoid

output

Figure 1: Architecture of the convolutional neural networks

used to evaluate classifier performance. The most
common measures for multi-class classification
are macro- and micro-averaged F-measure, which
we use in this paper. However, others use other
metrics. For example, (Liu et al., 2017) use pre-
cision and cumulative gain at top K—measures
adopted from information retrieval. This is not
comparable with other work, because these met-
rics are used not only to report results, but also
to optimize the algorithms during training. The
notion of the best classifier differs depending on
which evaluation measure is used. Thus, although
RCV1 is frequently used, we find few papers di-
rectly comparable to our research, in the sense that
they use the entire RCV1 dataset and report micro-
and macro-averaged F-measure.

To the best of our knowledge, our previous
work (Du et al., 2015) was the only study of the
utility of NEs for RCV1 classification. We demon-
strated that using a combination of keyword-based
and NE-based classifiers works better than either
classifier alone. In that paper we applied a rule-
based approach for NEs, and did not use NEs as
features for machine learning.

3 Model

The architecture of our CNN is shown in Figure 1.
The inputs are fed into the network as zero-padded
text fragments of fixed size, with each word repre-
sented by a fixed-dimensional embedding vector.
The inputs are fed into a layer of convolutional fil-
ters with multiple widths, optionally followed by
deeper convolutional layers. The results of the last
convolutional layer are max-pooled, producing a

vector with one scalar per filter. This is fed into a
fully-connected layer with dropout regularization,
with one sigmoid node in the output layer for each
of the class labels. For each class label, a cross-
entropy loss is computed. Losses are averaged
across labels, and the gradient of the loss is back-
propagated to update the weights. This is similar
to the model (Kim, 2014) used for sentiment anal-
ysis. The key differences are that our model uses
an arbitrary number of convolutions, and that we
use sigmoid rather than softmax on output, since
the labels are not mutually exclusive.

To train the model we used a random split: 80%
of the data used for training, 10% development
set, and 10% test set. The development set is used
to determine when to stop training, and to tune a
set of optimal thresholds {θi} for each label i—if
the output probability pi is higher than θi, the la-
bel is assigned to the instance, otherwise it is not.
To find the optimal threshold, we optimize the F-
measure for each label. The test set is used to ob-
tain the final, reported performance scores.

Our focus is this paper is data representation,
thus we defer the tuning of hyper-parameters for
future work. All experiments use the same net-
work structure: 3 convolution layers with filter
sizes {3,7,11}, {3,7,11}, and {3,11}, with 512,
256 and 256 filters of each size, respectively. The
runs differ only in the input embeddings they use.

4 Data Representation

We train the embeddings using GloVe (Pennington
et al., 2014). As features we use lower-cased lem-
mas of all words. The rationale for this is that our

65

corpora are relatively small, so the data are sparse
and not sufficient to build embeddings from sur-
face forms. We tune the embeddings while train-
ing the CNN, updating them at each iteration.

We explore several name representations, using
our NER system:
• type: each entity is represented by a spe-

cial token denoting its type—C-company, C-
person, C-location, etc, and C-name if the
type is not determined. The model learns one
embedding for each of these tokens.
• name: each name gets its own embedding;

multi-word names treated as a single token.
• split-name: multi-word names are split into

tokens, and each token has its own embed-
ding; the motivation is that some company
names may contain informative parts—e.g.,
Air Baltic, Delta Airlines—which may indi-
cate that these companies operate in the same
field; these name parts may be more useful
than the name as a whole.
• split-name+common: similar to the above,

but tokens inside names and in common con-
text are distinguished; the motivation is that
some words may be used in names with-
out any relation to the company’s line of
business—e.g., Apple, Blackberry—and their
usage inside names should not be mixed with
their usage as common nouns.

In the experiments, we build GloVe embeddings
from two corpora: RCV1 only, and RCV1 plus
our external corpus. For comparison, we also use
200-dimensional embeddings trained on a 6 bil-
lion general corpus (glove-6B), provided by the
GloVe project.0 This corresponds to our split-
name representation mode.

To illustrate the effect of the different token
representations, Table 1 shows ten words near-
est to the sample lemmas: apple and airline.
When name representation is used, the token
apple is ambiguous, its nearest neighbors are
both fruit words (pear) and computer words (ap-
ple computer). In type representation, the “com-
puter” meaning disappears, since all mentions of
Apple as company are represented by the special
token C-company. When using glove-6B, the fruit
meaning is absent, and all neighbors are computer-
related words. The token airline does not exhibit
such ambiguity, and all representations produce
similar nearest neighbors.

0https://nlp.stanford.edu/projects/glove/

apple
name type glove-6B

pear pear iphone
unpasteurized unpasteurized microsoft
juice juice intel
apple computer fruit macintosh
odwalla salmonella ipod
strawberry peach ibm
fruit taint ipad
macintosh orange software
meat crate google
pear board strawberry itunes

airline
name type glove-6B

carrier carrier airlines
flight flight airways
british airways passenger lufthansa
american airlines aircraft carrier
air france airport flights
passenger air flight
lufthansa pilot pilots
air route qantas
united airlines plane alitalia
aircraft aviation klm

split-name+common
apple apple NE airline airline NE

pear computer NE airlines NE malaysian NE
juice macintosh NE airways NE scandinavian NE
unpasteurized amelio NE carrier airlines NE
odwalla NE operating-system flight system NE
fruit compaq NE air NE pilots NE
anthrax microsoft NE passenger air NE
salmonella oracle NE lufthansa NE klm NE
rotten ibm NE pilot passengers NE
unpasteurised software aircraft jet NE
strawberry jobs NE route tajudin NE

Table 1: Nearest neighbors for sample words using
various word representations.

In the split-name+common representation
mode, each lemma may produce two vectors, one
for a common noun and one for a proper noun
(inside a name). As the table shows, apple as a
common noun has a clear “fruit” meaning; the one
company appearing among the neighbors is a juice
producer, Odwalla. The nearest neighbors for ap-
ple NE, in name context, include IT companies.
The tokens airline and airline NE have no clear
semantic distinction, with similar nearest neigh-
bors. In such cases there is no clear advantage in
using two embeddings rather than one.

We test all of the above name representations
experimentally, to determine which is more useful
in the document classification tasks.

5 Results and Discussion

Experimental results are presented in Tables 2
and 3. We compare our results with those found
in related work, described in Section 2, focusing
on micro- and macro-averaged F-measure—µ-F1
and M-F1, respectively. The experimental settings
differ in the various papers, which makes precise
comparison difficult. For example, several pre-
vious papers use the “standard split,” (proposed
in (Lewis et al., 2004)), which contains only 23K

66

Algorithm (prior) M-F1 µ-F1
SVM (Lewis et al., 2004) 29.7 51.3
SVM (Zhuang et al., 2005) 30.1 52.0
Naive Bayes (Puurula, 2012) — 70.5
Bloom Filters (Cisse et al., 2013) 47.8 72.4
SVM + NEs (Du et al., 2015) 57.7 63.8

RCV1 embeddings
CNN type 32.2 58.4
CNN name 61.0 80.2
CNN split-name 63.6 82.0
CNN split-name+common 44.3 68.3

RCV1 + external corpus
CNN type 47.7 72.6
CNN name 55.2 78.4
CNN split-name 60.7 80.3
CNN split-name+common 38.0 66.0
CNN split-name (Glove-6B) 55.7 78.4

Table 2: Sector classification results on RCV1.

training instances, which is not sufficient for learn-
ing word embeddings.

Compared to the reported state-of-the-art results
on Sector Classification (Table 2), our best model
yields a 10% gain in µ-F1, (Cisse et al., 2013), and
a 6% gain in M-F1 (Du et al., 2015). The best µ-F1
and M-F1 results are obtained by the same model.1

On Topic Classification (Table 3), our µ-F1 re-
sults show a modest improvement of 0.5% in F-
measure—or a 3.5% (averaged) error reduction—
over state of the art (Johnson and Zhang, 2015).2

As seen in Table 2, the best data representa-
tion for Sector Classification, is split-name, where
each token has the same embedding regardless
whether it is used in a proper-name or a common-
noun context. The worst performing name repre-
sentation is type, where names are mapped to spe-
cial “concepts” (C-company, C-person etc.), and
each concept has its own embedding. This in-
dicates the importance of the tokens inside the
named entities for Sector Classification, and sup-
ports the notion that company names mentioned in
text correlate with sector labels.

Results for Topic Classification are in Table 3.
The best data representation is again split-name,
though the difference between representations is
less pronounced than in the case of Sector Classi-
fication, and using type does not lead to a signif-
icant drop in model performance. This suggests
that proper names are less important for Topic

1In prior work, state of the art was achieved by different
models.

2Interestingly, the best result for M-F1 on Topics is still
in prior work: i.e., these prior models perform better on very
infrequent topics. This is to be explored in future work.

Algorithm (prior) M-F1 µ-F1
SVM (Lewis et al., 2004) 61.9 81.6
ANN (Nam et al., 2014) 69.2 85.3
CNN (Johnson and Zhang, 2015) 67.1 85.7

RCV1 embeddings
CNN type 65.5 85.5
CNN name 66.7 86.2
CNN split-name 66.5 86.2
CNN split-name+common 66.6 86.2

RCV1 + external corpus
CNN type 64.9 85.6
CNN name 66.4 86.2
CNN split-name 65.7 85.9
CNN split-name+common 65.6 85.8
CNN split-name (Glove-6B) 65.8 85.8

Table 3: Topic classification results on RCV1.

(event) classification, and supports the intuition
that entity names (e.g., companies) are less corre-
lated with the types of events in which the entities
participate in business news. However, there may
be correlations between industry sectors and top-
ics/events: e.g., mining or petroleum companies
rarely launch new products. This may explain why
the split-name representation appears to be better
for Topic Classification. One possible next step is
to build CNNs that jointly model Topics and Sec-
tors; we plan to explore this in future work.

Surprisingly, using external corpora did not im-
prove the models’ performance, as indicated by
both Sector and Topic results (Tables 2 and 3, re-
spectively). This may mean that the genre and the
time period of the news corpus are more relevant
for building embeddings than the size of the cor-
pora. However, other factors may contribute as
well, e.g., our hyper-parameter combination may
not be optimal for these embeddings. Neverthe-
less, the results follow the same pattern: the best
name representation is split-name and the differ-
ence between representations is more pronounced
for Sector than for Topic classification.

In conclusion, our contribution is two-fold. On
one classic large-scale classification task, sectors,
our proposed CNNs yield substantial improve-
ments over state-of-the-art; on topics—a modest
improvement in µ-F-measure. Further, to the best
of our knowledge, this is the first attempt at a sys-
tematic comparison of NE representation for text
classification. More effective ways of representing
NEs should be explored in future work, given their
importance for the classification tasks, as demon-
strated by the experiments we present in this paper.

67

References
Moustapha M. Cisse, Nicolas Usunier, Thierry Arti,

and Patrick Gallinari. 2013. Robust Bloom filters
for large multilabel classification tasks. In Advances
in Neural Information Processing Systems, pages
1851–1859.

Zachary Alan Daniels and Dimitris N Metaxas. 2017.
Addressing imbalance in multi-label classification
using structured hellinger forests. In AAAI, pages
1826–1832.

Amit Daniely, Nevena Lazic, Yoram Singer, and Kunal
Talwar. 2017. Short and deep: Sketching and neural
networks.

Mark Dredze, Koby Crammer, and Fernando Pereira.
2008. Confidence-weighted linear classification. In
Proceedings of the 25th International Conference on
Machine Learning, ICML ’08, pages 264–271, New
York, NY, USA. ACM.

Mian Du, Matthew Pierce, Lidia Pivovarova, and Ro-
man Yangarber. 2015. Improving supervised clas-
sification using information extraction. In Interna-
tional Conference on Applications of Natural Lan-
guage to Information Systems, pages 3–18. Springer.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res.,
12:2121–2159.

Ralph Grishman, Silja Huttunen, and Roman Yangar-
ber. 2003. Information extraction for enhanced ac-
cess to disease outbreak reports. Journal of Biomed-
ical Informatics, 35(4):236–246.

Silja Huttunen, Roman Yangarber, and Ralph Grish-
man. 2002a. Complexity of event structure in IE
scenarios. In Proceedings of the 19th International
Conference on Computational Linguistics (COLING
2002), Taipei.

Silja Huttunen, Roman Yangarber, and Ralph Grish-
man. 2002b. Diversity of scenarios in information
extraction. In Proceedings of the Third International
Conference on Language Resources and Evaluation
(LREC 2002), Las Palmas de Gran Canaria, Spain.

Rie Johnson and Tong Zhang. 2015. Semi-supervised
convolutional neural networks for text categoriza-
tion via region embedding. In Advances in neural
information processing systems, pages 919–927.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

David D. Lewis, Yiming Yang, Tony G. Rose, and Fan
Li. 2004. RCV1: A new benchmark collection for
text categorization research. The Journal of Ma-
chine Learning Research, 5:361–397.

Jingzhou Liu, Wei-Cheng Chang, Yuexin Wu, and
Yiming Yang. 2017. Deep learning for extreme
multi-label text classification. In Proceedings of the
40th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
pages 115–124. ACM.

Jinseok Nam, Jungi Kim, Eneldo Loza Mencı́a, Iryna
Gurevych, and Johannes Fürnkranz. 2014. Large-
scale multi-label text classification—revisiting neu-
ral networks. In Joint european conference on
machine learning and knowledge discovery in
databases, pages 437–452. Springer.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Lidia Pivovarova, Silja Huttunen, and Roman Yangar-
ber. 2013. Event representation across genre. In
Proceedins of the 1st Workshop on Events: Defi-
nition, Detection, Coreference, and Representation,
NAACL HLT.

Antti Puurula. 2012. Scalable text classification with
sparse generative modeling. In Patricia Anthony,
Mitsuru Ishizuka, and Dickson Lukose, editors, PRI-
CAI 2012: Trends in Artificial Intelligence, volume
7458 of Lecture Notes in Computer Science, pages
458–469. Springer Berlin Heidelberg.

Dong Zhuang, Benyu Zhang, Qiang Yang, Jun Yan,
Zheng Chen, and Ying Chen. 2005. Efficient text
classification by weighted proximal SVM. In Fifth
IEEE International Conference on Data Mining.

68

Proceedings of the 3rd Workshop on Representation Learning for NLP, pages 69–78
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

Speeding up Context-based Sentence Representation Learning
with Non-autoregressive Convolutional Decoding

Shuai Tang1, Hailin Jin2, Chen Fang2, Zhaowen Wang2, Virginia R. de Sa1

1 Department of Cognitive Science, UC San Diego
2 Adobe Research

{shuaitang93,desa}@ucsd.edu, {hljin,cfang,zhawang}@adobe.com

Abstract

Context plays an important role in human
language understanding, thus it may also be
useful for machines learning vector repre-
sentations of language. In this paper, we ex-
plore an asymmetric encoder-decoder struc-
ture for unsupervised context-based sen-
tence representation learning. We carefully
designed experiments to show that neither
an autoregressive decoder nor an RNN de-
coder is required. After that, we designed
a model which still keeps an RNN as the
encoder, while using a non-autoregressive
convolutional decoder. We further com-
bine a suite of effective designs to signifi-
cantly improve model efficiency while also
achieving better performance. Our model
is trained on two different large unlabelled
corpora, and in both cases the transferabil-
ity is evaluated on a set of downstream NLP
tasks. We empirically show that our model
is simple and fast while producing rich sen-
tence representations that excel in down-
stream tasks.

1 Introduction

Learning distributed representations of sentences is
an important and hard topic in both the deep learn-
ing and natural language processing communities,
since it requires machines to encode a sentence
with rich language content into a fixed-dimension
vector filled with real numbers. Our goal is to build
a distributed sentence encoder learnt in an unsu-
pervised fashion by exploiting the structure and
relationships in a large unlabelled corpus.

Numerous studies in human language process-
ing have supported that rich semantics of a word or
sentence can be inferred from its context (Harris,
1954; Firth, 1957). The idea of learning from the

co-occurrence (Turney and Pantel, 2010) was re-
cently successfully applied to vector representation
learning for words in Mikolov et al. (2013) and
Pennington et al. (2014).

A very recent successful application of the distri-
butional hypothesis (Harris, 1954) at the sentence-
level is the skip-thoughts model (Kiros et al., 2015).
The skip-thoughts model learns to encode the cur-
rent sentence and decode the surrounding two sen-
tences instead of the input sentence itself, which
achieves overall good performance on all tested
downstream NLP tasks that cover various topics.
The major issue is that the training takes too long
since there are two RNN decoders to reconstruct
the previous sentence and the next one indepen-
dently. Intuitively, given the current sentence, in-
ferring the previous sentence and inferring the next
one should be different, which supports the usage
of two independent decoders in the skip-thoughts
model. However, Tang et al. (2017) proposed the
skip-thought neighbour model, which only decodes
the next sentence based on the current one, and
has similar performance on downstream tasks com-
pared to that of their implementation of the skip-
thoughts model.

In the encoder-decoder models for learning sen-
tence representations, only the encoder will be used
to map sentences to vectors after training, which
implies that the quality of the generated language
is not our main concern. This leads to our two-
step experiment to check the necessity of apply-
ing an autoregressive model as the decoder. In
other words, since the decoder’s performance on
language modelling is not our main concern, it is
preferred to reduce the complexity of the decoder
to speed up the training process. In our experi-
ments, the first step is to check whether “teacher-
forcing” is required during training if we stick to
using an autoregressive model as the decoder, and
the second step is to check whether an autoregres-

69

sive decoder is necessary to learn a good sentence
encoder. Briefly, the experimental results show that
an autoregressive decoder is indeed not essential
in learning a good sentence encoder; thus the two
findings of our experiments lead to our final model
design.

Our proposed model has an asymmetric encoder-
decoder structure, which keeps an RNN as the en-
coder and has a CNN as the decoder, and the model
explores using only the subsequent context infor-
mation as the supervision. The asymmetry in both
model architecture and training pair reduces a large
amount of the training time.

The contribution of our work is summarised as:

1. We design experiments to show that an au-
toregressive decoder or an RNN decoder is
not necessary in the encoder-decoder type of
models for learning sentence representations,
and based on our results, we present two find-
ings. Finding I: It is not necessary to input
the correct words into an autoregressive de-
coder for learning sentence representations.
Finding II: The model with an autoregressive
decoder performs similarly to the model with
a predict-all-words decoder.

2. The two findings above lead to our final model
design, which keeps an RNN encoder while
using a CNN decoder and learns to encode the
current sentence and decode the subsequent
contiguous words all at once.

3. With a suite of techniques, our model per-
forms decently on the downstream tasks, and
can be trained efficiently on a large unlabelled
corpus.

The following sections will introduce the com-
ponents in our “RNN-CNN” model, and discuss
our experimental design.

2 RNN-CNN Model

Our model is highly asymmetric in terms of both
the training pairs and the model structure. Specifi-
cally, our model has an RNN as the encoder, and a
CNN as the decoder. During training, the encoder
takes the i-th sentence Si as the input, and then pro-
duces a fixed-dimension vector zi as the sentence
representation; the decoder is applied to reconstruct
the paired target sequence Ti that contains the sub-
sequent contiguous words. The distance between

the generated sequence and the target one is mea-
sured by the cross-entropy loss at each position in
Ti. An illustration is in Figure 1. (For simplicity,
we omit the subscript i in this section.)

1. Encoder: The encoder is a bi-directional
Gated Recurrent Unit (GRU, Chung et al. (2014))1.
Suppose that an input sentence S contains M
words, which are {w1

s , w
2
s , ..., w

M
s }, and they are

transformed by an embedding matrix E ∈ Rde×|V |
to word vectors2. The bi-directional GRU takes one
word vector at a time, and processes the input sen-
tence in both the forward and backward directions;
both sets of hidden states are concatenated to form
the hidden state matrix H = [h1,h2, ...,hM] ∈
Rdh×M , where dh is the dimension of the hidden
states hm =

[←−
hm;
−→
hm
]

(∀m ∈ {1, 2, ...,M}).
2. Representation: We aim to provide a model

with faster training speed and better transferability
than existing algorithms; thus we choose to apply
a parameter-free composition function, which is a
concatenation of the outputs from a global mean
pooling over time and a global max pooling over
time, on the computed sequence of hidden states
H. The composition function is represented as

z =

[
1

M

M∑

m=1

hm;MaxPool(H)

]
(1)

where MaxPool is the max operation on each
row of the matrix H, which outputs a vector with
dimension dh. Thus the representation z ∈ R2dh .

3. Decoder: The decoder is a 3-layer CNN
to reconstruct the paired target sequence T , which
needs to expand z, which can be considered as
a sequence with only one element, to a sequence
with T elements. Intuitively, the decoder could be
a stack of deconvolution layers. For fast training
speed, we optimised the architecture to make it pos-
sible to use fully-connected layers and convolution
layers in the decoder, since generally, convolution
layers run faster than deconvolution layers in mod-
ern deep learning frameworks.

Suppose that the target sequence T hasN words,
which are {w1

t , w
2
t , ..., w

N
t }, the first layer of de-

convolution will expand z ∈ R2dh×1, into a feature
1We experimented with both Long-short Term Memory

(LSTM, Hochreiter and Schmidhuber (1997)) and GRU. Since
LSTM didn’t give us significant performance boost, and gen-
erally GRU runs faster than LSTM, in our experiments, we
stick to using GRU in the encoder.

2V is the vocabulary, and |V | is the number of unique
words in the vocabulary. de is the dimension of each word
vector.

70

Figure 1: Our proposed model is composed of an RNN encoder, and a CNN decoder. During training, a
batch of sentences are sent to the model, and the RNN encoder computes a vector representation for each
of sentences; then the CNN decoder needs to reconstruct the paired target sequence, which contains 30
contiguous words right after the input sentence, given the vector representation. 300 is the dimension of
word vectors. 2dh is the dimension of the sentence representation which varies with the RNN encoder
size. (Better view in colour.)

map withN elements. It can be easily implemented
as a concatenation of outputs from N linear trans-
formations in parallel. Then the second and third
layer are 1D-convolution layers. The output feature
map is U = [u1,u2, ...,uN] ∈ Rde×N , where de
is the dimension of the word vectors.

Note that our decoder is not an autoregressive
model and has high training efficiency. We will
discuss the reason for choosing this decoder which
we call a predict-all-words CNN decoder.

4. Objective: The training objective is to max-
imise the likelihood of the target sequence being
generated from the decoder. Since in our model,
each word is predicted independently, a softmax
layer is applied after the decoder to produce a prob-
ability distribution over words in V at each position,
thus the probability of generating a word wnt in the
target sequence is defined as:

P (wnt) =
eE(wn

t)
>un

∑
w∈V e

E(w)>un , (2)

where, E(w) is the vector representation of w in
the embedding matrix E, and E(w)>un is the dot-
product between the word vector and the feature
vector produced by the decoder at position n . The
training objective is to minimise the sum of the
negative log-likelihood over all positions in the
target sequence T :

L(φ,θ) = − logP (T |S;φ,θ)

= −
N∑

n=1

logP (wnt |w1
s , w

2
s , ..., w

M
s ;φ,θ), (3)

where φ and θ contain the parameters in the en-
coder and the decoder, respectively. The training
objective L(φ,θ) is summed over all sentences in
the training corpus.

3 Architecture Design

We use an encoder-decoder model and use con-
text for learning sentence representations in an un-
supervised fashion. Since the decoder won’t be
used after training, and the quality of the generated
sequences is not our main focus, it is important
to study the design of the decoder. Generally, a
fast training algorithm is preferred; thus proposing
a new decoder with high training efficiency and
also strong transferability is crucial for an encoder-
decoder model.

3.1 CNN as the decoder
Our design of the decoder is basically a 3-layer
ConvNet that predicts all words in the target se-
quence at once. In contrast, existing work, such as
skip-thoughts (Kiros et al., 2015), and CNN-LSTM
(Gan et al., 2017), use autoregressive RNNs as the
decoders. As known, an autoregressive model is
good at generating sequences with high quality,
such as language and speech. However, an autore-
gressive decoder seems to be unnecessary in an
encoder-decoder model for learning sentence repre-
sentations, since it won’t be used after training, and
it takes up a large portion of the training time to
compute the output and the gradient. Therefore, we
conducted experiments to test the necessity of us-
ing an autoregressive decoder in learning sentence
representations, and we had two findings.

71

Decoder SICK-R SICK-E STS14 MSRP (Acc/F1) SST TREC

auto-regressive RNN as decoder
Teacher-Forcing 0.8530 82.6 0.51/0.50 74.1 / 81.7 82.5 88.2

Always Sampling 0.8576 83.2 0.55/0.53 74.7 / 81.3 80.6 87.0
Uniform Sampling 0.8559 82.9 0.54/0.53 74.0 / 81.8 81.0 87.4

auto-regressive CNN as decoder
Teacher-Forcing 0.8510 82.8 0.49/0.48 74.7 / 82.8 81.4 82.6

Always Sampling 0.8535 83.3 0.53/0.52 75.0 / 81.7 81.4 87.6
Uniform Sampling 0.8568 83.4 0.56/0.54 74.7 / 81.4 83.0 88.4

predict-all-words RNN as decoder
RNN 0.8508 82.8 0.58/0.55 74.2 / 82.8 81.6 88.8

predict-all-words CNN as decoder
CNN 0.8530 82.6 0.58/0.56 75.6 / 82.9 82.8 89.2

CNN-MaxOnly 0.8465 82.6 0.50/0.47 73.3 / 81.5 79.1 82.2
Double-sized RNN Encoder

CNN 0.8631 83.9 0.58/0.55 74.7 / 83.1 83.4 90.2
CNN-MaxOnly 0.8485 83.2 0.47/0.44 72.9 / 80.8 82.2 86.6

Table 1: The models here all have a bi-directional GRU as the encoder (dimensionality 300 in each
direction). The default way of producing the representation is a concatenation of outputs from a global
mean-pooling and a global max-pooling, while “·-MaxOnly” refers to the model with only global max-
pooling. Bold numbers are the best results among all presented models. We found that 1) inputting correct
words to an autoregressive decoder is not necessary; 2) predict-all-words decoders work roughly the same
as autoregressive decoders; 3) mean+max pooling provides stronger transferability than the max-pooling
alone does. The table supports our choice of the predict-all-words CNN decoder and the way of producing
vector representations from the bi-directional RNN encoder.

Finding I: It is not necessary to input the cor-
rect words into an autoregressive decoder for
learning sentence representations.

The experimental design was inspired by Bengio
et al. (2015). The model we designed for the ex-
periment has a bi-directional GRU as the encoder,
and an autoregressive decoder, including both RNN
and CNN. We started by analysing the effect of dif-
ferent sampling strategies of the input words on
learning an auto-regressive decoder.

We compared three sampling strategies of in-
put words in decoding the target sequence with an
autoregressive decoder: (1) Teacher-Forcing: the
decoder always gets the ground-truth words; (2)
Always Sampling: at time step t, a word is sam-
pled from the multinomial distribution predicted at
time step t− 1; (3) Uniform Sampling: a word is
uniformly sampled from the dictionary V , then fed
to the decoder at every time step.

The results are presented in Table 1 (top two sub-
parts). As we can see, the three decoding settings
do not differ significantly in terms of the perfor-
mance on selected downstream tasks, with RNN
or CNN as the decoder. The results show that, in
terms of learning good sentence representations,

the autoregressive decoder doesn’t require the cor-
rect ground-truth words as the inputs.

Finding II: The model with an autoregressive
decoder performs similarly to the model with a
predict-all-words decoder.

With Finding I, we conducted an experiment
to test whether the model needs an autoregressive
decoder at all. In this experiment, the goal is to
compare the performance of the predict-all-words
decoders and that of the autoregressive decoders
separate from the RNN/CNN distinction, thus we
designed a predict-all-words CNN decoder and
RNN decoder. The predict-all-words CNN decoder
is described in Section 2, which is a stack of three
convolutional layers, and all words are predicted
once at the output layer of the decoder. The predict-
all-words RNN decoder is built based on our CNN
decoder. To keep the number of parameters of the
two predict-all-words decoder roughly the same,
we replaced the last two convolutional layers with
a bidirectional GRU.

The results are also presented in Table 1 (3rd and
4th subparts). The performance of the predict-all-
words RNN decoder does not significantly differ
from that of any one of the autoregressive RNN de-

72

coders, and the same situation can be also observed
in CNN decoders.

These two findings indeed support our choice of
using a predict-all-words CNN as the decoder, as
it brings the model high training efficiency while
maintaining strong transferability.

3.2 Mean+Max Pooling
Since the encoder is a bi-directional RNN in our
model, we have multiple ways to select/compute on
the generated hidden states to produce a sentence
representation. Instead of using the last hidden
state as the sentence representation as done in skip-
thoughts (Kiros et al., 2015) and SDAE (Hill et al.,
2016), we followed the idea proposed in Chen et al.
(2016). They built a model for supervised training
on the SNLI dataset (Bowman et al., 2015) that
concatenates the outputs from a global mean pool-
ing over time and a global max pooling over time
to serve as the sentence representation, and showed
a performance boost on the SNLI task. Conneau
et al. (2017) found that the model with global max
pooling function provides stronger transferability
than the model with a global mean pooling function
does.

In our proposed RNN-CNN model, we empir-
ically show that the mean+max pooling provides
stronger transferability than the max pooling alone
does, and the results are presented in the last two
sections of Table 1. The concatenation of a mean-
pooling and a max pooling function is actually
a parameter-free composition function, and the
computation load is negligible compared to all the
heavy matrix multiplications in the model. Also,
the non-linearity of the max pooling function aug-
ments the mean pooling function for constructing a
representation that captures a more complex com-
position of the syntactic information.

3.3 Tying Word Embeddings and Word
Prediction Layer

We choose to share the parameters in the word em-
bedding layer of the RNN encoder and the word
prediction layer of the CNN decoder. Tying was
shown in both Inan et al. (2016) and Press and Wolf
(2017), and it generally helped to learn a better lan-
guage model. In our model, tying also drastically
reduces the number of parameters, which could
potentially prevent overfitting.

Furthermore, we initialise the word embeddings
with pretrained word vectors, such as word2vec
(Mikolov et al., 2013) and GloVe (Pennington et al.,

2014), since it has been shown that these pretrained
word vectors can serve as a good initialisation for
deep learning models, and more likely lead to better
results than a random initialisation.

3.4 Study of the Hyperparameters in Our
Model Design

We studied hyperparameters in our model design
based on three out of 10 downstream tasks, which
are SICK-R, SICK-E (Marelli et al., 2014), and
STS14 (Agirre et al., 2014). The first model we
created, which is reported in Section 2, is a decent
design, and the following variations didn’t give us
much performance change except improvements
brought by increasing the dimensionality of the en-
coder. However, we think it is worth mentioning
the effect of hyperparameters in our model design.
We present the Table 1 in the supplementary mate-
rial and we summarise it as follows:
1. Decoding the next sentence performed similarly
to decoding the subsequent contiguous words.
2. Decoding the subsequent 30 words, which was
adopted from the skip-thought training code3, gave
reasonably good performance. More words for
decoding didn’t give us a significant performance
gain, and took longer to train.
3. Adding more layers into the decoder and en-
larging the dimension of the convolutional layers
indeed sightly improved the performance on the
three downstream tasks, but as training efficiency
is one of our main concerns, it wasn’t worth sacri-
ficing training efficiency for the minor performance
gain.
4. Increasing the dimensionality of the RNN en-
coder improved the model performance, and the ad-
ditional training time required was less than needed
for increasing the complexity in the CNN decoder.
We report results from both smallest and largest
models in Table 2.

4 Experiment Settings

The vocabulary for unsupervised training contains
the 20k most frequent words in BookCorpus. In
order to generalise the model trained with a rela-
tively small, fixed vocabulary to the much larger
set of all possible English words, we followed the
vocabulary expansion method proposed in Kiros
et al. (2015), which learns a linear mapping from
the pretrained word vectors to the learnt RNN word

3https://github.com/ryankiros/skip-thoughts/

73

Model Hrs SICK-R SICK-E STS14 MSRP TREC MR CR SUBJ MPQA SST
Measurement r Acc. r/ρ Acc./F1 Accuracy

Unsupervised training with unordered sentences
ParagraphVec 4 - - 0.42/0.43 72.9/81.1 59.4 60.2 66.9 76.3 70.7 -
word2vec BOW 2 0.8030 78.7 0.65/0.64 72.5/81.4 83.6 77.7 79.8 90.9 88.3 79.7
fastText BOW - 0.8000 77.9 0.63/0.62 72.4/81.2 81.8 76.5 78.9 91.6 87.4 78.8
SIF (GloVe+WR) - 0.8603 84.6 0.69/ - - / - - - - - - 82.2
GloVe BOW - 0.8000 78.6 0.54/0.56 72.1/80.9 83.6 78.7 78.5 91.6 87.6 79.8
SDAE 72 - - 0.37/0.38 73.7/80.7 78.4 74.6 78.0 90.8 86.9 -

Unsupervised training with ordered sentences - BookCorpus
FastSent 2 - - 0.63/0.64 72.2/80.3 76.8 70.8 78.4 88.7 80.6 -
FastSent+AE 2 - - 0.62/0.62 71.2/79.1 80.4 71.8 76.5 88.8 81.5 -
Skip-thoughts 336 0.8580 82.3 0.29/0.35 73.0/82.0 92.2 76.5 80.1 93.6 87.1 82.0
Skip-thought+LN 720 0.8580 79.5 0.44/0.45 - 88.4 79.4 83.1 93.7 89.3 82.9
combine CNN-LSTM - 0.8618 - - 76.5/83.8 92.6 77.8 82.1 93.6 89.4 -
small RNN-CNN† 20 0.8530 82.6 0.58/0.56 75.6/82.9 89.2 77.6 80.3 92.3 87.8 82.8
large RNN-CNN† 34 0.8698 85.2 0.59/0.57 75.1/83.2 92.2 79.7 81.9 94.0 88.7 84.1

Unsupervised training with ordered sentences - Amazon Book Review
small RNN-CNN† 21 0.8476 82.7 0.53/0.53 73.8/81.5 84.8 83.3 83.0 94.7 88.2 87.8
large RNN-CNN† 33 0.8616 84.3 0.51/0.51 75.7/82.8 90.8 85.3 86.8 95.3 89.0 88.3

Unsupervised training with ordered sentences - Amazon Review
BYTE m-LSTM 720 0.7920 - - 75.0/82.8 - 86.9 91.4 94.6 88.5 -

Supervised training - Transfer learning
DiscSent 8 - - - 75.0/ - 87.2 - - 93.0 - -
DisSent Books 8 - 0.8170 81.5 - -/ - 87.2 82.9 81.4 93.2 90.0 80.2
CaptionRep BOW 24 - - 0.46/0.42 - 72.2 61.9 69.3 77.4 70.8 -
DictRep BOW 24 - - 0.67/0.70 68.4/76.8 81.0 76.7 78.7 90.7 87.2 -
InferSent(SNLI) <24 0.8850 84.6 0.68/0.65 75.1/82.3 88.7 79.9 84.6 92.1 89.8 83.3
InferSent(AllNLI) <24 0.8840 86.3 0.70/0.67 76.2/83.1 88.2 81.1 86.3 92.4 90.2 84.6

Table 2: Related Work and Comparison. As presented, our designed asymmetric RNN-CNN model
has strong transferability, and is overall better than existing unsupervised models in terms of fast training
speed and good performance on evaluation tasks. “†”s refer to our models, and “small/large” refers to
the dimension of representation as 1200/4800. Bold numbers are the best ones among the models with
same training and transferring setting, and underlined numbers are best results among all transfer learning
models. The training time of each model was collected from the paper that proposed it.

vectors. Thus, the model benefits from the general-
isation ability of the pretrained word embeddings.

The downstream tasks for evaluation include se-
mantic relatedness (SICK, Marelli et al. (2014)),
paraphrase detection (MSRP, Dolan et al. (2004)),
question-type classification (TREC, Li and Roth
(2002)), and five benchmark sentiment and sub-
jective datasets, which include movie review sen-
timent (MR, Pang and Lee (2005), SST, Socher
et al. (2013)), customer product reviews (CR, Hu
and Liu (2004)), subjectivity/objectivity classifica-
tion (SUBJ, Pang and Lee (2004)), opinion polar-
ity (MPQA, Wiebe et al. (2005)), semantic textual
similarity (STS14, Agirre et al. (2014)), and SNLI
(Bowman et al., 2015). After unsupervised training,
the encoder is fixed, and applied as a representation

extractor on the 10 tasks.
To compare the effect of different corpora, we

also trained two models on Amazon Book Review
dataset (without ratings) which is the largest subset
of the Amazon Review dataset (McAuley et al.,
2015) with 142 million sentences, about twice as
large as BookCorpus.

Both training and evaluation of our models were
conducted in PyTorch4, and we used SentEval5

provided by Conneau et al. (2017) to evaluate the
transferability of our models. All the models were
trained for the same number of iterations with the
same batch size, and the performance was mea-
sured at the end of training for each of the models.

4http://pytorch.org/
5https://github.com/facebookresearch/SentEval

74

5 Related work and Comparison

Table 2 presents the results on 9 evaluation tasks
of our proposed RNN-CNN models, and related
work. The “small RNN-CNN” refers to the model
with the dimension of representation as 1200, and
the “large RNN-CNN” refers to that as 4800. The
results of our “large RNN-CNN” model on SNLI
is presented in Table 3.

Model SNLI (Acc %)

Unsupervised Transfer Learning
Skip-thoughts (Vendrov et al.) 81.5
large RNN-CNN BookCorpus 81.7
large RNN-CNN Amazon 81.5

Supervised Training
ESIM (Chen et al.) 86.7
DIIN (Gong et al.) 88.9

Table 3: We implemented the same classifier as
mentioned in Vendrov et al. (2015) on top of the
features computed by our model. Our proposed
RNN-CNN model gets similar result on SNLI as
skip-thoughts, but with much less training time.

Our work was inspired by analysing the skip-
thoughts model (Kiros et al., 2015). The skip-
thoughts model successfully applied this form of
learning from the context information into unsu-
pervised representation learning for sentences, and
then, Ba et al. (2016) augmented the LSTM with
proposed layer-normalisation (Skip-thought+LN),
which improved the skip-thoughts model gener-
ally on downstream tasks. In contrast, Hill et al.
(2016) proposed the FastSent model which only
learns source and target word embeddings and is
an adaptation of Skip-gram (Mikolov et al., 2013)
to sentence-level learning without word order in-
formation. Gan et al. (2017) applied a CNN as the
encoder, but still applied LSTMs for decoding the
adjacent sentences, which is called CNN-LSTM.

Our RNN-CNN model falls in the same cate-
gory as it is an encoder-decoder model. Instead of
decoding the surrounding two sentences as in skip-
thoughts, FastSent and the compositional CNN-
LSTM, our model only decodes the subsequent
sequence with a fixed length. Compared with the
hierarchical CNN-LSTM, our model showed that,
with a proper model design, the context information
from the subsequent words is sufficient for learn-
ing sentence representations. Particularly, our pro-
posed small RNN-CNN model runs roughly three

times faster than our implemented skip-thoughts
model6 on the same GPU machine during training.

Proposed by Radford et al. (2017), BYTE m-
LSTM model uses a multiplicative LSTM unit
(Krause et al., 2016) to learn a language model.
This model is simple, providing next-byte predic-
tion, but achieves good results likely due to the
extremely large training corpus (Amazon Review
data, McAuley et al. (2015)) that is also highly re-
lated to many of the sentiment analysis downstream
tasks (domain matching).

We experimented with the Amazon Book review
dataset, the largest subset of the Amazon Review.
This subset is significantly smaller than the full
Amazon Review dataset but twice as large as Book-
Corpus. Our RNN-CNN model trained on the Ama-
zon Book review dataset resulted in performance
improvement on all single-sentence classification
tasks relative to that achieved with training under
BookCorpus.

Unordered sentences are also useful for learn-
ing representations of sentences. ParagraphVec
(Le and Mikolov, 2014) learns a fixed-dimension
vector for each sentence by predicting the words
within the given sentence. However, after train-
ing, the representation for a new sentence is hard to
derive, since it requires optimising the sentence rep-
resentation towards an objective. SDAE (Hill et al.,
2016) learns the sentence representations with a de-
noising auto-encoder model. Our proposed RNN-
CNN model trains faster than SDAE does, and also
because we utilised the sentence-level continuity
as a supervision which SDAE doesn’t, our model
largely performs better than SDAE.

Another transfer approach is to learn a super-
vised discriminative classifier by distinguishing
whether the sentence pair or triple comes from the
same context. Li and Hovy (2014) proposed a
model that learns to classify whether the input sen-
tence triplet contains three contiguous sentences.
DiscSent (Jernite et al., 2017) and DisSent (Nie
et al., 2017) both utilise the annotated explicit dis-
course relations, which is also good for learning
sentence representations. It is a very promising
research direction since the proposed models are
generally computational efficient and have clear
intuition, yet more investigations need to be done
to augment the performance.

Supervised training for transfer learning is
6We reimplemented the skip-thoughts model in PyTorch,

and it took roughly four days to train for only one epoch on
BookCorpus.

75

also promising when a large amount of human-
annotated data is accessible. Conneau et al. (2017)
proposed the InferSent model, which applies
a bi-directional LSTM as the sentence encoder
with multiple fully-connected layers to classify
whether the hypothesis sentence entails the premise
sentence in SNLI (Bowman et al., 2015), and
MultiNLI (Williams et al., 2017). The trained
model demonstrates a very impressive transferabil-
ity on downstream tasks, including both supervised
and unsupervised. Our RNN-CNN model trained
on Amazon Book Review data in an unsupervised
way has better results on supervised tasks than
InferSent but slightly inferior results on seman-
tic relatedness tasks. We argue that labelling a
large amount of training data is time-consuming
and costly, while unsupervised learning provides
great performance at a fraction of the cost. It could
potentially be leveraged to initialise or more gener-
ally augment the costly human labelling, and make
the overall system less costly and more efficient.

6 Discussion

In Hill et al. (2016), internal consistency is mea-
sured on five single sentence classification tasks
(MR, CR, SUBJ, MPQA, TREC), MSRP and STS-
14, and was found to be only above the “acceptable”
threshold. They empirically showed that models
that worked well on supervised evaluation tasks
generally didn’t perform well on unsupervised ones.
This implies that we should consider supervised
and unsupervised evaluations separately, since each
group has higher internal consistency.

As presented in Table 2, the encoders that only
sum over pretrained word vectors perform better
overall than those with RNNs on unsupervised eval-
uation tasks, including STS14. In recent proposed
log-bilinear models, such as FastSent (Hill et al.,
2016) and SiameseBOW (Kenter et al., 2016), the
sentence representation is composed by summing
over all word representations, and the only tunable
parameters in the models are word vectors. These
resulting models perform very well on unsuper-
vised tasks. By augmenting the pretrained word
vectors with a weighted averaging process, and re-
moving the top few principal components, which
mainly encode frequently-used words, as proposed
in Arora et al. (2017) and Mu et al. (2018), the per-
formance on the unsupervised evaluation tasks gets
even better. Prior work suggests that incorporating
word-level information helps the model to perform

better on cosine distance based semantic textual
similarity tasks.

Our model predicts all words in the target se-
quence at once, without an autoregressive process,
and ties the word embedding layer in the encoder
with the prediction layer in the decoder, which ex-
plicitly uses the word vectors in the target sequence
as the supervision in training. Thus, our model
incorporates the word-level information by using
word vectors as the targets, and it improves the
model performance on STS14 compared to other
RNN-based encoders.

Arora et al. (2017) conducted an experiment to
show that the word order information is crucial in
getting better results on supervised tasks. In our
model, the encoder is still an RNN, which explicitly
utilises the word order information. We believe
that the combination of encoding a sentence with
its word order information and decoding all words
in a sentence independently inherently leverages
the benefits from both log-linear models and RNN-
based models.

7 Conclusion

Inspired by learning to exploit the contextual infor-
mation present in adjacent sentences, we proposed
an asymmetric encoder-decoder model with a suite
of techniques for improving context-based unsu-
pervised sentence representation learning. Since
we believe that a simple model will be faster in
training and easier to analyse, we opt to use simple
techniques in our proposed model, including 1) an
RNN as the encoder, and a predict-all-words CNN
as the decoder, 2) learning by inferring subsequent
contiguous words, 3) mean+max pooling, and 4)
tying word vectors with word prediction. With
thorough discussion and extensive evaluation, we
justify our decision making for each component
in our RNN-CNN model. In terms of the perfor-
mance and the efficiency of training, we justify
that our model is a fast and simple algorithm for
learning generic sentence representations from un-
labelled corpora. Further research will focus on
how to maximise the utility of the context informa-
tion, and how to design simple architectures to best
make use of it.

76

References
Eneko Agirre, Carmen Banea, Claire Cardie, Daniel M.

Cer, Mona T. Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Rada Mihalcea, German Rigau, and Janyce
Wiebe. 2014. Semeval-2014 task 10: Multilingual
semantic textual similarity. In SemEval@COLING.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017.
A simple but tough-to-beat baseline for sentence em-
beddings. In ICLR.

Jimmy Ba, Ryan Kiros, and Geoffrey E. Hinton. 2016.
Layer normalization. CoRR, abs/1607.06450.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and
Noam Shazeer. 2015. Scheduled sampling for se-
quence prediction with recurrent neural networks.
In NIPS.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In EMNLP.

Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, and
Hui Jiang. 2016. Enhancing and combining sequen-
tial and tree lstm for natural language inference.
arXiv preprint arXiv:1609.06038.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In EMNLP.

William B. Dolan, Chris Quirk, and Chris Brockett.
2004. Unsupervised construction of large para-
phrase corpora: Exploiting massively parallel news
sources. In COLING.

J. R. Firth. 1957. A synopsis of linguistic theory.

Zhe Gan, Yunchen Pu, Ricardo Henao, Chunyuan Li,
Xiaodong He, and Lawrence Carin. 2017. Learning
generic sentence representations using convolutional
neural networks. In EMNLP.

Yichen Gong, Heng Luo, and Jian Zhang. 2017. Natu-
ral language inference over interaction space. CoRR,
abs/1709.04348.

Zellig S Harris. 1954. Distributional structure. Word,
10(2-3):146–162.

Felix Hill, Kyunghyun Cho, and Anna Korhonen. 2016.
Learning distributed representations of sentences
from unlabelled data. In HLT-NAACL.

Sepp Hochreiter and Juergen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9:1735–1780.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In KDD.

Hakan Inan, Khashayar Khosravi, and Richard Socher.
2016. Tying word vectors and word classifiers:
A loss framework for language modeling. CoRR,
abs/1611.01462.

Yacine Jernite, Samuel R. Bowman, and David Son-
tag. 2017. Discourse-based objectives for fast un-
supervised sentence representation learning. CoRR,
abs/1705.00557.

Tom Kenter, Alexey Borisov, and Maarten de Rijke.
2016. Siamese cbow: Optimizing word embeddings
for sentence representations. In ACL.

Jamie Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S. Zemel, Raquel Urtasun, Antonio Tor-
ralba, and Sanja Fidler. 2015. Skip-thought vectors.
In NIPS.

Ben Krause, Liang Lu, Iain Murray, and Steve Renals.
2016. Multiplicative lstm for sequence modelling.
CoRR, abs/1609.07959.

Quoc V. Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In ICML.

Jiwei Li and Eduard H. Hovy. 2014. A model of co-
herence based on distributed sentence representation.
In EMNLP.

Xin Li and Dan Roth. 2002. Learning question classi-
fiers. In COLING.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zampar-
elli. 2014. A sick cure for the evaluation of compo-
sitional distributional semantic models. In LREC.

Julian J. McAuley, Christopher Targett, Qinfeng Shi,
and Anton van den Hengel. 2015. Image-based rec-
ommendations on styles and substitutes. In SIGIR.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed repre-
sentations of words and phrases and their composi-
tionality. In NIPS.

Jiaqi Mu, Suma Bhat, and Pramod Viswanath. 2018.
All-but-the-top: Simple and effective postprocessing
for word representations. In ICLR.

Allen Nie, Erin D. Bennett, and Noah D. Good-
man. 2017. Dissent: Sentence representation
learning from explicit discourse relations. CoRR,
abs/1710.04334.

Bo Pang and Lillian Lee. 2004. A sentimental educa-
tion: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In ACL.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploit-
ing class relationships for sentiment categorization
with respect to rating scales. In ACL.

77

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In EMNLP.

Ofir Press and Lior Wolf. 2017. Using the output em-
bedding to improve language models. In EACL.

Alec Radford, Rafal Józefowicz, and Ilya Sutskever.
2017. Learning to generate reviews and discovering
sentiment. CoRR, abs/1704.01444.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In EMNLP.

Shuai Tang, Hailin Jin, Chen Fang, Zhaowen Wang,
and Virginia R. de Sa. 2017. Rethinking skip-
thought: A neighborhood based approach. In
RepL4NLP, ACL Workshop.

Peter D. Turney and Patrick Pantel. 2010. From fre-
quency to meaning: Vector space models of seman-
tics. J. Artif. Intell. Res., 37:141–188.

Ivan Vendrov, Jamie Ryan Kiros, Sanja Fidler, and
Raquel Urtasun. 2015. Order-embeddings of images
and language. CoRR, abs/1511.06361.

Janyce Wiebe, Theresa Wilson, and Claire Cardie.
2005. Annotating expressions of opinions and emo-
tions in language. Language Resources and Evalua-
tion, 39:165–210.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. CoRR,
abs/1704.05426.

78

Proceedings of the 3rd Workshop on Representation Learning for NLP, pages 79–83
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

Connecting Supervised and Unsupervised Sentence Embeddings

Gil Levi
Tel Aviv University

gil.levi100@gmail.com

Abstract

Representing sentences as numerical vec-
tors while capturing their semantic con-
text is an important and useful interme-
diate step in natural language processing.
Representations that are both general and
discriminative can serve as a tool for tack-
ling various NLP tasks.

While common sentence representation
methods are unsupervised in nature, re-
cently, an approach for learning univer-
sal sentence representation in a supervised
setting was presented in (Conneau et al.,
2017). We argue that although promis-
ing results were obtained, an improve-
ment can be reached by adding various un-
supervised constraints that are motivated
by auto-encoders and by language mod-
els. We show that by adding such con-
straints, superior sentence embeddings can
be achieved. We compare our method with
the original implementation and show im-
provements in several tasks.

1 Introduction

Word embeddings are considered one of the key
building blocks in natural language processing and
are widely used for various applications (Mikolov
et al., 2013; Pennington et al., 2014). While word
representations has been successfully used, rep-
resenting the more complicated and nuanced na-
ture of the next element in the hierarchy - a full
sentence - is still considered a challenge. Once
trained, universal sentence representations can be
used as an out-of-the-box tool for solving various
NLP and computer vision problems. Even though
their importance is unquestionable, it seems that
current results are still far from satisfactory.

More concretely, given a set of sentences
{si}ni=1, sentence embedding methods are de-
signed to map them to some feature space F along
with a distance metricM such that given two sen-
tences si and sj that have similar semantic mean-
ing, their distanceM(si, sj) would be small. The
challenge is learning a mapping T : {si}ni=1 → F
that manages to capture the semantics of each si.
While sentence embedding are not always used in
similarity probing, we find this formulation use-
ful as the similarity assumption is implicitly made
when training classifiers on top of the embeddings
in downstream tasks.

Sentences embedding methods were mostly
trained in an unsupervised setting. In (Le and
Mikolov, 2014) the ParagraphVector model was
proposed which is trained to predict words in
the document. SkipThought (Kiros et al., 2015)
vectors rely on the continuity of text to train an
encoder-decoder model that tries to reconstruct
the surrounding sentences of a given passage. In
Sequential Denoising Autoencoders (SDAE) (Hill
et al., 2016) high-dimensional input data is cor-
rupted according to some noise function, and the
model is trained to recover the original data from
the corrupted version. FastSent (Hill et al., 2016)
learns to predicts a Bag-Of-Word (BOW) repre-
sentation of adjacent sentences given a BOW rep-
resentation of some sentence. In (Klein et al.,
2015) a Hybrid Gaussian Laplacian density func-
tion is fitted to the sentence to derive Fisher Vec-
tors.

While previous methods train sentence em-
beddings in an unsupervised manner, a recent
work (Conneau et al., 2017) argued that better rep-
resentations can be achieved via supervised train-
ing on a general sentence inference dataset (Bow-
man et al., 2015). To this end, the authors use
the Stanford Natural Language Inference (SNLI)
dataset (Bowman et al., 2015) to train different

79

Method MR CR SUBJ MPQA SST TREC MRPC SICK-R SICK-E STS14
FastSent 70.8 78.4 88.7 80.6 - 76.8 72.2/80.3 - - .63/.64
SkipThought 76.5 80.1 93.6 87.1 82.0 92.2 73.0/82.0 0.858 82.3 .29/.35
BiLSTM 79.9 84.6 92.1 89.8 83.3 88.7 75.1/82.3 0.885 86.3 .68/.65
AE Reg 79.0 84.4 91.8 90.0 82.4 88.8 75.0/82.4 0.888 86.8 .66/.65
LM Reg 79.1 85.3 92.2 90.2 83.6 87.6 75.7/82.8 0.888 86.3 .66/.65
Combined 80.04 84.56 91.96 90.19 84.07 87.8 74.84/82.34 0.888 86.44 .67/.65
Bi-AE Reg 79.9 84.1 92.1 90.2 83.8 89 75.9/82.6 0.888 87.7 .66/.65
Bi-LM Reg 79.1 84.6 91.2 90.0 82.6 89.4 74.4/81.8 0.888 86.4 .66/.64

Table 1: Sentence embedding results. BiLSTM refers to the original BiLSTM followed by Max-
Pooling implementation of (Conneau et al., 2017) which is the baseline for our work. AE Reg and
LM Reg refers to the Auto-Encoder and Language-Model regularization terms described in 2.1 and
Combined refers to optimizing with both terms. Bi-AE Reg and Bi-LM Reg refers to the bi-directional
Auto-Encoder and bi-directional Language-Model regularization terms described in 2.2. As evident from
the results, adding simple unsupervised regularization terms improves the results of the model on almost
all the evaluated tasks.

sentence embedding methods and compare them
on various benchmarks. The SNLI dataset is com-
posed of 570K pairs of sentences with a label
depicting the relationship between them, which
can be either ’neutral’, ’contradiction’ or ’entail-
ment’. The authors show that by leveraging the
dataset, state-of-the-art representations can be ob-
tained which are universal and general enough for
solving various NLP tasks.

A different, unsupervised, task in NLP is es-
timating the probability of word sequences. A
family of algorithms for this task titled word lan-
guage models seek to model the problem as esti-
mating the probability of a word, given the previ-
ous words in the text. In (Bengio et al., 2003) neu-
ral networks were employed and (Mikolov et al.,
2010) was among the first methods to use recurrent
neural networks (RNN) for modeling the prob-
lem, where the probability of the a word is es-
timated based on the previous words fed to the
RNN. A variant of RNN - Long Short Term Mem-
ory (LSTM) networks (Hochreiter and Schmid-
huber, 1997) - were used in (Sundermeyer et al.,
2012). Following that, (Zaremba et al., 2014) pro-
posed a dropout augmented LSTM.

We note that there exists a connection between
those two problems and try to model it more ex-
plicitly. Recently, the incorporation of the hidden
states of neural language models in downstream
supervised-learning models have been shown to
improve the results of the latter (e.g. ElMo - Pe-
ters et al. (2018), CoVe - McCann et al. (2017)
Peters et al. (2017), Salant and Berant (2017))
– in this work we jointly train the unsupervised

and supervised tasks. To this end, we incorpo-
rate unsupervised regularization terms motivated
by language modeling and auto-encoders in the
training framework proposed by (Conneau et al.,
2017). We test our proposed model on a set of
NLP tasks and show improved results over the
baseline framework of (Conneau et al., 2017).

2 Method

Our approach builds upon the previous work
of (Conneau et al., 2017). Specifically, we
use their BiLSTM model with max pool-
ing. More concretely, given a sequence of
T words, {wt}t=1,...,T with given word embed-
ding (Mikolov et al., 2013; Pennington et al.,
2014) {vt}t=1,...,T ,a bidirectional LSTM com-
putes a set of T vectors {ht}t=1,...,T where each
ht is the concatenation of a forward LSTM and
a backward LSTM that read the sentences in two
opposite directions. We denote {−→ht} and {←−ht} as
the hidden states of the left and right LSTM’s re-
spectively, where t = 1, . . . , T . The final sentence
representation is obtained by taking the maximal
value of each dimension of the {ht} hidden units
(i.e.: max pooling). The original model of (Con-
neau et al., 2017) was trained on the SNLI dataset
in a supervised fashion - given pairs of sentences
s1 and s2, denote their representation by s̄1 and
s̄2. During training, the concatenation of s̄1, s̄2,
|s̄1 − s̄2| and s̄1 ∗ s̄2 is fed to a three layer fully
connected network followed by a softmax classi-
fier.

80

2.1 Regularization terms
We note that by training on SNLI, the model might
overfit and would not be general enough to provide
universal sentence embedding. We devise several
regularization criteria that incentivize the hidden
states to maintain more information about the in-
put sequence.

Specifically, denote the dimension of the word
embedding by d and the dimension of the hid-
den state by l. We add a linear transformation
layer Ll×d : H → W on top of the BiLSTM
to transform the hidden states back to the dimen-
sion of word embeddings and denote its output by
{w′t}t=1,...,T . Recall that in the training process,
we minimize the log-likelihood loss of the fully
connected network predictions which we denote
by yi where ygt is the prediction score given to the
correct ground truth class. Now, the total loss cri-
teria with our regularization term can be written
as

L = −log
(

eygt∑
j e

yj

)
+ λ

T∑

t=1

‖w′t − wt‖2 (1)

or as

L = −log
(

eygt∑
j e

yj

)
+ λ

T−1∑

t=1

‖w′t − wt+1‖2

(2)

where the first term in both (1) and (2) is the
original classification loss. We call the second reg-
ularization term in (1) an auto-encoder regulariza-
tion term and in (2) a language model regulariza-
tion term. Intuitively, since each w′t is obtained by
a linear transformation of ht, it enforces the hid-
den state ht to maintain enough information on
each wt such it can be reconstructed back from
ht or such that the following word wt+1 can be
predicted from ht. This aids in obtaining a more
general sentence representation and mitigates the
risk of overfitting to the SNLI training set. The
constant λ in (1) and (2) is a hyper-parameter that
controls the amount of regularization and was set
to 1 in our experiments.

We have also experimented with combining the
two terms, giving equal weight to each of them in
optimizing the model.

2.2 Bi-directional Regularization terms
Similarly to regularization terms described in 2.1,
we devise variants of (1) and (2) which take

into account the bi-directional architecture of the
model. Here, we add two linear transformation
layers:

−→
L l

2
×d :

−→
H → W and

←−
L l

2
×d :

←−
H → W

on top of the forward LSTM and backward LSTM,
respectively, and denote their output as {−→w ′t} and
{←−w ′t}, respectively, where t = 1, . . . , T .

Now, equations (1) and (2) are re-written as:

L = −log
(

eygt∑
j e

yj

)
+ λ1

T∑

t=1

‖−→w ′t − wt‖2 (3)

+λ2

T∑

t=1

‖←−w ′t − wt‖2

and

L = −log
(

eygt∑
j e

yj

)
+ λ1

T−1∑

t=1

‖−→w ′t − wt+1‖2

(4)

+λ2

T∑

t=2

‖←−w ′t − wt−1‖2

We call the second regularization term in (3) a
bi-directional auto-encoder regularization and in
(4) a bi-directional language model regularization
term. Again, λ1 and λ2 are hyper-parameters con-
trolling the amount of regularization and were set
to 0.5 in our experiments.

3 Experiments

Following (Conneau et al., 2017) we have tested
our approach on a wide array of classification
tasks, including sentiment analysis (MR – Pang
and Lee (2005), SST – Socher et al. (2013)),
question-type (TREC – Li and Roth (2002)),
product reviews (CR – Hu and Liu (2004)),
subjectivity/objectivity (SUBJ – Pang and Lee
(2005)) and opinion polarity (MPQA – Wiebe
et al. (2005)). We also tested our approach on se-
mantic textual similarity (STS 14 – Agirre et al.
(2014)), paraphrase detection (MRPC – Dolan
et al. (2004)), entailment and semantic related-
ness tasks (SICK-R and SICK-E – Marelli et al.
(2014)), though those tasks are more close in na-
ture to the task of the SNLI dataset which the
model was trained on. In our experiments we have
set λ from eq. (1) and eq. (2) to be 1 and λ1,
λ2 from eq. (3) and eq. (4) to be 0.5. All other
hyper-parameters and implementation details were
left unchanged to provide a fair comparison to the
baseline method of (Conneau et al., 2017).

81

Our results are summarized in table 1. We
compared out method against the baseline BiL-
STM implementation of (Conneau et al., 2017)
and included FastSent (Hill et al., 2016) and
SkipThought vectors (Kiros et al., 2015) as a ref-
erence.

As evident from table 1 in almost all the
tasks evaluated, adding the proposed regulariza-
tion terms improves performance. This serve to
show that in a supervised learning setting, addi-
tional information on the input sequence can be
leveraged and injected to the model by adding sim-
ple unsupervised loss criteria.

4 Conclusions

In our work, we have sought to connect unsu-
pervised and supervised learning in the context
of sentence embeddings. Leveraging supervision
given by some general task aided in obtaining
state-of-the-art sentence representations (Conneau
et al., 2017). However, every supervised learning
tasks is prone to overfit. In this context, overfitting
to the learning task will result in a model which
generalizes less well to new tasks.

We alleviate this problem by incorporating un-
supervised regularization criteria in the model’s
loss function which are motivated by auto-
encoders and language models. We note that the
added regularization terms do come at the price of
increasing the model size by ld parameters (where
d and l are the dimensions of the word embedding
and the LSTM hidden state, respectively) due to
the added linear transformation (see 2.1). How-
ever, as evident from our results, this does not hin-
der the model performance, even though we did
not increase the amount of training data. More-
over, since those term are unsupervised in nature,
it is possible to pre-train the model on unlabeled
data and then finetune it on the SNLI dataset.

In conclusion, our experiments show that
adding the proposed regularization terms results
in a more general model and superior sentence
embeddings. This validates our assumption that
while the a supervised signal is general enough
for learning sentence embeddings, it can be further
improved by incorporated a second unsupervised
signal.

5 Acknowledgments

We would like to thank Shimi Salant and Ofir
Press for their helpful comments.

References
Eneko Agirre, Carmen Banea, Claire Cardie, Daniel

Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Rada Mihalcea, German Rigau, and Janyce
Wiebe. 2014. Semeval-2014 task 10: Multilingual
semantic textual similarity. In Proceedings of the
8th international workshop on semantic evaluation
(SemEval 2014). pages 81–91.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of machine learning research
3(Feb):1137–1155.

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large anno-
tated corpus for learning natural language inference.
arXiv preprint arXiv:1508.05326 .

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing. pages 670–680.

Bill Dolan, Chris Quirk, and Chris Brockett. 2004.
Unsupervised construction of large paraphrase cor-
pora: Exploiting massively parallel news sources. In
Proceedings of the 20th international conference on
Computational Linguistics. Association for Compu-
tational Linguistics, page 350.

Felix Hill, Kyunghyun Cho, and Anna Korhonen. 2016.
Learning distributed representations of sentences
from unlabelled data. In Proceedings of NAACL-
HLT . pages 1367–1377.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining. ACM, pages 168–
177.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in neural information processing systems.
pages 3294–3302.

Benjamin Klein, Guy Lev, Gil Sadeh, and Lior Wolf.
2015. Associating neural word embeddings with
deep image representations using fisher vectors. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pages 4437–4446.

Quoc Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Inter-
national Conference on Machine Learning. pages
1188–1196.

82

Xin Li and Dan Roth. 2002. Learning question classi-
fiers. In Proceedings of the 19th international con-
ference on Computational linguistics-Volume 1. As-
sociation for Computational Linguistics, pages 1–7.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, Roberto Zamparelli,
et al. 2014. A sick cure for the evaluation of com-
positional distributional semantic models. In LREC.
pages 216–223.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in translation: Con-
textualized word vectors. In Advances in Neural In-
formation Processing Systems. pages 6297–6308.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan
Cernockỳ, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In Inter-
speech. volume 2, page 3.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Bo Pang and Lillian Lee. 2005. Seeing stars: Ex-
ploiting class relationships for sentiment categoriza-
tion with respect to rating scales. In Proceedings of
the 43rd annual meeting on association for compu-
tational linguistics. Association for Computational
Linguistics, pages 115–124.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP). pages 1532–1543.

Matthew Peters, Waleed Ammar, Chandra Bhagavat-
ula, and Russell Power. 2017. Semi-supervised se-
quence tagging with bidirectional language models.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers). volume 1, pages 1756–1765.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365 .

Shimi Salant and Jonathan Berant. 2017. Contextu-
alized word representations for reading comprehen-
sion. arXiv preprint arXiv:1712.03609 .

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 conference on
empirical methods in natural language processing.
pages 1631–1642.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
2012. Lstm neural networks for language model-
ing. In Thirteenth Annual Conference of the Inter-
national Speech Communication Association.

Janyce Wiebe, Theresa Wilson, and Claire Cardie.
2005. Annotating expressions of opinions and emo-
tions in language. Language resources and evalua-
tion 39(2-3):165–210.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329 .

83

Proceedings of the 3rd Workshop on Representation Learning for NLP, pages 84–90
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

 A Hybrid Learning Scheme for Chinese Word Embedding

Wenfan Chen1 and Weiguo Sheng2,*

1 School of Computer Science and Technology, Zhejiang University of Technology, Hang-

zhou, P.R.China
2 Department of Computer Science, Hangzhou Normal University, Hangzhou, P.R.China

Abstract

To improve word embedding, subword in-

formation has been widely employed in

state-of-the-art methods. These methods

can be classified to either compositional or

predictive models. In this paper, we pro-

pose a hybrid learning scheme, which in-

tegrates compositional and predictive

model for word embedding. Such a

scheme can take advantage of both mod-

els, thus effectively learning word embed-

ding. The proposed scheme has been ap-

plied to learn word representation on Chi-

nese. Our results show that the proposed

scheme can significantly improve the per-

formance of word embedding in terms of

analogical reasoning and is robust to the

size of training data.

1 Introduction

Word embedding, also known as distributed word

representation, represents a word as a real-valued

low-dimensional vector and encodes its semantic

meaning into the vector. It is a fundamental task of

natural language processing (NLP), such as lan-

guage modeling (Bengio et al., 2003; Mnih and

Hinton, 2009), machine translation (Bahdanau et

al., 2014; Sutskever et al., 2014), caption genera-

tion (Xu et al., 2015; Devlin et al., 2015) and

question answering (Hermann et al., 2015).

Most previous word embedding methods suffer

from high computational complexity and have dif-

ficulty to be applied to large-scale corpora. Re-

cently, Continuous Bag-Of-Words (CBOW) and

Skip-Gram (SG) models (Mikolov et al., 2013a),

which can alleviate the above issue, have received

much attention. However, these models take a

word as a basic unit but ignore rich subword in-

formation, which could significantly limit their

performance. To improve the performance of

word embedding, subword information, such as

* Corresponding author. E-mail: w.sheng@ieee.org

morphemes and character n-grams, has been em-

ployed (Luong et al., 2013; Qiu et al., 2014; Cao

and Rei, 2016; Sun et al., 2016a; Wieting et al.,

2016; Bojanowski et al., 2017). While these

methods are effective, they are originally devel-

oped for alphabetic writing systems and can’t be

applied directly to other writing systems, like Chi-

nese.

In Chinese, each word typically consists of less

characters than in English1, while each character

can have a complicated structure of its meaning.

Typically, a Chinese character can be decomposed

into components (部), where each component has

its own meaning. The internal semantic meaning

of a Chinese word emerges from such a structure.

For example, the Chinese word “海水 (seawater)”

is composed by “海 (sea)” and “水 (water)”. The

semantic component of “海 (sea)” is “氵”, which

is the transformation of “水 (water)” and indicates

it is related to “水 (water)”. Therefore, the word

“海水 (seawater)” has the meaning of “water from

the sea”.

Based on the linguistic feature of Chinese, re-

cent methods have used subword information to

improve Chinese word embedding. For example,

Chen et al. (2015) proposed a character-enhanced

word embedding (CWE) model, which departed

from CBOW of representing context words with

both character embeddings and word embeddings.

Shi et al. (2015) proposed a radical embedding

method, which used the CBOW framework but

replacing word embeddings with radical embed-

dings. Yin et al. (2016) and Xu et al. (2016) ex-

tended the CWE model in different ways: the

former presented a multi-granularity embedding

(MGE) model, additionally using the embeddings

associated with radicals detected in the target

word; the latter proposed a similarity-based char-

acter-enhanced word embedding (SCWE) model,

considering the similarity between a word and its

1 https://en.wikipedia.org/wiki/Written_Chinese

84

component characters. Yu et al. (2017) introduced

a joint learning word embedding (JWE) model,

which jointly learned embeddings for words,

characters and components, and predicted the tar-

get word, respectively. Cao et al. (2018), on the

other hand, represented Chinese words as se-

quences of strokes2 and learned word embedding

with stroke n-grams information.

The above methods can be divided into two

types: compositional and predictive model. The

compositional model composes rich information

into one vector to predict the target word. In this

type of model, information works in a cooperative

manner for word embedding. By contrast, the pre-

dictive model decouples various information to

predict the target word. The information in this

type of model works competitively for word em-

bedding. Both models can effectively learn word

embedding and give good estimation for rare and

unseen words. By combining richer information,

the compositional model can more accurately rep-

resent the target word. However, information is

usually composed in a sophisticated way. The pre-

dictive model, on the other hand, is simple and

can directly capture the interaction between words

and their internal information. This type of model,

however, typically ignores the interrelationship

between various information.

To take advantage of both models, in this paper,

we propose a hybrid learning scheme for word

embedding. The proposed scheme learns word

embedding in a competitive and cooperative man-

ner. Specifically, in our scheme, the decoupled

representations are used to capture the semantic

meaning of target word respectively while making

their composition semantically consistent with the

target word. The performance of proposed scheme

has been evaluated on Chinese in terms of word

similarity and analogy tasks. The results show that

our proposed scheme can effectively learn word

representation and is robust to the size of training

data.

2 Proposed Scheme

In this section, we present the details of our pro-

posed hybrid learning scheme for word embed-

ding. We denote the proposed scheme as Co-

Opetition Word Embedding (COWE). It consists

of predictive and compositional parts, which will

be described in subsection 2.1 and subsection 2.2,

2 https://en.wikipedia.org/wiki/Stroke_(CJKV_character)

respectively. This is followed by describing the

objective function.

The meaning of notation used in this section is

as follows. We denote the training corpus as 𝒟,

word vocabulary as 𝒲, character vocabulary as 𝒞,

components vocabulary as 𝒫. Each word 𝑤 ∈ 𝒲,

character 𝑐 ∈ 𝒞 and component 𝑝 ∈ 𝒫 are associ-

ated with vectors 𝒘 ∈ ℝ𝑑 , 𝒄 ∈ ℝ𝑑 , 𝒑 ∈ ℝ𝑑 , re-

spectively, where 𝑑 is the vector dimension. The

characters and components in word 𝑤𝑖 are denot-

ed as 𝑐[𝑖] and 𝑝[𝑖] , where |𝑐[𝑖]| and |𝑝[𝑖]| denote

the number of characters and components in 𝑤𝑖,

respectively.

2.1 Predictive Part

In the predictive part, the compositions of context

words, characters and components as well as

compositions of characters and components in

target word are used to predict the target word, as

illustrated in Figure 1. These separate predictions

by various compositions can be considered as

competitions for the semantic meaning of target

word. In order to maintain similar length between

different compositions, COWE uses an average

operation as the composition operation.

INPUT PROJECTION

AVG

AVG

AVG

AVG

AVG

OUTPUT

... ...

... ...

... ...

... ...

hi2

hi1

hi3

hi4

hi5

Figure 1: Illustration of the predictive part of

COWE.

85

The goal of this part is to maximize the sum of

log likelihoods of all predictive conditional proba-

bilities:

 ℒ𝑝(𝑤𝑖) = ∑ log 𝑝(𝒘𝑖|𝒉𝑖𝑘)5
𝑘=1 , (1)

where 𝒉𝑖1, 𝒉𝑖2, 𝒉𝑖3, 𝒉𝑖4 and 𝒉𝑖5 correspond to the

above mentioned five compositions, respectively.

Here, 𝒉𝑖1 is defined as:

 𝒉𝑖1 =
1

2𝑁
∑ 𝒘𝑖+𝑗−𝑁≤𝑗≤𝑁,𝑗≠0 , (2)

where 𝑁 is the context window size. 𝒉𝑖2, 𝒉𝑖3, 𝒉𝑖4

and 𝒉𝑖5 are defined in a similar way. The condi-

tional probability is defined using a softmax func-

tion as:

 𝑝(𝒘𝑖|𝒉𝑖𝑘) =
exp(𝒘𝑖⋅𝒉𝑖𝑘)

∑ exp(𝒘𝑖′⋅𝒉𝑖𝑘)𝑤
𝑖′∈𝒲

, 𝑘 = 1,2,3,4,5. (3)

This objective function is similar to the one

used in JWE (Yu et al., 2017). The main differ-

ence is that we further decouple components in

the context words and target word, and leverage

characters in the target word in addition.

2.2 Compositional Part

In the compositional part, all compositions men-

tioned above work in a cooperative manner, where

their composition is used to predict the target

word. We consider the composition as semantic

consistency point of various representations, and

the prediction loss as consistency loss, as shown in

Figure 2.

The goal of this part is to maximize the follow-

ing objective function:

 ℒ𝑐(𝑤𝑖) = log 𝑝(𝒘𝑖|𝒂𝑖), (4)

where 𝒂𝑖 is the semantic consistency point, and is

defined as:

 𝒂𝑖 =
1

5
∑ 𝒉𝑖𝑘

5
𝑘=1 . (5)

Similar to the predictive part, the conditional

probability is defined using the softmax function

(see Equation (3)).

2.3 Objective Function

As COWE consists of predictive and composi-

tional parts, its objective function is therefore con-

sisted of the sum of all prediction losses and the

consistency loss:

 ℒ(𝒟) = ∑ ℒ𝑝(𝑤𝑖) + ℒ𝑐(𝑤𝑖)𝑤𝑖∈𝒟 . (6)

To solve the above optimization problem, we

employ the negative sampling technique (Mikolov

et al., 2013b). Note that only the consistency loss

between semantic consistency point and target

word is considered. In preliminary experiments,

we also tried the consistency losses between se-

mantic consistency point and sampled negative

words, but observed reduced performance.

As a result, the final objective function can be

written as:

 ℒ(𝒟) = ∑ ∑ log 𝜎(𝒘𝑖 ⋅ 𝒉𝑖𝑘)5
𝑘=1 +𝑤𝑖∈𝒟

𝜆𝔼�̃�~𝑃�̃�
[∑ log 𝜎(�̃� ⋅ 𝒉𝑖𝑘)5

𝑘=1] + log 𝜎(𝒘𝑖 ⋅ 𝒂𝑖), (7)

where 𝜎 is a sigmoid function: 𝜎(x) = 1/(1 +
exp (−x)), 𝜆 is the number of negative words, �̃�

is the sampled negative word and 𝑃�̃� is the distri-

bution of negative words.

3 Experiments

In this section, we evaluate COWE on Chinese in

terms of word similarity computation and analogi-

cal reasoning.

3.1 Experimental Settings

We use Chinese Wikipedia dump dated on March

1, 20183 for embedding learning, which contains

310K Chinese Wikipedia articles. The data is pre-

processed as follows. Firstly, construct training

corpus from the Wikipedia dump with

WikiCorpus in the gensim toolkit4. Secondly,

convert traditional Chinese characters to simpli-

fied Chinese characters with the opencc toolkit5.

Thirdly, remove all non-Chinese characters and

Chinese words whose frequencies are less than 10

3 https://dumps.wikimedia.org/zhwiki/20180301/
4 https://radimrehurek.com/gensim/corpora/wikicorpus.html
5 https://github.com/BYVoid/OpenCC

☆: hi1 □: hi2 ◇: hi3 △: hi4 ▽: hi5 ●: wi

consistency loss

semantic consistency point

Figure 2: Illustration of the semantic con-

sistency point and the consistency loss.

86

in the corpus. Finally, perform Chinese word seg-

mentation with THULAC6 (Sun et al., 2016b). In

addition, we perform POS tagging on the training

corpus using THULAC and identify all entity

names for CWE (Chen et al., 2015), as it does not

use the character information for non-

compositional words. We use the subword files

provided by Yu et al. (2017). As a result, we ob-

tain a 1 GB training corpus with 165,507,601

words, 368,408 unique words, 20,885 unique

characters and 13,232 unique components.

We compare COWE with CBOW (Mikolov et

al., 2013a)7, CWE (Chen et al., 2015)8 and JWE

(Yu et al., 2017)9. To further evaluate the effect of

consistency loss and components, we create two

variants of COWE, denoted as COWE-c2 and

COWE-p. The former is indeed the JWE model

with an additional consistency loss, while the lat-

ter is COWE without using component infor-

mation. The same parameter settings are used for

all models. Specifically, the vector dimension is

set to 200, the training iteration is set to 100, both

the size of context window and number of nega-

tive samples are set to 5, the initial learning rate is

set to 0.025, and the subsampling threshold is set

to 10-4.

3.2 Word Similarity

This task is to evaluate the effectiveness of word

embedding in capturing semantic similarity of

word pairs. Following Yu et al. (2017), we adopt

wordsim-240 and wordsim-296 datasets (Jin and

Wu, 2012). Both datasets contain manually-

annotated similarity scores for word pairs. In

wordsim-240, words in 234 pairs appear in the

training corpus, and in wordsim-296, words in 286

pairs appear in the training corpus. Unseen words

are removed. The performance of word embed-

ding is evaluated by ranking the pairs according to

their cosine similarity and measuring the Spear-

man correlation 𝜌 with human ratings. The results

are shown in Table 1.

The results, on the wordsim-240 dataset, show

that CWE performs better than CBOW, but out-

performed by all other models. This could indicate

the benefits of using rich information. COWE-c2

is not so good as JWE, COWE-p and COWE per-

form even worse. This suggests that the introduc-

6 http://thulac.thunlp.org/
7 https://code.google.com/archive/p/word2vec/
8 https://github.com/Leonard-Xu/CWE
9 https://github.com/HKUST-KnowComp/JWE

tion of consistency loss, to some extent, may limit

the performance of word representation. This may

be due to the fact that our average semantic con-

sistency point considers the contributions of vari-

ous representations equally. With the evolution of

history, however, meanings of some Chinese char-

acters or components have degraded, making

them less expressive. We plan to investigate the

composition operation further in future work.

3.3 Word Analogy

This task is to evaluate the effectiveness of word

embedding in capturing semantic relations be-

tween pairs of words. The goal is to answer the

analogy questions of the form “a is to a* as b is to

b*”, where b* is hidden, and must be reasoned out

from the vocabulary. We use the Chinese word

analogy dataset provided by Chen et al. (2015). It

consists of 1,124 analogy questions, categorized

into 3 types: 1) capitals of countries (677 groups),

2) capitals of provinces/states (175 groups), and 3)

family relationships (272 groups). The analogy

questions are answered using 3CosAdd (Mikolov

et al., 2013a) as well as 3CosMul (Levy and

Goldberg, 2014)10. We abbreviate the two meth-

ods as “Add” and “Mul”, respectively. The eval-

uation metric for this task is the percentage of

questions for which the argmax result is the cor-

rect answer b*. The results are shown in Table 211.

It can be found that CBOW performs better

than CWE and JWE on the Capital and Family

tasks. This is due to that using internal information

improperly could be harmful in cases where

words are non-compositional or irrelevant words

sharing similar internal structures. For example,

the words “儿子 (son)” and “妻子 (wife)” share

the same character “子”, which means “son” in

the former but makes no sense in the latter. We

observe that COWE-c2 achieves the best results

10 https://bitbucket.org/omerlevy/hyperwords
11 The results do not agree with that reported in (Yu et al.,

2017). We suggest that these discrepancies stem from dif-

ferences in training corpus and parameter settings.

Model wordsim-240 wordsim-296

CBOW 0.4861 0.5658

CWE 0.5151 0.5684

JWE 0.5496 0.6355

COWE-c2 0.5473 0.5899

COWE-p 0.5180 0.5844

COWE 0.5412 0.5674

Table 1: Results on word similarity evalua-

tion.

87

on the Family task and outperforms JWE by large

margins. This shows the effectiveness of con-

sistency loss in helping with learning from various

information. COWE-p and COWE perform best

on the other tasks, respectively. The fact suggests

that different information could help in different

ways.

3.4 Performance on Low-Resource Corpora

To evaluate the performance of different models

on low-resource corpora, we conduct the same

experiments on 5%, 10% and 20% randomly se-

lected Wikipedia articles, respectively. As less

training data introducing more noises, this makes

it more difficult for models to learn good word

representations. The results are shown in Table 3.

The results indicate the superiority of our mod-

els on low-resource corpora. We observe that as

the size of dataset decreases, the performance of

baselines drops rapidly, while the performance

decrement of COWE and its variants is much

smaller. This shows the robustness of our pro-

posed models. COWE-p is generally more robust

than COWE-c2, however, COWE-c2 performs

more robustly on the Family task. Taking both

characters and components into account, COWE

achieves the most robust results.

We also observe that on the Capital task, the

performance of CWE and JWE drops more quick

than CBOW, which agrees with the previous find-

ings. However, with the consistency loss, COWE-

c2 always performs better than JWE, and usually

outperforms CBOW. We believe that the con-

sistency loss, in cases where some embeddings are

useless, would encourage weak embeddings to

close to strong embeddings, letting weak embed-

dings acquire some helpful features, and prevent

strong embeddings from overfitting. On the State

and Family tasks, where the character and compo-

nent embeddings could be useful, all of our mod-

els still outperform the baselines by large margins.

This should be due to the fact that the consistency

loss prevents various learned embeddings from

contradicting each other, thus making all of them

close to the true target word embedding.

3.5 Case Study

To gain a better understanding of the quality of

learned word embedding, we take the word “癌症

(cancer)” as an example and show its nearest

neighbors in Table 4, where cosine similarity is

used as the distance metric.

All words yielded by different models are dis-

ease-related. Specifically, words yielded by CWE

contain the character “癌 (cancer)”, including

some weird words, like “国家癌症 (national can-

cer)” and “抑癌 (anti-cancer)”12. This implies that

CWE has overused the internal information. For

12 Translation by Google Translate.

Model
Capital State Family

Add/Mul Add/Mul Add/Mul

CBOW 87.00/85.82 93.14/92.00 76.84/73.90

CWE 86.71/85.08 91.43/90.29 75.74/70.96

JWE 86.12/83.90 94.29/94.29 70.96/69.49

COWE-c2 83.16/83.31 90.29/86.29 77.94/74.63

COWE-p 87.74/85.82 92.57/94.29 73.16/69.85

COWE 85.82/86.12 94.29/93.71 76.10/74.26

Table 2: Results on word analogy evaluation.

Model
Capital State Family

Add/Mul Add/Mul Add/Mul

CBOW 57.46/52.14 28.00/23.43 34.19/29.04

CWE 51.99/47.12 36.00/31.43 16.18/13.60

JWE 44.76/40.77 49.14/44.57 31.99/27.57

COWE-c2 61.74/58.64 67.43/65.14 44.49/35.29

COWE-p 79.17/77.40 80.00/81.71 37.87/37.50

COWE 78.14/79.03 81.71/82.86 41.91/41.18

(a) 5% Wikipedia articles

Model
Capital State Family

Add/Mul Add/Mul Add/Mul

CBOW 73.12/69.42 54.29/50.29 48.90/43.38

CWE 66.03/64.40 54.29/53.14 39.71/37.13

JWE 63.81/63.22 62.86/58.29 40.07/36.40

COWE-c2 70.16/67.50 77.71/73.14 59.19/56.62

COWE-p 77.70/78.58 79.43/80.00 54.78/52.21

COWE 78.43/78.58 80.00/77.71 60.29/56.99

(b) 10% Wikipedia articles

Model
Capital State Family

Add/Mul Add/Mul Add/Mul

CBOW 70.75/68.39 69.71/64.57 59.19/54.78

CWE 67.80/65.58 66.29/63.43 50.00/44.49

JWE 70.46/69.28 81.71/78.86 48.90/48.16

COWE-c2 74.89/72.97 90.29/87.43 59.93/56.25

COWE-p 81.83/81.83 89.71/86.86 58.46/54.78

COWE 84.79/83.60 87.43/86.86 58.46/55.51

(c) 20% Wikipedia articles

Table 3: Results on word analogy evaluation,

trained on 5%/10%20% Wikipedia articles.

88

JWE and COWE, which directly capture the inter-

action between the words and their internal infor-

mation, they yield disease-related words that do

not contain the component “疒”, such as “肺结核

(pneumonia)”. This indicates that they make full

use of external and internal information, and avoid

the above issue. Compared to JWE, COWE yields

more words that are semantically relevant to the

target word.

4 Conclusion

This paper proposes a scheme, which combines

predictive and compositional models to jointly

learn various word representations in a competi-

tive and cooperative manner. The predictive part

of the proposed scheme is based on various exter-

nal and internal information, which is used to cap-

ture corresponding representation. In the composi-

tional part, the semantic consistency point and the

consistency loss are introduced. They connect

separate learned representations and prevent them

from contradicting each other. The experimental

results show that the proposed scheme outper-

forms baseline models on word analogy tasks and

achieves competitive results on word similarity

tasks. The results also show that our model is ro-

bust to the size of training data. Therefore, our

proposed scheme is suitable to be applied on low-

resource corpora, for example task-specific corpo-

ra, where data is often very scarce.

Acknowledgements

This work was supported by the National Natural

Science Foundation of China (Grant Nos.

61573316). We also thank Yuehua Wan and Xiao-

xu Wu for their help and very valuable feedback.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural Machine Translation by

Jointly Learning to Align and Translate. arXiv

preprint arXiv:1409.0473:1–15, September.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent,

and Christian Janvin. 2003. A Neural Probabilistic

Language Model. The Journal of Machine

Learning Research, 3:1137–1155.

Piotr Bojanowski, Edouard Grave, Armand Joulin,

and Tomas Mikolov. 2017. Enriching Word Vectors

with Subword Information. Transactions of the

Association for Computational Linguistics,

5(1):135–146. http://aclweb.org/anthology/Q17-

1010

Kris Cao and Marek Rei. 2016. A Joint Model for

Word Embedding and Word Morphology. In

Proceedings of the 1st Workshop on Representation

Learning for NLP, pages 18–26. Association for

Computational Linguistics.

https://doi.org/10.18653/v1/W16-1603

Shaosheng Cao, Wei Lu, Jun Zhou, and Xiaolong Li.

2018. cw2vec: Learning Chinese Word

Embeddings with Stroke n-gram Information. In

Proceedings of the 32th AAAI Conference on

Artificial Intelligence, pages 1–8.

Xinxiong Chen, Lei Xu, Zhiyuan Liu, Maosong Sun,

and Huanbo Luan. 2015. Joint learning of character

and word embeddings. In Proceedings of the 24th

International Conference on Artificial Intelligence,

pages 1236–1242.

Jacob Devlin, Hao Cheng, Hao Fang, Saurabh Gupta,

Li Deng, Xiaodong He, Geoffrey Zweig, and

Margaret Mitchell. 2015. Language Models for

Image Captioning: The Quirks and What Works. In

Proceedings of the 53rd Annual Meeting of the

Association for Computational Linguistics and the

7th International Joint Conference on Natural

Language Processing (Volume 2: Short Papers),

pages 100–105, A Neural Probabilistic Language

Model. Association for Computational Linguistics.

https://doi.org/10.3115/v1/P15-2017

Karl Moritz Hermann, Tomáš Kočiský, Edward

Grefenstette, Lasse Espeholt, Will Kay, Mustafa

Suleyman, and Phil Blunsom. 2015. Teaching

Machines to Read and Comprehend. In

Proceedings of the 28th International Conference

CWE JWE COWE

肾癌

(renal cr)

肺癌

(lung cr)

肺癌

(lung cr)

癌病

(cr)

肝癌

(liver cr)

并发症

(complication)

肺癌

(lung cr)

癌

(cr)

癌

(cr)

胰腺癌

(pancreatic cr)

胃癌

(gastric cr)

白血病

(leukemia)

国家癌症

(national cr)

白血病

(leukemia)

乳腺癌

(breast cr)

抑癌

(anti-cr)

肺结核

(tuberculosis)

胃癌

(gastric cr)

肝癌

(liver cr)

胰腺癌

(pancreatic cr)

肝癌

(liver cr)

脑癌

(brain cr)

肺炎

(pneumonia)

肺结核

(tuberculosis)

胰脏腺癌

(pancreatic cr)

心脏病

(heart disease)

大肠癌

(colorectal cr)

癌

(cr)

并发症

(complication)

肺炎

(pneumonia)

Table 4: Nearest neighbors of “癌症 (can-

cer)”. “cr” is abbreviation for “cancer”.

89

on Neural Information Processing Systems, pages

1693–1701. June.

Peng Jin and Yunfang Wu. 2012. SemEval-2012 Task

4: Evaluating Chinese Word Similarity. In *SEM

2012: The First Joint Conference on Lexical and

Computational Semantics -- Volume 1:

Proceedings of the main conference and the shared

task, and Volume 2: Proceedings of the Sixth

International Workshop on Semantic Evaluation

(SemEval 2012), pages 374–377. Association for

Computational Linguistics.

http://www.aclweb.org/anthology/S12-1049

Omer Levy and Yoav Goldberg. 2014. Linguistic

Regularities in Sparse and Explicit Word

Representations. In Proceedings of the Eighteenth

Conference on Computational Natural Language

Learning, pages 171–180. Association for

Computational Linguistics.

https://doi.org/10.3115/v1/W14-1618

Minh-Thang Luong, Richard Socher, and Christopher

D. Manning. 2013. Better Word Representations

with Recursive Neural Networks for Morphology.

In Proceedings of the Seventeenth Conference on

Computational Natural Language Learning, pages

104–113. http://www.aclweb.org/anthology/W13-

3512

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey

Dean. 2013a. Efficient Estimation of Word

Representations in Vector Space. arXiv preprint

arXiv:1301.3781:1–12, January.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg

Corrado, and Jeffrey Dean. 2013b. Distributed

Representations of Words and Phrases and their

Compositionality. Advances in neural information

processing systems:3111–3119, October.

Andriy Mnih and Geoffrey E. Hinton. 2009. A

Scalable Hierarchical Distributed Language Model.

In Advances in neural information processing

systems, pages 1081–1088.

Siyu Qiu, Qing Cui, Jiang Bian, Bin Gao, and Tie-Yan

Liu. 2014. Co-learning of Word Representations

and Morpheme Representations. In Proceedings of

COLING 2014, the 25th International Conference

on Computational Linguistics: Technical Papers,

pages 141–150. Dublin City University and

Association for Computational Linguistics.

https://www.aclweb.org/anthology/C14-1015

Xinlei Shi, Junjie Zhai, Xudong Yang, Zehua Xie, and

Chao Liu. 2015. Radical Embedding: Delving

Deeper to Chinese Radicals. In Proceedings of the

53rd Annual Meeting of the Association for

Computational Linguistics and the 7th

International Joint Conference on Natural

Language Processing (Volume 2: Short Papers),

pages 594–598. Association for Computational

Linguistics. https://doi.org/10.3115/v1/P15-2098

Fei Sun, Jiafeng Guo, Yanyan Lan, Jun Xu, and Xueqi

Cheng. 2016a. Inside Out: Two Jointly Predictive

Models for Word Representations and Phrase

Representations. In Proceedings of the Thirtieth

AAAI Conference on Artificial Intelligence, pages

2821–2827.

Maosong Sun, Xinxiong Chen, Kaixu Zhang, Zhipeng

Guo, Zhiyuan Liu. 2016b. THULAC: An Efficient

Lexical Analyzer for Chinese.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.

Sequence to Sequence Learning with Neural

Networks. In Proceedings of the 27th International

Conference on Neural Information Processing

Systems, pages 3104–3112. September.

John Wieting, Mohit Bansal, Kevin Gimpel, and

Karen Livescu. 2016. Charagram: Embedding

Words and Sentences via Character n-grams. In

Proceedings of the 2016 Conference on Empirical

Methods in Natural Language Processing, pages

1504–1515. Association for Computational

Linguistics. https://doi.org/10.18653/v1/D16-1157

Jian Xu, Jiawei Liu, Liangang Zhang, Zhengyu Li,

and Huanhuan Chen. 2016. Improve Chinese Word

Embeddings by Exploiting Internal Structure. In

Proceedings of the 2016 Conference of the North

American Chapter of the Association for

Computational Linguistics: Human Language

Technologies, pages 1041–1050. Association for

Computational Linguistics.

https://doi.org/10.18653/v1/N16-1119

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,

Aaron Courville, Ruslan Salakhutdinov, Richard

Zemel, and Yoshua Bengio. 2015. Show, Attend

and Tell: Neural Image Caption Generation with

Visual Attention. In International Conference on

Machine Learning, pages 2048–2057.

Rongchao Yin, Quan Wang, Peng Li, Rui Li, and Bin

Wang. 2016. Multi-Granularity Chinese Word

Embedding. In Proceedings of the 2016

Conference on Empirical Methods in Natural

Language Processing, pages 981–986. Association

for Computational Linguistics.

https://doi.org/10.18653/v1/D16-1100

Jinxing Yu, Xun Jian, Hao Xin, and Yangqiu Song.

2017. Joint Embeddings of Chinese Words,

Characters, and Fine-grained Subcharacter

Components. In Proceedings of the 2017

Conference on Empirical Methods in Natural

Language Processing, pages 286–291. Association

for Computational Linguistics.

https://doi.org/10.18653/v1/D17-1027

90

Proceedings of the 3rd Workshop on Representation Learning for NLP, pages 91–100
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

Unsupervised Random Walk Sentence Embeddings:
A Strong but Simple Baseline

Kawin Ethayarajh
Department of Computer Science, University of Toronto

kawin@cs.toronto.edu

Abstract

Using a random walk model of text gen-
eration, Arora et al. (2017) proposed a
strong baseline for computing sentence
embeddings: take a weighted average of
word embeddings and modify with SVD.
This simple method even outperforms far
more complex approaches such as LSTMs
on textual similarity tasks. In this paper,
we first show that word vector length has a
confounding effect on the probability of a
sentence being generated in Arora et al.’s
model. We propose a random walk model
that is robust to this confound, where the
probability of word generation is inversely
related to the angular distance between the
word and sentence embeddings. Our ap-
proach beats Arora et al.’s by up to 44.4%
on textual similarity tasks and is competi-
tive with state-of-the-art methods. Unlike
Arora et al.’s method, ours requires no hy-
perparameter tuning, which means it can
be used when there is no labelled data.

1 Introduction

Distributed representations of words, better known
as word embeddings, have become fixtures of
current methods in natural language processing.
Word embeddings can be generated in a number
of ways (Bengio et al., 2003; Collobert and We-
ston, 2008; Pennington et al., 2014; Mikolov et al.,
2013) by capturing the semantics of a word using
the contexts it appears in. Recent work has tried
to extend that intuition to sequences of words, us-
ing methods ranging from a weighted average of
word embeddings to convolutional, recursive, and
recurrent neural networks (Le and Mikolov, 2014;
Kiros et al., 2015; Luong et al., 2013; Tai et al.,
2015). Still, Wieting et al. (2016b) found that

these sophisticated architectures are often outper-
formed, particularly in transfer learning settings,
by sentence embeddings generated as a simple av-
erage of tuned word embeddings.

Arora et al. (2017) provided a more power-
ful approach: compute the sentence embeddings
as weighted averages of word embeddings, then
subtract from each one the vector projection on
their first principal component. The weighting
scheme, smoothed inverse frequency (SIF), is de-
rived from a random walk model where words in
a sentence s are produced by the random walk of
a latent discourse vector cs. A word unrelated to
cs can be produced by chance or if it is part of
frequent discourse such as stopwords. This ap-
proach evens outperforms more complex models
such as LSTMs on textual similarity tasks. Arora
et al. argued that the simplicity and effectiveness
of their method make it a tough-to-beat baseline
for sentence embeddings. Though they call their
approach unsupervised, others have noted that it
is actually ‘weakly supervised’, since it requires
hyperparameter tuning (Cer et al., 2017).

In this paper, we first propose a class of
worst-case scenarios for Arora et al.’s (2017) ran-
dom walk model. Specifically, given some sen-
tence g that is dominated by words with zero sim-
ilarity, and some sentence h that is dominated by
identical words, we show that their approach can
return two discourse vectors cg and ch such that
p(g|cg) ⇡ p(h|ch), provided that the word vec-
tors for g have a sufficiently greater length than
those for h. In other words, word vector length
has a confounding effect on the probability of a
sentence being generated, and this effect can be
strong enough to yield completely unintuitive re-
sults. This problem is not endemic to these sce-
narios, though they are the most illustrative of it;
because of the underlying log-linear word produc-
tion model, Arora et al.’s model is fundamentally

91

sensitive to word vector length.
Our contributions in this paper are three-fold.

First, we propose a random walk model that is
robust to distortion by vector length, where the
probability of a word vector being generated by
a discourse vector is inversely related to the an-
gular distance between them. Second, we derive
a weighting scheme from this model and com-
pute a MAP estimate for the sentence embedding
as follows: normalize the word vectors, take a
weighted average of them, and then subtract from
each weighted average vector the projection on
their first m principal components. We call the
weighting scheme derived from our random walk
model unsupervised smoothed inverse frequency
(uSIF). It is similar to SIF (Arora et al., 2017) in
practice, but requires no hyperparameter tuning at
all – it is completely unsupervised, allowing it to
be used when there is no labelled data. Lastly,
we show that our approach outperforms Arora et
al.’s by up to 44.4% on textual similarity tasks, and
is even competitive with state-of-the-art methods.
Given the simplicity, effectiveness, and unsuper-
vised nature of our method, we suggest it be used
as a baseline for computing sentence embeddings.

2 Related Work

Word Embeddings Word embeddings are dis-
tributed representations of words, typically in a
low-dimensional continuous space. These word
vectors can capture semantic and lexical proper-
ties of words, even allowing some relationships to
be captured algebraically (e.g., vBerlin�vGermany +
vFrance ⇡ vParis) (Mikolov et al., 2013). Word em-
beddings are generally obtained in two ways: (a)
from internal representations of words in shal-
low neural networks (Bengio et al., 2003; Mikolov
et al., 2013; Collobert and Weston, 2008); (b) from
low rank approximations of co-occurrence matri-
ces (Pennington et al., 2014).

Word Sequence Embeddings Embeddings for
sequences of words (e.g., sentences) are created
by composing word embeddings. This can be
done simply, by doing coordinate-wise multipli-
cation (Mitchell and Lapata, 2008) or taking an
unweighted average (Mikolov et al., 2013) of the
word vectors. More sophisticated architectures
can also be used: for instance, recursive neural
networks (Socher et al., 2011, 2013), LSTMs (Tai
et al., 2015), and convolutional neural networks
(Kalchbrenner et al., 2014) can be defined and

trained on parse and dependency trees.
Other approaches are based on the presence of

a latent vector for the entire sequence. Paragraph
vectors (Le and Mikolov, 2014) are latent repre-
sentations that influence the distribution of words.
Skip-thought vectors (Kiros et al., 2015) are hid-
den representations of a neural network that en-
codes a sentence by trying to reconstruct its sur-
rounding sentences. Conneau et al. (2017) lever-
age transfer learning by using the hidden repre-
sentation of a sentence in an LSTM trained for
another task, such as textual entailment. The in-
spiration for Arora et al. (2017) is Wieting et al.
(2016b), who use word averaging after updating
word embeddings by tuning them on paraphrase
pairs. A later work by Wieting et al. (2017a) tried
trigram-averaging and LSTM-averaging in addi-
tion to word-averaging. In that approach, vectors
were tuned on the ParaNMT-50M dataset, created
by using neural machine translation to translate
51M Czech-English sentence pairs into English-
English pairs. This yielded state-of-the-art results
on textual similarity tasks, beating the previous
baseline by a wide margin.

3 Approach

3.1 The Log-Linear Random Walk Model
In Arora et al.’s original model (2016), words are
generated dynamically by the random walk of a
time-variant discourse vector ct 2 Rd, represent-
ing “what is being talked about”. Words are rep-
resented as vw 2 Rd. The probability of a word w
being generated at time t is given by a log-linear
production model (Mnih and Hinton, 2007):

p(w|ct) µ exp(hct ,vwi) (1)

Assuming that the discourse vector ct does not
change much over the course of the sentence,
Arora et al. replace the sequence of discourse vec-
tors {ct} across all time steps with a single dis-
course vector cs. The MAP estimate of cs is then
the unweighted average of word vectors (ignoring
any scalar multiplication).

Arora et al.’s improved random walk model
(2017) allows words to also be generated: (a) by
chance, with probability a · p(w), where a is some
scalar and p(w) is the frequency; (b) if the word
is correlated with the common discourse vector,
which represents frequent discourse such as stop-
words. We use c0 to denote the common discourse
vector, to be consistent with the literature. Among

92

other things, these changes help explain words that
appear frequently despite being poorly correlated
with the discourse vectors — words like the, for
example. The probability of a word w being gen-
erated by a discourse vector cs is then given as:

p(w|cs) = a · p(w)+(1�a) · exp(hecs,vwi)
Zecs

,

where ecs , b · c0 +(1�b) · cs,c0 ? cs

Zecs , Â
w02V

exp(hecs,vw0 i)

where a,b are scalar hyperparameters, V is the
vocabulary, ecs is a linear combination of the dis-
course and common discourse vectors parameter-
ized by b , and Zecs is the partition function.

The sentence embedding for a sentence is de-
fined as the MAP estimate of the discourse vec-
tor cs that generated the sentence. To compute
this tractably, Arora et al. (2017) assume that word
vectors vw are roughly uniformly dispersed in the
latent space. This implies that the partition func-
tion Zecs is roughly the same for all ecs, allowing
it to be replaced with a constant Z. Assuming a
uniform prior over ecs, the maximum likelihood es-
timator for ecs on the unit sphere (ignoring normal-
ization) is then approximately proportional to:

1
|s| Â

w2s

a
a+ p(w)

· vw,where a , 1�a
a ·Z

Since Z cannot be evaluated, and a is not
known, a is a hyperparameter that needs tuning.
This weighting scheme is called smoothed inverse
frequency (SIF) and places a lower weight on more
frequent words. The first principal component of
all {ecs} in the corpus is used as the estimate for the
common discourse vector c0. The final discourse
vector cs is then produced by subtracting the pro-
jection of the weighted average on the common
component (common component removal):

cs , ecs�projc0
ecs

Arora et al. call their approach unsupervised, but
others (Cer et al., 2017) have correctly noted that
it is weakly supervised, since the hyperparameter
a needs to be tuned on a validation set.

3.2 The Confounding Effect of Vector Length
We now propose worst-case scenarios where word
vector length clearly distorts p(s|cs) due to the un-
derlying log-linear word production model. Note

that we discuss these scenarios because they are
illustrative, not because they circumscribe the uni-
verse of all scenarios in which word vector length
has a confounding effect.

Consider a sentence g comprising two rare
words x and y, where x and y have zero similar-
ity. Also consider some sentence h, where the only
word z appears twice. g might not occur natu-
rally, but its weighted average ecg would be simi-
lar to that of some longer sentence where x,y are
the only non-stopwords (i.e., those with non-neg-
ligible weight). For simplicity, further assume that
common component removal has negligible effect:

hvx,vyi= 0

cg = ecg =
1
2

✓
a

a+ p(x)
· vx +

a
a+ p(y)

· vy

◆

ch = ech =
a

a+ p(z)
· vz

(2)

Words x,y,z are so infrequent that the probability
of them being produced by chance or by the com-
mon discourse vector is negligible; the likelihood
of them being produced is therefore proportional
to the inner product of the discourse and word vec-
tors. Given that the words x,y 2 g have zero simi-
larity, and given that the only word z 2 h is identi-
cal to its discourse vector, we would expect:

p(h|ch)� p(g|cg) (3)

However, (3) does not always hold. Suppose that
the word embeddings lie in R2. Then any scalar k
can be used to create a valid set of assignments for
word embeddings vx,vy,vz that satisfy (2):

vx =

2k
0

�
,vy =

0
2k

�
,vz =

k
k

�
(4)

Assuming the words x,y,z have roughly the same
frequency, they should have the same SIF-weight.
Then the weighted averages, and by extension the
discourse vectors (2), are the same:

cg = ch =
a

a+ p(x)

k
k

�

)hcg,xi= hcg,yi= hch,zi=
a

a+ p(x)
·2k2

) p(g|cg) = p(h|ch)

Thus it is possible for g to be generated by dis-
course vector cg with roughly the same probability

93

as h by ch, contradicting (3). How is this possible,
given that the words in g have zero similarity with
each other while those in h are identical to each
other? The answer can be found in the word vector
lengths. Because ||vx||2 =

p
2||vz||2, and p(w|cs)

depends on the inner product of the word and dis-
course vectors (1), words with longer word vectors
are more likely to be produced. In fact, if vx and
vy were multiplied by some scalar greater than 1,
then p(h|ch) would be less than p(g|cg).

Generalizing Worst-Case Scenarios By ma-
nipulating the word vector length, we can also
come up with a more general class of assignments
that can contradict (3):

vx =

bk1s

bk2(1�s)

�
vy =

bk1(1�s)

bk2s

�
vz =

k1
k2

�

(5)

where s 2 [0,1],b 2 R,b � 2. For convenience,
we replace a

a+p(x) with C below:

cg = C
1

2 bk1
1
2 bk2

�
,ch = C

k1
k2

�

For simplicity, we assume that the words x,y,z
across the two sentences are so infrequent that the
probability of them being generated by chance is
zero. Then the conditional probabilities of the sen-
tences being generated are:

p(g|cg) µ exp(hcg,vxi+ hcg,vyi)

= exp
✓

1
2

b 2C
�
k1

2 + k2
2�
◆

p(h|ch) µ exp(hch,vzi+ hch,vzi)
= exp

�
2C
�
k1

2 + k2
2��

) b � 2) p(g|cg)� p(h|ch)

(6)

In this general formulation, not all scenarios are
worst-case. This describes a spectrum of scenar-
ios ranging from acceptable (e.g., vx = vy = vz

when b = 2,s = 0.5) to completely counter-in-
tuitive (see (4)). Though these assignments only
apply for word vectors in R2, they can easily be
extended to higher-dimensional spaces.

The confound of vector length persists for
longer, naturally occurring sentences. Ultimately,
the underlying log-linear word production model
(1) means that words with longer word vectors are
more likely to be generated. Because this con-
found is due to model design, rather than the MLE,
removing it requires redesigning the model. The
exact degree of the confound varies across sen-
tences, but in theory, it is unbounded.

3.3 An Angular Distance–Based Random
Walk Model

To address the confounding effect of word vector
length, we propose a random walk model where
the probability of observing a word w at time t is
inversely related to the angular distance between
the time-variant discourse vector ct 2 Rd and the
word vector vw 2 Rd:

p(w|ct) µ 1� arccos(cos(vw,ct))

p
,

where cos(vw,ct) ,
vw · ct

kvwk2·kctk2
(7)

where arccos(cos(vw,ct)) is the angular distance.
For the intuition behind the use of this distance
metric, note that the angular distance between two
vectors is equal to the geodesic distance between
them on the unit sphere. Thus the angular distance
can also be interpreted as the length of the short-
est path between the L2 normalized word vector
and the L2 normalized discourse vector on the unit
sphere. Since the angular distance lies in [0,p],
we divide it by p to bound it in [0,1]. Our choice
of angular distance – as opposed to, say, the expo-
nentiated cosine similarity – is critical to avoiding
hyperparameter tuning.

Assuming that the discourse vector ct does not
change much over the course of the sentence, the
sequence of discourse vectors {ct} across all time
steps can be replaced with a single discourse vec-
tor cs for the sentence s. To model sentences more
realistically, we allow words to be generated in
two additional ways, as proposed in Arora et al.
(2017): (a) by chance, with probability a · p(w),
where a is some scalar and p(w) is the frequency;
(b) if the word is correlated with one of m common
discourse vectors {c0m}, which represent various
types of frequent discourse, such as stopwords.
The probability of a word w being generated by
discourse vector cs is then:

p(w|cs) = a · p(w)+(1�a) · d (ecs,vw)

Zecs

,

where ecs , (1�b)cs +b
m

Â
i=1

li c0i, cs ? c0i

d (ecs,vw) , 1� arccos(cos(vw,ct))

p
,

Zecs , Â
w02V

d (ecs,vw0)

(8)

where a,b ,{li} are scalar hyperparameters, V is
the vocabulary, ecs is a linear combination of the

94

discourse and common discourse vectors parame-
terized by b and {li}, and Zecs is the partition func-
tion. Instead of searching for the optimal hyperpa-
rameter values over some large space, as Arora et
al. (2017) did, we make some simple assumptions
to directly compute them.

We define the sentence embedding for some
sentence s to be the MAP estimate of the discourse
vector cs that generates s. Assuming a uniform
prior over possible cs, the MAP estimate is also
the MLE estimate for cs. The log-likelihood of a
sentence s is:

log p(s|cs) = Â
w2s

log p(w|cs)

To maximize log p(s|cs), we can approximate
log p(w|cs) using a first-degree Taylor polynomial:

fw(ecs) , log p(w|ecs)

— fw(ecs) =

1�a

p ·Zecs · exp(fw(ecs))

� ∂
∂ ecs

cos(vw, ecs)p
1� cos2 (vw, ecs)

,

∂
∂ ecs

cos =
vw

kvwk2·kecsk2
� cos(vw, ecs)

ecs

kecsk2
2

Where a , (1�a)/(aZecs), C is a constant, and v0w
is a vector orthogonal to vw with length kvwk�1:

fw(ecs)⇡ fw(v0w)+— fw(v0w)
| �ecs� v0w

�

= C +
a

p ·
�

p(w)+ 1
2 ·a
� · vw

�
ecs� v0w

�

= C +
1
p

a

p(w)+ 1
2 ·a
hecs,vwi

!

The MLE for ecs on the unit sphere (ignoring nor-
malization) is then approximately proportional to:

1
|s| Â

w2s

a
p(w)+ 1

2 a
· vw (9)

The MLE of ecs is approximately a weighted av-
erage of word vectors, where more frequent words
are down-weighted. In fact, it very closely re-
sembles the SIF weighting scheme (Arora et al.,
2017)! However, there are two key differences.
For one, as we show later in this subsection, we
have derived this weighting scheme from a model
that is robust to the confounding effect of word
vector length. Secondly, in SIF, a is a hyperpa-
rameter that needs to be tuned on a validation set.
We now show that in our approach, we can calcu-
late a directly as a function of the vocabulary V
and the number of words in the sentence, |s|.

Normalization Before weighting the word vec-
tors, we normalize them along each dimension:
we construct a matrix [vw1 ...ww|s|] and take the L2
norm of each row, which corresponds to a sin-
gle dimension in Rd. We then multiply this d-
dimensional vector element-wise with every vec-
tor in the sentence. This helps reduce the differ-
ence in variance across the dimensions.

Partition Function To calculate Zecs , we borrow
the key assumption from Arora et al. (2017) that
the word vectors vw are roughly uniformly dis-
persed in the latent space. Then the expected
geodesic distance between a latent discourse vec-
tor and a word vector on the unit sphere is p/2, so
Ew02V [d (ecs,vw0)] = 1

2 . Then:

Zecs = Â
w02V

d (ecs,vw0)

= |V| Ew02V [d (ecs,vw0)] =
1
2
|V|

(10)

Odds of Random Production a is the proba-
bility that a word w will be produced by chance
instead of by the discourse or common discourse
vectors. To estimate a , we first consider the prob-
ability that a random word w will be produced by
a discourse vector cs at least once over n steps of a
random walk:

p(w|c1
s , ...,c

n
s) = 1�

n

’
t=1

1� d(ct

s,vw)

Zcs

�

Ew⇠V [p(w|c1
s , ...,c

n
s)] = 1�

✓
1� 1

|V|

◆n

The number of steps taken during the random walk
is itself a random variable, so we let n = Es2S|s|.
We assume that if the frequency is greater than this
expectation, then the word is always produced by
chance; less than this expectation, and it is always
produced by the discourse or common discourse
vectors. a is the proportion of the vocabulary with
p(w) above this threshold:

a =
Âw2V

⇥
p(w) > Ew⇠V [p(w|c1

s , ...,c
n
s)]
⇤

|V|
(11)

Since we can directly calculate Zecs and a , we can
also directly calculate a = (1�a)/(aZecs).

Common Discourse Vectors We estimate the m
common discourse vectors as the first m singular
vectors from the singular value decomposition of

95

the weighted average vectors. {li} are the weights
on the common discourse vectors. In reality, these
are unique to the word for which p(w|cs) is being
evaluated. However, we let li be:

li =
s2

i

Âm
j s2

j

where si is the singular value for c0i. li can be in-
terpreted as the proportion of variance explained
by {c01, ...,c

0
m} that is explained by c0i. If removing

the common discourse vectors is a form of denois-
ing (Arora et al., 2017), increasing m, in theory,
should improve results. Because the variance ex-
plained by a singular vector falls with every ad-
ditional vector that is included, the choice of m
is thus a trade-off between variance explained and
computational cost. When m = 1, this is equiva-
lent to the removal in Arora et al. (2017). We fix
m at 5, since we find empirically that singular vec-
tors beyond that do not explain much more vari-
ance. To get cs, we subtract from ecs the weighted
projection on each singular vector:

cs , ecs�
m

Â
i=1

li projc0i ecs

We call this piecewise common component re-
moval. Because our weighting scheme requires
no hyperparameter tuning, it is completely unsu-
pervised. For this reason, we call it unsupervised
smoothed inverse frequency (uSIF). The full algo-
rithm is given in Algorithm 1.

Note that while it is certainly possible to tune
the hyperparameters in our model to achieve op-
timal results, it is not necessary to do so, which
allows our method to be used when there is no la-
belled data. By contrast, in Arora et al.’s model
(2017), hyperparameter tuning is a necessity.

Confound of Vector Length To understand
why this model is not prone to the confound of
word vector length, we reconsider the class of as-
signments for vx,vy,vz in (5) and the resulting val-
ues for ecg and ech. Recall that in our example, sen-
tence g comprises words x,y and sentence h com-
prises two instances of the word z. Under our new
weighting scheme, C in (5) is replaced with C0 =

a
p(x)+ 1

2 a
. Note that we use p(x) in C0 because of the

simplifying assumption that p(x) = p(y) = p(z).
Assuming again that p(x) ⇡ 0 and that piecewise
common component removal has negligible effect,

Algorithm 1 uSIF Sentence Embedding
Input: vocabulary V , word vectors {vw : w 2 V},
frequencies {p(w) : w 2 V}, sentences S
Output: sentence embeddings {cs : s 2 S}

1: procedure EMBED

2: m 5
3: n Es2S|s|
4: for all s 2 S do

5: a Âw2V
h

p(w)>1�
⇣

1� 1
|V |

⌘ni

|V |
6: Z |V|/2
7: a (1�a)/(a ·Z)
8: ecs 1

|s| Âw2s
a

p(w)+ 1
2 a

vw

9: end for
10: A

�
fcs1 . . .fcsn

�

11: for all i in 1...m do
12: c0i ith singular vector of A
13: si ith singular value of A
14: end for
15: for all i in 1...m do
16: li s2

i
Âm

j s2
j

17: end for
18: for all s 2 S do
19: cs ecs�Âm

i=1 li projc0i ecs

20: end for
21: end procedure

we can see how p(g|cg) and p(h|ch) change in our
random walk model:

p(g|cg) µ ’
w2{x,y}

✓
1� arccos(cos(cg,vw))

p

◆

p(h|ch) µ
✓

1� arccos(cos(ch,vz))

p

◆2

= 1

Because p(g|cg) is ultimately based on the cosine
similarities between the discourse vector and word
vectors, it is a function of the parameter s 2 [0,1]
that controls the degree of similarity between vx

and vy. For example, for the worst-case assign-
ments (4), p(g|cg) µ 9/16. Conversely, when
vx = vy = vz, we get p(g|cg) = p(h|ch) µ 1. Re-
call that in Arora et al.’s model (2017), b � 2 was
sufficient to ensure the counter-intuitive result of
p(g|cg) � p(h|ch) (6), where b was a scalar that
controlled the word vector length. In contrast, in
our random walk model, the effect of b – and thus
the confound of vector length – is entirely absent;
only the similarity between the word vectors is in-
fluential.

96

4 Results and Discussion

4.1 Textual Similarity Tasks
We test our approach on the SemEval semantic
textual similarity (STS) tasks (2012-2015) (Agirre
et al., 2012, 2013, 2014, 2015), the SemEval 2014
Relatedness task (SICK’14) (Marelli et al., 2014),
and the STS Benchmark dataset (Cer et al., 2017).
In these tasks, the goal is to determine the seman-
tic similarity between a given pair of sentences;
the evaluation criterion is the Pearson correlation
coefficient between the predicted and actual sim-
ilarity scores. To predict the similarity score, we
simply encode each sentence and take the cosine
similarity of their vectors. The individual scores
for STS tasks are in Table 4 in the Appendix and
the average scores are in Table 1. The STS bench-
mark scores are in Table 2. We compare our re-
sults with those from several methods, which are
categorized by Cer et al. (2017) as ‘unsupervised’,
‘weakly supervised’, or ‘supervised’.

4.2 Experimental Settings
For a fair comparison with Arora et al. (2017),
we use the unigram probability distribution used
by them, based on the enwiki dataset (Wikipedia,
3B words). Our preprocessing of the sentences is
limited to tokenization. We try our method with
three types of word vectors: GloVe vectors (Pen-
nington et al., 2014), PARAGRAM-SL999 (PSL)
vectors (Wieting et al., 2015), tuned on the Sim-
Lex999 dataset, and ParaNMT-50 vectors (Wiet-
ing and Gimpel, 2017a), tuned on 51M English-
English sentence pairs translated from English-
Czech sentence pairs. The value of n in (11) is
Es2S|s| ⇡ 11 and was estimated using sentences
from all corpora. The value of a in (9) is then
1.2⇥ 10�3. Our results are denoted as X+UP,
where X 2 {‘GloVe’, ‘PSL’, ‘ParaNMT’}, U de-
notes uSIF-weighting, and P denotes piecewise
common component removal.

4.3 Results
Our model outperforms Arora et al.’s by up to
44.4% on individual tasks (see GloVe+UP vs.
GloVe+WR for the STS’12 MSRpar task in Ta-
ble 4) and by up to 15.5% on yearly averages (see
GloVe+UP vs. GloVe+WR for STS’12 in Table 1).
Our approach proves most useful in cases where
Arora et al. (2017) underperform others, such as
for STS’12, where our models – GloVe+UP and
PSL+UP – outperform their equivalents in Arora

Model STS’12 STS’13 STS’14 STS’15 SICK14
Wieting et al. (2016b) - unsupervised
PP 58.7 55.8 70.9 75.8 71.6
PP-XXL 61.5 58.9 73.1 77.0 72.7
tfidf-GloVe 58.7 52.1 63.8 60.6 69.4
skip-thought 30.8 24.8 31.4 31.0 49.8
Arora et al. (2017) - weakly supervised
GloVe+WR 56.2 56.6 68.5 71.7 72.2
PSL+WR 59.5 61.8 73.5 76.3 72.9
Wieting et al.(2017b) - weakly supervised
LSTM AVG 64.8 63.1 75.8 76.7 71.3
AVG 61.6 59.4 75.8 77.9 72.4
GRAN 62.5 63.4 75.9 77.7 72.9
Conneau et al. (2017) - unsupervised (transfer learning)
InferSent (AllSNLI) 58.6 51.5 67.8 68.3 -
InferSent (SNLI) 57.1 50.4 66.2 65.2 -
Wieting et al. (2017a) - unsupervised
ParaNMT Word Avg. 66.2 61.8 76.2 79.3 -
ParaNMT BiLSTM Avg. 67.4 60.3 76.4 79.7 -
ParaNMT Trigram-Word 67.8 62.7 77.4 80.3 -
Our Approach - unsupervised
GloVe+UP 64.9 63.6 74.4 76.1 73.0
PSL+UP 65.8 65.2 75.9 77.6 72.3
ParaNMT+UP 68.3 66.1 78.4 79.0 73.5

Table 1: Average results (Pearson’s r⇥ 100) on
textual similarity tasks. The highest score in each
column is in bold. “Glove+UP” is the application
of uSIF-weighting (U) and piecewise common
component removal (P) to GloVe word vectors;
“PSL+UP’ to PSL word vectors; “ParaNMT+UP”,
to ParaNMT word vectors.

et al.’s results by 15.5% and 10.6% respectively.
On average, our approach outperforms Arora et
al.’s by around 7.6%, but the improvement is
highly variable. This may be because the hy-
perparameter values we derived may be closer to
the optima for some corpora more than others or
because our other improvements – normalization
and piecewise common component removal – are
more effective for certain datasets.

Our best model, ParaNMT+UP, is also com-
petitive with the state-of-the-art model, ParaNMT
Trigram-Word, an average of trigram and word
embeddings tuned on the ParaNMT-dataset.
ParaNMT+UP outperforms ParaNMT Tri-
gram-Word on STS’12, STS’13, and STS’14; it
is narrowly outperformed on STS’15 and the STS
benchmark. ParaNMT Trigram-Word’s inclusion
of trigram embeddings gives it an edge over
our model for out-of-vocabulary words (Wieting
and Gimpel, 2017a). It should be noted that
ParaNMT+UP outperforms both ParaNMT Word
Avg. and ParaNMT BiLSTM Avg., implying
that our model composes words better than both
simple averaging and BiLSTMs. Similarly, our
model PSL+UP outperforms PP-XXL (Wieting
et al., 2016b), despite the latter using the same
word vectors and a learned projection instead.

Ablation Study On average, our weighting
scheme alone is responsible for a roughly 4.4%

97

Unsupervised
Doc2Vec DBOW (Le and Mikolov, 2014) 64.9
GloVe+UP 71.5
Charagram (Wieting et al., 2016a) 71.6
Paragram-Phrase (Wieting et al., 2016b) 73.2
PSL+UP 74.8
Sent2vec (Pagliardini et al., 2017) 75.5
InferSent (bi-LSTM trained on SNLI) (Conneau et al., 2017) 75.8
ParaNMT Word Avg. (Wieting and Gimpel, 2017a) 79.2
ParaNMT BiLSTM Avg. (Wieting and Gimpel, 2017a) 79.2
ParaNMT+UP 79.5
ParaNMT Trigram-Word Addition (Wieting and Gimpel, 2017a) 79.9

Weakly Supervised
GloVe+WR (Arora et al., 2017) 72.0
GRAN (Wieting and Gimpel, 2017b) 76.4

Supervised
Constituency Tree-LSTM (Tai et al., 2015) 71.9
CNN (HCTI) (Shao, 2017) 78.4

Table 2: Results (Pearson’s r⇥ 100) on the STS
Benchmark dataset. The highest score is in bold.
The scores of our approaches are underlined.

improvement over Arora et al. The piecewise
common component removal alone is responsible
for a roughly 5.1% improvement, and the normal-
ization alone is responsible for a roughly 6.7% im-
provement. This suggests that the benefits of our
individual contributions have much overlap. The
choice of tuned word vectors (e.g., ParaNMT over
GloVe) can also improve results by up to 11.2%.

4.4 Supervised Tasks

We also test our approach on three supervised
tasks: the SICK similarity task (SICK-R), the
SICK entailment task (SICK-E), and the Stan-
ford Sentiment Treebank (SST) binary classifica-
tion task (Socher et al., 2013). To a large ex-
tent, performance on these tasks depends on the
architecture that is trained with the sentence em-
beddings. We take the embeddings that perform
best on the textual similarity tasks, ParaNMT+UP,
and follow the setup in Wieting et al. (2016b). As
seen in Table 3, both SIF-weighting with com-
mon component removal (Arora et al., 2017) and
uSIF-weighting with piecewise common compo-
nent removal (ours) perform slightly better than
simple word averaging, but not as well as more so-
phisticated models. Past work has found that tun-
ing the word embeddings in addition to the param-
eters of the model yields much better performance
(Wieting et al., 2016b), as does increasing the size
of the hidden layer in the classifier (Arora et al.,
2017). The results here, however, suggest that re-
gardless of such changes, our approach would not
be any more effective than Arora et al.’s on these
tasks. Still, our approach retains the advantage of
being a completely unsupervised method that can
be used when there is no labelled data.

Model SST SICK-R SICK-E
ParaNMT-based (Wieting and Gimpel, 2017a)
ParaNMT Word Avg. (300d) 80.0 83.6 80.6
ParaNMT Trigram Avg. (300d) 73.6 79.3 78.0
ParaNMT LSTM Avg. (300d) 80.6 83.9 81.9
LSTM (600d) 80.0 85.2 82.6
LSTM (900d) 81.6 86.0 83.0
BiLSTM (600d) 79.1 85.4 84.3
BiLSTM (900d) 81.3 85.8 84.4
Trigram-Word (600d, concatenation) 79.7 84.6 82.0
Trigram-Word-LSTM (900d, concatenation) 82.0 85.4 83.8
BILSTM AVG (4096) 82.8 85.9 83.8
ParaNMT+WR† (Arora et al., 2017) 80.5 83.9 80.9
ParaNMT+UP† (ours) 80.7 83.8 81.1
Other Approaches
BiLSTM-Max (on AllNLI) (Conneau et al., 2017) 84.6 88.4 86.3
skip-thought (Kiros et al., 2015) 82.0 85.8 82.3
BYTE mLSTM (Radford et al., 2017) 91.8 79.2 -

Table 3: Results on the SST, SICK-R, and SICK-E
tasks. The best score for each task is bolded. †
indicates our implementation.

5 Future Work

There are several possibilities for future work. For
one, the values we derived for Zecs ,a,a and {li}
are not necessarily optimal. While they are based
on reasonable assumptions, there are likely sen-
tence-specific and task-specific values that yield
better results. Hyperparameter search is one way
of finding these values, but that would require su-
pervision. It may be possible, however, to theoret-
ically derive more optimal values.

6 Conclusion

We first showed that word vector length has a
confounding effect on the log-linear random walk
model of generating text (Arora et al., 2017), the
basis of a strong baseline method for sentence em-
beddings. We then proposed an angular distance–
based random walk model where the probability
of a sentence being generated is robust to distor-
tion from word vector length. From this model, we
derived a simple approach for creating sentence
embeddings: normalize the word vectors, com-
pute a weighted average, and then modify it using
SVD. Unlike in Arora et al., our approach does
not require hyperparameter tuning – it is com-
pletely unsupervised and can therefore be used
when there is no labelled data. Our approach out-
performs Arora et al.’s by up to 44.4% on tex-
tual similarity tasks and is even competitive with
state-of-the-art methods. Because our simple ap-
proach is tough-to-beat, robust, and unsupervised,
it is an ideal baseline for computing sentence em-
beddings.

98

Acknowledgments

We thank the Natural Sciences and Engineering
Research Council of Canada (NSERC) for finan-
cial support. We thank John Wieting for provid-
ing pre-trained ParaNMT word embeddings and
Graeme Hirst for his many insightful suggestions.

References
Eneko Agirre, Carmen Banea, Claire Cardie, Daniel M

Cer, Mona T Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Inigo Lopez-Gazpio, Montse Maritxalar, Rada
Mihalcea, et al. 2015. Semeval-2015 task 2: Seman-
tic textual similarity, English, Spanish and pilot on
interpretability. In Proceedings SemEval@ NAACL-
HLT, pages 252–263.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel M
Cer, Mona T Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Rada Mihalcea, German Rigau, and Janyce
Wiebe. 2014. Semeval-2014 task 10: Multilin-
gual semantic textual similarity. In Proceedings Se-
mEval@ COLING, pages 81–91.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-
Agirre, and Weiwei Guo. 2013. Sem 2013 shared
task: Semantic textual similarity, including a pilot
on typed-similarity. In SEM 2013: The Second Joint
Conference on Lexical and Computational Seman-
tics. Association for Computational Linguistics.

Eneko Agirre, Mona Diab, Daniel Cer, and Aitor
Gonzalez-Agirre. 2012. Semeval-2012 task 6: A pi-
lot on semantic textual similarity. In Proceedings of
the First Joint Conference on Lexical and Computa-
tional Semantics-Volume 1: Proceedings of the main
conference and the shared task, and Volume 2: Pro-
ceedings of the Sixth International Workshop on Se-
mantic Evaluation, pages 385–393. Association for
Computational Linguistics.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma,
and Andrej Risteski. 2016. A latent variable model
approach to PMI-based word embeddings. Transac-
tions of the Association for Computational Linguis-
tics, 4:385–399.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017.
A simple but tough-to-beat baseline for sentence em-
beddings. In International Conference on Learning
Representations.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of Machine Learning Re-
search, 3(Feb):1137–1155.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity-multilingual and
cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th International Conference on
Machine Learning, pages 160–167. ACM.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. arXiv preprint
arXiv:1705.02364.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics, pages 655–665.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In Ad-
vances in Neural Information Processing Systems,
pages 3294–3302.

Quoc Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. In Proceed-
ings of the 31st International Conference on Ma-
chine Learning (ICML-14), pages 1188–1196.

Thang Luong, Richard Socher, and Christopher D
Manning. 2013. Better word representations with
recursive neural networks for morphology. In
SIGNLL Conference on Computational Natural
Language Learning (CoNLL), pages 104–113.

Marco Marelli, Luisa Bentivogli, Marco Baroni, Raf-
faella Bernardi, Stefano Menini, and Roberto Zam-
parelli. 2014. Semeval-2014 task 1: Evaluation of
compositional distributional semantic models on full
sentences through semantic relatedness and textual
entailment. In Proceedings SemEval@ COLING,
pages 1–8.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems, pages 3111–3119.

Jeff Mitchell and Mirella Lapata. 2008. Vector-based
models of semantic composition. In Proceedings of
the 46th Annual Meeting of the Association for Com-
putational Linguistics, pages 236–244.

Andriy Mnih and Geoffrey Hinton. 2007. Three new
graphical models for statistical language modelling.
In Proceedings of the 24th International Conference
on Machine Learning, pages 641–648. ACM.

Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi.
2017. Unsupervised learning of sentence embed-
dings using compositional n-gram features. arXiv
preprint arXiv:1703.02507.

99

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543.

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever.
2017. Learning to generate reviews and discovering
sentiment. arXiv preprint arXiv:1704.01444.

Yang Shao. 2017. Hcti at semeval-2017 task 1:
Use convolutional neural network to evaluate se-
mantic textual similarity. In Proceedings of the
11th International Workshop on Semantic Evalua-
tion (SemEval-2017), pages 130–133.

Richard Socher, Eric H Huang, Jeffrey Pennin, Christo-
pher D Manning, and Andrew Y Ng. 2011. Dy-
namic pooling and unfolding recursive autoencoders
for paraphrase detection. In Advances in Neural In-
formation Processing Systems, pages 801–809.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1631–1642.

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2016a. Charagram: Embedding words and
sentences via character n-grams. arXiv preprint
arXiv:1607.02789.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2016b. Towards universal paraphrastic
sentence embeddings. In International Conference
on Learning Representations.

John Wieting, Mohit Bansal, Kevin Gimpel, Karen
Livescu, and Dan Roth. 2015. From paraphrase
database to compositional paraphrase model and
back. Transactions of the Association for Compu-
tational Linguistics, 3:345–358.

John Wieting and Kevin Gimpel. 2017a. Pushing
the limits of paraphrastic sentence embeddings with
millions of machine translations. arXiv preprint
arXiv:1711.05732.

John Wieting and Kevin Gimpel. 2017b. Revisiting re-
current networks for paraphrastic sentence embed-
dings. arXiv preprint arXiv:1705.00364.

100

Proceedings of the 3rd Workshop on Representation Learning for NLP, pages 101–106
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

Evaluating Word Embeddings
in Multi-label Classification

Using Fine-grained Name Typing

Yadollah Yaghoobzadeh1 Katharina Kann2 Hinrich Schütze3

1Mirosoft Research, Montreal, Canada
2Center for Data Science, New York University, USA

3CIS, LMU Munich, Germany
yayaghoo@microsoft.com

Abstract

Embedding models typically associate
each word with a single real-valued vector,
representing its different properties. Eval-
uation methods, therefore, need to analyze
the accuracy and completeness of these
properties in embeddings. This requires
fine-grained analysis of embedding sub-
spaces. Multi-label classification is an ap-
propriate way to do so. We propose a new
evaluation method for word embeddings
based on multi-label classification given a
word embedding. The task we use is fine-
grained name typing: given a large cor-
pus, find all types that a name can refer
to based on the name embedding. Given
the scale of entities in knowledge bases,
we can build datasets for this task that are
complementary to the current embedding
evaluation datasets in: they are very large,
contain fine-grained classes, and allow the
direct evaluation of embeddings without
confounding factors like sentence context.

1 Introduction

Distributed representation of words, aka word em-
bedding, is an important element of many natu-
ral language processing applications. The qual-
ity of word embeddings is assessed using differ-
ent methods. Baroni et al. (2014) evaluate word
embeddings on different intrinsic tests: similarity,
analogy, synonym detection, categorization and
selectional preference. Different concept catego-
rization datasets are introduced. These datasets
are small (<500) (Baroni et al., 2014; Rubinstein
et al., 2015) and therefore measure the goodness
of embeddings by the quality of their clustering.
Usually cosine is used as the similarity metric be-
tween embeddings, ignoring subspace similarities.

Figure 1: Types (ellipses; green) of the entities
(rectangles; red), to which the name “Washington”
can refer. Ideally, the embedding for “Washing-
ton” should represent all these types.

Extrinsic evaluations are also used, cf. Li and Ju-
rafsky (2015). In these tasks, embeddings are used
in context/sentence representations with composi-
tion involved.

In this paper, we propose a new evaluation
method. In contrast to the prior work on intrin-
sic evaluation, our method is supervised, large-
scale, fine-grained, automatically built, and eval-
uates embeddings in a classification setting where
different subspaces of embeddings need to be an-
alyzed. In contrast to the prior work on extrin-
sic evaluation, we evaluate embeddings in iso-
lation, without confounding factors like sentence
contexts or composition functions.

Our evaluation is based on an entity-oriented
task in information extraction (IE). Different ar-
eas of IE try to predict relevant data about entities
from text, either locally (i.e., at the context-level),
or globally (i.e., at the corpus-level). For exam-
ple, local (Zeng et al., 2014) and global (Riedel
et al., 2013) in relation extraction, or local (Ling
and Weld, 2012) and global (Yaghoobzadeh and
Schütze, 2015) in entity typing. In most global
tasks, each entity is indexed with an identifier (ID)
that usually comes from knowledge bases such as

101

Freebase. Exceptions are tasks in lexicon genera-
tion or population like entity set expansion (ESE)
(Thelen and Riloff, 2002), which are global but
without entity IDs. ESE usually starts from a few
seed entities per set and completes the set using
pattern-based methods.

Here, we address the task of fine-grained name
typing (FNT), a global prediction task, operat-
ing on the surface names of entities. FNT and
ESE share applications in name lexicon popula-
tion. FNT is different from ESE because we as-
sume to have sufficient training instances for each
type to train supervised models.

The challenging goal of FNT is to find the types
of all entities a name can refer to. For example,
”Washington” might refer to several entities which
in turn may belong to multiple types, see Figure 1.
In this example, “Washington” refers to “Washing-
ton DC (city)”, “Washington (state)”, or “George
Washington (president)”. Also, each entity can be-
long to several types, e.g., “George Washington”
is a POLITICIAN, a PERSON and a SOLDIER, or
“Washington (state)” is a STATE and a LOCATION.

Learning global representations for entities is
very effective for global prediction tasks in IE (cf.,
Yaghoobzadeh and Schütze (2015)). For our task,
FNT, we also learn a global representation for each
name. By doing so, we see this task as a chal-
lenging evaluation for embedding models. We in-
tend to use FNT to answer the following questions:
(i) How well can embeddings represent distinctive
information, i.e., different types or senses? (ii)
Which properties are important for an embedding
model to do well on this task?

We build a novel large-scale dataset of (name,
types) from Freebase with millions of examples.
The size of the dataset enables supervised ap-
proaches to work, an important requirement to be
able to look at different subspaces of embeddings
(Yaghoobzadeh and Schütze, 2016). Also, in FNT
names are—in contrast to concept categorization
datasets—multi-labeled, which requires to look at
multiple subspaces of embeddings.

In summary, our contributions are (i) introduc-
ing a new evaluation method for word embed-
dings (ii) publishing a new dataset that is a good
resource for evaluating word embeddings and is
complementary to prior work: it is very large, con-
tains more different classes than previous word
categorization datasets, and allows the direct eval-
uation of embeddings without confounding factors

like sentence context1.

2 Related Work

Embedding evaluation. Baroni et al. (2014) eval-
uate embeddings on different intrinsic tests: simi-
larity, analogy, synonym detection, categorization
and selectional preference. Schnabel et al. (2015)
introduce tasks with more fine-grained datasets.
The concept categorization datasets used for em-
bedding evaluation are mostly small (<500) (Ba-
roni et al., 2014) and therefore measure the good-
ness of embeddings by the quality of their clus-
tering. In contrast, we test embeddings in a clas-
sification setting and different subspaces of em-
beddings are analyzed. Extrinsic evaluations are
also used (Li and Jurafsky, 2015; Köhn, 2015; Lai
et al., 2015). In most tasks, embeddings are used
in context/sentence representations with composi-
tion involved. In this work, we evaluate embed-
dings in isolation, on their ability to represent mul-
tiple senses.

Related tasks and datasets. Our proposed task
is fine-grained name typing (FNT). A related task
is entity set expansion (ESE): given a set of a few
seed entities of a particular class, find other enti-
ties (Thelen and Riloff, 2002; Gupta and Manning,
2014). We can formulate FNT as ESE, however,
there is a difference in the training data assump-
tion. For our task, we assume to have enough in-
stances for each type available, and, therefore, to
be able to use a supervised learning approach. In
contrast, for ESE, mostly only 3-5 seeds are given
as training seeds for a set, which makes an evalu-
ation like ours impossible.

Named entity recognition (NER) consists of rec-
ognizing and classifying mentions of entities lo-
cally in a particular context (Finkel et al., 2005).
Recently, there has been increased interest in fine-
grained typing of mentions (Ling and Weld, 2012;
Yogatama et al., 2015; Ren et al., 2016; Shimaoka
et al., 2016). One way of solving our task is to col-
lect every mention of a name, use NER to predict
the context-dependent types of mentions, and then
take all predictions as the global types of the name.
However, our focus in this paper is on how em-
bedding models perform and propose this task as
a good evaluation method. We leave the compari-
son to an NER-based approach for future work.

Corpus-level fine-grained entity typing is the

1Our dataset is available at: https://github.com/
yyaghoobzadeh/name_typing

102

task of predicting all types of entities based on
their mentions in a corpus (Yaghoobzadeh and
Schütze, 2015; Yaghoobzadeh and Schütze, 2017;
Yaghoobzadeh et al., 2018). This is similar to
our task, FNT, but in FNT the goals is to find the
corpus-level types of names. Corpus-level entity
typing has also been used for embedding evalu-
ation (Yaghoobzadeh and Schütze, 2016). How-
ever, they need an annotated corpus with entities.
For FNT, however, pretrained word embeddings
are sufficient for the evaluation.

Finally, there exists some previous work on
FNT, e.g., Chesney et al. (2017). In contrast to
us, they do not explicitly focus on the evaluation
of embedding models, such that their dataset only
contains a limited number of types. In contrast, we
use 50 different types, making our dataset suitable
for the type of evaluation intended.

3 Multi-label Classification of Word
Embeddings

Word embeddings are global representations of
word properties learned from the context distribu-
tion of words. Words are usually ambiguous and
belong to multiple classes, e.g., multiple part-of-
speech tags or multiple meanings. A good word
embedding should represent all information about
the word, including its multiple classes. Our eval-
uation methodology is based on this hypothesis
and tries to test this through multi-label classifi-
cation of word embeddings. Here, we focus on the
semantic property of nouns and entity names. We
try to find all categories or types of a noun given
its embedding.

Multi-label classification of embedding has
multiple advantages over current evaluation meth-
ods: (i) large datasets can be created without much
human annotation; (ii) more fine-grained analysis
of the results is possible through analyzing classi-
fication performance; (iii) it allows the direct eval-
uation of embeddings without confounding factors
like sentence context.

4 Fine-grained Name Typing

We assume to have the following: a set of names
N , a set of types T and a membership functionm :
N ×T 7→ {0, 1} such that m(n, t) = 1 iff name n
has type t; and a large corpus C. In this problem
setting, we address the task of fine-grained name
typing (FNT): we want to infer from the corpus for
each pair of name n and type t whether m(n, t) =

1 holds.
For example, for the name “Hamilton”, we

should find all of the following: LOCATION, OR-
GANIZATION, PERSON, CITY, SPORTS TEAM and
SOLDIER, since “Hamilton” can describe entities
belonging to those types. Another example is
“Falcon” which is used for ANIMAL, AIRPLANE,
SOFTWARE, ART. FNT sheds light on to which
level these fine-grained types can be inferred from
a corpus using embeddings.

4.1 Embedding-based Model

We aim to findP (t|n), i.e., the probability of name
n having type t. Given sufficient training instances
for each type t, we can formulate the problem as
a multi-label classification task. As input, we use
a representation for n, learned from the corpus C.
Distributional representations have shown to cap-
ture various types of information about a word, es-
pecially their categories or types (Yaghoobzadeh
and Schütze, 2015).

After learning an embedding for n, we train
two kinds of binary classifiers for each type t to
to estimate P (t|n): (i) linear: logistic regression
(LR) with stochastic gradient decent; and (ii) non-
linear: multi-layer perceptron (MLP) with one
hidden layer and ReLU as the non-linearity. We
use the Scikit-learn (Pedregosa et al., 2011) toolkit
for training our classifiers.

5 Dataset

Using Freebase (Bollacker et al., 2008), we first
retrieve the set of all entities En for each name
n.2 Then, we consider the types of all e ∈ En the
types of n. See Figure 1 for an example: all of the
shown types belong to the name ”Washington”.

Since some of the about 1,500 Freebase types
have very few instances, we map them first to
the FIGER (Ling and Weld, 2012) type-set, which
contains 113 types. We then further restrict our set
to the top 50 most frequent types. See Table 5 for
the list of types.

In order to be able to evaluate each embed-
ding on its own, we divide our dataset into single-
word (891,241 names) and multi-word (8,907,715
names). In this work, the multi-word set is not
used. We then set a frequency threshold of 100
in our lowercased Wikipedia corpus 3 and select

2What we call “names” here are either names or aliases
in the Freebase terminology.

3Our Wikipedia dump is from 2014.

103

/art, /art/film, /astral body, /biology, /broadcast network,
/broadcast program, /building, /building/restaurant, /chem-
istry, /computer/programming language, /disease, /event,
/food, /game, /geography/island, /geography/mountain,
/god, /internet/website, /living thing, /location, /loca-
tion/body of water, /location/cemetery, /location/city, /loca-
tion/county, /medicine/drug, /medicine/medical treatment,
/medicine/symptom, /music, /organization, /orga-
nization/airline, /organization/company, /organiza-
tion/educational institution, /organization/sports team,
/people/ethnicity, /person, /person/actor, /person/artist,
/person/athlete, /person/author, /person/director, /per-
son/engineer, /person/musician, /play, /product, /prod-
uct/airplane, /product/instrument, /product/ship, /software,
/title, /written work

Table 1: List of the 50 types in our FNT dataset.

#names avg #types per name
train 50,000 3.78
dev 20,000 3.77
test 30,000 3.77

Table 2: Some statistics (number of names; aver-
age number of types per name) for our name typ-
ing dataset.

randomly 100,000 of our dataset names that pass
this threshold. We then divide the names into train
(50%), dev (20%) and test (30%). Some statistics
of the single-word FNT dataset are shown in Ta-
ble 2.

6 Experiments

6.1 FNT for Embedding Evaluation

Embedding models. We choose four different
embedding models for our comparisons: (i) Skip-
Gram (henceforth SKIP) (skipgram bag-of-words
model) (Mikolov et al., 2013), (ii) CBOW (contin-
uous bag-of-words model) (Mikolov et al., 2013),
(iii) Structured SkipGram (henceforth SSKIP)
(Ling et al., 2015), (iv) CWindow (henceforth
CWIN) (continuous window model) (Ling et al.,
2015), and SSKIP and CWIN are order-aware, i.e,
they take the order of the context tokens into ac-
count, while SKIP and CBOW are bag-of-words
models.

Results and analysis. We report the results for
all embedding models using LR and MLP in Ta-
ble 3. We use the following evaluation measures,
which are used in entity typing (Yaghoobzadeh
and Schütze, 2015): (i) ACC (accuracy): percent-
age of test examples where all predictions are cor-
rect, (ii) Micro-F1: the global F1 computed over
all the predictions.

Models in lines 1-5 in Table 3 are trained on

LR MLP
ACC Micro-F1 ACC Micro-F1

1 CBOW 19.2 47.8 24.9 54.6
2 SKIP 22.6 49.3 25.2 53.5
3 CWIN 22.6 49.8 25.1 54.2
4 SSKIP 23.4 50.5 25.2 53.6

Table 3: Accuracy and micro-F1 results on FNT
for different embedding models using two classi-
fiers (LR and MLP). Best result in each column is
bold.

the Wikipedia corpus. We set the min frequency
in corpus to 100. Window size = 3; negative
sampling with n = 10. Based on the results of
LR, order-aware architectures are better than their
bag-of-words counterparts, i.e., SSKIP > SKIP
and CWIN > CBOW. Overall, SSKIP is the best
using LR classification. In MLP results, how-
ever, CBOW works best on micro-F1 measure and
SSKIP and SKIP are bests on accuracy. There
is no significant difference between CBOW and
CWIN, or SSKIP and SKIP, respectively. Over-
all, the nonlinear classifier (MLP) with one hidden
layer outperforms the linear classifier (LR) sub-
stantially, emphasizing that the encoded informa-
tion about different types is easier to extract with
stronger models.

Analysis on the number of name types. As
a separate analysis, we measure how the classifi-
cation performance depends on the N number of
types of a name. To do so, we group test names
based on their number of types. We keep the
groups that have more than 100 members. Then,
we plot the F1 results of CBOW and CWIN mod-
els trained using MLP classifier in Figure 2.

As it is shown, both models get their best results
on names with N = 2. We suppose that the bad
performance of N = 1 is related to the fact that
one-type names have missing types in our dataset
due to the incompleteness of Freebase. The worse
F1 of N >= 3 compared to N = 2 is expected
since bigger N means that the models need to pre-
dict more types from the name embeddings. From
N = 4, somewhat surprisingly the F1 increases
as N increases. This is perhaps related to the fre-
quency of names in the corpus, and its relation to
the number of names types: as N increases, the
frequency of words increases and the embedding
has a better quality. However, this is only a hy-
pothesis and more investigation is required. The
other observation is in the trend of CBOW and
CWIN results. CBOW is worse for N <= 2, but

104

Figure 2: Micro-F1 for names with different num-
ber of types.

it works clearly better for N > 2. This shows
that the embedding models behave differently for
different number of classes they belong to. This
could also be related to the frequency of words.
Analysis of the reasons would be interesting. We
leave it for the future work.

7 Conclusion

We proposed multi-label classification of word
embeddings using the task of fine-grained typing
of entity names. The dataset we built is a resource
that is complementary to prior work in embed-
ding evaluation: it is very large, its examples are
multi-labeled with very fine-grained classes, and it
allows the direct evaluation of embeddings with-
out the need for context. We analyzed the per-
formance of different embedding models on this
dataset, showing differences in their performance
as well as some of their limits in representing types
accurately and completely.

More analysis and evaluation is necessary
though, but we believe by using this kind of
dataset, we are able to do much more than what
we could do before with the small manually built
word similarity and categorization benchmarks.

References

Marco Baroni, Georgiana Dinu, and Germán
Kruszewski. 2014. Don’t count, predict! A
systematic comparison of context-counting vs.
context-predicting semantic vectors. In Proceedings
of the 52nd Annual Meeting of the Association
for Computational Linguistics, ACL 2014, pages
238–247.

Kurt D. Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a col-
laboratively created graph database for structuring

human knowledge. In Proceedings of the ACM SIG-
MOD International Conference on Management of
Data, SIGMOD 2008, Vancouver, BC, Canada, June
10-12, 2008, pages 1247–1250.

Sophie Chesney, Guillaume Jacquet, Ralf Steinberger,
and Jakub Piskorski. 2017. Multi-word entity clas-
sification in a highly multilingual environment. In
MWE.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by gibbs
sampling. In Proceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguis-
tics (ACL’05), pages 363–370, Ann Arbor, Michi-
gan. Association for Computational Linguistics.

Sonal Gupta and Christopher D. Manning. 2014. Im-
proved pattern learning for bootstrapped entity ex-
traction. In Proceedings of the Eighteenth Confer-
ence on Computational Natural Language Learning,
CoNLL 2014, Baltimore, Maryland, USA, June 26-
27, 2014, pages 98–108.

Arne Köhn. 2015. What?s in an embedding? analyzing
word embeddings through multilingual evaluation.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2067–2073, Lisbon, Portugal.

Siwei Lai, Kang Liu, Liheng Xu, and Jun Zhao. 2015.
How to generate a good word embedding? CoRR,
abs/1507.05523.

Jiwei Li and Dan Jurafsky. 2015. Do multi-sense em-
beddings improve natural language understanding?
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1722–1732, Lisbon, Portugal.

Wang Ling, Chris Dyer, Alan W. Black, and Isabel
Trancoso. 2015. Two/too simple adaptations of
word2vec for syntax problems. In NAACL HLT
2015, The 2015 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Denver,
Colorado, USA, May 31 - June 5, 2015, pages 1299–
1304.

Xiao Ling and Daniel S. Weld. 2012. Fine-grained en-
tity recognition. In Proceedings of the Twenty-Sixth
AAAI Conference on Artificial Intelligence, Toronto,
Ontario, Canada.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake VanderPlas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Edouard Duchesnay. 2011.
Scikit-learn: Machine learning in python. Journal
of Machine Learning Research, 12:2825–2830.

105

Xiang Ren, Wenqi He, Meng Qu, Lifu Huang, Heng Ji,
and Jiawei Han. 2016. Afet: Automatic fine-grained
entity typing by hierarchical partial-label embed-
ding. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1369–1378, Austin, Texas. Association
for Computational Linguistics.

Sebastian Riedel, Limin Yao, Andrew McCallum, and
Benjamin M. Marlin. 2013. Relation extraction with
matrix factorization and universal schemas. In Pro-
ceedings of the 2013 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
74–84, Atlanta, Georgia. Association for Computa-
tional Linguistics.

Dana Rubinstein, Effi Levi, Roy Schwartz, and Ari
Rappoport. 2015. How well do distributional mod-
els capture different types of semantic knowledge?
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing of the Asian Federation of Natural
Language Processing, ACL 2015, July 26-31, 2015,
Beijing, China, Volume 2: Short Papers, pages 726–
730.

Tobias Schnabel, Igor Labutov, David Mimno, and
Thorsten Joachims. 2015. Evaluation methods for
unsupervised word embeddings. In Proceedings of
the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, pages 298–307, Lisbon,
Portugal.

Sonse Shimaoka, Pontus Stenetorp, Kentaro Inui, and
Sebastian Riedel. 2016. An attentive neural ar-
chitecture for fine-grained entity type classification.
In Proceedings of the 5th Workshop on Automated
Knowledge Base Construction, pages 69–74, San
Diego, CA. Association for Computational Linguis-
tics.

Michael Thelen and Ellen Riloff. 2002. A bootstrap-
ping method for learning semantic lexicons using
extraction pattern contexts. In Proceedings of the
2002 Conference on Empirical Methods in Natural
Language Processing, pages 214–221. Association
for Computational Linguistics.

Yadollah Yaghoobzadeh, Heike Adel, and Hinrich
Schuetze. 2018. Corpus-level fine-grained entity
typing. Journal of Artificial Intelligence Research,
61:835–862.

Yadollah Yaghoobzadeh and Hinrich Schütze. 2015.
Corpus-level fine-grained entity typing using con-
textual information. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 715–725, Lisbon, Portugal.

Yadollah Yaghoobzadeh and Hinrich Schütze. 2016.
Intrinsic subspace evaluation of word embedding
representations. In Proceedings of the 54th An-
nual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 236–
246, Berlin, Germany. Association for Computa-
tional Linguistics.

Yadollah Yaghoobzadeh and Hinrich Schütze. 2017.
Multi-level representations for fine-grained typing
of knowledge base entities. In Proceedings of the
15th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Volume 1,
Long Papers, pages 578–589. Association for Com-
putational Linguistics.

Dani Yogatama, Daniel Gillick, and Nevena Lazic.
2015. Embedding methods for fine grained entity
type classification. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 291–296, Beijing, China. As-
sociation for Computational Linguistics.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou,
and Jun Zhao. 2014. Relation classification via
convolutional deep neural network. In COLING
2014, 25th International Conference on Computa-
tional Linguistics, Proceedings of the Conference:
Technical Papers, August 23-29, 2014, Dublin, Ire-
land, pages 2335–2344.

106

Proceedings of the 3rd Workshop on Representation Learning for NLP, pages 107–112
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

107

108

109

110

111

112

Proceedings of the 3rd Workshop on Representation Learning for NLP, pages 113–121
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

Exploiting Common Characters in Chinese and Japanese to
Learn Cross-lingual Word Embeddings via Matrix Factorization

Jilei Wang ∗†

Tsinghua University, China
wangjileiruc@gmail.com

Shiying Luo †

Northeastern University, China
neulsy@hotmail.com

Weiyan Shi
University of California, Berkeley, USA

wyshi@berkeley.edu

Tao Dai
Tsinghua University, China

dait14@mails.tsinghua.edu.cn

Shu-Tao Xia ∗

Tsinghua University, China
xiast@sz.tsinghua.edu.cn

Abstract

Learning vector space representation
of words (i.e., word embeddings) has
recently attracted wide research in-
terests, and has been extended to
cross-lingual scenario. Currently most
cross-lingual word embedding learn-
ing models are based on sentence
alignment, which inevitably introduces
much noise. In this paper, we show
in Chinese and Japanese, the acquisi-
tion of semantic relation among words
can benefit from the large number of
common characters shared by both lan-
guages; inspired by this unique fea-
ture, we design a method named CJC
targeting to generate cross-lingual con-
text of words. We combine CJC with
GloVe based on matrix factorization,
and then propose an integrated model
named CJ-Glo. Taking two sentence-
aligned models and CJ-BOC (also ex-
ploits common characters but is based
on CBOW) as baseline algorithms, we
compare them with CJ-Glo on a series
of NLP tasks including cross-lingual
synonym, word analogy and sentence
alignment. The result indicates CJ-Glo
achieves the best performance among
these methods, and is more stable
in cross-lingual tasks; moreover, com-
pared with CJ-BOC, CJ-Glo is less sen-
sitive to the alteration of parameters.

∗ Corresponding authors.
† Contributed equally to the paper.

1 Introduction

Word representation is critical to various NLP
tasks, and the traditional one-hot representa-
tion, despite its simplicity, suffers from at least
two aspects: the vector dimensionality in-
creases with vocabulary size, leading to “curse
of dimensionality”; more importantly, it fails
to capture the semantic relation among words.

Due to the defects of one-hot representa-
tion, the majority of research interests now
have switched to distributed word representa-
tion (also known as “word embedding”), which
represents word as a real-valued vector. Rep-
resented as vectors, the semantics of words are
better reflected, as the relatedness of words
can be quantified using vector arithmetic.

To efficiently train word embeddings, a
range of models have been proposed, most of
them targeting to train monolingual word em-
bedding. Though word embedding is often
discussed under monolingual scenario, cross-
lingual embedding can serve as a useful tool
in several NLP tasks including machine trans-
lation (Wu et al., 2016), word sense disam-
biguation (Chen et al., 2014), and so on. This
is because cross-lingual word embeddings map
words from two languages into one vector
space, thereby making it possible to measure
the semantic relation among words from dif-
ferent languages. However, compared with the
bulk of works studying monolingual word em-
bedding, cross-lingual word embedding is still
at its initial stage, with no learning model be-
ing widely accepted.

In this paper, we present a method named
CJC (Chinese-Japanese Common Character)

113

aiming to extract cross-lingual context of
words from sentence aligned Chinese-Japanese
corpus. Given the large amount of common
characters shared by both languages and the
rich semantic connections thereof, we exploit
them to acquire potential word level align-
ment. The acquired cross-lingual contexts can
be flexibly integrated with various models; in
this paper, CJC is mainly integrated with a
matrix factorization model called Glove (Pen-
nington et al., 2014), and the integrated model
is thus called CJ-Glo.

To evaluate the performance of CJ-Glo, we
take 2 sentence aligned models respectively
based on CBOW(Mikolov et al., 2013a) and
GloVe, and CJ-BOC model (based on Com-
mon Character + CBOW) (Wang et al., 2016)
as contrast, and compare the trained word em-
beddings of these methods using three typical
NLP tasks, including cross-lingual synonym,
word analogy and sentence alignment. Ac-
cording to the experiment results, the acquired
word embeddings by using CJ-Glo have better
quality than those of the other models; more-
over, CJ-Glo performs more stably than its
competitors, and is less sensitive to parame-
ter alteration.

2 Related work

Word embedding was initiated by Hinton
(1986), which essentially encodes word using
a real-valued vector. With word embeddings,
the intrinsic relatedness among words can be
explicitly measured as the distances or angles
between word pairs. This favorable feature
of word embedding soon led to its popular-
ity in industry and academia in past decades.
Specifically, word embedding has found its ap-
plications in machine translation (Wu et al.,
2016; Lample et al., 2017), word sense disam-
biguation (Chen et al., 2014; Guo et al., 2014),
information retrieval (Vulić and Moens, 2015)
and so on.

To efficiently acquire high-quality word em-
beddings, vast research efforts have therefore
emerged. A representative framework to learn
word embeddings is Neural Network Language
Model (NNLM) proposed by Bengio et al.
(2003), which adopts back-propagation when
training word embeddings and parameters for
the model. Another typical approach is matrix

factorization, whose basic idea is to approxi-
mate original matrices with low-rank matrices
by leveraging statistic information. For exam-
ple, GloVe (Pennington et al., 2014) explic-
itly factorizes the co-occurrence matrix, train-
ing only non-zero elements instead of an entire
spare matrix.

Traditionally, word embedding was studied
under monolingual setting, and then naturally
extended to bilingual scenario. Compared
with monolingual word embeddings, bilingual
word embedding reveals the internal relation
among words of different languages; and such
capability makes bilingual word embeddings a
powerful tool to assist machine translation, or
even serves as a substitute for word mapping
matrix and dictionary in previous machine
translation methods. A range of works have
been proposed to learn bilingual word embed-
dings, such as (Mikolov et al., 2013b), which
attempts to map separately trained word em-
beddings into one vector space, and acquire
bilingual word embeddings. BilBOWA is a
model proposed in (Gouws et al., 2015), whose
most notable merit is the whole training pro-
cess does not require word alignment or dic-
tionary. word alignment or dictionary. (Shi
et al., 2015) is another work that utilizes ma-
trix factorization in word embeddings learn-
ing. Ruder et al. (2017) provides a detailed
survey, which enumerates the input format
and basic principles of various bilingual word
embedding learning methods.

When it comes to non-alphabet-based lan-
guage like Chinese and Japanese, an essen-
tial difference from alphabet-based languages
is that each character in a word contains abun-
dant information, and makes sense itself. In
addition to this, an underlying correlation be-
tween Chinese and Japanese is the large por-
tion of shared characters in both languages;
with the help of these characters, Chu et al.
(2014) extracted texts from Wikipedia web
pages of Chinese and Japanese version, based
on which they then constructed a Chinese-
Japanese parallel corpus. A natural conjecture
about the common characters is the seman-
tic similarity or even equivalence among them.
In light of this, we proposed CJ-BOC model
in our previous work (Wang et al., 2016) to
learn Chinese-Japanese bilingual word embed-

114

dings, which outperforms sentence-alignment
approaches in terms of embedding quality. To
our knowledge, our previous work is the first
attempt to learn Chinese-Japanese word em-
beddings using common Chinese characters.

3 Chinese-Japanese Common
Character

Historically, Chinese character has spread to
a group of countries in East Asia as a ma-
jor carrier of Chinese culture, thereby influ-
encing the writing systems in these countries.
Traditional Chinese, Simplified Chinese and
Japanese Kanji are now being used, all de-
veloping from Traditional Chinese; and given
the same root of them, these three writing sys-
tems actually share a large portion of common
characters: for a certain character in one of
them, we can find its counterparts in the other
two, with minor variation or even of the same
shape. Chu et al. (2012) proposed a Chinese
character table comparing traditional Chinese,
simplified Chinese and Japanese. As summa-
rized in Table 1, the glyphs of such common
characters can be 1) the same in all these three
writing systems; 2) consistent in two of them;
3) different in all these three.

And with regard to their semantics, simpli-
fied and traditional Chinese are only two writ-
ten forms of the same language, and therefore
common characters within them are seman-
tically equivalent. For Japanese Kanji, most
characters are semantically equivalent or rele-
vant to their counterparts in Chinese.

We in our previous work (Wang et al., 2016)
quantified such semantic relatedness from the
view of information theory using mutual in-
formation (MI) and conditional mutual infor-
mation (CMI). By repeating the experiments
in this paper, we acquired the results in Ta-
ble 2. All these 5 characters have multiple
meanings in both Chinese and Japanese, and
their respective meanings differ to some ex-
tent in both languages. Normally CMI should
be larger than MI, which indicates that in a
translation-sentence pair, if 2 words from each
sentence share a common character, they are
likely to form a translation word pair. The
results of shown in Table 2 are no exception,
providing theoretical root for our model which
will be proposed in section 4.

4 Model
4.1 Context of Word and CJC Method
Before delving into the learning models, we
should first clarify the concept of context.
In natural language processing, a widely
adopted semantic representation model is
Bag-of-Words (Zhang et al., 2010). The funda-
mental assumption of this model is: within a
given sentence or paragraph, the target word
is prone to have the most intimate semantic
relation with its closest context words. For-
mally define a sentence S with l words as an
ordered sequence: S = ⟨w0, w1, ..., wl⟩, and
context function Ctx(·) is often formulated as:

Ctx(wi, S) = {wk|i − K ≤ k ≤ i + K}. (1)

In cross-lingual scenario, besides two mono-
lingual corpora of both languages, a parallel
corpus is often required in most models, which
is aligned in either word-level (Guo et al.,
2016) or sentence-level. Some recent works
attempted to learn embeddings without using
parallel corpus, such as (Artetxe et al., 2017).

Now try to consider bilingual context of a
given target word in aligned parallel corpus.
Let ⟨Szh, Sja⟩ be a sentence pair, then define:

Ctx(wzh,i) = Ctx(wzh,i, Szh)
∪ Ctx(wzh,i, Sja).

(2)

As formulated above, the context of a tar-
get word is the union of its contexts in both
sentences. Therefore in word-aligned par-
allel corpus, let ⟨wzh,i, wja,j⟩ be a pair of
aligned words, and the cross-lingual context
Ctxw(wzh,i, Sja) is equal to Ctxw(wja,j , Sja),
since contexts in both languages are taken
into account in this definition. In sentence-
aligned parallel corpus, the cross-lingual con-
text Ctxs(wzh,i, Sja) is defined as the set of all
the words in the respective sentence.

In real applications, sentence alignment
data are usually easier to acquire. For exam-
ple, Chu et al. (2014) proposed an approach
to align Chinese-Japanese cross-lingual wiki
corpus, using the common characters between
both languages.

According to the analysis in Section 3, given
an aligned Chinese-Japanese sentence pair,
word alignment can be performed upon word
pairs that share common characters. Based on

115

Type Example of Characters with Unicode PercentageSC TC KJ Meaning
1 - AAA 人 (U+4EBA) 人 (U+4EBA) 人 (U+4EBA) People 56.55
2 - AAB 窗 (U+7A97) 窗 (U+7A97) 窓 (U+7A93) Window 4.63
3 - ABA 国 (U+56FD) 國 (U+570B) 国 (U+56FD) Country 3.45
4 - ABB 习 (U+4E60) 習 (U+7FD2) 習 (U+7FD2) Study 29.17
5 - ABC 图 (U+56FE) 圖 (U+5716) 図 (U+56F3) Picture 6.19

Table 1: Corresponding examples and percentages(%) of common characters in Simplified Chi-
nese (SC), Traditional Chinese (TC), and Japanese Kanji (KJ).

Table 2: Estimated MI and CMI of 5 Common
Characters.

MI CMI
天 0.3369 30.3057
地 0.5804 87.4515
人 0.8942 151.0069
中 0.7337 138.9676
学 0.4173 119.8921

this conclusion, using common characters, we
can now give a definition for context similar
to context in sentence-align corpus.

Define a character matching function CC(·)
that generates a set of word in which each word
has at least one common character with target
word wzh,i:

CC(wzh,i, Sja) = {wja|wja ∈ Sja,
c ∈ wzh,i, c ∈ wja}.

(3)

Thus parallel context Ctxc(wzh,i, Sja) can be
acquired via common character matching:

Ctxc(wzh,i, Sja) = {w|w ∈ Ctx(wja, Sja),
wja ∈ CC(wzh,i, Sja)}.

(4)
Hence, when multiple words in the correspond-
ing sentence have common characters with the
target word, all of them will be included in
Ctxc(wzh,i, Sja). However, such case rarely oc-
curs during our experiments.

For example, “天 气/不 错/一 起/去/散
步/吧” and “天気/が/良い/から/散歩/し
ま/しょう” are a parallel sentence-pair, mean-
ing “The weather is nice, let’s take a walk”.
There are two corresponding word pairs de-
tected by common characters: “天气-天気
(Weather)” and “散步-散歩 (Take a walk)”.
Two words in a pair share their respective con-
text during training.

We name this method as CJC (Chinese-
Japanese Common Character) which uses
CC(·) to determine context. Different from
our previous work (Wang et al., 2016) which
exploited common characters to facilitate only
CBOW, this CJC method is more of a gen-
eralized scheme that can be integrated with
various models including CBOW, Skip-Gram,
GloVe etc.

4.2 CBOW-like Models
CBOW was a model proposed by Mikolov et
al. in (Mikolov et al., 2013a), whose opti-
mization goal is maximizing a probabilistic
language model. In cross-lingual especially
Chinese-Japanese scenario, the objective func-
tion for training wzh,i is:

L(Szh) = 1
N

N∑
i=1

{
Pzh,i,zh

+ λ · Pzh,i,ja,c

+ µ · Pzh,i,ja,s

}
,

(5)

where Pzh,i,zh, Pzh,i,ja,c, andPzh,i,ja,s are soft-
max function of the target word wzh,i to its
corresponding monolingual context, sentence
aligned cross-lingual context, and CJC con-
text. Both λ and µ here are parameters of
the model. If λ = 0, this is a trial sen-
tence aligned CBOW model, otherwise it is
a CJC+CBOW model; the CJ-BOC model in
our previous work (Wang et al., 2016) used
similar approach, and would be used as a base-
line in our experiments.

4.3 GloVe-like Models
4.3.1 GloVe
GloVe model was originally proposed by Pen-
nington et al. (2014). As the name implies,
GloVe utilizes the global information of the
corpus for vector training. GloVe and CBOW,

116

as commonly adopted learning models, how-
ever differ a lot in terms of mathematical mod-
els, as they are respectively based on matrix
factorization and neural network. The process
of GloVe is as follows:

First, construct a word-word cooccurence
matrix M = (mij)n×n , where n is the size
of the corpus, and mij represents the number
of occurrence of wj in the context of wi in all
the sentences S.

The learning problem of GloVe can then be
transformed into the optimization of function
F (·), such that for any word embeddings xi, xj

and probe word embedding x̃k, the objective
function is defined below:

L =
n∑

i,j=1

f(mij)(x
T
i x̃j+bi+b̃j−log mij)

2, (6)

f(m) =

{
(m

mmax
)α if m < mmax

1 otherwise. (7)

In this function, both bi and bj are bias, and f
is a weighing function aiming to mitigate the
impact of dataset size on training results. In
GloVe, mmax is set to 100 and α to 3

4 .

4.3.2 Cross-lingual GloVe and CJ-Glo
To fit GloVe in cross-lingual scenario, one
should first expand the word-word co-
occurrence matrix. Suppose two languages re-
spectively contain n and t words, the new ma-
trix would have a size of If wi and wj belong
to the same language, mij can be computed
using exactly the same way as in GloVe; oth-
erwise, suppose (Szh, Sja) is a pair of parallel
sentences, wi ∈ Szh, wj ∈ Sja, and we have:

mij =
∑

(Szh,Sja)

(λ · Cij,c + µ · Cij,s), (8)

Cij,c = Cnt(wj , Ctxc(wi, Sja)),
Cij,s = Cnt(wj , Ctxs(wi, Sja)),

(9)

Cnt(·) counts the frequency of wj in certain
context of wi, either sentence aligned context
or CJC context.

Once the cross-lingual word-word co-
occurence matrix is obtained, the following op-
timization unfolds similarly with the monolin-
gual GloVe model, using the objective function
(6) and weighting function (7) to train.

Similar to Cross-lingual CBOW model, if
the CJC learning rate λ = 0 in equation

Figure 1: An example of CJ-Glo model, where
the window size is 7 and the common character
is “樱 (桜)”.

(8), this is a sentence aligned cross-lingual
GloVe model. Otherwise, it is a CJC-enhanced
model, and is thus called CJ-Glo.

Figure 1 demonstrates the operational prin-
ciple of CJ-Glo: the square in this figure is
a cross-lingual word co-occurrence matrix, in
which the green square is a Chinese mono-
lingual co-occurrence sub-matrix, and the or-
ange square is for Japanese. The blue sec-
tions are cross-lingual sub-matrices and ele-
ments in them are calculated using equation
(8). When two parallel sentences each con-
tain a word sharing common characters, each
word would be taken as a co-occurrence in the
context of the other. Every point crossed by
dotted lines and dotted rectangles represents
an element to increment when processing the
sentence pair.

5 Experiments and Analysis
5.1 Evaluation Methods
To evaluate the quality of cross-lingual word
embeddings obtained from various models, we
conducted three groups of experiments: 1) the
straightforward cross-lingual synonym com-
parison; 2) cross-lingual word analogy; 3) sen-
tence alignment.

Cross-lingual synonym comparison.
In monolingual scenario, the word embed-

dings of a pair of synonyms should have a high
cosine similarity. This property is also appli-
cable in cross-lingual word embeddings, i.e.,
the cosine similarity between a word embed-
ding and its translated counterpart should also

117

be high. In real applications, the correspon-
dence between words in source language and
words in target language can be one-to-one,
one-to-many, or vice versa. To effectively elim-
inate ambiguity, we picked 200 one-to-one cor-
responding word pairs ⟨wzh, wja⟩ at random,
then for each word pair, calculated the cosine
similarity between wzh and wja, denoted as d,
and computed the rank of d among the cosine
similarities from wzh to every Japanese word
in corpus Vja. Use the rank to calculate its
relative rate among all words:

rate = (1− rank − 1

total_word_num
)×100%. (10)

Conducted the same operation for wja and all
words in corpus Vzh. Calculate the average
rate for all the 200 word pairs, and acquire
the average rate of wzh → wja and wja →
wzh respectively. Ambiguity is eliminated in
all these word pairs, so a large rate is therefore
favored.

Cross-lingual word analogy.
Word analogy is probably the most widely

adopted task to evaluate the performance
of word embeddings, because it depicts the
connection between trained vector space and
word semantics. Both CBOW(Mikolov et al.,
2013a) and GloVe(Pennington et al., 2014)
used a dataset with 19,544 queries for eval-
uation.

Given several related words from different
languages, cross-lingual analogical reasoning
works as follows: y=v(はは)-v(ちち)+v(男
孩), we hope that the relatedness between
Japanese words “はは (mother)” and “ちち
(father)” could help us find the Chinese word
“女孩 (girl)” and Japanese “女の子 (girl)”
through Chinese word “男孩 (boy)”.

More formally, the cross-lingual analogy
task was undertaken as follows:
1. Input a quadruple of word embeddings ⟨w1 :
w2 :: w3 : w4⟩, where each word could be either
Chinese or Japanese;
2. Compute the target vector u = w2−w1+w3,
acquire the corresponding rank and rate as in
cross-lingual synonym comparison for u → w4;
3. Based on the ratio of Chinese word count
to Japanese word count in the quadruple ⟨w1 :
w2 :: w3 : w4⟩, the word analogy task is divided
into 5 subtasks, whose ratio are (0 : 4), (1 : 3),
(2 : 2), (3 : 1) and (4 : 0), and their respective

query amount is 420, 1680, 2520, 1680, and
420 in our experiment;
4. Calculate the average rate on every subtask.

Also, the average rate here is expected to be
as large as possible.

Sentence alignment.
The above experiments respectively eval-

uated the direct similarity and cross-lingual
feature of word embeddings. And now we
consider a more complicated task: sentence
alignment. In the dataset from (Chu et al.,
2014), other than training data, a manual test
dataset was also attached, which are 198 sen-
tence pairs. Using this dataset, we conduct
this experiment as follows:
1. For a Chinese sentence Szh,i, calculate its
average vector Uzh,i and all Uja of all sentences
Sja, and compute the cosine similarity.
2. Sort all the cosine similarities in step 2, and
acquire the rank of the average vector Uja,i of
Sja,i (the parallel sentence of Szh,i).
3. Transform rank into rate using formula 10,
where total number is 198.
4. Compute the average rate Szh → Sja;
5. Follow the same steps above to generate
Sja → Szh.

Compared with the previous experiments,
which evaluate only the relation between indi-
vidual word embeddings, sentence alignment
is a comprehensive task using word embed-
ding, and is a critical indicator for the overall
quality of the trained word embeddings.

5.2 Dataset and Training Details
As mentioned previously, (Chu et al., 2014)
generated a parallel corpus including Chinese-
Japanese sentence pairs from Wikipedia;
train.ja and train.zh in this dataset were used
throughout our empirical study, both contain-
ing 126,811 lines of text. Concretely, ev-
ery single line in these two files is a com-
plete sentence, which is parallel to its coun-
terpart in the other file. As the preprocess-
ing for datasets, both files were segmented us-
ing MeCab1 and Jieba2 for Japanese and Chi-
nese, respectively. During the preprocessing,
we assured the segmentation on Chinese and

1http://taku910.github.io/mecab, accessed date:
December 20, 2017.

2https://github.com/fxsjy/jieba, commit number:
cb0de2973b2fafaa67a0245a14206d8be70db515.

118

Table 3: Parameters of CJC and sentence
learning rates in each models.

Model λ µ

SenBow 0 0.2
CJ-BOC 0.4 0.2
SenGlo 0 0.2
CJ-Glo 0.4 0.2

Table 4: Cross-lingual synonym comparison
results on 200 one-to-one word pairs, the av-
erage rates(%) of each models.

Model wzh → wja wja → wzh

SenBow 83.97 83.76
CJ-BOC 96.75 97.61
SenGlo 91.17 90.05
CJ-Glo 97.97 98.80

Japanese were approximately grained, by tun-
ing parameters.

Four models in total are put into comparison
in our experiment:

1. SenBow model is the bilingual CBOW
model applying sentence-aligned method;

2. CJ-BOC model from (Wang et al., 2016),
considered as a CJC+CBOW model;

3. SenGlo model applies sentence-aligned
method to GloVe model;

4. CJ-Glo model is our CJC method en-
hanced GloVe model.

The parameters of CJC learning rate λ and
sentence learning rate µ are showed in Table 3.
Both SenGlo and CJ-Glo have a mmax of 100,
and an α of 3

4 . The thread count is 16 in the
implementations of all these four models, the
output vector dimensionality is 100, and the
training process is iterated 15 times. We set
the parameters to the above values, since these
models achieved the optimal performances un-
der such settings in our evaluation. All mod-
els are implemented using C language, and the
code can be found on GitHub3.

3https://github.com/jileiwang/CJC, commit num-
ber: a10592d200bc15f7b53d81a8f895e7de9ef8676d.

Figure 2: Cross-lingual word analogy experi-
ment result. X-axis is the number ratio of Chi-
nese words and Japanese words in the analogy
query (w1 : w2 :: w3 : w4).

5.3 Results
The result of cross-lingual synonym compar-
ison is shown in Table 4, from which we
can see the integration of Common Character
leads to obvious performance improvement for
both CBOW-like and GloVe-like models, com-
pared with sentence-aligned models, and CJ-
Glo achieve the best result.

Figure 2 summarizes the results of the cross-
lingual word analogy task, whose X-axis rep-
resents the ratio of Chinese word count to
Japanese word count. In the figure, the
leftmost point represents the result of pure
Japanese word analogy, and the rightmost is
the pure Chinese word analogy. We can see
that all 4 models achieve fair performances in
pure Chinese/Japanese word analogy. How-
ever, when it comes to the cross-lingual word
analogy, CJ- models outperform Sen- models,
and GloVe-like models generally beat CBOW-
like ones. Another noticeable fact is that CJ-
Glo performs approximately good under all 5
ratios, showing basically no difference between
cross-lingual and monolingual word analogy.

We display the sentence alignment results
in Table 5. Similarly, we still find CJ- models
outperform Sen-, and GloVe-like models beat
CBOW-like ones. Again, CJ-Glo has the best
performance.

According to the above experiments, we can
see compared with typical sentence-aligned
methods, Common Character enhanced mod-

119

Table 5: Sentence alignment results on 198
parallel sentence pairs, the average rates(%)
of each models.

Model Szh → Sja Sja → Szh

SenBow 79.14 74.63
CJ-BOC 86.39 83.14
SenGlo 90.33 84.90
CJ-Glo 91.57 86.00

els are superior in learning Chinese-Japanese
cross-lingual word embeddings, as it achieves
obvious performance boost in various tasks.
Moreover, CJ-Glo performs better than CJ-
BOC, and is non-sensitive in cross-lingual
tasks.

5.4 Model Analysis: CJC Learning
Rate

CJC learning rate here refers to the multiply-
ing factor of CJC context Ctxc(·), which is
λ in CJ-BOC and CJ-Glo. It worths discus-
sion that how would CJC learning rate affects
the performance of our proposed models. To
explore this issue, we conduct a simple exper-
iment: fixing the other parameters as set in
section 5.2, we only change CJC learning rate,
and apply the acquired word embeddings to
synonym wzh → wja tasks. The results are
displayed in Figure 3 , in which we can find
as λ increases in CJ-BOC, the accuracy de-
clines after an increase, showing a obvious lo-
cal optimal. While in CJ-Glo, the accuracy
keeps improving with the increase of λ. Note
that both parameters should be less than 1,
because otherwise the impact of cross-lingual
context would dominate the learning process,
obviously resulting in overfit. CJ-Glo is more
stable during the change of CJC learning rate,
this interesting difference between both mod-
els is related to the their underlying learning
mechanisms.

6 Conclusion and Future Work
In this paper, we quantified the semantic con-
nection among common characters shared by
Chinese and Japanese, and utilized it as the
theoretical root to propose our cross-lingual
context extracting method CJC. CJC makes
use of common characters of both languages to
assist the acquisition of parallel contexts. The

Figure 3: Accuracy of CJ-BOC and CJ-Glo
Models on cross-lingual synonym wzh → wja

with different CC learning rate.

effectiveness of CJC enhanced matrix factor-
ization model CJ-Glo was verified via a series
of tasks including cross-lingual synonym, word
analogy and sentence alignment. As the ex-
periment result shows, models like CBOW and
GloVe achieved notable performance gain af-
ter integrated with CJC. Furthermore, CJ-Glo
performed the best among all evaluated state-
of-the-art methods, and showed its stability
on cross-lingual tasks and non-sensitiveness of
training parameter changing.

Below are several directions we may work
on in the future: 1) The idea of training
character and word embeddings jointly (Chen
et al., 2015) is applicable to Chinese-Japanese
word embedding training. Meanwhile, we can
also align common characters and train cross-
lingual character embeddings to further im-
prove the quality of trained word embeddings.
2) A recent work (Lai et al., 2016) indicates
that the performances of a model may vary
given different tasks. Therefore, we shall study
the performance fluctuation of CJ-Glo with
more tasks including machine translation.

Acknowledgments

This work is supported by the National Nat-
ural Science Foundation of China under grant
Nos. 61771273, 61371078.

The authors would like to thank Xinyu
Zhou, Minghao Li, Yanning Li, and Qi Tang
for the insightful discussions and suggestions
that helped us improve the manuscript.

120

References
Mikel Artetxe, Gorka Labaka, and Eneko Agirre.

2017. Learning bilingual word embeddings with
(almost) no bilingual data. In Proceedings of
the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Pa-
pers), volume 1, pages 451–462.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent,
and Christian Jauvin. 2003. A neural probabilis-
tic language model. Journal of machine learning
research, 3(Feb):1137–1155.

Xinxiong Chen, Zhiyuan Liu, and Maosong Sun.
2014. A unified model for word sense represen-
tation and disambiguation. In Proceedings of the
2014 conference on empirical methods in natu-
ral language processing (EMNLP), pages 1025–
1035.

Xinxiong Chen, Lei Xu, Zhiyuan Liu, Maosong
Sun, and Huan-Bo Luan. 2015. Joint learning
of character and word embeddings. In Proceed-
ings of the 24th International Joint Conference
On Artificial Intelligence (IJCAI), pages 1236–
1242.

Chenhui Chu, Toshiaki Nakazawa, and Sadao
Kurohashi. 2012. Chinese characters mapping
table of japanese, traditional chinese and simpli-
fied chinese. In Proceedings of the 8th Confer-
ence on International Language Resources and
Evaluation Conference (LREC), pages 2149–
2152. Citeseer.

Chenhui Chu, Toshiaki Nakazawa, and Sadao
Kurohashi. 2014. Constructing a chi-
nese�japanese parallel corpus from wikipedia.
In Proceedings of the 9th Conference on Inter-
national Language Resources and Evaluation
Conference (LREC), pages 642–647.

Stephan Gouws, Yoshua Bengio, and Greg Cor-
rado. 2015. Bilbowa: Fast bilingual distributed
representations without word alignments. In
Proceedings of the 32nd International Confer-
ence on Machine Learning (ICML), pages 748–
756.

Jiang Guo, Wanxiang Che, Haifeng Wang, and
Ting Liu. 2014. Learning sense-specific word
embeddings by exploiting bilingual resources. In
Proceedings of the 25th International Conference
on Computational Linguistics: Technical Papers
(COLING), pages 497–507.

Jiang Guo, Wanxiang Che, David Yarowsky,
Haifeng Wang, and Ting Liu. 2016. A repre-
sentation learning framework for multi-source
transfer parsing. In AAAI, pages 2734–2740.

Geoffrey E Hinton. 1986. Learning distributed rep-
resentations of concepts. In Proceedings of the
eighth annual conference of the cognitive science
society, volume 1, page 12. Amherst, MA.

Siwei Lai, Kang Liu, Shizhu He, and Jun Zhao.
2016. How to generate a good word embedding.
IEEE Intelligent Systems, 31(6):5–14.

Guillaume Lample, Ludovic Denoyer, and
Marc’Aurelio Ranzato. 2017. Unsupervised
machine translation using monolingual corpora
only. arXiv preprint arXiv:1711.00043.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever.
2013b. Exploiting similarities among lan-
guages for machine translation. arXiv preprint
arXiv:1309.4168.

Jeffrey Pennington, Richard Socher, and Christo-
pher Manning. 2014. Glove: Global vectors for
word representation. In Proceedings of the 2014
conference on empirical methods in natural lan-
guage processing (EMNLP), pages 1532–1543.

Sebastian Ruder, Ivan Vulić, and Anders Søgaard.
2017. A survey of cross-lingual word embedding
models. arXiv preprint arXiv:1706.04902.

Tianze Shi, Zhiyuan Liu, Yang Liu, and Maosong
Sun. 2015. Learning cross-lingual word embed-
dings via matrix co-factorization. In Proceedings
of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language
Processing (Volume 2: Short Papers), volume 2,
pages 567–572.

Ivan Vulić and Marie-Francine Moens. 2015.
Monolingual and cross-lingual information re-
trieval models based on (bilingual) word embed-
dings. In Proceedings of the 38th International
ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pages 363–372.
ACM.

Jilei Wang, Shiying Luo, Yanning Li, and Shu-Tao
Xia. 2016. Learning chinese-japanese bilingual
word embedding by using common characters.
In International Conference on Knowledge Sci-
ence, Engineering and Management, pages 82–
93. Springer.

Yonghui Wu, Mike Schuster, Zhifeng Chen,
Quoc V Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao,
Klaus Macherey, et al. 2016. Google’s neural
machine translation system: Bridging the gap
between human and machine translation. arXiv
preprint arXiv:1609.08144.

Yin Zhang, Rong Jin, and Zhi-Hua Zhou. 2010.
Understanding bag-of-words model: a statistical
framework. International Journal of Machine
Learning and Cybernetics, 1(1-4):43–52.

121

Proceedings of the 3rd Workshop on Representation Learning for NLP, pages 122–131
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

WordNet Embeddings

Chakaveh Saedi, António Branco, João António Rodrigues, João Ricardo Silva
University of Lisbon

NLX-Natural Language and Speech Group, Department of Informatics
Faculdade de Ciências

Campo Grande, 1749-016 Lisboa, Portugal
{chakaveh.saedi, antonio.branco, joao.rodrigues, jsilva}@di.fc.ul.pt

Abstract

Semantic networks and semantic spaces
have been two prominent approaches to
represent lexical semantics. While a uni-
fied account of the lexical meaning re-
lies on one being able to convert between
these representations, in both directions,
the conversion direction from semantic
networks into semantic spaces started to
attract more attention recently. In this pa-
per we present a methodology for this con-
version and assess it with a case study.
When it is applied over WordNet, the per-
formance of the resulting embeddings in
a mainstream semantic similarity task is
very good, substantially superior to the
performance of word embeddings based
on very large collections of texts like
word2vec.

1 Introduction

The study of lexical semantics has been at the core
of the research on language science and technol-
ogy as the meaning of linguistic forms results from
the meaning of their lexical units and from the
way these are combined (Pelletier, 2016). How
to represent lexical semantics has thus been a cen-
tral topic of inquiry. Three broad families of ap-
proaches have emerged in this respect, namely
those advocating that lexical semantics is repre-
sented as a semantic network (Quillan, 1966), a
feature-based model (Minsky, 1975; Bobrow and
Norman, 1975), or a semantic space (Harris, 1954;
Osgood et al., 1957).

In terms of data structures, under a semantic
network approach, the meaning of a lexical unit
is represented as a node in a graph whose edges
between nodes encode different types of seman-
tic relations holding among the units (e.g. hyper-

nymy, meronymy, etc.). In a feature-based model,
the semantics of a lexicon is represented by a hash
table where a key is the lexical unit of interest and
the respective value is a set of other units denoting
typical characteristics of the denotation of the unit
in the key (e.g. role, usage or shape, etc.). Under
a semantic space perspective, in turn, the mean-
ing of a lexical unit is represented by a vector in
a high-dimensional space, where each component
is based on some frequency level of co-occurrence
with the other units in contexts of language usage.

The motivation for these three families of lexi-
cal representation is to be found in their different
suitability and success in explaining a wide range
of empirical phenomena, in terms of how these are
manifest in ordinary language usage and how they
are elicited in laboratory experimentation. These
phenomena are related to the acquisition, storage
and retrieval of lexical knowledge (e.g. the spread
activation effect (Meyer and Schvaneveldt, 1971),
the fan effect (Anderson, 1974), among many oth-
ers) and to how this knowledge interacts with other
cognitive faculties or tasks, including categoriza-
tion (Estes, 1994), reasoning (Rips, 1975), prob-
lem solving (Holyoak and Koh, 1987), learning
(Ross, 1984), etc.

In the scope of the formal and computational
modeling of lexical semantics, these approaches
have inspired a number of initiatives to build
repositories of lexical knowledge. Popular exam-
ples of such repositories are, for semantic net-
works, WordNet (Fellbaum, 1998), for feature-
based models, Small World of Words (De Deyne
et al., 2013), and for the semantic space, word2vec
(Mikolov et al., 2013a), among many others. In-
terestingly, to achieve the highest quality, reposi-
tories of different types typically resort to different
empirical sources of data. For instance, WordNet
is constructed on the basis of systematic lexical in-
tuitions handled by human experts; the informa-

122

tion encoded in Small World of Words is evoked
from laypersons; and word2vec is built on the ba-
sis of the co-occurrence frequency of lexical units
in a collection of documents.

Even when motivated in the first place by psy-
cholinguistic research goals, these repositories of
lexical knowledge have been extraordinarily im-
portant for language technology. They have been
instrumental for major advances in language pro-
cessing tasks and applications such as word sense
disambiguation, part-of-speech tagging, named
entity recognition, sentiment analysis (e.g. (Li
and Jurafsky, 2015)), parsing (e.g. (Socher et al.,
2013)), textual entailment (e.g. (Baroni et al.,
2012)), discourse analysis (e.g. (Ji and Eisenstein,
2014)), among many others.1

The proliferation of different types of represen-
tation for the same object of research is common
in science, and searching for a unified rendering
of a given research domain has been a major goal
in many disciplines. To a large extent, such search
focuses on finding ways of converting from one
type of representation into another. Once this is
made possible, it brings not only the theoretical
satisfaction of getting a better unified insight into
the research object, but also important instrumen-
tal rewards of reapplying results, resources and
tools that had been obtained under one representa-
tion to the other representations, thus opening the
potential for further research advances.

This is the case also in what concerns the re-
search on lexical semantics. Establishing whether
and how any given lexical representation can be
converted into another representation is important
for a more unified account of it. On the language
science side, this will likely enhance the plausibil-
ity of our empirical modeling about how the mind-
brain handles lexical meaning. On the language
technology side, in turn, this will permit to reuse
resources and find new ways to combine different
sources of lexical information for better applica-
tion results.

In the present paper, we seek to contribute to-
wards a unified account of lexical semantics. We
report on the methodology we used to convert
from a semantic network based representation of
lexical meaning into a semantic space based one,
and on the successful evaluation results obtained
when applying that methodology. We resorted to

1For the vast number of applications of WordNet, see
http://lit.csci.unt.edu/∼wordnet

Princeton WordNet version 3 as a repository of the
lexical semantics of the English language, repre-
sented as a semantic graph, and converted a sub-
graph of it with half of its concepts into wnet2vec,
a collection of vectors in a high-dimension space.
These WordNet embeddings were evaluated un-
der the same conditions that semantic space based
repositories like word2vec are, namely under the
processing task of determining the semantic sim-
ilarity between pairs of lexical units. The evalua-
tion results obtained for wnet2vec are around 15%
superior to the results obtained for word2vec with
the same mainstream evaluation data set SimLex-
999 (Hill et al., 2016).

2 Distributional vectors from ontological
graphs

For a given word w, its distributional represen-
tation ~w (aka word embedding) is a high dimen-
sion vector whose elements ~wi record real val-
ued scores expressing the strength of the seman-
tic affinity of w with other words in the vocab-
ulary. The usual source of these scores, and ul-
timately the empirical base of word embeddings,
has been the frequency of co-occurrence between
words taken from large collections of text.

The goal here instead is to use semantic net-
works as the empirical source of word embed-
dings. This will permit that the lexical knowledge
that is encoded in a semantic graph be re-encoded
as an embeddings matrix compiling the distribu-
tional vectors of the words in the vocabulary.

To determine the strength of semantic affinity of
two words from their representation in a semantic
graph, we follow this intuition: the larger the num-
ber of paths and the shorter the paths connecting
any two nodes the stronger is their affinity.

To make this intuition operative we resort to the
following procedure, to be refined later on. First,
the semantic graph G is represented as an adja-
cency matrix M such that iff two nodes of G with
words wi and wj are related by an edge represent-
ing a direct semantic relation between them, the
element Mij is set to 1 (to 0 otherwise).

Second, to enrich M with scores that represent
the strength of semantic affinity of nodes not di-
rectly connected with each other by an edge, the
following cumulative iteration is resorted to

M
(n)
G = I + αM + α2M2 + . . .+ αnMn (1)

where I is the identity matrix; the n-th power of

123

the transition matrix, Mn, is the matrix where
each Mij counts the number of paths of lenght n
between nodes i and j; and α < 1 is a decay fac-
tor determining how longer paths are dominated
by shorter ones.

Third, this iterative procedure is pursued until
it converges into matrix MG, which is analytically
obtained by an inverse matrix operation given by2

MG =
∞∑

e=0

(αM)e = (I − αM)−1 (2)

3 WordNet embeddings

In order to assess this procedure, we use it to
convert a mainstream ontological graph into an
embeddings matrix. We use Princeton WordNet
(Fellbaum, 1998) as our working semantic net-
work. This is a lexical ontology for English
with over 120k concepts that are related by over
25 types of semantic relations and comprise over
155k words (lemmas), from the categories Noun
(with 117k words), Verb, Adjective and Adverb.

The quality of the resulting semantic space
(based on a semantic network) is assessed by re-
sorting to the mainstream procedure to evaluate se-
mantic spaces: (i) it is used to solve the task of de-
termining the semantic similarity between words
in a mainstream test data set used in the litera-
ture; (ii) its performance is compared to the per-
formance of a mainstream semantic space (based
on a text collection), namely word2vec (Mikolov
et al., 2013b), which serves as our baseline.

The base data set was obtained by extracting a
sub-graph from WordNet that supports a 60k word
distributional matrix. All parts of speech in Word-
Net were considered.

The nodes in WordNet are related by differ-
ent types of semantic relations (e.g. hypernymy,
meronymy, etc.). Relations of different types were
taken into account with identical weight for the
sake of the conversion of the graph into a matrix.

Upon applying the conversion procedure by re-
solving equation (2),3 its outcome MG was sub-
ject to the Positive Point-wise Mutual Information
transformation (PMI+) seeking to reduce the even-
tual bias introduced by the conversion towards
words with more senses.

2This is equation (7.63) in (Newman, 2010) where it is
presented as a regular equivalence measure termed Katz sim-
ilarity.

3We used linalg.inv from the numpy package for the
inverse matrix calculation.

Model Similarity

wnet2vec 0.50

word2vec 0.44

Table 1: Performance in semantic similarity task
over SimLex-999 given by Spearman’s coefficient
(higher score is better).

For the sound application of the conversion,
each line in MG was normalized, using L2-norm,
so that it corresponds to a vector whose scores sum
to 1, corresponding to a transition matrix.

Finally, we used Principal Component Analysis
(PCA) (Wold et al., 1987) to transform the matrix,
reducing the size of the vectors and setting to 850
the dimension of the encoded semantic space.

To assess the quality of the resulting semantic
space, we resorted to the test data set SimLex-999
(Hill et al., 2016), containing a list of 999 pairs
of words. Each pair is associated with a score, on
a 0-10 scale, that indicates the strength of the se-
mantic similarity between the words in that pair.
For each pair, with the resulting embedding ma-
trix, the cosine between the vectors of the words
in that pair is calculated and mapped into the 0-
10 scale. The outcome is compared to the gold
standard scores in SimLex-999 resorting to Spear-
man’s rank correlation coefficient.4 The respective
scores are displayed in Table 1.

4 Discussion

These results indicate a clear advantage of around
15% of the WordNet embeddings, scoring 0.50,
over the word2vec embeddings, scoring 0.44. This
indicates that the proposed conversion procedure
is very effective.

WordNet embeddings is a semantic space em-
pirically based on an internal language resource:
on a systematic elicitation and recording of the
semantic relations between words, thus being
closely aligned with the lexical knowledge in the
minds of speakers. Word2vec, in turn, is a se-
mantic space empirically based on an external lan-
guage resource: on records of contingent language
usage, namely some texts that were produced by a
population of language users and happened to be

4We used the evaluate_word_pairs function from
Gensim package (Řehůřek and Sojka, 2010) to determine
the performance of both semantic spaces, the wnet2vec and
the word2vec embeddings.

124

collected together. Hence, while words related by
some semantic relation are likely to be linked in
WordNet, they may happen to rarely or never oc-
cur in relevant context windows, as practical con-
straints on the production and usage of language
may not favor that. This may help to explain the
advantage of wnet2vec over word2vec.5

The conversion procedure is composed by a
number of steps where each may receive a range
of configurations. This opens a large experimental
space of which the experiment in Section 3 instan-
tiates one set of coordinates. In the remainder of
the present section we justify the eventual empir-
ical settings used and discuss the lessons learned
by exploring this experimental space. The con-
version procedure will be revisited in a backwards
fashion, from its final to its initial steps, with the
experiments being performed over the 60k subset
identified in Subsection 4.3.

4.1 Matrix manipulation

Vector dimension: There have been studies indi-
cating the positive effect of the reduction of the
dimensionality of the semantic space (e.g. (Un-
derhill et al., 2007; Grünauer and Vincze, 2015)).
We experimented with a range of final vector di-
mensions, namely sizes 100, 300, 850, 1000 and
3000, also over evaluation data sets other than just
SimLex-999.6 Results obtained consistently indi-
cated that size 850 leads to better performance.7

Dimensionality reduction: We compared two
different techniques for dimensionality reduction,
PCA (Wold et al., 1987) and a neural network
approach. For the neural solution, the encoder-
decoder architecture with a Sigmoid activation
function was employed. The model was trained
using a Nadam optimizer with binary cross en-
tropy as loss metric. Experimentation consistently
indicated that PCA is substantially more success-
ful.

Normalization and bias: We contrasted the
performance of the WordNet embeddings obtained
with and without normalization of the distribu-

5Naturally, the comparative advantage between a seman-
tic space based on a semantic network and another based on
a collection of texts depends also on the sizes of the net-
work and of the collection. The training corpus of word2vec-
GoogleNews-vectors we used is one of the largest, with an
impressive amount of 100 billion tokens, and a vocabulary
of 3 million types, which differently from the vocabulary
units in WordNet, are wordforms, not lemmas (Mikolov et al.,
2013a).

6More on evaluation data sets in Section 4.4
7The vector size in word2vec embeddings is 300.

tional vectors. Results consistently indicated the
advantage of doing normalization, even if for a
small margin, with a delta of around 0.08.

Ablation tests were done also with respect to
PMI+, which indicated a clear advantage of ap-
plying it.

4.2 Graph manipulation

Decay factor: The best results were achieved with
α = 0.75, after experimenting with values in the
range 0.65 to 0.85.

Picking semantic relations: Concepts in
WordNet are connected via semantic relations
of different types. The relations of Hyper-
nymy/Hyponymy, Synonymy and Antonymy play
an essential role in structuring a semantic network,
as without them the network could not exist. We
undertook experiments where all semantic rela-
tions or only these kernel relations were taken into
account for the conversion procedure, with results
indicating a clear advantage for using all relations.

Weighting semantic relations: In the defini-
tion of a semantic network, some types of re-
lations appear as necessary (e.g. Hypernymy),
while other appears as more secondary (e.g.
Meronymy). It might thus happen that the con-
version of a semantic network into a semantic
space might be optimized if different weights
were assigned to different relations accordingly.
We ran an experiment where different weights
were assigned to different relations, namely hyper-
nymy, hyponymy, antonymy and synonymy got 1,
meronymy and holonymy 0.8 and other relations
0.5; and another experiment where all types of
semantic relation were assigned the same weight.
Better results were obtained with the latter.

4.3 Base data sets

Subgraphs: The conversion procedure relies on
equation (2), whose complexity is dominated by
the calculation of the inverse matrix, which is of
exponential order. For the Princeton WordNet
graph, with over 120k concepts, given the size of
the adjacency matrix M1 is over 120k × 120k, its
calculation and the overall conversion of the on-
tological graph into the final embeddings matrix
faces substantial challenges in terms of the mem-
ory footprint. To cope with this issue, we resorted
to initial subgraphs of manageable size.8

8To invert a 60k matrix, numpy used all memory avail-
able in a machine with 32 CPUs/2.50GHz and 430Gb RAM.

125

We reduced the size of M1 by eliminating
more sparse rows (rows with more zero elements),
corresponding to eliminating words in concepts
with lower number of outgoing edges in Word-
Net. Rows were ordered by decreasing sparsity,
with rows with identical level of sparsity (identi-
cal number of zero elements) randomly ordered
among themselves. The first 25k, 30k, 45k and
60k rows were extracted and used in the conver-
sion process. To maximize overlap wth test set
SimLex-999, its words in WordNet were retained.
The performance scores of the resulting models
are displayed in Table 2.

Random subgraphs 25k 30k 45k 60k

Semantic similarity 0.45 0.47 0.49 0.50

Table 2: Performance of wnet2vec in similarity
task over SimLex-999 (Spearman’s coefficient).

The larger the size of the WordNet subgraph the
better is the performance of the resulting embed-
dings. As they contain more concepts, which on
average are closer to each other, larger subgraphs
tend to be denser and generate less sparse adja-
cency matrices. This supports semantic spaces
with distributional vectors with more discrimina-
tive information on the semantic affinity of a word
with respect to others.

The progression of scores in Table 2, for sub-
graphs with matrices in the range 25k-60k, sup-
ports the conjecture that when enough computa-
tional means are available and the full 155k word
WordNet be used, the performance of the result-
ing embeddings may still improve by a substantial
margin over the result now observed for the 60k
matrix, with less than half of the words.

Additionally, we experimented with two spe-
cific subgraphs that were not randomly extracted
from WordNet, namely: the subgraph supporting
the matrix with the 13k most frequent words of
English;9 and the subgraph supporting the ma-
trix with the 13k words used in (De Deyne et al.,
2016),10 which have been selected to act as cue
words in psycholinguistic experiments for elic-
iting associated words from subjects. The per-
formance results of the resulting models are dis-

9To reach 13k, we used the 10k most common English
words, as determined by n-gram frequency analysis of the
Google’s Trillion Word Corpus, from (Kaufman, 2017), sup-
plemented with non repeating words from Wiktionary fre-
quency lists (Wiktionary, 2017).

10Available from https://smallworldofwords.org/en

played in Table 3.

Specific 13k 13k
subgraphs most frequent cue words

Similarity 0.47 0.50

Table 3: Performance of wnet2vec in similarity
task over SimLex-999 given by Spearman’s coeffi-
cient. First row indicates the sizes of the matrices
supported by specific subgraphs.

These matrices have less than 1/4 of the size
of the 60k matrix, and yet they show a better than
expected approximation to its performance, taking
into account the progression registered in Table 2.
These results indicate that larger size is not the
only factor improving the performance of Word-
Net embeddings. Very interestingly, they seem
to indicate that words more commonly used may
support semantic spaces that are more accurate to
discriminate semantic similarity.

Frequency of occurence in texts plays no direct
role in the conversion of semantic networks into
semantic spaces by equation (2). Hence this ef-
fect likely results from the fact captured by one of
the Zipf word distributions, that on average more
frequent words are more ambiguous than less fre-
quent ones: On average more frequent words ex-
press more concepts — that is, they occur in more
WordNet synsets — and thus enter in more outgo-
ing edges in the semantic network, and this should
support less sparse vectors in the semantic space.

This explanation is empirically supported by the
fact that the word ambiguity rates are 2.7 and 2.8,
in the sugraphs with 13k cue words and with 13k
most frequent words, respectively, while there is
a lower word ambiguity rate of around 1.5 for the
random graph with 60k words.11

Parts of Speech: Princeton WordNet covers
nouns, adjectives, verbs and adverbs. Nouns
(117k) are the largest portion of all words (155k)
in the graph and, among the different POS, they
support the most dense subgraph of semantic re-
lations. We run experiments with words from all
POS categories, and where only Nouns where con-
sidered. While results obtained with Nouns only
(0.44) are not that distant from the results obtained
with all POS (0.50), the latter setting consistently
showed better performance.

11This is obtained by counting n lemmas for a word that
enters WordNet under n POS categories. Word ambiguity
rate of the whole WordNet is 1.3.

126

4.4 Testing data and metrics

To assess the robustness of the results obtained,
experiments were undertaken with: (i) yet an-
other evaluation metric, namely Pearson’s corre-
lation coefficient; (ii) further evaluation data sets
for semantic similarity, namely RG1965 (Ruben-
stein and Goodenough, 1965) and Wordsim-353-
Similarity (Agirre et al., 2009); (iii) and test-
ing over another task, namely semantic related-
ness, with the evaluation data sets Wordsim-353-
Relatedness (Agirre et al., 2009), MEN (Bruni
et al., 2012) and MTurk-771 (Halawi et al., 2012).
In these experiments we used our best settings,
with a random 60k subgraph, and our second best
settings, with the best model with a specific 13k
subgraph, cf. Subsection 4.3.

Additional metric: The evaluation scores ob-
tained over SimLex-999 with the Pearson’s coeffi-
cient are basically aligned with the scores already
obtained with Spearman’s coefficient, confirming
the superiority of the WordNet embeddings.

Additional data sets: Even with a number of
test pairs much lower than the pairs in SimLex-
999 and built under less standard procedure, and
thus supporting less reliable results, we evaluated
our models over the Wordsmith353-S and RG1965
data sets. Wnet2vec showed competitive perfor-
mance when put side by side with word2vec even
though their scores were not superior. With these
smaller alternative data sets, the results for the spe-
cific 13k model were slightly superior to the re-
sults for the random 60k model.

Additional task: The relation “semantic relat-
edness” is broader and less well defined than the
relation “semantic similarity”. Experiments with
a second task of determining semantic related-
ness showed that word2vec performs clearly bet-
ter on this task than on the task of semantic sim-
ilarity, while wnet2vec in general performs worst
on it. Wnet2vec is thus less prone than word2vec
to get fooled by words that are just semantically
related by not necessarily similar. This indicates
that the superiority of wnet2vec in the similarity
task results from an enhanced discriminative ca-
pacity, with it being better both at judging as sim-
ilar, words that are actually similar, and at judging
as non similar, not only words that may be clearly
non similar but also words that are semantically
related, and thus may be close to be similar.

The results obtained with these experiments are

displayed in Table 4.12

5 Related work

From semantic spaces to semantic networks:
There has been a long research tradition on se-
mantic networks enhanced with information ex-
tracted from text, including distributional vectors,
which in the limit may encompass semantic net-
works obtained from semantic spaces. As a way
of illustration, among many others, this includes
the work on semantic relations determined from
patterns based on regular expressions, either hand
crafted (Hearst, 1992), or learned from corpora
(Snow et al., 2005); work on semantic relations
predicted by classifiers running over distributional
vectors (Baroni et al., 2012; Roller et al., 2014;
Weeds et al., 2014); work on semantic relations
obtained with deep learning that integrates distri-
butional information and patterns of grammatical
dependency relations (Shwartz et al., 2016), in-
cluding the hard task of distinguishing synonymy
from antonymy (Nguyen et al., 2017); etc. While
being highly relevant for a unified account of lex-
ical semantics, this line of research addresses the
conversion direction, from semantic spaces to se-
mantic networks, that is not the major focus of this
paper.

From semantic networks to semantic spaces:
Work towards the conversion direction that is of
interest here is more recent. As a way of illus-
tration, among others, one can mention (Faruqui
et al., 2015), which explored retrofitting to refine
distributional representations using relational in-
formation, and (Yu and Dredze, 2014), which fo-
cused also on refining word embeddings with lex-
ical knowledge, but which are not addressing the
goal of obtaining semantic spaces solely on the ba-
sis of semantic networks as we do here.

That is the aim also of recent work like
(Camacho-Collados et al., 2015) who improve the
embeddings built from data sets made of selected
Wikipedia pages by resorting to the local, one-
edge relations of each relevant word in the Word-
Net graph.

Further recent works worth mentioning include
(Vendrov et al., 2015) that resorted to order em-
beddings, which however do not preserve dis-
tance and/or do not preserve directionality under

12Pairs in the evaluation data set but not in the semantic
space do not count to compute the evaluation score: propor-
tion of vocabulary overlap does not affect the scoring.

127

data set task size over- w2vec n2vec n2vec w2vec n2vec n2vec
lap % 13k s 60k r 13k s 60k r

Spearman coef Pearson coef
SimLex-999 simil 999 99.8 0.44 0.50 0.50 0.45 0.52 0.51
RG1965 simil 65 100.0 0.75 0.65 0.56 0.75 0.75 0.72
Wordsim353-S simil 203 98.0 0.74 0.65 0.51 0.73 0.67 0.58

Wordsim353-R relat 252 97.6 0.61 0.32 0.31 0.58 0.33 0.30
MEN relat 3000 44.9 0.70 0.46 0.45 0.68 0.48 0.45
MTURK-771 relat 771 99.7 0.66 0.54 0.53 0.63 0.54 0.52

Table 4: Performance of different models in the semantic similarity (simil) and relatedness (relat) tasks
over different data sets measured by Spearman’s and Pearson’s coefficients. Models used: word2vec
(w2vec); wnet2vec with the random 60k subgraph (n2vec 60k r); and wnet2vec with the best specific
13k subgraph (n2vec 13k s), cf. Subsection 4.3. Overlap with the vocabulary of wnet2vec 60k random
appears in the fourth column.

the relevant semantic relations; (Nickel and Kiela,
2017) that experimented with computing embed-
dings not in Euclidean but in hyperbolic space,
namely the Poincaré ball model. A shortcoming
with these proposals is that their outcome is not
easily plugged into neural models. Also they are
not fit to evaluation on external tasks, like the se-
mantic similarity task, with their evaluation be-
ing rather based on their ability to complete miss-
ing edges from ontological graphs. In contrats,
an example of the sutability of wnet2vec to be
plugged into neural models and of its application
in a downstream task is reported in (Rodrigues
et al., 2018), where these embeddings support the
predicition of brain activation based on neural net-
works.

There has been also a long tradition of re-
search on learning vector embeddings from multi-
relational data of which, among many others, one
can refer (Bordes et al., 2013), (Lin et al., 2015),
and (Nickel et al., 2016). Though to a large extent
these are generic approaches for graph to vectors
conversion, also here the major focus has been on
exploring these models on their ability to complete
missing relations in knowledge bases rather than
to experiment them on natural language process-
ing and lexical semantics.

Other related approaches worth of note are
(De Deyne et al., 2016) and (Goikoetxea et al.,
2015). While being based also on the iterative con-
version procedure used here, the first concentrates
however on converting, not a semantic network,
but a fragment of the lexicon represented under a
feature-based approach into a semantic space.

While seeking to obtain WordNet embeddings,
the second resorts, however, not to a genuine
conversion procedure, but to a lossy intermediate
“textual” representation: it generates sequences of
words by concatenating words visited by random
walks over the WordNet; this “artificial text” is a
partial and contingent reflection of the semantic
network and is used to obtain distributional vec-
tors by resorting to typical word embeddings tech-
niques based on text.

Distances in a semantic graph:
The task of determining the semantic similar-

ity between two words can be performed not only
on the basis of the distance of their respective
vectors in a semantic space, but also on the ba-
sis of the distance of the respective concepts in
a lexical semantic network, like WordNet. There
has been a long research tradition on this issue
whose major proposals include (Jiang and Con-
rath, 1997), (Lin, 1998), (Leacock and Chodorow,
1998), (Hirst and St-Onge, 1998),(Resnik, 1999),
among others, which received nice comparative
assessments in (Ferlez and Gams, 2004) and (Bu-
danitsky and Hirst, 2006), including their correla-
tion with human judgments.

In this context, it is worth of note the work
by (Hughes and Ramage, 2007), which resorts to
random graph walks over WordNet edges. Dif-
ferently from our approach, its goal is to obtain
word-specific stationary probability distributions
— such that the semantic affinity of two words is
based on the similarity of their probability distri-
butions —, rather than to obtain vectorial repre-
sentations for words in a shared distributional se-

128

mantic space.
The focus of the present paper is on an effec-

tive method to convert a semantic network into a
semantic space, with the graph-based affinity ob-
tained by the chaining of "local" one-edge dis-
tances ensured by the iteration in (1)-(2) being
central for that goal.

It will be interesting to understand whether it
will be possible to consider, as an alternative,
those graph-based metrics of semantic similarity
for any two nodes anywhere in the graph — re-
sorting to the "non-local" multi-edge distance be-
tween the two input words. It remains to be under-
stood whether they can be resorted to as the ba-
sis of an "all vs. all" type of procedures for an
exhaustive screening of the graph that are compu-
tationally tractable — thus aiming at keeping up
with an effective method for graph to matrix con-
version of an entire lexical semantic network that
resists the eventual exponential explosion.

6 Conclusions

In this paper, we offer a contribution towards a
unified account of lexical semantics. We propose a
methodology to convert from semantic networks,
that are encoded in ontological graphs and em-
pirically based on systematic linguistic intuitions
(in their higher quality incarnations), to semantic
spaces, that are encoded in distributional vectors
and empirically based on very large collections
of texts (in their higher quality implementations).
This conversion methodology relies on a straight-
forward yet powerful intuition — the larger the
number of paths and the shorter the paths connect-
ing two nodes in an ontological graph the stronger
is their semantic affinity —, with iteration (1)
making it operative in order to generate a distri-
butional matrix from an ontological graph.

We report also on the results of assessing this
conversion methodology with a case study, namely
by applying it to a subgraph of WordNet with less
than half of its words (60k), randomly selected
from the ones whose senses have a larger num-
ber of outgoing edges. The resulting distributional
vectors wnet2vec were evaluated under the main-
stream task of determining the semantic similarity
of words arranged in pairs, against the mainstream
gold standard SimLex-999, with very good results.
The performance of wnet2vec was around 15% su-
perior to the performance of word2vec, trained on
a 100 billion token collection of texts. This in-

dicates that the proposed conversion procedure is
very effective and that the WordNet embeddings
are competitive when compared to text based em-
beddings.

It is nevertheless worth underlying that the re-
search goal of this paper was not to search for
word embeddings that outperform all previous
proposals known in the literature in terms of in-
trinsic evaluation tasks, like semantic similarity,
etc., or when they are embedded in larger systems.
Its research goal was rather to demonstrate that it
is feasible to create very effective word embed-
dings from semantic networks with a straightfor-
ward and yet powerful method of conversion from
semantic networks to semantic spaces that, given
its simplicity, offer the promise to generalize very
well for more types of lexical networks and on-
tologies other than just WordNet, which was the
case study used here.

The fact that less than half of the words in
WordNet were used in the reported experiment re-
inforces this positive expectation with respect to
the strength of the proposed approach, and point
towards future work that will seek to use larger
portions of WordNet, as computational limitation
can be overcome.

The results reported in this paper thus hint
at very promising research avenues, including,
among others, experiments with further ontologies
of different domains, empirical origins, etc.; with
cross-lingual triangulation with aligned WordNets
and aligned embeddings; with reciprocal rein-
forcement of ontological graphs and distributional
vectors; with other metrics of semantic affinity in
a graph, etc.

The wnet2vec data and software and their future
updates are distributed at https://github.
com/nlx-group/WordNetEmbeddings

Acknowledgments

The research results presented here were partly
supported by PORTULAN/CLARIN Infrastruc-
ture for the Science and Technology of Lan-
guage, by the National Infrastructure for Dis-
tributed Computing (INCD) of Portugal, and by
the ANI/3279/2016 grant.

References
Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana

Kravalova, Marius Paşca, and Aitor Soroa. 2009. A

129

study on similarity and relatedness using distribu-
tional and wordnet-based approaches. In NAACL-
HLT2009, pages 19–27.

John Robert Anderson. 1974. Retrieval of proposi-
tional information from long-term memory. Cogni-
tive Psychology, 6(4):451–474.

Marco Baroni, Raffaella Bernardi, Ngoc-Quynh Do,
and Chung-chieh Shan. 2012. Entailment above
the word level in distributional semantics. In
EACL2012, pages 23–32.

Daniel G. Bobrow and Donald Arthur Norman. 1975.
Some principles of memory schemata. In Represen-
tation and Understanding: Studies in Cognitive Sci-
ence, page 131–149. Elsevier.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems 26, pages 2787–2795.

Elia Bruni, Gemma Boleda, Marco Baroni, and Nam-
Khanh Tran. 2012. Distributional semantics in tech-
nicolor. In ACL2012, pages 136–145.

Alexander Budanitsky and Graeme Hirst. 2006. Eval-
uating wordnet-based measures of lexical semantic
relatedness. Computational Linguistics, 32(1):13–
47.

José Camacho-Collados, Mohammad Taher Pilehvar,
and Roberto Navigli. 2015. Nasari: a novel ap-
proach to a semantically-aware representation of
items. In NAACL-HLT2015, pages 567–577.

Simon De Deyne, Daniel J Navarro, and Gert Storms.
2013. Better explanations of lexical and seman-
tic cognition using networks derived from continued
rather than single-word associations. Behavior Re-
search Methods, 45(2):480–498.

Simon De Deyne, Amy Perfors, and Daniel J Navarro.
2016. Predicting human similarity judgments with
distributional models: The value of word associa-
tions. In COLING2016, pages 1861–1870.

William K Estes. 1994. Classification and Cognition.
Oxford University Press.

Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar,
Chris Dyer, Eduard Hovy, and Noah A. Smith. 2015.
Retrofitting word vectors to semantic lexicons. In
AACL-HLT 2015, pages 1606–1615.

Christiane Fellbaum, editor. 1998. WordNet: An Elec-
tronic Lexical Database. MIT Press.

Jure Ferlez and Matjaz Gams. 2004. Shortest-path se-
mantic distance measure in wordnet v2.0. Informat-
ica, 28:381–386.

Josu Goikoetxea, Aitor Soroa, and Eneko Agirre. 2015.
Random walks and neural network language mod-
els on knowledge bases. In NAACL-HLT25, pages
1434–1439.

Andreas Grünauer and Markus Vincze. 2015. Us-
ing dimension reduction to improve the classifi-
cation of high-dimensional data. arXiv preprint
arXiv:1505.06907.

Guy Halawi, Gideon Dror, Evgeniy Gabrilovich, and
Yehuda Koren. 2012. Large-scale learning of word
relatedness with constraints. In Proceedings of
the 18th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
1406–1414. ACM.

Zellig S Harris. 1954. Distributional structure. Word,
10(2-3):146–162.

Marti A Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In COLING1992,
pages 539–545.

Felix Hill, Roi Reichart, and Anna Korhonen. 2016.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics, 41:665–695.

G. Hirst and D. St-Onge. 1998. Lexical chains as rep-
resentations of context for the detection and correc-
tion of malapropisms. In C. Fellbaum, editor, Word-
Net: An Electronic Lexical Database, pages 305–
332. MIT Press.

Keith J Holyoak and Kyunghee Koh. 1987. Sur-
face and structural similarity in analogical transfer.
Memory & Cognition, 15(4):332–340.

Thad Hughes and Daniel Ramage. 2007. Lexical se-
mantic relatedness with random graph walks. In
EMNLP-CONLL2007, Prague, Czech Republic.

Yangfeng Ji and Jacob Eisenstein. 2014. Represen-
tation learning for text-level discourse parsing. In
ACL2014, pages 13–24.

J. Jiang and D. Conrath. 1997. Semantic similar-
ity based on corpus statistics and lexical taxonomy.
In Proceedings on International Conference on Re-
search in Computational Linguistics.

Josh Kaufman. 2017. 10,000 most common en-
glish words in google’s trillion word corpus.
https://github.com/first20hours/
google-10000-english.

C. Leacock and M. Chodorow. 1998. Combining lo-
cal context and wordnet similarity for word sense
identification. In C. Fellbaum, editor, WordNet: An
Electronic Lexical Database, pages 265–285. MIT
Press.

Jiwei Li and Dan Jurafsky. 2015. Do multi-sense em-
beddings improve natural language understanding?
arXiv preprint arXiv:1506.01070.

D. Lin. 1998. An information-theoretic definition of
similarity. In Proceedings of 15th International
Conference on Machine Learning.

130

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu,
and Xuan Zhu. 2015. Learning entity and relation
embeddings for knowledge graph completion. In
AAAI’15, pages 2181–2187.

David E Meyer and Roger W Schvaneveldt. 1971. Fa-
cilitation in recognizing pairs of words: Evidence of
a dependence between retrieval operations. Journal
of Experimental Psychology, 90(2):227.

Tomas Mikolov, Kai Chen, Greg Corrado, and
Jeffrey Dean. 2013a. Googlenews-vectors-
negative300.bin.gz - efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781. https://code.google.
com/archive/p/word2vec/.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems 26, pages 3111–3119.

Marvin Minsky. 1975. A framework for represent-
ing knowledge. In Psychology of Computer Vision.
McGraw-Hill.

Mark Newman. 2010. Networks: An Introduction. Ox-
ford University Press.

Kim Anh Nguyen, Sabine Schulte im Walde, and
Ngoc Thang Vu. 2017. Distinguishing antonyms
and synonyms in a pattern-based neural network.
arXiv preprint arXiv:1701.02962.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso
Poggio. 2016. Holographic embeddings of knowl-
edge graphs. In AAAI’16, pages 1955–1961.

Maximillian Nickel and Douwe Kiela. 2017. Poincaré
embeddings for learning hierarchical representa-
tions. In Advances in Neural Information Process-
ing Systems 30, pages 6341–6350.

Charles E Osgood, George J Suci, and Percy H Tan-
nenbaum. 1957. The measurement of meaning. Ur-
bana: University of Illinois Press.

Francis Jeffrey Pelletier. 2016. Semantic composition-
ality. In The Oxford Research Encyclopedia of Lin-
guistics. Oxford University Press.

M Ross Quillan. 1966. Semantic memory. Technical
report, Bolt Beranek and Newman Inc., Cambridge
MA.

Radim Řehůřek and Petr Sojka. 2010. Software frame-
work for topic modelling with large corpora. In Pro-
ceedings of the LREC 2010 Workshop on New Chal-
lenges for NLP Frameworks, pages 45–50. European
Language Resources Association.

P. Resnik. 1999. Semantic similarity in a taxonomy:
An information-based measure and its application to
problems of ambiguity in natural language. Journal
of Artificial Intelligence Research, 11.

Lance J Rips. 1975. Inductive judgments about natural
categories. Journal of Verbal Learning and Verbal
Behavior, 14(6):665–681.

João António Rodrigues, Ruben Branco, João Ricardo
Silva, Chakaveh Saedi, and António Branco. 2018.
Predicting brain activation with wordnet embed-
dings. In Proceedings of the 8th Workshop on Cog-
nitive Aspects of Computational Language Learning
and Processing (CogACLL2018), the 56th Annual
Meeting of the Association for Computational Lin-
guistics (ACL2018), Melbourne, Australia. Associa-
tion for Computational Linguistics.

Stephen Roller, Katrin Erk, and Gemma Boleda. 2014.
Inclusive yet selective: Supervised distributional hy-
pernymy detection. In COLING 2014, pages 1025–
1036.

Brian H Ross. 1984. Remindings and their effects in
learning a cognitive skill. Cognitive Psychology,
16(3):371–416.

Herbert Rubenstein and John B Goodenough. 1965.
Contextual correlates of synonymy. Communica-
tions of the ACM, 8(10):627–633.

Vered Shwartz, Yoav Goldberg, and Ido Dagan. 2016.
Improving hypernymy detection with an integrated
path-based and distributional method. In ACL2016,
pages 2389–2398.

Rion Snow, Daniel Jurafsky, and Andrew Y Ng. 2005.
Learning syntactic patterns for automatic hypernym
discovery. In Advances in Neural Information Pro-
cessing systems 17, pages 1297–1304.

Richard Socher, John Bauer, Christopher D Manning,
and Andrew Y. Ng. 2013. Parsing with composi-
tional vector grammars. In ACL2013, pages 455–
465.

David G Underhill, Luke K McDowell, David J
Marchette, and Jeffrey L Solka. 2007. Enhancing
text analysis via dimensionality reduction. In IEEE-
IRI2007, pages 348–353.

Ivan Vendrov, Ryan Kiros, Sanja Fidler, and Raquel
Urtasun. 2015. Order-embeddings of images and
language. arXiv preprint arXiv:1511.06361.

Julie Weeds, Daoud Clarke, Jeremy Reffin, David Weir,
and Bill Keller. 2014. Learning to distinguish hyper-
nyms and co-hyponyms. In COLING 2014, pages
2249–2259.

Wiktionary. 2017. Wiktionary: Frequency lists.
https://en.wiktionary.org/wiki/
Wiktionary:Frequency_lists.

Svante Wold, Kim Esbensen, and Paul Geladi. 1987.
Principal component analysis. Chemometrics and
Intelligent Laboratory Systems, 2(1-3):37–52.

Mo Yu and Mark Dredze. 2014. Improving lexical em-
beddings with semantic knowledge. In ACL 2014,
pages 545–550.

131

Proceedings of the 3rd Workshop on Representation Learning for NLP, pages 132–136
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

Knowledge Graph Embedding with Numeric Attributes of Entities

Yanrong Wu, Zhichun Wang∗
College of Information Science and Technology

Beijing Normal University, Beijing 100875, PR. China
yrwu@mail.bnu.edu.cn, zcwang@bnu.edu.cn

Abstract

Knowledge Graph (KG) embedding
projects entities and relations into low
dimensional vector space, which has been
successfully applied in KG completion
task. The previous embedding approaches
only model entities and their relations,
ignoring a large number of entities’
numeric attributes in KGs. In this paper,
we propose a new KG embedding model
which jointly model entity relations and
numeric attributes. Our approach com-
bines an attribute embedding model with
a translation-based structure embedding
model, which learns the embeddings of
entities, relations, and attributes simulta-
neously. Experiments of link prediction
on YAGO and Freebase show that the
performance is effectively improved by
adding entities’ numeric attributes in the
embedding model.

1 Introduction

Recently, a number of Knowledge Graphs
(KGs) have been created, such as DBpe-
dia (Lehmann, 2015), YAGO (Mahdisoltani
et al., 2015), and Freebase (Bollacker et al.,
2008). KGs encode structured informa-
tion of entities in the form of triplets (e.g.
〈Microsoft, isLocatedIn, UnitedStates〉), and
have been successfully applied in many real-
world applications. Although KGs contain a huge
amount of triplets, most of them are incomplete.
In order to further expand KGs, much work on KG
completion has been done, which aims to predict
new triplets based on the existing ones in KGs. A
promising group of research for KG completion
is known as KG embedding. KG embedding

∗Corresponding Author

approaches project entities and relations into a
continuous vector space while preserving the orig-
inal knowledge in the KG. KG embedding models
achieve good performance in KG completion in
terms of efficiency and scalability. TransE is a
representative KG embedding approach (Bordes
et al., 2013), which projects both entities and
relations into the same vector space: if a triplet
〈head entity, relation, tail entity〉 (denoted as
〈h, r, t〉) holds, TransE wants that h + r ≈ t.
The embeddings are learned by minimizing a
margin-based ranking criterion over the training
set. TransE model is simple but powerful, and
it gets promising results on link prediction and
triple classification problems. There are several
enhanced model of TransE, including TransR (Lin
et al., 2015), TransH (Wang et al., 2014) and
TransD (Ji et al., 2015) etc. By introducing new
representations of relational translation, later
approaches achieve better performance at the
cost of increasing model complexity. Recent
surveys (Wang et al., 2017; Nickel et al., 2016)
give detailed introduction and comparison of
various KG embedding approaches.

However, most of the existing KG em-
bedding approaches only model relational
triplets (i.e. triplets of entity relations),
while ignoring a large number of attributive
triplets (i.e. triplets of entity attributes, e.g.
〈Microsoft, wasFoundedOnDate, 1975〉)
in KGs. attributive triplets describe various
attributes of entities, such as ages of people or
areas of a city. There are a huge number of
attributive triplets in real KGs, and we believe
that information encoded in these triplets is also
useful for predicting entity relations. Having
the above motivation, we propose a new KG
embedding approach that jointly model entity
relations and entities’ numeric attributes. Our
approach consists of two component models,

132

structure embedding model and attribute embed-
ding model. The structure embedding model
is a translational distance model that preserves
the knowledge of entity relations; the attribute
embedding model is a regression-based model
that preserves the knowledge of entity attributes.
Two component models are jointly optimized
to get the embeddings of entities, relations, and
attributes. Experiments of link prediction on
YAGO and Freebase show that the performance is
effectively improved by adding entities’ numeric
attributes in the embedding model.

2 Our Approach

To effectively utilize numeric attributes of entities
in KG embedding, we propose TransEA, which
combine a new attribute embedding model with
the structure embedding model of TransE. Two
component models in TransEA share the embed-
dings of entities, and they are jointly optimized in
the training process.

2.1 Structure Embedding

The structure embedding directly adopts the
translation-based method in TransE to model the
relational triplets in KGs. Both Entities and rela-
tions in a KG are represented in the same vector
space Rd. In a triplet 〈h, r, t〉, the relation is con-
sidered as a translation vector r, which connects
the vector of entities h and t with low error, i.e.
h + r ≈ t. The score function of a given triplet
〈h, r, t〉 is defined as

fr(h, t) = −||h+ r− t||1/2 (1)

||x||1/2 denotes either the L1 or L2 norm. For all
the relational triplets in the KG, the loss function
of the structure embedding is defined as:

LR =
∑

〈h,r,t〉∈S

∑

〈h′,r,t′〉∈S′
[γ+fr(h, t)−fr(h′, t′)]+

(2)
where [x]+ = max{0, x}, S′ denotes the set
of negative triplets constructed by corrupting
〈h, r, t〉, i.e. replacing h or t with a randomly
chosen entity in KG; γ > 0 is a margin hyper-
parameter separating positive and negative triplets.

2.2 Attribute Embedding

Attribute embedding model takes all the attribu-
tive triplets in a KG as input, and learns embed-
dings of entities and attributes. Both entities and

attributes are represented as vectors in space Rd.
In an attributive triplet 〈e, a, v〉, e is an entity, a is
an attribute, and v is the value of the entity’s at-
tribute. In our approach, we only consider attribu-
tive triplets containing numeric values or values
can be easily converted into numeric ones. For a
triplet 〈e, a, v〉, we define a score function as

fa(e, v) = −||a> · e+ ba − v||1/2 (3)

where a and e are vectors of attribute a and entity
e, ba is a bias for attribute a. The idea of this score
function is to predict the attribute value by a linear
regression model of attribute a; the vector a and
bias ba are the parameters of the regression model.
For all the attributive triplets in the KG, the loss
function of the attribute embedding is defined as:

LA =
∑

〈e,a,v〉∈T
fa(e, v) (4)

where T is the set of all attributive triplets with
numeric values in the KG.

2.3 Joint Model

To combine the above two component models,
TransEA minimizes the following loss function:

L = (1− α) · LR + α · LA (5)

where α is a hyper-parameter that balances the im-
portance of structure and attribute embedding. In
the joint model, we let the embeddings of entities
shared by two component models. Entities, rela-
tions, and attributes are all represented by vectors
in Rd. We implement our approach by using Ten-
sorFlow1, and the loss function is minimized by
performing stochastic gradient descent.

3 Experiments

3.1 Datasets

The following two datasets are used in the experi-
ments, Table 1 shows their detail information.

YG58K. YG58K is a subset of YAGO3
(Mahdisoltani et al., 2015) which contains about
58K entities. YG58K is built by removing enti-
ties from YAGO3 that appear less than 25 times
or have no attributive triplets. All the remain-
ing triplets are then randomly split into train-
ing/validation/test sets.

1https://www.tensorflow.org

133

FB15K. FB15K is a subset of triplets extracted
from Freebase2. This subset of Freebase was
originally used in (Bordes et al., 2013), and then
widely used for evaluating KB completion ap-
proaches. Since our approach consumes attribu-
tive triplets, we extract all the attributive triplets
of entities in FB15K from Freebase to build the
evaluation dataset.

Datasets YG58K FB15K
Relational Triplets 497783 592213
Attributive Triplets 130287 24034
Entities 58130 14951
Relations 32 1345
Attributes 24 336
Train Sets 399480 483142
Valid Sets 49171 59071
Test Sets 49132 50000

Table 1: Statistics of datasets

3.2 Experimental setup
In the experiments, Mean Rank (the mean rank of
the original correct entity), Hits@k (the proportion
of the original correct entity to the top k entities),
and MRR (the mean reciprocal rank) are used as
evaluation metrics. Given a testing triplet 〈h, r, t〉,
we replace the head h by every entity in the KGs
and calculate dissimilarity measures according to
the score function fr. Ranking the scores in as-
cending order, then we get the rank of the original
correct triplet to compute the evaluation metrics.
And we repeat the procedure when removing the
tail t instead of the head h. We name the evalu-
ation setting as “Raw”. While corrupted triplets
that appear in the train/valid/test sets (except the
original correct one) may underestimate the met-
rics, we also filter out those corrupted triplets be-
fore getting the rank of each testing triplet and we
call this process “Filter”.

Because our approach is built based on TransE,
we compare our approach with TransE to see
whether adding attribute embedding in the model
improves the performance of link prediction. For
TransE and TransEA, we consider the learning
rate λ among {0.1, 0.01, 0.001}, the margin γ
among {1, 2, 4, 10}, the dimensions of embed-
ding d among {20, 50, 100, 150}, the types of
norm in two score functions among {L1, L2},
and α among {0.2, 0.3, 0.4, 0.5, 0.6}. Based
on the mean rank in validation set, we select
the best configurations for two approaches. On

2https://everest.hds.utc.fr/doku.php?id=en:transe

the YG58K dataset, the best parameter config-
uration for TransE is (λ = 0.1, γ = 4, d =
50, fr = L1, fa = L1), and for TransEA is
(λ = 0.001, γ = 4, d = 50, fr = L1, fa =
L1, α = 0.6). On the FB15K dataset, the best pa-
rameter configuration for TransE is(λ = 0.01, γ =
1, d = 50, fr = L1, fa = L1), and for TransEA
is (λ = 0.001, γ = 2, d = 100, fr = L1, fa =
L1, α = 0.3).

3.3 Results

Table 2 shows the results of link prediction on
YG58K and FB15K datasets. The results of pre-
dicting head and tail entities are outlined sepa-
rately, and we also report the overall results by
considering prediction of both head and tail en-
tity. According to the overall results, TransEA out-
performs TransE on both two datasets in terms of
all the three metrics. TransEA gets lower Mean
Ranks by about 10 on YG58K dataset; the MRR
and Hits@k of two approaches are very close,
TransEA gets slightly better results, the improve-
ments of MRR and Hits@k are 0.1-0.2% and 0-
0.3%. On FB15K dataset, TransEA gets lower
Mean Ranks by 13, and it also gets better re-
sults than TransE according to MRR, Hits@10 and
Hits@3.

Table 3 shows the results of different relational
categories. In general, TransEA has superiority on
two datasets, except one-to-many relation for re-
placing head entity on YG58K. And the improve-
ments on FB15K are larger than YG58K.

In order to figure out which relations are
predicted more accurately by TransEA, Table
4 lists the top 5 improved relations in terms
of Hits@10 on YG58K. It shows the best im-
provement of Hits@10 is 25% for the relation
isInterestedIn. The second one is 12.5%
for hasAcademicAdvisor, and the third
is 6.3% for worteMusicFor. Entities of
these three relations have plenty of numeric
attributes (wasBornOnDate, diedOnDate
) describing people, we believe they are helpful
to improving the embeddings of entity relations.
Entities in relational triplets about livesIn,
(e.g. 〈HankAzaria, livesIn,NewY ork〉), also
have some numeric attributes (hasLatitude,
hasLongtude, hasNumberOfPeople,
etc), therefore TransEA gets a 5% improvement
of Hits@10.

On FB15K dataset, five relations have 100%

134

Dataset Entity Model Mean Rank MRR(%) Hits@10(%) Hits@3(%) Hits@1(%)
Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter

YG58K

Head TransE 950 731 3.1 5.2 9.1 15.4 4.1 8.4 1.0 3.2
TransEA 944 723 3.1 5.4 9.4 16.0 4.1 8.5 1.1 3.4

Tail TransE 240 234 8.4 10.2 27.0 31.9 12.2 17.0 4.5 6.5
TransEA 229 223 8.5 10.5 27.6 32.7 12.4 17.6 4.7 6.8

All TransE 595 482 5.7 7.7 18.0 23.7 8.2 12.7 2.8 4.8
TransEA 586 473 5.8 7.9 18.5 24.3 8.2 13.0 2.9 5.1

FB15K

Head TransE 240 115 14.5 25.2 47.0 68.7 26.2 52.4 11.8 30.6
TransEA 225 100 15.1 28.1 49.5 74.0 28.0 60.1 11.8 34.8

Tail TransE 168 87 17.6 28.2 54.8 75.1 32.8 58.9 16.4 35.7
TransEA 157 76 18.2 30.9 57.5 80.5 34.5 66.6 16.3 40.0

All TransE 204 101 16.0 26.7 50.9 71.9 29.5 55.7 14.1 33.1
TransEA 191 88 16.7 29.5 53.5 77.3 31.3 63.3 14.0 37.4

Table 2: Link prediction results

DATASETS
TASK Predicting Head(Hits@10) Prediction Tail(Hits@10)

REL.CAT 1-to-1 1-to-N N-to-1 N-to-N 1-to-1 1-to-N N-to-1 N-to-N

YG58K TransE 61.4 45.5 15.4 15.5 62.0 18.2 31.9 31.1
TransEA 63.9 36.4 16.0 16.0 63.3 22.7 32.7 31.9

FB15K TransE 78.1 93.8 68.7 72.3 78.0 42.1 75.1 75.6
TransEA 84.3 95.5 74.0 77.6 83.3 52.4 80.5 81.1

Table 3: Hits@10(%) by relational category in the filtered evaluation setting. (N. stand for MANY)

Relation TransE TransEA

isInterestedIn 50.0 75.0
hasAcademicAdvisor 31.3 43.8
wroteMusicFor 12.5 18.8
livesIn 23.8 28.8
hasNeighbor 48.1 52.8

Table 4: Top 5 relations of promoted Hits@10 and
their Hits@10(%) on YG58K

Relation TransE TransEA

business/brand/company 24 2
base/celebrity/restaurant 249 4
base/celebrity/product 24 2
music/artists supported 44 3
sports/competition/country 24 4

Table 5: Top 5 relations of promoted Hit@10 and
their Mean Rank on FB15K

improvements of Hits@10, because TransE
does not correctly predict any correct triplets
in the top 10 ranked ones. We find that these
relations only have one single sample in the
test sets, so Table 5 lists the Mean Rank of
them. Obviously, TransEA improves their Mean
Rank a lot. Entities in triplets of the five rela-
tions have only a few attributes. For example,
the relation business/brand/company
only has one numeric attributive triplet about

organization/dateFounded. And the
relation music/artists supported
has two triplets with numeric attributes
person/dateOfBirth and one triplet
with person/heightMeters. Therefore, the
quality of predicted links can be improved as well
even with only a small number of entities numeric
attributes.

4 Conclusion

In this paper, we propose TransEA, an embed-
ding approach which jointly models relational
and attributive triplets in KGs. TransEA com-
bines an attribute embedding model with the
translation-based embedding model in TransE.
Experiments on YAGO and Freebase show that
TransEA achieves better performance than TransE
in link prediction task. In the future, we will study
how to predict missing attribute values in KGs
based on KG embedding.

Acknowledgments

The work is supported by the National Key Re-
search and Development Program of China (No.
2017YFC0804004) and the National Natural Sci-
ence Foundation of China (No. 61772079).

135

References
Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim

Sturge, and Jamie Taylor. 2008. Freebase: a col-
laboratively created graph database for structuring
human knowledge. SIGMOD 08 Proceedings of the
2008 ACM SIGMOD international conference on
Management of data, pages 1247–1250.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Proceedings of Advances in
neural information processing systems (NIPS2013),
pages 2787–2795.

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and
Jun Zhao. 2015. Knowledge graph embedding via
dynamic mapping matrix. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing, vol-
ume 1, pages 687–696.

J. Lehmann. 2015. Dbpedia: A large-scale, multilin-
gual knowledge base extracted from wikipedia. Se-
mantic Web, 6(2):167–195.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu,
and Xuan Zhu. 2015. Learning entity and relation
embeddings for knowledge graph completion. In
Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence (AAAI2015), volume 15,
pages 2181–2187.

Farzaneh Mahdisoltani, Joanna Asia Biega, and
Fabian M. Suchanek. 2015. YAGO3: A Knowledge
Base from Multilingual Wikipedias . 7th Biennial
Conference on Innovative Data Systems Research.

Maximilian Nickel, Kevin Murphy, Volker Tresp, and
Evgeniy Gabrilovich. 2016. A review of relational
machine learning for knowledge graphs. Proceed-
ings of the IEEE, 104(1):11–33.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo.
2017. Knowledge graph embedding: A survey of
approaches and applications. IEEE Transactions
on Knowledge and Data Engineering, 29(12):2724–
2743.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. In Proceedings of the Twenty-
eighth AAAI Conference on Artificial Intelligence
(AAAI2014), volume 14, pages 1112–1119.

136

Proceedings of the 3rd Workshop on Representation Learning for NLP, pages 137–143
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

Injecting Lexical Contrast into Word Vectors
by Guiding Vector Space Specialisation

Ivan Vulić and Anna Korhonen
Language Technology Lab, University of Cambridge, UK

{iv250,alk23}@cam.ac.uk

Abstract

Word vector space specialisation models
offer a portable, light-weight approach to
fine-tuning arbitrary distributional vector
spaces to discern between synonymy and
antonymy. Their effectiveness is drawn
from external linguistic constraints that
specify the exact lexical relation between
words. In this work, we show that a care-
ful selection of the external constraints can
steer and improve the specialisation. By
simply selecting appropriate constraints,
we report state-of-the-art results on a suite
of tasks with well-defined benchmarks
where modeling lexical contrast is crucial:
1) true semantic similarity, with highest re-
ported scores on SimLex-999 and SimVerb-
3500 to date; 2) detecting antonyms; and 3)
distinguishing antonyms from synonyms.

1 Introduction

Representation models grounded in the distribu-
tional hypothesis (Harris, 1954) generally fail to
distinguish highly contrasting words (antonyms)
from highly similar ones (synonyms), due to similar
word co-occurrence signatures in text corpora (Tur-
ney and Pantel, 2010; Mohammad et al., 2013).1

In addition to antonymy and synonymy being fun-
damental lexical relations that are central to the
organisation of the mental lexicon (Miller and Fell-
baum, 1991; Murphy, 2010), this undesirable prop-
erty of distributional word vector spaces has grave
implications on their application in NLP reasoning
and understanding tasks. As shown in prior work
(Pham et al., 2015; Mrkšić et al., 2016; Kim et al.,

1As pointed out by Cruse (1986), antonyms have a paradox-
ical nature: on the one hand, they constitute the two opposites
of a meaning continuum, and therefore could be seen as seman-
tically remote; on the other hand, they are paradigmatically
similar, having almost identical distributions.

2016; Nguyen et al., 2017b; Mrkšić et al., 2017,
i.a.), explicitly modeling the lexical contrast bene-
fits text entailment, dialogue state tracking, spoken
language understanding, language generation, etc.2

A popular solution to address the limitation con-
cerning lexical contrast is to move beyond stand-
alone unsupervised learning. Post-processing pro-
cedures have been designed that leverage exter-
nal lexical knowledge available in human- and
automatically-constructed lexical resources (e.g.,
PPDB, WordNet): these methods fine-tune input
word vectors to satisfy linguistic constraints from
the external resources (Faruqui et al., 2015; Jauhar
et al., 2015; Rothe and Schütze, 2015; Wieting
et al., 2015; Mrkšić et al., 2016; Mrkšić et al., 2017;
Vulić et al., 2017b, i.a.). This process has been
termed retrofitting or vector space specialisation.

As one advantage, the post-processing methods
are applicable to arbitrary input vector spaces. They
are also “light-weight”, that is, they do not require
large corpora for (re-)training, as opposed to joint
specialisation models (Yu and Dredze, 2014; Kiela
et al., 2015; Pham et al., 2015; Nguyen et al., 2016)
which integrate lexical knowledge directly into dis-
tributional training objectives.3

The main driving force of the retrofitting models
are the external constraints, which specify which
words should be close to each other in the spe-
cialised vector space (i.e., the so-called ATTRACT

constraints), and which words should be far apart
in the space (REPEL). By manipulating the con-
straints, one can steer the specialisation goal: e.g.,
Vulić et al. (2017a) use verb relations from Verb-
Net (Kipper, 2005) to accentuate VerbNet-style
syntactic-semantic relations in the vector space.

2Using a simple example, users asking for a cheap pub
in northern Seattle do not want a virtual personal assistant to
recommend an expensive restaurant in southern Portland.

3An additional advantage of post-processors is their better
overall performance across a range of tasks when compared
to the “heavy-weight” joint models (Mrkšić et al., 2016).

137

Take a mini-batch of ATTRACT and REPEL pairs... For each pair, find two pseudo-negative examples... ...and fine-tune the vectors so that ATTRACT pairs
are closest...

 ...and REPEL pairs furthest away from each other

annoying

irritating
expensive

oriental

eastern

costly

A
T

T
R

A
C

T
R

E
PE

L
eastern

annoying

irritating

costly

irritating

annoying

costly

eastern

south

north

fun

boring

expensive
inexpensive

south
fun

inexpensive
expensive

expensive

fun

inexpensive

south

Figure 1: An illustration of specialisation for lexical contrast with toy examples. The specialisation model
operates with two sets of external linguistic constraints: 1) ATTRACT word pairs, which have to be as
close as possible in the fine-tuned vector space (e.g., irritating and annoying); and 2) REPEL word pairs,
which have to be as far away from each other as possible (e.g., expensive and inexpensive).

Contributions. In this work, we investigate how
different constraints affect specialisation. We show
that a careful selection of external constraints can
guide specialisation models to emphasise lexical
contrast in the fine-tuned vector space: e.g., we in-
dicate that direct (i.e., 1-step) WordNet hypernymy-
hyponymy pairs are useful for boosting lexical con-
trast. Our specialised word vector spaces yield state-
of-the-art results on a range of tasks where mod-
eling lexical contrast is crucial: 1) true semantic
similarity; 2) antonymy detection; and 3) distin-
guishing antonyms from synonyms. Our SimLex-
999 (Hill et al., 2015) and SimVerb-3500 (Gerz
et al., 2016) scores are the highest reported results
on these datasets to date: the result on SimLex-
999 is the first result on the dataset surpassing the
ceiling of mean inter-annotator agreement.

2 Methodology

Specialisation Model. Post-processing models
are generally guided by two broad sets of con-
straints: 1) ATTRACT constraints (AC) specify
which words should be close to each other in
the fine-tuned vector space; 2) REPEL (RC) con-
straints describe which words should be pulled
away from each other. The nomenclature is adopted
from Mrkšić et al. (2017). Earlier post-processors
(Faruqui et al., 2015; Jauhar et al., 2015; Wiet-
ing et al., 2015) operate only with ATTRACT con-

syn (AC) hyp1 (AC) antexp (RC)

(outburst, outbreak) (discordance, dissonance) (smooth, shake)
(safe, secure) (postmen, deliverymen) (clear, obscurity)
(cordial, warmhearted) (employee, worker) (relief, pressure)
(answer, response) (swap, exchange) (half, full)

Table 1: Examples of linguistic constraints.

straints, and are therefore not suited to model both
aspects of lexical contrast. In this work, we em-
ploy the state-of-the-art specialisation model of
Mrkšić et al. (2017) which integrates both sets of
constraints into its fine-tuning process. Here, we
provide only a high-level description of the model,
also illustrated by Figure 1, while we refer the in-
terested reader to the original paper for a full (tech-
nical) description.

In short, the model trains over batches of AT-
TRACT and REPEL pairs and contains three terms
in its objective function. First, the ATTRACT term
pushes two words from each ATTRACT constraint
closer to each other (in terms of the cosine similar-
ity) than to any other word present in the current
batch by a margin δatt. Second, the REPEL term
pulls away two words from each REPEL constraint
so that they are further away from each other than
from any other word present in the current batch
(again, by a margin δrpl): see Figure 1 again. Third,
a regularisation term is used to preserve the useful
semantic content originally present in the distribu-

138

tional space, as long as this information does not
contradict the injected external knowledge.

Linguistic Constraints. The constraints are in
fact word pairs (xi, xj), xi, xj ∈ V , where V
is the vocabulary represented in the input distri-
butional space. First, the conflation of synonymy
and antonymy relations in the input space can be
obviously mitigated by assigning synonymy pairs
(syn) to the ATTRACT set, and antonymy pairs
(ant) to the REPEL set. Further, similar to Ono
et al. (2015), it is possible to extend the (typically
less exhaustive) list of antonyms by combining the
available knowledge from syn and antword pairs.
If (xi, xj) are a pair of synonyms, and (xi, xk) are a
pair of antonyms, one can add another pair (xj , xk)
to the expanded list of antonyms: this yields a larger
set (antexp) to serve as REPEL constraints.

Finally, as the analysis of Hill et al. (2015) shows,
the taxonomic hypernymy-hyponymy IS-A relation
is often mistaken by true synonymy by humans.
Therefore, we also experiment with direct (i.e. 1-
step) IS-A pairs (hyp1) from Wordnet as another
set included in the ATTRACT pairs for lexical con-
trast specialisation. To the best of our knowledge,
the hyp1 pairs were not used before for lexical
contrast modeling. A selection of constraints from
different sets is shown in Table 1. In what follows,
we test how these different configurations of con-
straints influence the specialisation process.

3 Experimental Setup

Training Setup and Constraints. We train the
state-of-the-art specialisation model of Mrkšić et al.
(2017) using suggested settings:4 Adagrad (Duchi
et al., 2011) is used for stochastic optimisation,
batch size is 50, and we train for 15 epochs. To
emphasise lexical contrast in the specialised space
we set the respective ATTRACT and REPEL margins
δatt and δrpl to the same value: 1.0. We use large
300-dim skip gram vectors with bag-of-words con-
texts and negative sampling (SGNS-GN) (Mikolov
et al., 2013), pre-trained on the 100B Google News
corpus. As all other components of the model are
kept fixed, the difference in performance can be
attributed to the difference in the constraints used.

We experiment with external constraints em-
ployed in prior work (Zhang et al., 2014; Ono
et al., 2015): these were extracted from Word-
Net (Fellbaum, 1998) and the Roget thesaurus

4https://github.com/nmrksic/attract-repel

(Kipfer, 2009), and comprise 1,023,082 synonymy
(syn) pairs and 380,873 ant pairs. The expanded
antexp set of antonyms contains a total of
10,334,811 word pairs. Finally, the hyp1 set ex-
tracted from WordNet contains 326,187 word pairs.

We evaluate all specialised spaces in three stan-
dard tasks with well-defined benchmarks where
modeling lexical contrast is beneficial: 1) semantic
similarity, 2) antonymy detection, and 3) distin-
guishing antonyms from synonyms. For each task,
we compare against a representative selection of
baselines, currently holding peak scores on the re-
spective benchmarks. Due to a large space of mod-
els in our comparison, we refer the interested reader
to the original papers for their full descriptions.

Task 1: Word Similarity. We evaluate all mod-
els on the SimLex-999 dataset (Hill et al., 2015),
and SimVerb-3500 (Gerz et al., 2016), a recent verb
pair similarity dataset with 3,500 verb pairs.5 The
evaluation metric is Spearman’s ρ rank correlation.

Task 2: Antonymy Detection. For this task, we
rely on the widely used Graduate Record Examina-
tion (GRE) dataset (Mohammad et al., 2008, 2013).
The task, given an input cue word, is to select the
best antonym from five options. Given a word vec-
tor space, we take the word with the largest cosine
distance to the cue as the best antonym. The GRE
dataset contains 950 questions in total. We report
balanced F1 scores on the entire dataset.

Task 3: Synonymy vs. Antonymy. In this bi-
nary classification task, the system must decide
whether the relation between two words is syn-
onymy or antonymy. We use the recent dataset of
Nguyen et al. (2017b), comprising 1,020 noun (N)
test pairs, 908 verb (V) pairs, and 1,986 adjective
(A) pairs, with the equal number of synonymy and
antonymy pairs in each test subset. A classification
threshold decides on the relation: all word pairs
with their cosine similarity above the threshold are
considered synonyms, all the others are antonyms.6

5Unlike WordSim-353 (Finkelstein et al., 2002) or MEN
(Bruni et al., 2014), SimLex and SimVerb provide explicit
guidelines to discern between true semantic similarity and
(more broad) conceptual relatedness, so that related but non-
similar words (e.g. tiger and jungle) have a low rating.

6Similar to the work on hypernymy detection (Santus et al.,
2014; Nguyen et al., 2017a; Vulić and Mrkšić, 2018), we tune
the threshold on a validation set of 206 N pairs, 182 V pairs,
and 398 A pairs, also used by Nguyen et al. (2017b).

139

MODEL SimLex SimVerb

SGNS-GN (Mikolov et al., 2013) 0.414 0.348
Symmetric Patterns (Schwartz et al., 2015) 0.563 0.328
Non-distributional (Faruqui and Dyer, 2015) 0.578 0.596
Joint Specialisation (Nguyen et al., 2016) 0.590 0.516
Paragram-SL999 (Wieting et al., 2015) 0.690 0.540
Counter-fitting (Mrkšić et al., 2016) 0.740 0.628
AR: BabelNet (Mrkšić et al., 2017) 0.751 0.674

RC: ant 0.596 0.589
RC: antexp 0.606 0.551
AC: syn 0.748 0.728
AC: hyp1 0.546 0.387
AC: syn, RC: ant 0.778 0.767
AC: syn, RC: antexp 0.736 0.708
AC: syn+hyp1, RC: ant 0.791 0.770
AC: syn+hyp1, RC: antexp 0.751 0.710

Mean inter-annotator agreement 0.779 0.864

Table 2: Task 1. Results on two word similarity
benchmarks (Spearman’s ρ). Best-scoring baseline
models from the literature are reported. The dashed
line separates purely distributional models from the
ones leveraging external lexical knowledge.

MODEL GRE: F1

Constraints Lookup (ANT) 0.62

SGNS-GN (Mikolov et al., 2013) 0.48
Polarity LSA (Yih et al., 2012) 0.81
Bayesian Tensor Factor. (Zhang et al., 2014) 0.82
Joint Specialisation Model (Ono et al., 2015) 0.89

RC: ant 0.79
RC: antexp 0.80
AC: syn 0.33
AC: hyp1 0.44
AC: syn, RC: ant 0.90
AC: syn, RC: antexp 0.83
AC: syn+hyp1, RC: ant 0.92
AC: syn+hyp1, RC: antexp 0.85

Table 3: Task 2. Results (F1 scores) on the full
GRE multiple-choice antonymy detection dataset.

4 Results and Discussion

Task 1: Word Similarity. A summary of the re-
sults is provided in Table 2. The most striking find-
ings are new state-of-the-art correlation scores on
both benchmarks: both are obtained by combin-
ing syn and hyp1 into ATTRACT constraints, and
using the unexpanded list of antonyms as REPEL

constraints. This suggests that: 1) both ATTRACT

and REPEL constraints are required to provide the
synergistic effect during specialisation; 2) a larger
(and noisier) set of antonymy pairs is not neces-
sarily more effective; 3) the hyp1 pairs are useful
for modeling lexical contrast. When included as
ATTRACT constraints, these pairs lead to small but
consistent gains across all three tasks (see also Ta-
bles 3-4).

MODEL A V N

Symmetric Patterns (Schwartz et al., 2015) 0.718 0.584 0.482
(Roth and Schulte im Walde, 2014) 0.717 0.788 0.832
AntSynNET (Nguyen et al., 2017b) 0.784 0.777 0.855

RC: ant 0.956 0.938 0.854
RC: antexp 0.899 0.915 0.809
AC: syn 0.876 0.845 0.773
AC: hyp1 0.678 0.678 0.681
AC: syn, RC: ant 0.959 0.969 0.872
AC: syn, RC: antexp 0.951 0.955 0.871
AC: syn+hyp1, RC: ant 0.969 0.975 0.879
AC: syn+hyp1, RC: antexp 0.953 0.947 0.872

Table 4: Task 3. Results (F1) on the synonymy-vs-
antonymy evaluation set (Nguyen et al., 2017b).

The reported high score on SimLex of 0.791 is
the first correlation score moving beyond mean hu-
man performance on the dataset (0.779), thus ques-
tioning the further usability of the benchmark in se-
mantic modeling evaluation. The gain on SimVerb
is even more substantial: from the previous high
score of 0.674 (Mrkšić et al., 2017) to 0.770.7 The
difference is again attributed to the use of higher-
quality constraints: Mrkšić et al. (2017) relied on
a noisier and smaller set from BabelNet, verify-
ing the importance of guiding specialisation by the
correct choice of constraints. In short, the speciali-
sation model simply encodes the provided external
knowledge into the input vector space, and as such
it is critically tied to the constraints.

Task 2: Antonymy Detection. A summary of
the results is provided in Table 3. The results sug-
gest that antonymous REPEL constraints are more
beneficial for this task, which is easily explained
by the nature of the task, but the synergistic ef-
fect is again observed: both types of constraints
are essential to boost the scores. The best perform-
ing configuration of constraints outperforms two
strong baselines (Zhang et al., 2014; Ono et al.,
2015) which also rely on the same external lexical
knowledge (minus hyp1 pairs). Importantly, the
results also suggest that the specialisation model
indeed learns useful relationships in the specialised
space beyond a simple baseline model that lookups
into constraints: large gains over this baseline are
reported with a variety of configurations. Distribu-
tional SGNS-GN vectors coalesce antonymy and
synonymy: as a consequence, they are not a compet-
itive baseline in any of the three evaluation tasks.

7We have also verified that the specialisation process is
robust to the chosen distributional vector space. The best con-
figuration of constraints from Table 2 with two other starting
spaces, GLOVE (Pennington et al., 2014) and FASTTEXT (Bo-
janowski et al., 2017), yields respective correlation scores of
0.787 and 0.774 on SimLex and 0.764 and 0.744 on SimVerb.

140

The model which uses a large set of ANTEXP

again cannot match performance of the model
which relies on the original ANT. We see this as
an interesting finding which suggests that the mas-
sive expansion of lexical constraints decreases the
strength of originally provided word relationships,
which were hand-crafted by linguistic experts.

Task 3: Synonymy vs. Antonymy. A summary
of the results with strongest baselines from prior
work is provided in Table 4: specialisation again
outperforms the competitors.8 The score differ-
ences between best-performing configurations are
not as pronounced as in the other two tasks: we
attribute this to the reduced task complexity. How-
ever, the results again indicate that: 1) both types
of constraints are important for distinguishing be-
tween the coalesced relations of synonymy and
antonymy, with the synergistic effect again ob-
served; 2) the noisy and large ANTEXP set of
antonyms falls short of the smaller, more accurate
ANT set; and 3) the same configuration as in the
two other tasks (AC: SYN+HYP1, RC: ANT) again
leads to peak performance.

5 Conclusion

We have demonstrated that post-processing special-
isation models serve as a powerful tool for inject-
ing lexical contrast knowledge into distributional
word vector spaces. We have verified the hypothe-
sis that a careful selection of external constraints
is crucial for guiding the specialisation by improv-
ing state-of-the-art scores on three standard tasks
used for evaluation of lexical contrast modeling:
detecting antonyms, distinguishing antonyms from
synonyms, and word similarity.

The post-processing specialisation models such
as ATTRACT-REPEL fine-tune only vectors of words
present in the external constraints. In the follow-up
work, we have proposed a method which can prop-
agate the useful external signal also to the full vo-
cabulary (Vulić et al., 2018), leading to additional
gains with specialised vectors in downstream lan-
guage understanding applications. In future work,
we will further investigate the full-vocabulary spe-
cialisation approaches.

8However, note that the specialization model cannot be
directly and fairly compared to the baselines in this task, which
do not use any supervision signal. The reported performance
of the specialisation model can be seen as an upper bound to
such distributional approaches.

Acknowledgments

This work is supported by the ERC Consolidator
Grant LEXICAL (no 648909). The authors would
like to thank the anonymous reviewers for their
helpful suggestions.

References
Piotr Bojanowski, Edouard Grave, Armand Joulin, and

Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the ACL,
5:135–146.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. Journal of Ar-
tificial Intelligence Research, 49:1–47.

Alan D. Cruse. 1986. Lexical Semantics. Cambridge
University Press.

John C. Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research, 12:2121–2159.

Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar,
Chris Dyer, Eduard Hovy, and Noah A. Smith. 2015.
Retrofitting word vectors to semantic lexicons. In
Proceedings of NAACL-HLT, pages 1606–1615.

Manaal Faruqui and Chris Dyer. 2015. Non-
distributional word vector representations. In Pro-
ceedings of ACL, pages 464–469.

Christiane Fellbaum. 1998. WordNet.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Eytan
Ruppin. 2002. Placing search in context: The con-
cept revisited. ACM Transactions on Information
Systems, 20(1):116–131.

Daniela Gerz, Ivan Vulić, Felix Hill, Roi Reichart, and
Anna Korhonen. 2016. SimVerb-3500: A large-
scale evaluation set of verb similarity. In Proceed-
ings of EMNLP, pages 2173–2182.

Zellig S. Harris. 1954. Distributional structure. Word,
10(23):146–162.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
SimLex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics, 41(4):665–695.

Sujay Kumar Jauhar, Chris Dyer, and Eduard Hovy.
2015. Ontologically grounded multi-sense represen-
tation learning for semantic vector space models. In
Proceedings of NAACL-HLT, pages 683–693.

Douwe Kiela, Felix Hill, and Stephen Clark. 2015.
Specializing word embeddings for similarity or re-
latedness. In Proceedings of EMNLP, pages 2044–
2048.

141

Joo-Kyung Kim, Gokhan Tur, Asli Celikyilmaz, Bin
Cao, and Ye-Yi Wang. 2016. Intent detection us-
ing semantically enriched word embeddings. In Pro-
ceedings of SLT.

Barbara Ann Kipfer. 2009. Roget’s 21st Century The-
saurus (3rd Edition). Philip Lief Group.

Karin Kipper. 2005. VerbNet: A broad-coverage, com-
prehensive verb lexicon. Ph.D. thesis.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed rep-
resentations of words and phrases and their compo-
sitionality. In Proceedings of NIPS, pages 3111–
3119.

George A. Miller and Christiane Fellbaum. 1991. Se-
mantic networks of English. Cognition, 41(1):197 –
229.

Saif Mohammad, Bonnie J. Dorr, and Graeme Hirst.
2008. Computing word-pair antonymy. In Proceed-
ings of EMNLP, pages 982–991.

Saif Mohammad, Bonnie J. Dorr, Graeme Hirst, and
Peter D. Turney. 2013. Computing lexical contrast.
Computational Linguistics, 39(3):555–590.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thom-
son, Milica Gašić, Lina Maria Rojas-Barahona, Pei-
Hao Su, David Vandyke, Tsung-Hsien Wen, and
Steve Young. 2016. Counter-fitting word vectors
to linguistic constraints. In Proceedings of NAACL-
HLT, pages 142–148.

Nikola Mrkšić, Ivan Vulić, Diarmuid Ó Séaghdha, Ira
Leviant, Roi Reichart, Milica Gašić, Anna Korho-
nen, and Steve Young. 2017. Semantic specializa-
tion of distributional word vector spaces using mono-
lingual and cross-lingual constraints. Transactions
of the ACL, 5:309–324.

M. Lynne Murphy. 2010. Lexical Meaning. Cam-
bridge University Press.

Kim Anh Nguyen, Maximilian Köper, Sabine
Schulte im Walde, and Ngoc Thang Vu. 2017a.
Hierarchical embeddings for hypernymy detection
and directionality. In Proceedings of EMNLP,
pages 233–243.

Kim Anh Nguyen, Sabine Schulte im Walde, and
Ngoc Thang Vu. 2016. Integrating distributional
lexical contrast into word embeddings for antonym-
synonym distinction. In Proceedings of ACL, pages
454–459.

Kim Anh Nguyen, Sabine Schulte im Walde, and
Ngoc Thang Vu. 2017b. Distinguishing antonyms
and synonyms in a pattern-based neural network. In
Proceedings of EACL, pages 76–85.

Masataka Ono, Makoto Miwa, and Yutaka Sasaki.
2015. Word embedding-based antonym detection
using thesauri and distributional information. In
Proceedings of NAACL-HLT, pages 984–989.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of EMNLP, pages 1532–
1543.

Nghia The Pham, Angeliki Lazaridou, and Marco Ba-
roni. 2015. A multitask objective to inject lexical
contrast into distributional semantics. In Proceed-
ings of ACL, pages 21–26.

Michael Roth and Sabine Schulte im Walde. 2014.
Combining word patterns and discourse markers for
paradigmatic relation classification. In Proceedings
of ACL, pages 524–530.

Sascha Rothe and Hinrich Schütze. 2015. AutoEx-
tend: Extending word embeddings to embeddings
for synsets and lexemes. In Proceedings of ACL,
pages 1793–1803.

Enrico Santus, Alessandro Lenci, Qin Lu, and Sabine
Schulte im Walde. 2014. Chasing hypernyms in vec-
tor spaces with entropy. In Proceedings of EACL,
pages 38–42.

Roy Schwartz, Roi Reichart, and Ari Rappoport. 2015.
Symmetric pattern based word embeddings for im-
proved word similarity prediction. In Proceedings
of CoNLL, pages 258–267.

Peter D. Turney and Patrick Pantel. 2010. From fre-
quency to meaning: vector space models of seman-
tics. Journal of Artifical Intelligence Research,
37(1):141–188.

Ivan Vulić, Goran Glavaš, Nikola Mrkšić, and Anna
Korhonen. 2018. Post-specialisation: Retrofitting
vectors of words unseen in lexical resources. In Pro-
ceedings of NAACL-HLT.

Ivan Vulić and Nikola Mrkšić. 2018. Specialising word
vectors for lexical entailment. In Proceedings of
NAACL-HLT.

Ivan Vulić, Nikola Mrkšić, and Anna Korhonen. 2017a.
Cross-lingual induction and transfer of verb classes
based on word vector space specialisation. In Pro-
ceedings of EMNLP, pages 2546–2558.

Ivan Vulić, Nikola Mrkšić, Roi Reichart, Diarmuid
Ó Séaghdha, Steve Young, and Anna Korhonen.
2017b. Morph-fitting: Fine-tuning word vector
spaces with simple language-specific rules. In Pro-
ceedings of ACL, pages 56–68.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2015. From paraphrase database to compo-
sitional paraphrase model and back. Transactions of
the ACL, 3:345–358.

Wen-tau Yih, Geoffrey Zweig, and John Platt. 2012.
Polarity inducing Latent Semantic Analysis. In Pro-
ceedings of EMNLP, pages 1212–1222.

Mo Yu and Mark Dredze. 2014. Improving lexical em-
beddings with semantic knowledge. In Proceedings
of ACL, pages 545–550.

142

Jingwei Zhang, Jeremy Salwen, Michael Glass, and Al-
fio Gliozzo. 2014. Word semantic representations
using bayesian probabilistic tensor factorization. In
Proceedings of EMNLP, pages 1522–1531.

143

Proceedings of the 3rd Workshop on Representation Learning for NLP, pages 144–153
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

Characters or Morphemes: How to Represent Words?

Ahmet Üstün Murathan Kurfalı
Cognitive Science Department

Informatics Institute
Middle East Technical University, Turkey

{ustun.ahmet,kurfali}@metu.edu.tr

Burcu Can
Department of Computer Engineering

Hacettepe University
Turkey

burcucan@cs.hacettepe.edu.tr

Abstract

In this paper, we investigate the effects of
using subword information in representa-
tion learning. We argue that using syntac-
tic subword units effects the quality of the
word representations positively. We intro-
duce a morpheme-based model and com-
pare it against to word-based, character-
based, and character n-gram level models.
Our model takes a list of candidate seg-
mentations of a word and learns the rep-
resentation of the word based on different
segmentations that are weighted by an at-
tention mechanism. We performed exper-
iments on Turkish as a morphologically
rich language and English with a com-
parably poorer morphology. The results
show that morpheme-based models are
better at learning word representations of
morphologically complex languages com-
pared to character-based and character n-
gram level models since the morphemes
help to incorporate more syntactic knowl-
edge in learning, that makes morpheme-
based models better at syntactic tasks.

1 Introduction

The distributional hypothesis of Harris (1954) has
been used to motivate work on vector space mod-
els to learn word representations. Deep learning
models learn another kind of vector space model
for building word representations, which shows
superior performance in representing words.

Although deep neural networks have been very
successful in representing words via such vectors,
those models have not been very successful at esti-
mating the representations of rare words since they
do not appear often enough to allow us to collect
reliable statistics about their context. Morpholog-

ically complex words are also rare by definition.
Cao and Rei (2016) state that a word like unbe-
lievableness does not exist in the first 17 million
words of Wikipedia. Some methods have been
proposed to deal with the sparsity issue in learning
word representations. One approach is to utilize
the subword information such as characters, char-
acter n-grams, or morphemes rather than learning
distinct word representations without considering
the inner structure of words.

Character-based models usually learn better
word representations compared to word-based
models since they capture the regularities inside
the words so that it mitigates the sparsity in rep-
resentation learning. However, those models learn
the representations through the characters that do
not correspond to a syntactic or semantic unit. In
Turkish, two words can have similar word repre-
sentations under a character-based model just be-
cause of their common suffixes. For example,
character-based models such as (Bojanowski et al.,
2017) generate similar word representations for
words that have common character n-grams such
as kitaplardan (from the books) and kasaplardan
(from the butchers) (where lar and dan are suf-
fixes, kitap and kasap are the roots) although the
two words are semantically not related at all.

Another problem we observed for the character-
based models is that such models estimate dis-
tant representations for words that are semanti-
cally related but involve different forms of the
same morpheme so called allomorphs. This is one
of the consequences of vowel harmony in some
languages like Turkish. We observed this through
several semantic similarity tasks performed on se-
mantically similar but orthographically different
words by using the word representations obtained
from character n-gram level models such as fast-
text (Bojanowski et al., 2017). For example, Turk-
ish words such as mavililerinki (of the ones with

144

the blue color) and sarılılarınki (of the ones with
the yellow color) with allomorphs li and lı; ler and
lar; in and ın are asserted to be distant from each
other in regard to their word representations un-
der a character n-gram level model such as fast-
text (Bojanowski et al., 2017), although the two
words are semantically similar and both referring
to colors.

In this paper, we argue that learning word rep-
resentations through morphemes rather than char-
acters lead to more accurate word vectors es-
pecially in morphologically complex languages.
Such character-based models are strongly affected
by the orthographic commonness of words, that
governs orthographically similar words to have
similar word representations.

We introduce a model to learn morpheme and
word representations especially for morphologi-
cally very complex words without using an exter-
nal supervised morphological segmentation sys-
tem. Instead, we use an unsupervised segmen-
tation model to initialize our model with a list
of candidate morphological segmentations of each
word in the training data. We do not provide a
single segmentation per word like others (Botha
and Blunsom, 2014; Qiu et al., 2014), but in-
stead we provide a list of potential segmenta-
tions of each word. Therefore, our model relaxes
the requirement of an external segmentation sys-
tem in morpheme-based representation learning.
To our knowledge, this will be the first attempt
in co-learning of morpheme representations and
word representations in an unsupervised frame-
work without assuming a single morphological
segmentation per word.

Our model is mostly similar to that of Lazari-
dou et al. (2013) and Botha and Blunsom (2014)
since we also aim to learn morpheme and word
representations. Our model is akin to that of Pin-
ter et al. (2017) from the training perspective since
they infer the out-of-vocabulary word embeddings
from pre-trained word embeddings. Here, we also
try to mimic the word2vec (Mikolov et al., 2013)
embeddings (i.e. that are the expected outputs of
the model) to learn the rare word representations
with a complex morphology.

Our model shows some architectural similari-
ties to that of Cao and Rei (2016). Both models
use the attention mechanism to up-weight the cor-
rect morphological segmentation of a word. How-
ever, their model is character-based and our model

is morpheme-based where different segmentations
of each word contribute to the resulting vector. It
should be noted that our main concern is to inves-
tigate what character-based models cannot learn
that the morpheme-based models learn. As for the
experimental setting, we have chosen Turkish lan-
guage that has a complex morphology and severe
allomorphy.

The results show that a morpheme-based model
is better at estimating word representations of
morphologically complex words (with at least 2-
3 suffixes) compared to other word-based and
character-based models. We present experimen-
tal results on Turkish as an agglutinative language
and English as a morphologically poor language.

2 Related Work

Classical word representation models such as
word2vec (Mikolov et al., 2013) have been suc-
cessful in learning word representations for fre-
quent words. Since these classical models are
based on collecting contextual information in a
very large corpus, they estimate deficient word
representations for rare words due to insufficient
contextual information. This has a negative conse-
quence in some natural language processing tasks
that make use of the word representations.

One approach to overcome this deficiency in
estimating rare word representations is to apply
compositional methods. Each word comprises of
different subword units, such as characters, char-
acter n-grams, or morphemes. Lazaridou et al.
(2013) apply compositional methods by having the
stem and affix representations in order to estimate
the distributional representation of morphologi-
cally complex words. Bojanowski et al. (2017) in-
troduce an extension to word2vec (Mikolov et al.,
2013) by representing each word in terms of
the vector representations of its n-grams, which
was earlier applied by Schütze (1993) that learns
the representations of fourgrams by applying sin-
gular value decomposition (SVD). Analogously,
Alexandrescu and Kirchhoff (2006) represent each
character n-gram with a vector representation and
words are estimated by the summation of the sub-
word representations. Their results show that com-
positional methods that are originally proposed for
estimating the meaning of phrases can also be used
for estimating the meaning of a word by combin-
ing the information coming from different sub-
word units. Botha and Blunsom (2014) introduce

145

S

vs1 vs2

overbalanced

over

vs3
vsK

balanc eddbalance

f (w)

...

...

attn

h(w)

K

Figure 1: The neural network architecture of the
morph2vec model.

a log-bilinear language model that integrates mor-
phology with compositional methods, that is ap-
plied to translation task for morphologically rich
languages.

Compositional models that use character-level
features show that the representations of rare
words can be estimated more accurately (in both
semantic and syntactic tasks) than the word-based
models since the character-level models share
more features across different words that helps to
mitigate sparsity. Cotterell and Schütze (2015)
encode morphological tags within word embed-
dings by using a log-bilinear model, thereby lead-
ing morphologically similar words to have closer
word representations in the embedding space. Lu-
ong et al. (2013) learn word representations based
on morphemes that are obtained from an exter-
nal morphological segmentation system. Col-
lobert et al. (2011) enhance word vectors with
some character-level features such as capitaliza-
tion. Bhatia et al. (2016) incorporate morpholog-
ical information as a prior distribution to improve
word embeddings. They use Morfessor (Creutz
and Lagus, 2002) as an external morphological
segmentation system to extract the inner structure
of words.

3 The morph2vec Model

In our morpheme-based model, a word is en-
coded by a sequence of morphemes. Each word
wsi with a particular morphological segmentation
si is represented by a list of morphemes m =

{m0,m1, . . . ,mn} as follows:

wsi = m0m1 . . .mn

We assume that the correct morphological seg-
mentation of a word is not known a priori
by assuming a completely unsupervised learning
model. We use an unsupervised neural segmenta-
tion algorithm (Üstün and Can, 2016) that gener-
ates a list of candidate segmentations for a given
word (see Section 4 for the details).

Each distinct morpheme is defined by a column
vector in a morpheme embedding matrix Wm ∈
Rdmorph×|M | where dmorph is the vector dimen-
sion for the morphemes and M is the set of all
pseudo morphemes.

Word representations are coupled with a partic-
ular morphological segmentation of each word. In
other words, each segmentation of a single word
has its own representation. Word representation
for each particular segmentation is learned by a
sequential function f that takes a sequence of
morphemes and generates the word representation
with a dimension of dword. The word embedding
that is to be estimated compositionally via its mor-
phemes that belong to segmentation si is denoted
by vsi and estimated by a function f as follows:

vsi = f(wsi) = f(vm0 , vm1 , . . . , vmn) (1)

where vm0 denotes the vector of m0.
We use bidirectional LSTMs (Bi-LSTM)

(Hochreiter and Schmidhuber, 1997) to estimate
a trainable function f in our neural network
architecture that is illustrated in Figure 1. In the
forward LSTMs, morphemes from the beginning
till the end of the word are given sequentially,
whereas in the backward LSTMs, morphemes
from the end till the beginning of the word are
given in the reverse order. Each output of Bi-
LSTM which is the concatenation of the outputs
of the forward and backward LSTMs represents a
particular segmentation of a given word.

Therefore, we train the model with a list of
potential segmentations of each word in training
data. Since a word is represented by different mor-
pheme sequences that refer to different segmenta-
tions of the same word, we use an attention model
over these sequences that are learned by the Bi-
LSTMs. Attention model learns a weight αi for
each segmentation, such that

∑Sw
i αi = 1 where

Sw denotes all potential morphological segmenta-
tions of w. The final word representation is the

146

Figure 2: An illustration of generating potential
segmentations for words in the training set.

weighted sum of the embeddings of all candidate
segmentations:

fattn(w) =
∑

i

αivsi (2)

where vsi is the vector for segmentation si that is
the output of a Bi-LSTM. The weight αi is esti-
mated as follows (Bahdanau et al., 2014):

αi =
exp(vT tanh(W · vsi))∑
j exp(vT tanh(W · vsj))

(3)

Here, a feed-forward layer is used with a soft-
max function that is applied over the outputs of
Bi-LSTMs. W ·vsi denotes the corresponding col-
umn in the weight matrix of the feed-forward layer
in the attention.

For training, we use the pre-trained
word2vec (Mikolov et al., 2013) vectors in
order to minimize the cost between the learned
and pre-trained vectors with the following
objective function:

J(Θ) =

N∑

i=k

h(wk) +
λ

2
‖Θ‖22 (4)

where h(wk) is the cost for the kth word wk in
a training set of size N with a L2 regularization
term on the model parameters θ. We use the cosine
proximity loss between the learned and the pre-
trained vector.

4 Neural Morphological Segmentation

Although it is possible to train the model by
providing all the potential segmentations of each
word, we utilize an unsupervised segmentation al-
gorithm to make the model computationally more
efficient by reducing the search space. The seg-
mentation algorithm is based on the neural model
by Üstün and Can (2016) that uses the semantic
similarity between substrings of a word to detect
the potential morpheme boundaries. This algo-
rithm is based on the idea that the meaning of
a word is preserved especially through inflection

s0 araba - larım - ın
s1 arabalar - ı - mın
s2 arabalar - ım - ın
s3 araba - lar - ı - mın
s4 araba - lar - ım - ın

Table 1: Some candidate segmentations of the
Turkish word arabalarımın. The bold one is the
correct segmentation for this word.

Parent Child Sim.
araba araba-lar 0.65

arabalar araba-lar-ım 0.41
arabalarım araba-lar-ım-ın 0.26

Table 2: The cosine similarities between the sub-
strings (parent-child) of the Turkish word ara-
balarımın (of my cars). 0.25 is assigned for the co-
sine similarity threshold and only the splits above
the threshold are listed.

and it benefits from the word representations to
utilize this preservation. The parent-child relations
such as (respect,respectful) are defined similar to
that of Narasimhan et al. (2015).

The algorithm begins by generating all possi-
ble segmentations where there are at most K seg-
ments1 (see Table 1). Then, the algorithm checks
the semantic similarity at each split point (between
the parent and its child) whether it is greater than
a threshold2. If the condition is satisfied for all
split points in a segmentation, the segmentation is
added to the segmentations list that will be passed
to a Bi-LSTM. Figure 2 illustrates an example for
the segmentation algorithm on the Turkish word
arabalarımın (of my cars). # denotes a function
that takes two words and returns true if the co-
sine similarity between two substrings is above the
threshold value. The cosine similarities between
the substrings of the word arabalarımın are given
in Table 2.

Here we use the segmentation algorithm for
mainly training purposes because the accuracy of
the algorithm has a strong impact on generat-
ing word representations. Since all possible mor-
phemes are not generated in training, if the seg-
mentation algorithm generates an unknown mor-
pheme in testing, the representation for that word
involving the unknown suffix cannot be generated.
In order to ensure that all morphemes have a rep-

1K is defined as 4 in all experiments.
2The threshold is assigned 0.25 in all experiments.

147

resentation, we use an external supervised seg-
mentation system for only testing purposes. An-
other reason is that due to incorrect segmentations
suggested by the unsupervised segmentation algo-
rithm, two words (semantically related) involving
the same set of suffixes cannot benefit from the
syntactic similarity and therefore the representa-
tions of those words might diverge in testing.

5 Experiments

We performed several experiments to assess the
quality of our morpheme and word embeddings.
We did experiments on Turkish as a highly aggluti-
native language with a very complex morphology
and English with a comparably poor morphology.

5.1 Experimental Setting
In all experiments, morpheme vectors have a di-
mension of dmorph = 75, while the forward and
backward LSTMs have a dimension of dLSTM =
300. Since the output of the Bi-LSTMs is the con-
catenation of the forward and backward LSTMs,
the Bi-LSTM output has a dimensionality of
dbiLSTM = 600. The output of the Bi-LSTMs is
reduced to half after feeding the output through a
feed-forward layer that results with a word vector
dimension of dword = 300. Our model is imple-
mented in Keras, and publicly available3.

For the pre-trained word vectors, we used the
word vectors of dimension 300 that were obtained
by training word2vec (Mikolov et al., 2013).
For Turkish, we trained word2vec on Boun cor-
pus (Sak et al., 2008) that contains 361 million
word tokens. For English, we used the Google’s
pre-trained word2vec model4 that was trained on
100 billion words with a vocabulary size of 3M.
For training of our model, we used the most fre-
quent 200K words from the pre-trained vocabular-
ies to filter out the noise for both languages.

In order to compare the quality of our em-
beddings against the embeddings obtained from
character n-gram level model fasttext (Bojanowski
et al., 2017), we used the pre-trained word vectors
trained on Wikipedia (Bojanowski et al., 2017)
and we used the Google’s pre-trained word vec-
tors5. In order to compare our model with the
character-based model by Cao and Rei (2016), we
used Text8 corpus6.

3http://nlp.cs.hacettepe.edu.tr/projects/morph2vec/
4https://code.google.com/archive/p/word2vec/
5https://code.google.com/archive/p/word2vec/
6Available at mattmahoney.net/dc/text8

Model en tr
word2vec (Mikolov et al., 2013) 0.69 0.483
fasttext (Bojanowski et al., 2017) 0.71 0.208

morph2vec 0.38 0.529

Table 3: The comparison of the Spearman corre-
lation between the human judgments and the word
similarities obtained by computing the cosine sim-
ilarity between the learned word embeddings for
English and Turkish.

Only for testing reasons, we used PC-
KIMMO (Koskenniemi, 1984) for English and the
two-level Turkish morphology (Akın and Akın,
2007) for Turkish in order to segment test sets to
obtain the actual morphemes for generating word
representations from the morpheme vectors that
are learned in a fully unsupervised setting. Unsu-
pervised segmentation system also could be used
for the evaluation step, but we wanted to minimize
the effect of incorrect segmentations to be able to
evaluate the embeddings properly. Yet, we discuss
the effect of the supervised vs unsupervised seg-
mentations in Section 5.5.

We did only intrinsic evaluation with a set of
experiments that assess the quality of the word and
morpheme representations.

5.2 Evaluation of Word Representations:
Word Similarity Results

In order to evaluate the quality of the word vec-
tors, we did experiments on a list of word pairs.
We computed the cosine similarity between the
learned vectors of each word pair and compared
the similarity scores against to human judgments.

We used the Set 2 in WordSim353 dataset
(Finkelstein et al., 2001) for the semantic similar-
ity experiments that already involves the human
judgment scores from 1 to 10 for 200 English word
pairs. Since there is no available word-pair list for
Turkish, we prepared WordSimTr7 that involves
138 word pairs and asked 15 human annotators to
judge how similar two words are on a fixed scale
from 1 to 10 where 1 shows a poor semantic sim-
ilarity between the two words. Our Turkish word
pair list involves two groups of words. The first
group involves 81 semantically similar words that
have at least two suffixes (possibly allomorphs).
An example pair is televizyonlarda (on the televi-

7http://nlp.cs.hacettepe.edu.tr/projects/morph2vec/

148

Model WordSim353 RW
char2vec

(Cao and Rei, 2016) 0.345 0.284
morph2vec 0.386 0.297

Table 4: The comparison of the Spearman corre-
lation between the human judgments and the word
similarities obtained by computing the cosine sim-
ilarity between the learned word embeddings for
English on Text8 corpus.

sions) and radyolarda (on the radios) that have lar
(for the plural) and da (for the locative case) with a
semantically similar stem pair. The second group
involves 57 semantically unrelated word pairs that
are orthographically similar through their suffixes.
An example word pair in this group is kitaplar-
dan (from the books) and kasaplardan (from the
butchers) with two suffixes lar (for the plural) and
dan (for the ablative case) with semantically un-
related two stems kitap (the book) and kasap (the
butcher). Some other example word pairs in the
Turkish word pair list is given in Table 5. As seen
on the table, our morpheme-based model is bet-
ter at learning word representations with multiple
suffixes.

The results are given in Table 3. English words
mostly do not involve any suffixes, which hinders
our model’s performance. However, our model
performs better than both fasttext (Bojanowski
et al., 2017) and word2vec (Mikolov et al., 2013)
on Turkish despite the highly agglutinative mor-
phological structure of the language. It shows that
our model learns better word representations for
morphologically complex words, whereas words
with no suffixes are not estimated as good as the
complex ones.

We also compared our model against the
character-based model char2vec (Cao and Rei,
2016). For this purpose, we trained our model on
the same dataset and parameters as char2vec to be
able to compare with their reported results. The
dataset is called Text8 corpus and consists of the
first 100mb of a cleaned-up dumb of Wikipedia
in 2006. For the evaluation, we tested our word
embeddings on Rare Words (RW) (Luong et al.,
2013) and Wordsim353 (Finkelstein et al., 2001)
datasets. The results are given in Table 4. Our
results outperform char2vec (Cao and Rei, 2016)
on both word similarity test sets. This shows
that our model learns better word embeddings for

both in-vocabulary and rare words compared to
char2vec (Cao and Rei, 2016).

5.3 Evaluation of Word Representations:
Analogy Results

We performed experiments for the analogy task in
order to test whether the suffixes make a linear nu-
merical change on the word vectors in the embed-
ding space. The analogy experiments are usually
performed for a triple of words such that A is to B
so C is to ?, where A-B+C is expected to be equal
to the questioned word. The analogy can be se-
mantical such as cat is to meow, so dog is to bark,
or syntactic such as go is to gone, so have is to
had.

Here, we tested only the syntactic analogy on
a list of word tuples since our focus is especially
morphologically complex languages. For English,
we used the syntactic relations section provided in
the Google analogy dataset (Mikolov et al., 2013)
that involves 10675 questions. Since there is no
analogy dataset for Turkish, we prepared a Turk-
ish analogy set SynAnalogyTr8 with 206 syntactic
questions that involves inflected word forms. The
syntactic word tuples are judged by 40 human an-
notators in a scale from 1 to 10, where 1 shows
a weak word analogy. Most words involve more
than one suffix to test the morphological regular-
ity in the analogy task.

The results are given in Table 6 and Table 7
for English and Turkish. The results show that
our model outperforms both word2vec (Mikolov
et al., 2013) and fasttext (Bojanowski et al., 2017)
on both Turkish and English languages. Addition-
ally, some examples to analogy results are given
in Table 9 and the nearest neighbors of the Turk-
ish word kitap-lar-dan-mış (it was from the books)
are given in Table 8.

5.4 Evaluation of Morpheme
Representations: Allomorph Results

In addition to the evaluation of the word vectors,
we also evaluated the morpheme vectors that are
the input embeddings to the neural network to
be estimated during training. In order to evalu-
ate how well our morpheme vectors represent the
morphemes, we used the allomorphs. Allomorphs
can be considered as true synonyms as they con-
vey the same meaning with each other but with a
different orthography.

8http://nlp.cs.hacettepe.edu.tr/projects/morph2vec/

149

Word Pair Human Score morph2vec word2vec fasttext
kitap-lar-dan / kasap-lar-dan 0.12 0.07 0.19 0.55

(from the books) / (from the butchers)
kağıt-ta-ki-ler / bardak-ta-ki-ler 0.22 0.12 OOW 0.64

(the ones on the paper) / (the ones in the glass)
şirket-ler-de / firma-lar-da 0.87 0.82 0.46 0.76

(in the companies) / (in the firms)
kazanan-lar-dı / yenilen-ler-di 0.64 0.60 OOW 0.43

(they were the winners) /
(they were the defeated ones)

Table 5: Example Turkish word pairs and their similarities based on human judgements, morph2vec,
word2vec (Mikolov et al., 2013), and fasttext (Bojanowski et al., 2017). - denotes the morpheme bound-
aries.

Model Accuracy (%)
word2vec (Mikolov et al., 2013) 74.0
fasttext (Bojanowski et al., 2017) 74.9

morph2vec 80.5

Table 6: Analogy results on English Google syn-
tactic analogy dataset.

Model Accuracy (%)
word2vec (Mikolov et al., 2013) 16.0
fasttext (Bojanowski et al., 2017) 65.5

morph2vec 71.3

Table 7: Analogy results on Turkish syntactic
analogy dataset SynAnalogyTr.

In Turkish, there is a common use of allomorphs
due to the vowel and consonant harmony in the
language. For example, the morpheme dı has got
8 allomorphs one of which is chosen depending
on the last vowel and the consonant in the word,
that are di, du, dü, ti, tu, tü, and tı. For example,
-ti (the past tense of the third person singular) is
chosen, for the verb git-(mek) (to go), whereas du
is chosen for the verb solu-(mak) (to breathe).

We prepared a Turkish dataset that involves
108 morphemes9 that are allomorphs of 33 unique
morpheme types including tense and case markers
as well as derivations. For the evaluation of al-
lomorphs, we used the MAP metric that is often
used in information retrieval tasks. For each allo-
morph set in the data, we calculated the MAP@k
where k is the number of allomorphs for the given
morpheme. If the allomorph of a morpheme ex-

9http://nlp.cs.hacettepe.edu.tr/projects/morph2vec/

kitap-lar-dan-mış Cosine sim.
(it was from the books)
yazılmış (it was written) 0.669

hikaye-ler-den (from the stories) 0.667
kitap-lar (the books) 0.661

kitap-lar-dan (from the books) 0.639
kitap-lar-da (in the books) 0.635

roman-lar-dan (from the novels) 0.625

Table 8: Nearest neighbors of the word kitap-
lar-dan-mış and the cosine similarity between the
word and the neighbor that are obtained from
morph2vec word vectors.

ists in the k nearest neighbours, then it is regarded
as correct, otherwise it is incorrect. We averaged
the MAP@k scores for all allomorph sets. The
results are given in Table 10. Our model can
learn the morpheme representations better than
fasttext (Bojanowski et al., 2017) since allomorphs
in our model are closer to each other in the em-
bedding space compared to fasttext. Some of
the allomorphs obtained from our model and fast-
text (Bojanowski et al., 2017) are given in Ta-
ble 11. As seen on the table, our model can capture
the allomorphs better than fasttext (Bojanowski
et al., 2017). Additionally, all Turkish allomorphs
learned by our model are given in Figure 3. As can
be seen from the figure, the allomorphs fall into
similar regions in the vector space. Apart from
some infrequent morphemes, the rest has similar
representations.

5.5 The Effect of Supervision
In our experiments, the model training is per-
formed in a fully unsupervised setting in terms of

150

Word 1 Word 2 Word 3 Expected morph2vec word2vec fasttext
gel-dim gel-me-dim duy-dum duy-ma-dım 0.80 0.43 0.63
(I came) (I did not come) (I heard) (I did not hear)
çöz-müş çöz-müş-tü bul-muş bul-muş-tu 0.73 0.18 0.66

(she solved) (she had solved) (she found) (she had found)
aç-mak aç-ıl-mak ört-mek ört-ün-mek 0.89 0.36 0.52

(to open) (to be opened) (to cover) (to cover himself)

Table 9: Example Turkish analogy questions and the cosine similarities between the expected words and
the learned word representations obtained from morph2vec, word2vec and fasttext.

Model MAP
fasttext (Bojanowski et al., 2017) 0.504

morph2vec 0.618

Table 10: MAP scores for the allomorph cover-
age in fasttext (Bojanowski et al., 2017) and the
morph2vec.

morph morph2vec fasttext
iyor ıyor yor uyor üyor ıyor yor uyor üyor
mı mu mi mü mi mu ıyor
dı tı di du tu dü ti duk dır tı dü di ın tır ı

mış müş muş müş yor dık

Table 11: Some allomorphs of the given mor-
pheme on the left that are found by our model and
fasttext (Bojanowski et al., 2017). The bold font
indicates the non-allomorphs for the given mor-
pheme type.

the segmentation algorithm. However, we used su-
pervised methods for segmenting test sets in eval-
uation to generate word representations from the
actual morphemes that are learned in the train-
ing. We conducted another set of experiments
with both supervised and unsupervised segmenta-
tion algorithms to show the effect of the segmen-
tation algorithm used to generate the word embed-
dings in the word similarity test sets. Table 12
demonstrates the effect of the segmentation algo-
rithm. Here, we employed the neural unsupervised
model by Üstün and Can (2016) and the super-
vised segmentation system Zemberek (Akın and
Akın, 2007).

The results show that we can generate better
word embeddings when the morphemes are ex-
tracted by a supervised segmentation algorithm
beforehand although the difference is not signif-
icant. Therefore the supervised segmentation al-

Model Spearman
Unsupervised (Üstün and Can, 2016) 0.517

Supervised (Akın and Akın, 2007) 0.529

Table 12: Word similarity Spearman correlation
scores obtained when a supervised and unsuper-
vised segmentation algorithm is used for the test
sets.

gorithm used in testing can be replaced with an
unsupervised segmentation algorithm.

However, it should be noted that when an un-
supervised algorithm used, the possibility to come
across with a segment that is not present in our
model increases, hence we cannot generate the
word embeddings for such words. Therefore, the
results for the unsupervised setting is limited to
only in-vocabulary words (i.e the words for which
we can create a word embedding).

6 Conclusion and Future Work

Recent work shows that character level models
learn more representative word embeddings for
rare words (including morphologically complex
words) compared to word level models, which
is a sign that incorporating subword information
improves the word representations. However, in
this paper, we argued that morpheme-based rep-
resentation models can learn better word embed-
dings (especially for the syntactic tasks) since
they incorporate the syntactic and semantic in-
formation through the morphemes better com-
pared to character level models. We pointed to
the poor representation of allomorphs in complex
words where the character-level models estimate a
low word similarity between semantically similar
words with different forms of the same morpheme,
i.e. allomorphs. Moreover, we pointed to the char-
acter level models that assign a high word similar-

151

Figure 3: Turkish allomorph vectors learned by morph2vec. Some morphemes are blurry because of the
overlapping of a few allomorphs.

ity to the words that are orthographically similar
but semantically unrelated.

We introduce a morpheme-based representation
model that learns word embeddings through the
morphemes that are obtained from a list of mor-
phological segmentations for each word. There-
fore, our work introduces the idea of releasing the
need for using an external morphological segmen-
tation system in such representation learning mod-
els that are based on subword information. Our
morpheme-based model morph2vec learns better
word representations for morphologically com-
plex words compared to the word-based model
word2vec (Mikolov et al., 2013), character-based
model char2vec (Cao and Rei, 2016), and the
character n-gram level model fasttext (Bojanowski

et al., 2017). Our results are also competitive for
the English language.

We leave other languages and experiments such
as morphological segmentation task for the future
work. Another goal is to perform extrinsic eval-
uation on a different task such as part-of-speech
tagging using the learned word embeddings.

Acknowledgments

This research was supported by TUBITAK (The
Scientific and Technological Research Council of
Turkey) grant number 115E464. We thank all the
anonymous people for helping us to collect the hu-
man judgment scores for our word similarity and
syntactic analogy datasets. We thank Suresh Man-
andhar for his valuable feedback.

152

References
Ahmet Afsin Akın and Mehmet Dündar Akın. 2007.

Zemberek, an open source NLP framework for Tur-
kic languages. Structure 10:1–5.

Andrei Alexandrescu and Katrin Kirchhoff. 2006. Fac-
tored neural language models. In Proceedings of
the Human Language Technology Conference of the
NAACL, Companion Volume: Short Papers. Asso-
ciation for Computational Linguistics, Stroudsburg,
PA, USA, NAACL-Short ’06, pages 1–4.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR
abs/1409.0473.

Parminder Bhatia, Robert Guthrie, and Jacob Eisen-
stein. 2016. Morphological priors for probabilis-
tic neural word embeddings. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Compu-
tational Linguistics, pages 490–500.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. In Transactions of the Asso-
ciation of Computational Linguistics. TACL, pages
135–146.

Jan A. Botha and Phil Blunsom. 2014. Compositional
morphology for word representations and language
modelling. In Proceedings of the 31st International
Conference on International Conference on Ma-
chine Learning - Volume 32. JMLR.org, ICML’14,
pages II–1899–II–1907.

Kris Cao and Marek Rei. 2016. A joint model for
word embedding and word morphology. CoRR
abs/1606.02601.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research
12:2493–2537.

Ryan Cotterell and Hinrich Schütze. 2015. Morpho-
logical word embeddings. In Proceedings of the
Human Language Technologies: The 2015 Annual
Conference of the North American Chapter of the
ACL. ACL’15, pages 1287–1292.

Mathias Creutz and Krista Lagus. 2002. Unsupervised
discovery of morphemes. In Proceedings of the
ACL-02 Workshop on Morphological and Phonolog-
ical Learning - Volume 6. Association for Computa-
tional Linguistics, Stroudsburg, USA, pages 21–30.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Eytan
Ruppin. 2001. Placing search in context: The con-
cept revisited. In Proceedings of the 10th Interna-
tional Conference on World Wide Web. ACM, New
York, NY, USA, WWW ’01, pages 406–414.

Zellig Harris. 1954. Distributional Structure. Word.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Kimmo Koskenniemi. 1984. A general computational
model for word-form recognition and production. In
Proceedings of the 10th International Conference on
Computational Linguistics and 22nd Annual Meet-
ing on Association for Computational Linguistics.
Association for Computational Linguistics, Strouds-
burg, PA, USA, ACL ’84, pages 178–181.

Angeliki Lazaridou, Marco Marelli, Roberto Zampar-
elli, and Marco Baroni. 2013. Compositional-ly de-
rived representations of morphologically complex
words in distributional semantics. In ACL 2013 -
51st Annual Meeting of the Association for Compu-
tational Linguistics, Proceedings of the Conference.
pages 1517–1526.

Thang Luong, Richard Socher, and Christopher Man-
ning. 2013. Better word representations with recur-
sive neural networks for morphology. In Proceed-
ings of the Seventeenth Conference on Computa-
tional Natural Language Learning. Association for
Computational Linguistics, pages 104–113.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR abs/1301.3781.

Karthik Narasimhan, Regina Barzilay, and Tommi S.
Jaakkola. 2015. An unsupervised method for un-
covering morphological chains. TACL 3:157–167.

Yuval Pinter, Robert Guthrie, and Jacob Eisenstein.
2017. Mimicking word embeddings using subword
RNNs. In Proceedings of the Empirical Methods
in Natural Language Processing. Association for
Computational Linguistics, pages 102–112.

Siyu Qiu, Qing Cui, Jiang Bian, Bin Gao, and Tie-
Yan Liu. 2014. Co-learning of word representations
and morpheme representations. In Proceedings of
COLING 2014, the 25th International Conference
on Computational Linguistics: Technical Papers.
Dublin City University and Association for Compu-
tational Linguistics, pages 141–150.

Haşim Sak, Tunga Güngör, and Murat Saraçlar. 2008.
Turkish language resources: Morphological parser,
morphological disambiguator and Web corpus. In
Advances in natural language processing, Springer,
pages 417–427.

Hinrich Schütze. 1993. Word space. In Advances
in Neural Information Processing Systems 5, [NIPS
Conference]. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, pages 895–902.

Ahmet Üstün and Burcu Can. 2016. Unsupervised
morphological segmentation using neural word em-
beddings. In International Conference on Statistical
Language and Speech Processing. Springer, pages
43–53.

153

Proceedings of the 3rd Workshop on Representation Learning for NLP, pages 154–158
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

Learning Hierarchical Structures On-The-Fly with a
Recurrent-Recursive Model for Sequences

Athul Paul Jacob∗†
MILA

University of Waterloo

Zhouhan Lin∗†
MILA

University of Montréal
AdeptMind Scholar

Alessandro Sordoni
Microsoft Research
Montréal, Canada

Yoshua Bengio
MILA

University of Montréal, CIFAR

Abstract

We propose a hierarchical model for se-
quential data that learns a tree on-the-
fly, i.e. while reading the sequence. In
the model, a recurrent network adapts its
structure and reuses recurrent weights in
a recursive manner. This creates adaptive
skip-connections that ease the learning of
long-term dependencies. The tree struc-
ture can either be inferred without super-
vision through reinforcement learning, or
learned in a supervised manner. We pro-
vide preliminary experiments in a novel
Math Expression Evaluation (MEE) task,
which is explicitly crafted to have a hier-
archical tree structure that can be used to
study the effectiveness of our model. Ad-
ditionally, we test our model in a well-
known propositional logic and language
modelling tasks. Experimental results
show the potential of our approach.

1 Introduction

Many kinds of sequential data such as language
or math expressions naturally come with a hierar-
chical structure. Sometimes the structure is hid-
den deep in the semantics of the sequence, like the
syntax tree in natural language; Other times the
structure is more explicit, as in math expressions,
where the tree is determined by the parentheses.

Recurrent neural networks (RNNs) have shown
tremendous success in modeling sequential data,
such as natural language (Mikolov et al., 2010;
Merity et al., 2017). However, RNNs process the
observed data as a linear sequence of observations:

∗Equal contribution (Ordering determined by coin flip).
Corresponding authors: zhouhan.lin@umontreal.ca, apja-
cob@edu.uwaterloo.ca

†Work done while at Microsoft Research, Montreal.

the length of the computational path between any
two words is a function of their position in the ob-
served sequence, instead of their semantic or syn-
tactic roles, leading to the appearance of difficult-
to-learn long-term dependencies and stimulating
research on strategies to deal with that (Bengio
et al., 1994; El Hihi and Bengio, 1996; Hochreiter
and Schmidhuber, 1997). Hierarchical, tree-like
structures may alleviate this problem by creating
shortcuts between distant inputs and by simulat-
ing compositionality of the sequence, compressing
the sequence into higher-level abstractions. Mod-
els that use tree as prior knowledge (e.g. (Socher
et al., 2013; Tai et al., 2015; Bowman et al., 2016))
have shown improved performances over sequen-
tial models, validating the value of tree structure.
For example, TreeLSTM (Tai et al., 2015) learns a
bottom-up encoder, but requires the model to have
access to the entire sentence as well as its parse
tree before encoding it, which limits its applica-
tion in some cases, e.g. language modeling. There
has been various efforts to learn the tree structure
as a supervised training target (Dyer et al., 2016;
Socher et al., 2010; Zhou et al., 2017; Zhang et al.,
2015), which free the model from relying on an
external parser.

More recent efforts learn the best tree structure
without supervision, by minimizing the log like-
lihood of the observed corpus, or by optimizing
over a downstream task (Williams et al., 2017).
These models usually take advantage of a binary
tree assumption on the inferred tree, which im-
poses restrictions on the flexibility of inferred tree
structure, for example, Gumbel TreeLSTM (Choi
et al., 2017; Yogatama et al., 2016).

We propose a model that reads sequences us-
ing a hierarchical, tree-structured process (Fig. 1):
it creates a tree on-the-fly, in a top-down fashion.
Our model sits in between fully recursive models
that have access to the whole sequence, such as

154

hl

hdownhl-1

F2 F1 hlhl-1
F3

hl-1

hl

hdown

F4hmMLP

SR M R
x0 x6

x1
^

x7
^

SR

RR R

R

ROOT

(a) split cell (b) recurrent cell (c) merge cell

(d) Recurrent-Recursive network (unrolled) (e) Inferred tree

x2

x1 x5

x2
^

x3
^

R R

x3

x4
^

R

x4

x5
^

x6
^

Figure 1: (a) - (c) are the 3 different cells. (d) is a sample model structure resulted from a sequence of
decisions. ”R”, ”S” and ”M” stand for recurrent cell, split cell, and merge cell, respectively. Note that
the ”S” and ”M” node can take inputs in datasets where splitting and merging signals are part of the
sequence. For example, in math data the splitting signal are related to the brackets. (e) is the tree inferred
from (d).

TreeLSTMs (Tai et al., 2015), and vanilla recur-
rent models that “flatten” input sequence, such as
LSTMs (Schmidhuber, 1992). At each time-step
in the sequence, the model chooses either to cre-
ate a new sub-tree (split), to return and merge in-
formation into the parent node (merge), or to pre-
dict the next word in the sequence (recur). On
split, a new sub-tree is created which takes control
on which operation to perform. Merge operations
end the current computation and return a represen-
tation of the current sub-tree to the parent node,
which composes it with the previously available
information on the same level. Recurrent opera-
tions use information from the siblings to perform
predictions. Operations at every level in the tree
use shared weights, thus sharing the recursive na-
ture of TreeLSTMs. In contrast to TreeLSTMs
however, the tree is created on-the-fly, which es-
tablishes skip-connections with previous tokens in
the sequence and forms compositional represen-
tations of the past. The branching decisions can
either be trained through supervised learning, by
providing the true branching signals, or by policy
gradients (Williams, 1992) which maximizes the
log-likelihood of the observed sequence. As op-
posed to previous models, these three operations
constantly change the structure of the model in an
online manner.

Experimental evaluation aims to analyze vari-
ous aspects of the model such as: how does the
model generalize on sequences of different lengths
than those seen during training? how hard is the
tree learning problem? To answer those questions,

we propose a novel multi-operation math expres-
sion evaluation (MEE) dataset, with a standard set
of tasks with varying levels of difficulty, where the
difficulty scales up with respect to the length of the
sequence.

2 Model

Similar to a standard RNN, our model modifies a
hidden state hl for each step of the input sequence
x = {x1, . . . , xN} by means of split, merge and
recurrent operations. Denote the sequence of op-
erations by z = {z1, . . . , zL}, where L may be
greater than the number of tokens N since only
recurrent operations consume input tokens (see
Fig. 1). Each operation is parametrized by a dif-
ferent “cell”. A policy network controls which op-
eration to perform during sequence generation.

split (S) The split cell creates a sub-tree by tak-
ing the previous state hl−1 as input and generating
two outputs hl and hdown. hl is used for further
computation, while hdown (the small blue rectan-
gle in Fig. 1(d)) is pushed into a stack for future
use. In our model, hdown = F1(hl−1, xt) and
hl = F2(hl−1, xt) where the F1 and F2 are LSTM
units (Hochreiter and Schmidhuber, 1997), and xt
is the current input.

recurrent (R) This cell is a standard LSTM
unit that takes as input the previous state hl−1 and
the current token xt, and outputs the hidden state
hl, which will be used to predict the next output
x̂t+1. After application of this cell, the counter t is
incremented and input xt is consumed.

155

merge (M) The merge cell closes a sub-tree and
returns control to its parent node. It does so by
merging the previous hidden state hl−1 with the
top of the stack hdown into a new hidden state
hm = MLP (hl−1, hdown) (Fig. 1(c)). hm is then
used as input to another LSTM unit (F4) to yield
hl = F4(xt, hm), the new hidden state of the over-
all network. Intuitively, hl−1 summarizes the con-
tents within the sub-tree. This is merged with in-
formation obtained before the model entered the
sub-tree hdown into the new state hl.

Policy Network We consider the decision at
each timestep zt ∈ {S,M,R} as a categorical
variable sampled from a policy network pπ, condi-
tioned on the hidden state ht and the input embed-
ding et of the current input xt. In the supervised
setting, pπ(zt|et, ht) is trained by maximizing the
likelihood of the true branching labels, while in
the unsupervised setting, we resort to the REIN-
FORCE algorithm using − log p(yt|C) as a re-
ward, where yt is the task target (i.e. the next word
in language modeling), andC is the representation
learnt by the model up until time t.

3 Experimental Results

We conduct our experiments on a math induction
task, a propositional logic inference task (Bow-
man et al., 2016) and language modelling. First
of all, we aim to investigate whether a) our hier-
archical model may help in tasks that explicitly
exhibit hierarchical structure, and then b) whether
the trees learned without supervision correspond
to the ground-truth trees, c) how our model fare
with respect to hierarchical models that have ac-
cess to the whole sequence with a pre-determined
tree structure and finally, d) are there any limita-
tions for models that are not capable of learning
hierarchical structures on-the-fly.

3.1 Math Induction
Our math expression evaluation dataset (MEE)
consists of parenthesized mathematical expres-
sions and their corresponding evaluations. The
math expressions contain bracketing symbols
(”()”), four different kinds of operations, ”+-*%”,
where ”%” is the modulo operation, and digits
from 0 to 9. The “length” of an expression is the
number of operations in the expression and its re-
sult is restricted to be a positive, two-digit integer
(Table 1). We randomly generate expressions of
different lengths and for each length the resulting

Length Expression Value
4 ((9+(2+6))+(1*3)) 20
5 (((7-2)%((3%1)+6))*9) 45
6 ((((3-0)+(7-6))*(0+9))-7) 29
7 ((4*(6+(7*(2*8))))%(9+(3+7))) 16

Table 1: Sample expressions from MEE dataset

sub-dataset is divided into 100,000, 10,000 and
10,000 expressions as training, valid and test sets.
We make sure that there is no overlap between the
splits and every expression is made unique across
the whole dataset.

We use an encoder-decoder approach where the
encoder reads the characters in the expression and
produces the encoding as input to the decoder,
which in turn sequentially generates 2 digits as
the predicted value. We experiment on various
encoders, including our model, and compare their
performances. We use the same decoder architec-
ture to ensure a fair comparison. The output of
the encoder is provided as the initial hidden state
of the decoder LSTM. To test the generalization
of our model, for all the experiments shown in
this subsection, we train the model on expressions
of length 4 and 5, and evaluate on expressions of
length 4 to 7 in the test sets.

For this task, our baseline is a simple LSTM en-
coder (which corresponds to our model with only
recur operations). We compare two versions of
our RRNet encoder. In the supervised setting,
we force the model to split and merge when it
reads “(” and “)”, respectively, and recur other-
wise. This gives us an idea on how well the model
would perform if it had access to the ground-truth
tree. In the unsupervised setting, we learn the tree
using policy gradient, where the reward is the ac-
curacy of the math result prediction.

The results are in Table 2. The supervised RR-
Net yields the best performance showing that (a)
it is important to exploit the hierarchical struc-
ture of the observed data, corroborating previous
work (Williams et al., 2017), and (b) our model is
effective at capturing that information. The unsu-
pervised RRNet model also outperforms the base-
line LSTM: the model learn to exploit branching
operations to achieve better performance. We ob-
serve that the trees produced by the model do not
correspond to the ground-truth trees. In order to
assess whether the additional parameters of split
and merge operations, rather than the learned tree

156

Model Train Test
L=4 L=5 L=6 L=7

LSTM 75.80 81.32 67.65 52.70 41.35
Uns RRNet 86.00 89.42 77.96 61.34 50.46
Sup RRNet 93.70 93.28 86.69 79.09 72.70

Table 2: Prediction accuracy on MEE dataset.

Figure 2: Test accuracy of the models, trained on
sequences of length ≤ 6 in logic data. The hor-
izontal axis indicates the length of the sequence,
and the vertical axis indicates the accuracy of
model’s performance on the corresponding test
set.

structure, produce better results, we measured the
performance of our model trained with “random”
deterministic policies (associating each of the in-
put characters to either a split, merge or recur op-
eration). We see that “random” policies perform
worse than a “learnt” policy on the task, effec-
tively similar to the baseline LSTM. In turn, the
model with the learnt policy underperforms the
model trained with ground-truth trees. Even in this
seemingly easy task, it has appeared difficult for
the model to learn the optimal branching policy.

3.2 Logical inference

In the next task, we analyze performance on the
artificial language as described in Bowman et al.
(2015b). This language has six word types {a,
b, c, d, e, f} and three logical operations {or,
and, not}. There are seven mutually exclusive
logical relations that describe the relationship be-
tween two sentences: entailment (<, =), equiva-
lence (≡), exhaustive and non-exhaustive contra-
diction (∧, |), and two types of semantic indepen-
dence (#, `). The train/dev/test dataset ratios are

set to 0.8/0.1/0.1 as described 1 with the number
of logical operations ranging from 1 to 12.

From Figure 2, we report the performance
of our model when trained with ground-truth
trees as input. It is encouraging to see that
our recurrent-recursive encoder improves perfor-
mance over Transformer (FAN) (Tran et al., 2018)
and LSTM, especially for long sequences. The
best performance on this dataset is given by
TreeLSTM, which has access to the whole se-
quence (Bowman et al., 2015b) and does not en-
code sequences on-the-fly.

3.3 Language Modelling

In language modeling, architectures such as
TreeLSTM aren’t directly applicable since their
structure isn’t computed on-the-fly, while read-
ing the sentence. We perform preliminary exper-
iments using the Penn Treebank Corpus dataset
(Marcus et al., 1993), which has a vocabulary
of 10,000 unique words and 929k, 73k and 82k
words in training, validation and test set respec-
tively. Our cells use one layer and the hidden di-
mensionality is 350. Our model yields test per-
plexity of 107.28 as compared to the LSTM base-
line which gets 113.4 (Dyer et al., 2016). This pre-
liminary result shows that the endeavor to exploit
explicit hierarchical structures for language mod-
eling, although challenging, may be promising.

4 Final Considerations

In this work, we began exploring properties of
a recurrent-recursive neural network architecture
that learns to encode the sequence on-the-fly, i.e.
while reading. We argued this may be an impor-
tant feature for tasks such as language modeling.
We additionally proposed a new mathematical ex-
pression evaluation dataset (MEE) as a toy prob-
lem for validating the performance of sequential
models to learn from hierarchical data. We empir-
ically observed that, in this task, our model per-
forms better than a standard LSTM architecture
with no explicit structure and also outperforms
the baseline LSTM and FAN architectures on the
propositional logic task.

We hope to further study the properties of this
model by either more thorough architecture search
(recurrent dropouts, layer norm, hyper-parameter
sweeps), different variation of RL algorithms such

1https://github.com/sleepinyourhat/
vector-entailment

157

as deep Q-learning (Mnih et al., 2013) and em-
ploying this model on various other tasks such
as SNLI (Bowman et al., 2015a) and semi-
supervised parsing.

Acknowledgement

The authors would like to thank Compute
Canada for providing the computational resources.
Zhouhan Lin would like to thank AdeptMind for
generously supporting his research via scholar-
ship.

References
Yoshua Bengio, Patrice Simard, and Paolo Frasconi.

1994. Learning long-term dependencies with gradi-
ent descent is difficult. IEEE transactions on neural
networks 5(2):157–166.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015a. A large an-
notated corpus for learning natural language infer-
ence. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguis-
tics.

Samuel R Bowman, Jon Gauthier, Abhinav Ras-
togi, Raghav Gupta, Christopher D Manning, and
Christopher Potts. 2016. A fast unified model for
parsing and sentence understanding .

Samuel R. Bowman, Christopher D. Manning, and
Christopher Potts. 2015b. Tree-structured compo-
sition in neural networks without tree-structured ar-
chitectures. CoRR abs/1506.04834.

Jihun Choi, Kang Min Yoo, and Sang-goo Lee. 2017.
Learning to compose task-specific tree structures.
arXiv preprint arXiv:1707.02786 .

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A Smith. 2016. Recurrent neural network
grammars. Proceedings of ACL .

Salah El Hihi and Yoshua Bengio. 1996. Hierarchical
recurrent neural networks for long-term dependen-
cies. In Proceedings of NIPS.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of english: The penn treebank. Computa-
tional linguistics 19(2):313–330.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2017. Regularizing and optimizing lstm lan-
guage models. arXiv preprint arXiv:1708.02182 .

Tomas Mikolov, Martin Karafit, Luks Burget, Jan Cer-
nock, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In Takao
Kobayashi, Keikichi Hirose, and Satoshi Nakamura,
editors, INTERSPEECH. ISCA, pages 1045–1048.

Volodymyr Mnih, Koray Kavukcuoglu, David Sil-
ver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. 2013. Playing atari
with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 .

Jürgen Schmidhuber. 1992. Learning complex, ex-
tended sequences using the principle of history com-
pression. Neural Computation 4(2).

Richard Socher, Christopher D Manning, and An-
drew Y Ng. 2010. Learning continuous phrase
representations and syntactic parsing with recursive
neural networks. In Proceedings of the NIPS-2010
Deep Learning and Unsupervised Feature Learning
Workshop. pages 1–9.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 conference on
empirical methods in natural language processing.
pages 1631–1642.

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. arXiv preprint arXiv:1503.00075 .

K. Tran, A. Bisazza, and C. Monz. 2018. The Impor-
tance of Being Recurrent for Modeling Hierarchical
Structure. ArXiv e-prints .

Adina Williams, Andrew Drozdov, and Samuel R Bow-
man. 2017. Learning to parse from a semantic ob-
jective: It works. is it syntax? arXiv preprint
arXiv:1709.01121 .

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning 8(3-4):229–256.

Dani Yogatama, Phil Blunsom, Chris Dyer, Edward
Grefenstette, and Wang Ling. 2016. Learning to
compose words into sentences with reinforcement
learning. arXiv preprint arXiv:1611.09100 .

Xingxing Zhang, Liang Lu, and Mirella Lapata. 2015.
Top-down tree long short-term memory networks.
arXiv preprint arXiv:1511.00060 .

Ganbin Zhou, Ping Luo, Rongyu Cao, Yijun Xiao,
Fen Lin, Bo Chen, and Qing He. 2017. Generative
neural machine for tree structures. arXiv preprint
arXiv:1705.00321 .

158

Proceedings of the 3rd Workshop on Representation Learning for NLP, pages 159–163
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

Limitations of cross-lingual learning from image search

Mareike Hartmann
Department of Computer Science

University of Copenhagen
Denmark

hartmann@di.ku.dk

Anders Søgaard
Department of Computer Science

University of Copenhagen
Denmark

soegaard@di.ku.dk

Abstract

Cross-lingual representation learning is an
important step in making NLP scale to all
the world’s languages. Previous work on
bilingual lexicon induction suggests that it
is possible to learn cross-lingual represen-
tations of words based on similarities be-
tween images associated with these words.
However, that work focused (almost ex-
clusively) on the translation of nouns only.
Here, we investigate whether the meaning
of other parts-of-speech (POS), in particu-
lar adjectives and verbs, can be learned in
the same way. Our experiments across five
language pairs indicate that previous work
does not scale to the problem of learning
cross-lingual representations beyond sim-
ple nouns.

1 Introduction

Typically, cross-lingual word representations are
learned from word alignments, sentence align-
ments, from aligned, comparable documents
(Levy et al., 2017), or from monolingual corpora
using seed dictionaries (Ammar et al., 2016).1

However, for many languages such resources are
not available.

Bergsma and Van Durme (2011) introduced an
alternative idea, namely to learn bilingual repre-
sentations from image data collected via web im-
age search. The idea behind their approach is to
represent words in a visual space and find valid
translations between words based on similarities
between their visual representations. Representa-
tions of words in the visual space are built by rep-

1Recent work by Lample et al. (2018) introduces unsuper-
vised bilingual lexicon induction from monolingual corpora,
however, it was shown that this approach has important limi-
tations (Søgaard et al., 2018).

resenting a word by a set of images that are asso-
ciated with that word, i.e., the word is a semantic
tag for the images in the set.

Kiela et al. (2015) improve performance for
the same task using a feature representation ex-
tracted from convolutional networks. However,
both works only consider nouns, leaving open the
question of whether learning cross-lingual repre-
sentations for other POS from images is possible.2

In order to evaluate whether this work scales to
verbs and adjectives, we compile wordlists con-
taining these POS in several languages. We col-
lect image sets for each image word and represent
all words in a visual space. Then, we rank trans-
lations computing similarities between image sets
and evaluate performance on this task.

Another field of research that exploits image
data for NLP applications is the induction of
multi-modal embeddings, i.e. semantic represen-
tations that are learned from textual and visual in-
formation jointly (Kiela et al., 2014; Hill and Ko-
rhonen, 2014; Kiela and Bottou, 2014; Lazaridou
et al., 2015; Silberer et al., 2017; Kiela et al., 2016;
Vulić et al., 2016). The work presented in our pa-
per differs from these approaches, in that we do
not use image data to improve semantic represen-
tations, but use images as a resource to learn cross-
lingual representations. Even though lexicon in-
duction from text resources might be more promis-
ing in terms of performance, we think that lexicon
induction from visual data is worth exploring as
it might give insights in the way that language is
grounded in visual context.

2Kiela et al. (2016) induce English-Italian word transla-
tions from image data for the Simlex-999 dataset which con-
tains adjectives and verbs, but they do not evaluate the per-
formance for these POS compared to nouns.

159

1.1 Contributions

We evaluate the approaches by Bergsma and Van
Durme (2011) and Kiela et al. (2015) on an ex-
tended data set, which apart from nouns includes
both adjectives and verbs. Our results suggest that
none of the approaches involving image data are
directly applicable to learning cross-lingual repre-
sentations for adjectives and verbs.

2 Data

Wordlists We combined 3 data sets of English
words to compile the wordlists for our experi-
ments: the original wordlist used by Kiela et al.
(2015), the Simlex-999 data set of English word
pairs (Hill et al., 2014) and the MEN data set
(Bruni et al., 2014). Whereas the first wordlist
contains only nouns, the latter two datasets con-
tain words of three POS classes (nouns, adjec-
tives and verbs). We collect all distinct words and
translate the final wordlist into 5 languages (Ger-
man, French, Russian, Italian, Spanish) using the
Google translation API3, choosing the most fre-
quent translation with the respective POS tag. Ta-
ble 1 shows the POS distribution in the datasets.

MEN Simlex Bergsma Combined

N 656 751 500 1406
V 38 170 0 206
A 57 107 0 159

Table 1: Distribution of POS tags in the datasets
used to compile the final wordlist.

Image Data Sets We use the Google Custom
Search API4 to represent each word in a wordlist
by a set of images. We collect the first 50 jpeg im-
ages returned by the search engine when querying
the words specifying the target language.5 This
way, we compile image data sets for 6 languages.6

Figure 1 shows examples for images associated
with a word in two languages.

3https://translate.google.com/
4https://developers.google.com/

custom-search/
5Even though we get the search results for the first 50 im-

ages, some of them cannot be downloaded. On average, we
collect 42 images for each image word.

6The wordlists and image datasets are available at
https://github.com/coastalcph/cldi_from_
image_search/

3 Approach

The assumption underlying the approach is that se-
mantically similar words in two languages are as-
sociated with similar images. Hence, in order to
find the translation of a word, e.g. from English
to German, we compare the images representing
the English word with all the images representing
German words, and pick as translation the German
word represented by the most similar images. To
compute similarities between images, we compute
cosine similarities between their feature represen-
tations.

3.1 Convolutional Neural Network Feature
Representations

Following Kiela et al. (2015), we compute convo-
lutional neural network (CNN) feature representa-
tions using a model pre-trained on the ImageNet
classification task (Russakovsky et al., 2015). For
each image, we extract the pre-softmax layer rep-
resentation of the CNN. Instead of an AlexNet
(Krizhevsky et al., 2012) as used by Kiela et
al. (2015), we use the Keras implementation of the
VGG19 model as described in Simonyan and Zis-
serman (2014), which was shown to achieve sim-
ilar performance for word representation tasks by
Kiela et al. (2016). Using this model, we represent
each image by a 4069-dimensional feature vector.

Similarities Between Individual Images
Bergsma and Van Durme (2011) determine
similarities between image sets based on simi-
larities between all individual images. For each
image in image set 1, the maximum similarity
score for any image in image set 2 is computed.
These maximum similarity scores are then either
averaged (AVGMAX) or their maximum is taken
(MAXMAX).

Similarities Between Aggregated Representa-
tions In addition to the above described meth-
ods, Kiela et al. (2015) generate an aggregated
representation for each image set and then com-
pute the similarity between image sets by comput-
ing the similarity between the aggregated repre-
sentations. Aggregated representations for image
sets are generated by either taking the component-
wise average (CNN-MEAN) or the component-
wise maximum (CNN-MAX) of all images in the
set.

K-Nearest Neighbor For each image in an im-
age set in language 1, we compute its nearest

160

(a) Images associated with the English noun cow (left) and the
German translation Kuh (right).

(b) Images associated with the English verb discuss (left) and
the German translation diskutieren (right).

(c) Images associated with the English adjective sad (left) and
the German translation traurig (right).

Figure 1: Examples for images associated with equivalent words in two languages (English and German).

neighbor across all image sets in language 2.
Then, we find the image set in language 2 that
contains the highest number of nearest neighbors.
The image word is translated into the image word
that is associated with that image 2 set. Ties be-
tween image sets containing an equivalent num-
ber of nearest neighbors are broken by computing
the average distance between all members. We
refer to the method as KNN. Whereas the other
approaches described above provide a ranking of
translations, this method determines only the one
translation that is associated with the most similar
image set.

Clustering Image Sets As we expect the re-
trieved image sets for a word to contain images
associated with different senses of the word, we
first cluster images into k clusters. This way, we
hope to group images representing different word
senses. Then, we apply the KNN method as de-
scribed above. We refer to this method as KNN-
C.

3.2 Evaluation Metrics

Ranking performance is evaluated by computing
the Mean Reciprocal Rank (MRR) as MRR =

1
M

M∑
i=1

1

rank(ws, wt)
M is the number of words to

be translated and rank(ws, wt) is the position the
correct translationwt for source wordws is ranked
on.

In addition to MRR, we also evaluate the cross-
lingual representations by means of precision at k
(P@k).

4 Experiments and Results

We run experiments for 5 language pairs English–
German, English–Spanish, English–French,
English–Russian and English–Italian. We evalu-
ate the representations computed from image data
and compare the different methods for similarity
computation described in 3. For each English

word, we rank all the words in the corresponding
target languages based on similarities between
image sets and evaluate the models’ ability to
identify correct translations, i.e. to rank the
correct translation on a position near the top. We
compare 4 settings that differ in the set of English
words that are translated. In the setting ALL,
all English words in the wordlist are translated.
NN, VB and ADJ refer to the settings where only
nouns, verbs and adjectives are translated.

4.1 Results
Comparison of similarity computation methods
for visual representations Table 2 displays re-
sults averaged over all language pairs.7 First, com-
paring the different methods to compute similar-
ities between image sets, AVGMAX outperforms
the other methods in almost all cases. Most impor-
tantly, we witness a very significant drop in perfor-
mance when moving from nouns to verbs and ad-
jectives. For verbs, we rarely pick the right trans-
lation based on the image-based word representa-
tions. This behavior applies across all methods for
similarity computation. Further, we see small im-
provements if we cluster the image sets prior to
applying the KNN method, which might indicate
that the clustering helps in finding translations for
polysemous words.

4.2 Analysis
If we try to learn translations from images, inte-
grating verbs and adjectives into the dataset wors-
ens results compared to a dataset that contains
only nouns. One possible explanation is that im-
ages associated with verbs and adjectives are less
suited to represent the meaning of a concept than
images associated with nouns.

Kiela et al. (2015) suppose that lexicon in-
duction via image similarity performs worse for

7We also evaluate our visual representations on the set
of 500 nouns used by Kiela et al. (2015), which results in
P@1=0.6 and MRR=0.63 averaged over 5 language pairs for
the AVGMAX method.

161

ALL NN VB ADJ

MRR P@1 P@10 MRR P@1 P@10 MRR P@1 P@10 MRR P@1 P@10

AVGMAX 0.53 0.49 0.60 0.60 0.56 0.67 0.20 0.15 0.30 0.28 0.22 0.37
MAXMAX 0.44 0.38 0.54 0.49 0.43 0.61 0.19 0.15 0.24 0.23 0.18 0.31
CNNMEAN 0.49 0.44 0.57 0.56 0.52 0.64 0.15 0.10 0.26 0.24 0.20 0.32
CNNMAX 0.47 0.43 0.55 0.55 0.50 0.63 0.15 0.10 0.24 0.19 0.15 0.27
KNN – 0.42 – – 0.50 – – 0.06 – – 0.13 –
KNN-C (k = 3) – 0.47 – – 0.56 – – 0.10 – – 0.16 –

Table 2: Results for translation ranking with images represented by CNN features averaged over 5 lan-
guage pairs. KNN and KNN-C do not produce a ranking, hence we only provide P@1 values.

datasets containing words that are more abstract.
In order to approximate the degree of abstractness
of a concept, they compute the image dispersion
d for a word w as the average cosine distance be-
tween all image pairs in the image set {ij , . . . , in}
associated with word w according to

d(w) =
2

n(n− 1)

∑

k<j≤n
1− ij · ik
|ij ||ik|

In their analysis, Kiela et al. (2015) find that
their model performs worse on datasets with
a higher average image dispersion. Kiela et
al. (2014) introduce a dispersion-based filtering
approach for learning multi-modal representations
of nouns. They show that the quality of their rep-
resentations with respect to a monolingual word-
similarity prediction task improves, if they include
visual information only in cases where the disper-
sion of the visual data is low.

Computing the average image dispersion for our
data across languages shows that image sets asso-
ciated with verbs and adjectives have a higher av-
erage image dispersion than image sets associated
with nouns (nouns: d = 0.60, verbs: d = 0.68,
adjectives: d = 0.66).

Table 3 shows the image words associated with
the image sets that have the highest and lowest
dispersion values in the English image data. For
nouns and adjectives, we observe that the words
with lowest dispersion values express concrete
concepts, whereas the words with highest disper-
sion values express more abstract concepts that
can be displayed in many variants. Manually in-
specting the dataset, we find e.g. that the images
associated with the noun animal display many dif-
ferent animals, such as birds, dogs, etc, whereas
the images for mug all show a prototypical mug.

Besides the dispersion values, we also analyze

the number of word senses per POS using Word-
Net8. We find that the verbs in our dataset have a
higher average number of word senses (n = 9.18)
than the adjectives (n = 6.88) and the nouns (n =
5.08). That we get worst results for the words
with highest number of different word senses is in
agreement with Gerz et al. (2016), who find that
in a monolingual word similarity prediction task,
models perform worse for verbs with more differ-
ent senses than for less polysemous verbs.

Lowest dispersion Highest dispersion

Word d Word d

NN
mug 0.31 animal 0.78
oscilloscope 0.32 companion 0.78
padlock 0.33 mammal 0.78

VB
vanish 0.43 differ 0.76
shed 0.43 hang 0.76
divide 0.47 arrange 0.75

ADJ
yellow 0.39 huge 0.79
white 0.40 large 0.79
fragile 0.43 big 0.78

Table 3: English image words associated with
the image sets with highest and lowest dispersion
scores d.

5 Conclusion

We showed that existing work on learning cross-
lingual word representations from images ob-
tained via web image search does not scale to other
POS than nouns. It is possible that training convo-
lutional networks on different resources than Ima-
geNet data will provide better features represent-

8https://wordnet.princeton.edu/

162

ing verbs and adjectives. Finally, it would be in-
teresting to extend the approach to multi-modal in-
put, combining images and texts, e.g. from com-
parable corpora with images such as Wikipedia.

References
Waleed Ammar, George Mulcaire, Yulia Tsvetkov,

Guillaume Lample, Chris Dyer, and Noah A. Smith.
2016. Massively multilingual word embeddings.
CoRR abs/1602.01925.

Elia Bruni, Nam Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. Journal of Ar-
tificial Intelligence Research 49(1):1–47.

Daniela Gerz, Ivan Vulić, Felix Hill, Roi Reichart, and
Anna Korhonen. 2016. SimVerb-3500: A Large-
Scale Evaluation Set of Verb Similarity. In Proceed-
ings of EMNLP.

Felix Hill and Anna Korhonen. 2014. Learning ab-
stract concept embeddings from multi-modal data:
Since you probably can’t see what I mean. In Pro-
ceedings of EMNLP.

Felix Hill, Roi Reichart, and Anna Korhonen. 2014.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. CoRR abs/1408.3456.
http://arxiv.org/abs/1408.3456.

Douwe Kiela and Léon Bottou. 2014. Learning image
embeddings using convolutional neural networks for
improved multi-modal semantics. In Proceedings of
EMNLP.

Douwe Kiela, Felix Hill, Anna Korhonen, and Stephen
Clark. 2014. Improving multi-modal representa-
tions using image dispersion: Why less is sometimes
more. In Proceedings of ACL. Baltimore, Maryland.

Douwe Kiela, Anita Lilla Verő, and Stephen Clark.
2016. Comparing data sources and architectures for
deep visual representation learning in semantics. In
Proceedings of EMNLP.

Douwe Kiela, Ivan Vulic, and Stephen Clark. 2015.
Visual bilingual lexicon induction with transferred
convnet features. In Proceedings of EMNLP.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton. 2012. Imagenet classification with deep convo-
lutional neural networks. In Proceedings of NIPS.

Guillaume Lample, Alexis Conneau, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Herv Jgou. 2018.
Word translation without parallel data. In Proceed-
ings of ICLR.

Angeliki Lazaridou, Nghia The Pham, and Marco Ba-
roni. 2015. Combining language and vision with
a multimodal skip-gram model. In Proceedings of
NAACL HLT .

Omer Levy, Yoav Goldberg, and Anders Søgaard.
2017. A strong baseline for learning cross-lingual
word embeddings from sentence alignments. In
Proceedings of EACL.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, An-
drej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet
Large Scale Visual Recognition Challenge. Interna-
tional Journal of Computer Vision (IJCV) 115(3).

Shane Bergsma and Benjamin Van Durme. 2011.
Learning Bilingual Lexicons using the Visual Sim-
ilarity of Labeled Web Images. In Proceedings of
IJCAI. Barcelona, Spain, IJCAI ’11.

Carina Silberer, Vittorio Ferrari, and Mirella Lapata.
2017. Visually grounded meaning representations.
IEEE Transactions on Pattern Analysis and Machine
Intelligence 39.

K. Simonyan and A. Zisserman. 2014. Very deep con-
volutional networks for large-scale image recogni-
tion. CoRR abs/1409.1556.

Anders Søgaard, Sebastian Ruder, and Ivan Vulić.
2018. On the limitations of unsupervised bilingual
dictionary induction. In Proceedings of ACL.

Ivan Vulić, Douwe Kiela, S. Clark, and M.F Moens.
2016. Multi-modal representations for improved
bilingual lexicon learning. In Proceedings of ACL.

163

Proceedings of the 3rd Workshop on Representation Learning for NLP, pages 164–174
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

Learning Semantic Textual Similarity from Conversations

Yinfei Yanga, Steve Yuanc, Daniel Cera, Sheng-yi Konga, Noah Constanta, Petr Pilarc,
Heming Gea, Yun-Hsuan Sunga, Brian Stropea, Ray Kurzweila

aGoogle AI
Mountain View, CA, USA

bGoogle
Cambridge, MA, USA

cGoogle
Zurich, Switzerland

Abstract

We present a novel approach to learn rep-
resentations for sentence-level semantic
similarity using conversational data. Our
method trains an unsupervised model to
predict conversational responses. The re-
sulting sentence embeddings perform well
on the Semantic Textual Similarity (STS)
Benchmark and SemEval 2017’s Com-
munity Question Answering (CQA) ques-
tion similarity subtask. Performance is
further improved by introducing multi-
task training, combining conversational
response prediction and natural language
inference. Extensive experiments show
the proposed model achieves the best per-
formance among all neural models on the
STS Benchmark and is competitive with
the state-of-the-art feature engineered and
mixed systems for both tasks.

1 Introduction

We propose a novel approach to sentence-level se-
mantic similarity based on unsupervised learning
from conversational data. We observe that seman-
tically similar sentences have a similar distribution
of potential conversational responses, and that a
model trained to predict conversational responses
should implicitly learn useful semantic represen-
tations. As illustrated in Figure 1, “How old are
you?” and “What is your age?” are both questions
about age, which can be answered by similar re-
sponses such as “I am 20 years old”. In contrast,
“How are you?” and “How old are you?” use sim-
ilar words but have different meanings and lead to
different responses.

Deep learning models have been shown to pre-
dict conversational responses with increasingly
good accuracy (Henderson et al., 2017; Kannan

Figure 1: Sentences have similar meanings if they
can be answered by a similar distribution of con-
versational responses.

et al., 2016). The internal representations of such
models resolve the semantics necessary to pre-
dict the correct response across a broad selec-
tion of input messages. Meaning similarity be-
tween sentences then can be obtained by compar-
ing the sentence-level representations learned by
such models. We follow this approach, and assess
the quality of the resulting similarity scores on
the Semantic Textual Similarity (STS) Benchmark
(Cer et al., 2017) and a question similarity sub-
task from SemEval 2017’s Community Question
Answering (CQA) evaluation. The STS bench-
mark scores sentence pairs based on their degree
of meaning similarity. The Community Question
Answering (CQA) subtask B (Nakov et al., 2017)
ranks questions based on their similarity with a tar-
get question.

We first assess representations learned from
unsupervised conversational input-response pairs.
We then explore augmenting our model with
multi-task training over a combination of unsuper-
vised conversational response prediction and su-
pervised training on Natural Language Inference
(NLI) data, as training to NLI has been shown to
independently yield useful general purpose repre-
sentations (Conneau et al., 2017). Unsupervised
training over conversational data yields represen-

164

Figure 2: The conversational response selection
problem attempts to identify the correct response
from a collection of candidate responses. We
train using batch negatives with each candidate re-
sponse serving as a positive example for one input
and a negative sample for the remaining inputs.

tations that perform well on STS and CQA ques-
tion similarity. The addition of supervised SNLI
data leads to further improvements and reaches
state-of-the-art performance for neural STS mod-
els, surpassing training on NLI data alone.

2 Approach

This section describes the conversational learning
task and our architecture for predicting conversa-
tional responses. We detail two encoding meth-
ods for converting sentences into sentence embed-
dings and describe multitask learning over conver-
sational and NLI data.

2.1 Conversational Response Prediction

We formulate the conversational learning task as
response prediction given an input (Kannan et al.,
2016; Henderson et al., 2017). Following prior
work, the prediction task is cast as a response se-
lection problem. As shown in Figure 2, the model
P (y|x) attempts to identify the correct response y
from K − 1 randomly sampled alternatives.

2.2 Model Architecture

Our model architecture encodes input and re-
sponse sentences into fixed-length vectors u and v,
respectively. The preference of an input described
by u for a response described by v is scored by
the dot product of the two vectors. The dot prod-
uct scores are converted into probabilities using a
softmax over the scores from all other candidate
responses. Model parameters are trained to maxi-
mize the log-likelihood of the correct responses.

Figure 3 illustrates the input-response scoring
model architecture. Tied parameters are used for
the input and response encoders. In order to model
the mapping between inputs and their expected

Encoder

Input Response

u

v

v’

(uT • v’)

Encoder

Fully-connected layers

Figure 3: Conversational response prediction
model. The sentence encoders are in red and use
shared parameters. Fully connected DNN layers
perform the mapping between the semantics of the
input sentence and the candidate response.

responses, the response embeddings are passed
through an additional feed-forward network to get
the final response vector v′ before computing the
dot product with the input sentence embedding.1

Training is performed using batches of K ran-
domly shuffled input-response pairs. Within a
batch, each response serves as the correct answer
to its corresponding input and the incorrect re-
sponse to the remaining K− 1 inputs in the batch.
In the remaining sections, this architecture is re-
ferred to as the input-response model.

2.3 Encoders
Figure 4 illustrates the encoders we explore for ob-
taining sentence embeddings: DANs (Iyyer et al.,
2015) and Transformer (Vaswani et al., 2017).2

2.3.1 DAN
Deep averaging networks (DAN) compute
sentence-level embeddings by first averaging
word-level embeddings and then feeding the
averaged representation to a deep neural network
(DNN) (Iyyer et al., 2015). We provide our
encoder with input embeddings for both words
and bigrams in the sentence being encoded. This
simple architecture has been found to outperform
LSTMs on email response prediction (Henderson
et al., 2017). The embeddings for words and

1While feed-forward layers could have been added to the
input encoder as well, early experiments suggested it was suf-
ficient to add additional layers to only one of the encoders.

2We tried other encoder architectures, notably LSTM
(Hochreiter and Schmidhuber, 1997) and Bi-LSTM (Graves
and Schmidhuber, 2005), but found they performed worse
than transformer in preliminary experiments.

165

bigrams are learned during training of the input-
response model. Our implementation sums the
input embeddings and then divides by sqrt(n),
where n is the sentence length.3 The resulting
vector is passed as input to the DNN.

Input Sentence

x0 x1 xn

∑

Fully Connected Layer0

Fully Connected Layer1

Fully Connected Layern

Sentence Embedding

Word
Embeddings

(a) DAN encoder

Attn. Layern

Attn. Layern

Input Sentence
x0 x1 xn

Sentence Embedding

∑

Attn. Layern

Word
Embeddings

(b) Transformer encoder

Figure 4: Model architectures for the DAN and
Transformer sentence encoders.

DANs perform well in practice on sentence-
level prediction and encoding tasks (Iyyer et al.,
2015; Henderson et al., 2017). However, they lack
any explicit network structure for encoding long
range relationships between words.

2.3.2 Transformer
Transformer (Vaswani et al., 2017) is a recent
network architecture that makes use of attention
mechanisms to explicitly capture relationships be-
tween words appearing at any position in a sen-
tence. The architecture is able to achieve state-
of-the-art performance on translation tasks and is
available as open-source.4

While the original transformer architecture con-
tains an encoder and decoder, we only need the en-
coder component in our training procedure. The
encoder is constructed as a series of attention lay-
ers consisting of a multi-headed self-attention op-
eration over all input positions followed by a feed-
forward layer that processes each position inde-
pendently (see figure 4b). Positional information
is captured by injecting a “timing signal” into the

3sqrtn is one of TensorFlow’s built-in embedding com-
biners. The intuition behind dividing by sqrt(n) is as fol-
lows: We want our input embeddings to be sensitive to length.
However, we also want to ensure that for short sequences the
relative differences in the representations are not dominated
by sentence length effects.

4https://github.com/tensorflow/tensor2tensor

input embeddings based on sine/cosine functions
at different frequencies.

The transformer encoder output is a variable-
length sequence. We reduce it to fixed length
by averaging across all sequence positions. Intu-
itively, this is similar to building a bag-of-words
representation, except that the words have had
a chance to interact with their contexts through
the attention layers. In practice, we see that the
learned attention masks focus largely on nearby
words in the first layer, and attend to progressively
more distant context in the higher layers.

2.4 Multitask Encoder

We anticipate that learning good semantic repre-
sentations may benefit from the inclusion of mul-
tiple distinct tasks during training. Multiple tasks
should improve the coverage of semantic phe-
nomenon that are critical to one task but less es-
sential to another. We explore multitask mod-
els that use a shared encoder for learning con-
versational response prediction and natural lan-
guage inference (NLI). The NLI data are from
the Stanford Natural Language Inference (SNLI)
(Bowman et al., 2015) corpus. The sentences are
mostly non-conversational, providing a comple-
mentary learning signal.

Figure 5 illustrates the multitask model with
SNLI. We keep the input-response model the
same, and build another two encoders for SNLI
pairs, sharing parameters with the input-response
encoders. Following Conneau et al. (2017), we en-
code a sentence pair into vectors u1, u2 and con-
struct a feature vector (u1, u2, |u1 − u2|, u1 ∗ u2).
The feature vector is fed into a 3-way classifier
consisting of a feedforward network culminating
in a softmax layer. Following prior work, we use a
single 512 unit hidden layer for our experiments.

3 Conversational Data

Our unsupervised model relies on structured con-
versational data. The data for our experiments are
drawn from Reddit conversations spanning 2007
to 2016, extracted by Al-Rfou et al. (2016). This
corpus contains 133 million posts and a total of 2.4
billion comments. The comments are mostly con-
versational and well structured, making it a good
resource for training conversational models.

Figure 6 provides an example of a Reddit com-
ment chain. Comment B is a child of comment A
if comment B is a reply to comment A. We extract

166

Encoder

SNLI Input 2SNLI Input 1

u1 u2

Input Response

u

v

(u1, u2, |u1-u2|, u1*u2)

Fully-connected layers

3-way softmax

v’

(u• v’T)

Reddit

Encoder Encoder Encoder

Fully-connected layers

SNLI

Figure 5: Architecture of the multitask model.
Sentence encoders are in red and share parameters.

Figure 6: Reddit comment chain.

comments and their children to form the input-
response pairs described above. Several rules are
applied to filter out the noisy data. A comment is
removed if any of the following conditions holds:
number of characters ≥ 350, percentage of alpha-
betic characters ≤ 70%, starts with “https”, “/r/”
or “@”, author’s name contains “bot”. The total
number of extracted pairs is around 600 million.

3.1 Model Configuration

Model configuration and hyperparameters are set
based on prior experiments on Reddit response
prediction and performance of the multi-task
model on SNLI. All inputs are tokenized and nor-
malized before being fed into model. For all ex-
periments, we use SGD with a batch size of 128
and a learning rate of 0.01. The total training
steps are 40 million steps for the Reddit model and
30 million steps for the Reddit+SNLI model. We

P@1 P@3 P@10
Transformer 65.7 78.7 89.8

DAN 56.1 70.2 83.6

Table 1: Precision at N (P@N) results on the Red-
dit response predication test set for models built
using the DAN and Transformer encoders. Mod-
els attempt to select the true response for an input
against 99 randomly selected negatives.

adjust the batch size to 256 and learning rate to
0.001 after 30 million and 20 million steps for the
Reddit and the Reddit+SNLI models, respectively.
When training the multitask model, we initialize
the shared parameters with a pretrained Reddit
model. We employ a distributed training system
with multiple workers, where 95% of workers are
used to continue training the Reddit task and 5%
of workers are used to train the SNLI task. We
use a sentence embedding size of 500 in all exper-
iments, and normalize sentence embeddings prior
to use in subsequent network layers. The parame-
ters were only lightly tuned to prevent overfitting
on the SNLI task.

The encoder configurations are taken from the
default parameters from previous work. For DAN,
we employ a 3-layer DNN with layers containing
300, 300, and 500 hidden units. For the trans-
former encoder, our experiments make use of 6
attention layers (num hidden layers) and 8
attentions heads (num heads). Within each at-
tention layer, the feedforward network applied to
each head has an input and output size of 512
(hidden size) and makes use of a 2048 unit
inner-layer (filter size).

4 Experiments

We first evaluate the different encoders on the re-
sponse prediction task. For the multitask models,
we then examine their performance on SNLI. Fi-
nally, we evaluate the encoders on the STS Bench-
mark (Cer et al., 2017) and on SemEval 2017
Community Question Answering (CQA) subtask
B (Nakov et al., 2017). We refer to the model
trained over Reddit input-response pairs as Reddit
and the multitask model as Reddit+SNLI.

4.1 Response Prediction

Following Henderson et al. (2017), we use preci-
sion at N (P@N) as an evaluation metric for the
conversational response prediction task. Given an

167

Accuracy
Reddit+SNLI 84.1

InferSent 84.5
KIM Ensemble 89.0

Gumbel TreeLSTM 86.0

Table 2: SNLI classification performance for the
Reddit+SNLI model using the transformer en-
coder with reference evaluation numbers from
prior work. We note that similar to InferSent, our
goal is to use SNLI to obtain better sentence rep-
resentations rather than achieving state-of-the-art
performance on the SNLI task itself.

input, the task is to select the true response (pos-
itive) from 99 randomly selected responses (neg-
atives). We rank all 100 candidate responses by
their dot-product scores from the input-response
model. The P@N score evaluates if the true re-
sponse (positive) appears in the top N responses.
For the evaluation, the Reddit data is randomly
split into train (90%) and test (10%) sets.

Table 1 shows the P@N results of Reddit mod-
els trained with different encoders, for N=1, 3, 10.
The DAN encoder (with n-grams), as investigated
by Henderson et al. (2017), provides a strong base-
line. We observe the transformer encoder outper-
forms DAN for all values of N. The transformer
encoder achieves a P@1 metric of 65.7% while
DAN achieves only 56.1%. Given its greater per-
formance, we use a transformer encoder for the re-
mainder of the experiments reported in this work.

4.2 SNLI

SNLI (Bowman et al., 2015) annotates the inferen-
tial relationship between paired sentences as en-
tailment, contradiction, or neural. One sentence
is entailed by another sentence if its meaning can
be inferred from the other. Sentences contradict
each other if the meaning of one implies that the
other is not true. The sentence pairs in the dataset
are partitioned into train (550,152), dev (10,000),
and test (10,000). Model performance is evaluated
based on classification accuracy.

Our multitask model learns a shared encoder for
the conversational response prediction and SNLI
tasks. We report evaluation results on the SNLI
task in order to facilitate better comparison with
InferSent (Conneau et al., 2017), which served as
the inspiration for the inclusion of the SNLI task
within a multitask model. For reference, we pro-

vide the results of Gumbel TreeLSTM (Williams
et al., 2017), which is the best sentence encoder
based model, and KIM Ensemble (Chen et al.,
2017), which is the current state-of-the-art.

Sentence encoder based models first encode
the two sentences in an SNLI input pair sepa-
rately, and then feed the encodings into a classi-
fier. By comparison, other models explicitly con-
sider word-level interactions between the paired
sentences (e.g., using cross-attention). We note
that our model is sentence encoder based.

Table 2 shows the accuracy on the test set of the
joint model and baselines. The multitask model
achieves 84.1% accuracy and is close to the per-
formance of InferSent. There are two significant
differences between our model and prior work.
First, the proposed model learns all model parame-
ters from scratch, including the word embeddings.
Due in part to the size of the SNLI training set, In-
ferSent uses a large pre-trained word embedding
model fit via GloVe (Pennington et al., 2014) on
840 billion tokens of web crawl data, which results
in fewer out-of-vocabulary words. For our multi-
task model, the Reddit dataset is large enough that
we do not necessarily require pre-trained word
embeddings. However, it is possible the pre-
trained GloVe embeddings provide slightly better
performance on the SNLI task.5 Secondly, our
multi-task model learns two tasks simultaneously,
balancing performance between them, while In-
ferSent only optimizes performance on SNLI. As
will be presented below, our multi-task model per-
forms better on STS. We suspect multi-task train-
ing both increases coverage of different language
phenomenon and acts as a regularizer across tasks
that prevents the resulting sentence embeddings
from overfitting any particular task, thus improv-
ing transfer performance to new tasks.6

4.3 STS Benchmark

The proposed models encode text into a sentence-
level embedding space. We evaluate the ex-
tent to which the embeddings accurately encode
sentence-level meaning using the Semantic Tex-

5Preliminary experiments with pre-trained embeddings
on a P@N Reddit response prediction evaluation revealed
no performance advantage over embeddings learned directly
from the data.

6We note that, if our model is reduced to just training on
SNLI without multitask training on Reddit, it would be equiv-
alent to InferSent but without the use of pretrained sentence
embeddings. We do not provide results for this configuration
as preliminary experiments suggested it performed poorly.

168

dev test
Reddit+SNLI tuned 0.835 0.808

Reddit+SNLI 0.814 0.782
Reddit tuned 0.809 0.781

Reddit 0.762 0.731
Neural representation models

CNN (HCTI) 0.834 0.784
InferSent 0.801 0.758
Sent2Vec 0.787 0.755

SIF 0.801 0.720
PV-DBOW 0.722 0.649
C-PHRASE 0.743 0.639

Feature engineered and mixed systems
ECNU 0.847 0.810

BIT 0.829 0.809

Table 3: Pearson’s r on the STS Benchmark.

tual Similarity (STS) Benchmark. The bench-
mark includes English datasets from the Se-
mEval/*SEM STS shared tasks between 2012 and
2017 (Cer et al., 2017; Agirre et al., 2016, 2015,
2014, 2013, 2012). The data include 8,628 sen-
tence pairs from three categories: captions, news
and forums. Each pair is annotated with a human-
labeled degree of meaning similarity, ranging from
0 to 5. The dataset is divided into train (5,749), dev
(1,500) and test (1,379).

We report results using two configurations for
the evaluation of the Reddit and Reddit+SNLI
models. The first configuration is “out-of-the-
box” with no adaptation for the STS task. Rather,
we take the original sentence embeddings u, v and
directly score the sentence pair similarity based
on the angular distance between the two vectors,
− arccos

(
uv

||u|| ||v||

)
.7 We suspect the original

sentence embeddings from the Reddit and Red-
dit+SNLI models will not necessary weight all se-
mantic distinctions in a way that is consistent with
the annotations for STS. The second configuration
for evaluating the two models uses a single trans-
formation matrix to fine-tune the sentence embed-
ding representations for the STS task. The ma-
trix, which is parameterized using the STS training
data, transforms the original sentence embedding
vectors u, v to u∗, v∗.

Table 3 presents results on the dev and test
sets of the STS Benchmark. For model compar-
isons, we include the state-of-the-art neural STS

7arccos is used to convert the cosine similarity scores into
angular distances that obey the triangle inequality.

model CNN (HCTI) (Shao, 2017) and other sys-
tems in Cer et al. (2017).8 The untuned Reddit
model is competitive with many of the other neu-
ral representation models, demonstrating that the
sentence embeddings learned on Reddit conversa-
tions do keep text with similar semantics close in
embedding space. The “out-of-the-box” multitask
model, Reddit+SNLI, achieves an r of 0.814 on
the dev set and 0.782 on test. Using a transfor-
mation matrix to adapt the Reddit model trained
without SNLI to STS, we achieve Pearson’s r of
0.809 on dev and 0.781 on test. This surpasses In-
ferSent and is close to the performance of the best
neural representation approach, CNN (HCTI).9

The adapted multitask model achieves the best
performance among all neural models, with an r
of 0.835 on the dev data and 0.808 on test. The
results are competitive with state-of-the-art feature
engineered and mixed systems, e.g. ECNU and
BIT. However, our models are simpler and require
no feature engineering.10

4.4 CQA Subtask B
To further validate the effectiveness of sen-
tence representations learned from conversational
data, we assess the proposed models on subtask
B of SemEval Community Question Answering
(CQA) (Nakov et al., 2017). In this task, given
an “original” question Q, and the top ten related
questions from a forum (Q1, . . . , Q10) as retrieved
by a search engine, the goal is to rank the related
questions according to their similarity with respect

8InferSent (Conneau et al., 2017), Sent2Vec (Pagliardini
et al., 2017), SIF (Arora et al., 2017), PV-DBOW (Lau
and Baldwin, 2016), C-PHRASE (Kruszewski et al., 2015),
ECNU (Tian et al., 2017) and BIT (Wu et al., 2017).

9For both the STS shared task and the STS benchmark
leaderboard, systems are allowed to use external datasets as
long as they do not make use of supervised annotations on
data that overlap with the evaluation sets. InferSent intro-
duced the use of SNLI for STS. However, we discovered 4
out of the 1,379 pairs within the STS Benchmark dev set and
5 out of the 1,500 pairs in the STS Benchmark test set over-
lap with the SNLI training set. We do not believe this mini-
mal overlap had a meaningful impact on the results presented
here.

10As summarized by Cer et al. (2017), ENCU makes use
of a large feature set that includes: n-gram overlap; edit dis-
tance; longest common prefix/suffix/substring; tree kernels;
word alignment based similarity; summarization and MT
evaluation metrics; kernel similarity of bags-of-words and
bags-of-dependency triples; and pooled word embeddings.
The manually engineered features are combined with scores
from DAN and LSTM based deep learning models. BIT re-
lies primarily on a measure of sentence information content
(IC) with a non-trivial derivation that is optionally combined
with either an alignment based similarity score or the cosine
similarity of IDF weighed summed word embeddings.

169

dev test
all captions forums news all captions forums news

Reddit+SNLI 0.814 0.885 0.756 0.646 0.782 0.891 0.764 0.585
Reddit 0.762 0.815 0.751 0.632 0.731 0.816 0.759 0.578

Reddit+SNLI tuned 0.835 0.888 0.759 0.731 0.808 0.894 0.767 0.667
Reddit tuned 0.809 0.843 0.754 0.721 0.781 0.843 0.762 0.668

Table 4: Pearson’s r of the proposed models on the STS Benchmark with a breakdown by category.

Score Label STS Input Sentences
Good -0.51 4.2 S1: a small bird sitting on a branch in winter.

S2: a small bird perched on an icy branch.
Good -1.23 0.0 S1: microwave would be your best bet.

S2: your best bet is research.
Bad -0.42 2.2 S1: a little boy is singing and playing a guitar.

S2: a man is singing and playing the guitar.
Bad -0.45 1.0 S1: yes, you have to file a tax return in canada.

S2: you are not required to file a tax return in canada if you have no
taxable income.

Table 5: Example model and human similarity scores on pairs from the STS Benchmark. System scores
are reported as the negative angular distance between the sentence embeddings. The scores can range
from 0 to −π, but in practice are typically between 0 and -12π.

MAP
Reddit+SNLI 47.42

Reddit 47.07
KeLP-contrastive1 49.00

SimBow-contrastive2 47.87
SimBow-primary 47.22

Table 6: Mean Average Precision (MAP) on Com-
munity Question Answering (CQA) subtask B.

to the original question. Mean average precision
(MAP) is used to evaluate candidate models.

Each pairing of an original question and a re-
lated question (Q,Qi) is labeled “PerfectMatch”,
“Relevant” or “Irrelevant”. Both “PerfectMatch”
and “Relevant” are considered as good questions,
which should rank above “Irrelevant” ones.

Similar to the STS experiments, we use cosine
similarity between the original question and re-
lated questions, without considering any other in-
teraction between the two questions.11 Given a re-
lated question Qi and its original question Q, we
first encode them into vectors ui and u. Then the
related questions are ranked based on the cosine
similarity with respect to the original question,

11Our model also excludes the use of comments and user
profiles provided by CQA as optional contextual features.

Figure 7: Predicted semantic similarity scores vs.
ground truth on the STS Benchmark.

cos(ui, u). Results are shown in table 6. Sim-
Bow (Charlet and Damnati, 2017) and KeLP (Fil-
ice et al., 2017), which are the best systems on the
2017 task, are used as baselines.12 Even without
tuning on the training data provided by the task,
our models show competitive performance. Red-
dit+SNLI outperforms SimBow-primary, which
official ranked first during the 2017 shared task.

12In the competition, each team can submit one primary
run and two contrastive runs. Only the primary run is used
for the official ranking.

170

Figure 8: Pearson’s r on the STS Benchmark for
the multitask model trained with Reddit and vary-
ing amounts of SNLI data.

5 Analysis

Model performance on the STS Benchmark can be
partition by sentence pair source. The test set con-
tains 625 sentence pairs drawn from captions, 500
pairs from news data, and 254 from online forums.

Table 4 provides results on each sub-group. For
the captions category, adding the SNLI data im-
proves the baseline Reddit model by about 8%
absolute. Even with tuning to STS, mixing in
SNLI data still helps dramatically on captions, as
the STS tuned Reddit+SNLI model is 5% abso-
lute higher than the STS tuned Reddit model on
this category. The improvement is likely attributed
to the fact that the SNLI sentences are from im-
age captions, while Reddit doesn’t contain much
caption-style data. Training with the SNLI data
has a smaller impact on performance for the other
categories, with even a slight decrease for the STS
tuned models on news test.

We observe that the STS tuned models have
only modest performance improvements on the
forum data over the untuned models, with much
larger improvements for captions and news. More-
over, for the Reddit+SNLI models, tuning pro-
duces a large performance increase for news with
smaller increases for both captions and forums.
This suggests tuning is impart compensating for
domain limitations within the training data.13 Fur-
ther improvements on the STS Benchmark could
likely be achieved by including additional encoder
training data sourced from news data.

Figure 7 plots predicted similarity scores
13e.g., the Reddit+SNLI model is trained on image caption

and discussion forum data but not news.

against the ground truth labels within the STS
Benchmark test data. The figure shows that while
the predicted scores are correlated with human
judgment, there is still a sizable range of predicted
similarity values for any given gold STS label.
We provide examples of good and bad similar-
ity predictions in table 5. For the two good ex-
amples, the model correctly has a relatively high
similarity score for the first pair, and a relatively
low score for the second. For the first bad exam-
ple, the model fails to penalize its similarity score
based on the semantic distinction between “boy”
and “man” as much as human raters did. For the
second bad example, apparently being on the topic
of whether it is necessary to file Canadian tax re-
turns was enough for the model to assign a high
similarly score. Human raters correctly assigned
a low similarity score since the two sentences are
making very different claims.

5.1 Quantity of SNLI data and Performance

The experiments in the previous section show that
supervised in-domain data, SNLI’s image cap-
tions, can be used to improve the semantic repre-
sentations of in-domain (caption) sentences. How-
ever, supervised data is difficult to obtain, espe-
cially on the order of SNLI’s 570,000 sentence
pairs. In order to learn how much supervised data
is needed, we train multitask models with Reddit
and varying amounts of SNLI data, ranging from
10% to 90% of the full dataset.

Figure 8 shows the STS Benchmark results for
all data and for caption data only, on both dev and
test sets. When first adding the SNLI data into the
training task, Pearson’s r increases rapidly across
all measures. Even with only 10% of the SNLI
data, r reaches around 0.85 for captions data on
both dev and test. The curves mostly flatten out af-
ter using 40% of the data, with performance only
improving slightly past this point. This suggests
encoders trained primarily on Reddit data can be
efficiently adapted to perform well on other do-
mains using a small sample of in-domain data.

6 Related Work

The STS task was first introduced by Agirre et al.
(2012). Early methods focused on lexical seman-
tics, surface form matching and basic syntactic
similarity (Bär et al., 2012; Jimenez et al., 2012).
More recently, deep learning based methods be-
came competitive (Shao, 2017; Tai et al., 2015).

171

One approach to this task is to encode sentences
into sentence-level embeddings and then calcu-
late the cosine similarity between the encoded rep-
resentations of the sentence pair. The encoding
model can be directly trained on the STS task
(Shao, 2017) or it can be trained on an alterna-
tive supervised (Conneau et al., 2017) or unsuper-
vised (Pagliardini et al., 2017) task. The primary
contribution of the work described in this paper
falls into the latter category, introducing a new un-
supervised task based on conversational data that
achieves good performance on predicting seman-
tic similarity scores. Training on input-response
data has been previously shown to be effective at
email response prediction (Kannan et al., 2016;
Henderson et al., 2017). We extend prior work
by exploring the effectiveness of representations
learned from conversations in capturing general-
purpose semantic information. The approach is
similar to Skip-Thought (Kiros et al., 2015), which
learns sentence-level representations through prior
and next sentence prediction within a document.
However, within our work, the adjacent sentences
are pulled from turns in a conversation.

7 Conclusion

In this paper, we propose using conversational re-
sponse prediction models to obtain sentence-level
embeddings. We find that encodings learned for
conversational response prediction perform well
on sentence-level semantic similarity. Sentence
embeddings extracted from a model trained on
conversational data can be used to obtain results
on the STS Benchmark that are competitive with
well performing models based on sentence-level
encoders. A multitask model trained on response
prediction and SNLI achieves state-of-the-art per-
formance for sentence encoding based models on
the STS Benchmark, and surpasses prior work
that trained on SNLI alone (InferSet). Finally,
even without any task-specific training, the sen-
tence embeddings obtained from both the conver-
sational response prediction model and the multi-
task model that includes SNLI are competitive on
CQA subtask B.

Acknowledgments

We thank the anonymous reviewers and our team-
mates from Descartes and other Google groups for
their feedback and suggestions, particularly Dan
Gillick and Raphael Hoffman.

References

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Inigo Lopez-Gazpio, Montse Maritxalar, Rada
Mihalcea, German Rigau, Larraitz Uria, and Janyce
Wiebe. 2015. Semeval-2015 task 2: Semantic tex-
tual similarity, english, spanish and pilot on inter-
pretability. In Proceedings of the 9th International
Workshop on Semantic Evaluation (SemEval 2015),
pages 252–263.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Rada Mihalcea, German Rigau, and Janyce
Wiebe. 2014. Semeval-2014 task 10: Multilingual
semantic textual similarity. In Proceedings of the
8th International Workshop on Semantic Evaluation
(SemEval 2014), pages 81–91.

Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab,
Aitor Gonzalez-Agirre, Rada Mihalcea, German
Rigau, and Janyce Wiebe. 2016. Semeval-2016
task 1: Semantic textual similarity, monolingual
and cross-lingual evaluation. In Proceedings of the
10th International Workshop on Semantic Evalua-
tion (SemEval-2016), pages 497–511.

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor
Gonzalez-Agirre. 2012. Semeval-2012 task 6: A pi-
lot on semantic textual similarity. In *SEM 2012:
The First Joint Conference on Lexical and Compu-
tational Semantics – Volume 1: Proceedings of the
main conference and the shared task, and Volume 2:
Proceedings of the Sixth International Workshop on
Semantic Evaluation (SemEval 2012), pages 385–
393.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-
Agirre, and Weiwei Guo. 2013. *sem 2013 shared
task: Semantic textual similarity. In Second Joint
Conference on Lexical and Computational Seman-
tics (*SEM), Volume 1: Proceedings of the Main
Conference and the Shared Task: Semantic Textual
Similarity, pages 32–43.

Rami Al-Rfou, Marc Pickett, Javier Snaider, Yun-
hsuan Sung, Brian Strope, and Ray Kurzweil. 2016.
Conversational contextual cues: The case of person-
alization and history for response ranking. arXiv
preprint arXiv:1606.00372.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017.
A simple but tough-to-beat baseline for sentence
embeddings. In 5th International Conference on
Learning Representations (ICLR).

Daniel Bär, Chris Biemann, Iryna Gurevych, and
Torsten Zesch. 2012. Ukp: Computing seman-
tic textual similarity by combining multiple con-
tent similarity measures. In Proceedings of the
First Joint Conference on Lexical and Computa-
tional Semantics-Volume 1: Proceedings of the main

172

conference and the shared task, and Volume 2: Pro-
ceedings of the Sixth International Workshop on Se-
mantic Evaluation, pages 435–440. Association for
Computational Linguistics.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large an-
notated corpus for learning natural language infer-
ence. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguis-
tics.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity multilingual and
cross-lingual focused evaluation. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 1–14.

Delphine Charlet and Geraldine Damnati. 2017. Sim-
bow at semeval-2017 task 3: Soft-cosine semantic
similarity between questions for community ques-
tion answering. In Proceedings of the 11th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2017), pages 315–319.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Diana
Inkpen, and Si Wei. 2017. Natural language in-
ference with external knowledge. arXiv preprint
arXiv:1711.04289.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 681–691, Copen-
hagen, Denmark. Association for Computational
Linguistics.

Simone Filice, Giovanni Da San Martino, and Alessan-
dro Moschitti. 2017. Kelp at semeval-2017 task 3:
Learning pairwise patterns in community question
answering. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 326–333.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional
LSTM and other neural network architectures. Neu-
ral Networks, 18(5):602 – 610. IJCNN 2005.

Matthew Henderson, Rami Al-Rfou, Brian Strope,
Yun-Hsuan Sung, László Lukács, Ruiqi Guo, San-
jiv Kumar, Balint Miklos, and Ray Kurzweil. 2017.
Efficient natural language response suggestion for
smart reply. CoRR, abs/1705.00652.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered compo-
sition rivals syntactic methods for text classification.

In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1681–1691, Beijing, China. Association for Com-
putational Linguistics.

Sergio Jimenez, Claudia Becerra, and Alexander Gel-
bukh. 2012. Soft cardinality: A parameterized sim-
ilarity function for text comparison. In Proceedings
of the First Joint Conference on Lexical and Com-
putational Semantics-Volume 1: Proceedings of the
main conference and the shared task, and Volume
2: Proceedings of the Sixth International Workshop
on Semantic Evaluation, pages 449–453. Associa-
tion for Computational Linguistics.

Anjuli Kannan, Karol Kurach, Sujith Ravi, Tobias
Kaufman, Balint Miklos, Greg Corrado, Andrew
Tomkins, Laszlo Lukacs, Marina Ganea, Peter
Young, and Vivek Ramavajjala. 2016. Smart re-
ply: Automated response suggestion for email.
In Proceedings of the ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD)
(2016).

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems 28, pages 3294–3302.
Curran Associates, Inc.

Germán Kruszewski, Angeliki Lazaridou, Marco Ba-
roni, et al. 2015. Jointly optimizing word repre-
sentations for lexical and sentential tasks with the
c-phrase model. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), volume 1, pages 971–981.

Jey Han Lau and Timothy Baldwin. 2016. An em-
pirical evaluation of doc2vec with practical insights
into document embedding generation. In Process-
ings of ACL Workshop on Representation Learning
for NLP, page 78.

Preslav Nakov, Doris Hoogeveen, Lluı́s Màrquez,
Alessandro Moschitti, Hamdy Mubarak, Timothy
Baldwin, and Karin Verspoor. 2017. SemEval-2017
task 3: Community question answering. In Proceed-
ings of the 11th International Workshop on Semantic
Evaluation, SemEval ’17, Vancouver, Canada. As-
sociation for Computational Linguistics.

Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi.
2017. Unsupervised learning of sentence embed-
dings using compositional n-gram features. arXiv
preprint arXiv:1703.02507.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for

173

word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Yang Shao. 2017. Hcti at semeval-2017 task 1:
Use convolutional neural network to evaluate se-
mantic textual similarity. In Proceedings of the
11th International Workshop on Semantic Evalua-
tion (SemEval-2017), pages 130–133.

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. arXiv preprint arXiv:1503.00075.

Junfeng Tian, Zhiheng Zhou, Man Lan, and Yuanbin
Wu. 2017. Ecnu at semeval-2017 task 1: Lever-
age kernel-based traditional nlp features and neu-
ral networks to build a universal model for multilin-
gual and cross-lingual semantic textual similarity. In
Proceedings of the 11th International Workshop on
Semantic Evaluation (SemEval-2017), pages 191–
197.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 6000–6010. Curran As-
sociates, Inc.

Adina Williams, Andrew Drozdov, and Samuel R Bow-
man. 2017. Learning to parse from a semantic ob-
jective: It works. is it syntax? arXiv preprint
arXiv:1709.01121.

Hao Wu, Heyan Huang, Ping Jian, Yuhang Guo, and
Chao Su. 2017. Bit at semeval-2017 task 1: Using
semantic information space to evaluate semantic tex-
tual similarity. In Proceedings of the 11th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2017), pages 77–84.

174

Proceedings of the 3rd Workshop on Representation Learning for NLP, pages 175–179
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

Multilingual seq2seq training with similarity loss for cross-lingual
document classification

Katherin Yu
Facebook AML

yukatherin@fb.com

Haoran Li
Facebook AML

aimeeli@fb.com

Barlas Oguz
Facebook AML

barlaso@fb.com

Abstract

In this paper we continue the line of work
where neural machine translation train-
ing is used to produce joint cross-lingual
fixed-dimensional sentence embeddings.
In this framework we introduce a simple
method of adding a loss to the learning ob-
jective which penalizes distance between
representations of bilingually aligned sen-
tences. We evaluate cross-lingual transfer
using two approaches, cross-lingual sim-
ilarity search on an aligned corpus (Eu-
roparl) and cross-lingual document clas-
sification on a recently published bench-
mark Reuters corpus, and we find the sim-
ilarity loss significantly improves perfor-
mance on both. Our cross-lingual trans-
fer performance is competitive with state-
of-the-art, even while there is potential to
further improve by investing in a better in-
language baseline. Our results are based
on a set of 6 European languages.

1 Introduction

Many real-world services collect data in many lan-
guages, and machine learning models on text need
to support these languages. In practice, however,
it is often only the top one or two dominant lan-
guages (usually English) which are supported be-
cause it is expensive to collect labeled training
data for the task in every language. It is desir-
able, therefore, to obtain a representation of se-
quences of text that is joint across all languages,
which allows for cross-lingual transfer on the lan-
guages without labeled data.

These representations typically take the form of
a fixed-size embedding representing a complete
sentence or document. Previous work has focused
on several approaches in this setting, all of which

rely on parallel corpora. In (AP et al., 2013), a pre-
dictive auto-encoder is used to reconstruct the fea-
turized representation of a pair of sentences. (Her-
mann and Blunsom, 2014) constructs a bilingual
sentence embedding by minimizing the squared
distance between the embeddings of parallel sen-
tences. (Pham et al., 2015) learns a common rep-
resentation by simultaneously predicting n-grams
in both languages from a common vector. In (Mo-
gadala and Rettinger, 2016), a similarity measure
is used to minimize distance on both the sentence
embeddings, and the average of the word embed-
dings of a pair of sentences. A method is also pro-
posed to apply this approach to label-aligned cor-
pora in the absence of sentence-aligned corpora by
doing a pre-alignment.

Finally, multilingual representations can be
learned using a sequence-to-sequence encoder-
decoder neural machine translation (NMT) archi-
tecture, such as the one introduced in (Sutskever
et al., 2014). Multilingual encoders have been suc-
cessfully demonstrated in the NMT setting (Dong
et al., 2015; Firat et al., 2017, 2016; Johnson et al.,
2016). Recently (Schwenk et al., 2017) has pro-
posed using this framework for generating mul-
tilingual sentence representations and apply it to
cross-lingual document classification.

In this paper, we combine this NMT approach
with the pairwise similarity approach to obtain
better representations. In section 2 we describe our
framework. Then in section 4 we present an evalu-
ation of our method based on measuring similarity
on the multiply aligned Europarl corpus (Koehn,
2005). Section 5 contains our cross-lingual doc-
ument classification experiments on the balanced
version of the Reuters Corpus Volume 2 dataset
(RCV2b), recently published by resampling from
the Reuters Corpus Volume 2 to have a balanced
distribution of languages and a similar label distri-
bution for each language (Schwenk and Li, 2018).

175

Table 1: SentEval results: performance as a sentence encoder in English
Method SST MR CR MPQA SUBJ TREC Average

(Conneau et al., 2017) BLSTM, maxpool 81.1 86.3 92.4 90.2 84.6 88.2 87.1
ours, with similarity, meanpool 80.3 73.9 77.5 85.6 90.9 88.0 82.7
ours, with similarity, maxpool 80.4 75.0 79.6 87.3 91.1 88.0 83.56

ours, with similarity, self-attention 80.2 74.3 84.3 88.0 91.8 93.1 85.28

2 Multilingual encoder with similarity
loss

We build mostly on the work of (Schwenk et al.,
2017) of training an encoder to produce a fixed-
dimensional vector representation based on an ag-
gregation over the encoder hidden states. Our
setup involves a single shared encoder and de-
coder with six languages: English, German,
French, Spanish, Italian, and Portuguese. We pair
languages with English and Spanish, giving 10
unique pairings. The shared vocabulary is of size
85k.

The encoder consists of a two-layer LSTM with
hidden sizes 512 and 1024, where the first layer
is bidirectional. The decoder is an LSTM without
attention, with hidden size 1024. Sentence repre-
sentations will thus be 1024-dimensional.

We follow the method of prepending a token
representing the target language as a first input for
the decoder (Johnson et al., 2016). This avoids
target-language specific encoder representations
since the target language token is not an input to
the encoder. We use gradient clipping with max
norm 5. We use multi-cca trained word embed-
dings (Ammar et al., 2016) and allow trainable
word embeddings.

2.1 Bilingual batch sampling

Our approach relies on bilingually aligned data.
We do not assume multiply aligned (n-way par-
allel) data, even though we have it in training cor-
pora such as Europarl. Inspired by the m:1 ap-
proach in (Schwenk et al., 2017), we train transla-
tion in both directions in each batch of bilingually
aligned data.

2.2 Translation and similarity loss

We use the average over encoder hidden states to
initialize the decoder, and also as a constant in-
put to the decoder at each position, without using
attention. The decoder then produces a probabil-
ity distribution pd(t|h) on the space of output se-
quences conditioned on the output of the encoder.
Given a set of translation pairs (s, t), let h(s) be

the sentence embedding, an elementwise mean of
the hidden states of the encoder. The translation
loss penalizes the negative log likelihood of the
target sequence, given the source:

LNMT =
1

nt

nt∑

j=1

− log pd(tj |t1, · · · , tj−1;h(s))

Meanwhile the similarity loss directly minimizes
the distance between the embeddings of s and t:

Lsim = ‖h(s)− h(t)‖22

We combine these into our final loss term, adding
weight regularization on the encoder:

L = (Lsrc→tgtNMT + Ltgt→srcNMT) + αLsim,

where α needs to be chosen to balance the contri-
butions from each term. Note that similarity loss
by itself would have a degenerate solution, which
is to map all inputs to a constant embedding vec-
tor. Introducing negative sampling or a contrastive
loss would improve this situation. Note also that
both the similarity loss has a regularization effect
on the encoder weights. We also try replacing
similarity loss term with an L2 norm on the en-
coder weights. We believe that regularizing en-
coder weights is important for cross-lingual trans-
fer in that it helps prevent the encoder from “split-
ting" its output space by source language distribu-
tion.

The choice of α depends on relative batch /
weight normalization, the distribution of initial
word embeddings, hidden size, and other factors.
We find that starting with the two terms having
comparable value is a good place to start tun-
ing. We tune these parameters to one cross-lingual
transfer task (Europarl similarity between De, En,
Es).

Training takes about 1.5 days on 4 GPUs for 6
languages with 10 directions. All results are us-
ing a single trained encoder in with- and without-
similarity loss settings.

176

Table 2: Europarl (5k) similarity retrieval accuracy from training { without encoder regularization / with
encoder weight regularization / with similarity loss }. Some combinations are omitted for space.

Retrieved language
De En Es Fr It Pt All

De (96.9 / 96.9 / 96.8) 87.0 / 89.2 / 89.8 86.7 // 90.0 85.3 // 89.4 83.2 // 87.2 85.8 // 90.1 87.5 / 89.4 / 90.6
En 85.5 / 89.1 / 88.3 (97.2 / 97.1 / 97.2) 89.9 // 92.4 88.3 // 91.3 86.1 // 89.9 89.4 // 92.0 89.4 / 91.6 / 91.9
Es 85.4 / 87.8 / 87.8 90.2 / 92.0 / 92.4 (97.1 // 97.0) 88.8 // 91.6 87.5 // 90.9 91.1 // 93.2 90.0 / 91.9 / 92.2
Fr 83.8 / 87.4 / 87.8 88.9 / 91.1 / 91.9 89.0 // 92.1 (97.0 // 97.0) 86.2 // 89.8 89.1 // 91.8 89.0 / 91.4 / 91.8
It 82.2 / 85.3 / 85.9 86.7 / 89.4 / 90.3 87.7 // 90.8 86.6 // 90.0 (97.0 // 97.1) 86.9 // 90.9 87.8 / 90.3 / 90.8
Pt 84.5 / 87.6 / 87.9 90.0 / 91.2 / 92.2 91.0 // 93.0 88.8 // 91.7 86.6 // 90.1 (97.3 // 97.3) 89.7 / 91.6 / 92.0
All 86.4 / 89.0 / 89.2 90.0 / 91.7 / 92.3 90.2 // 92.6 89.1 // 91.8 87.8 // 90.8 89.9 // 92.6 88.9 / 91.0 / 91.6

Table 3: Example top 3 retrieved sentences in Europarl 5k: the correctly retrieved sentence is omitted.
Retrieving sentence Retrieved (It) Retrieved (Fr)

Mr President, as it is now
Christmas, I would be grateful
if you would allow me to speak
for a moment.

Signor Presidente, resto in Aula perché mi
è stato fatto sapere che, per poter presentare
una dichiarazione di voto, occorre essere
presenti.

Monsieur le Président, je reste ici parce
que l’on m’a expliqué qu’il fallait être
présent dans l’hémicycle pour être au-
torisé à déposer des explications de vote.

Signora Presidente, prendo la parola
soltanto per chiedere che, per ragioni ovvie,
sia messo a verbale che mi asterrò in questa
votazione, visto che mi riguarda in modo
diretto.

Puisque M. Prodi est présent, je vais lui
donner la parole en premier, s’il accepte.

3 English performance

We first evaluate our sentence embeddings on a set
of English transfer tasks (SentEval). We compare
mean pooling, max pooling, and self-attention
(Lin et al., 2017) as aggregation methods, with
an MLP with one hidden layer of size 128. Our
results are several points lower than current best
SentEval results.

4 Cross-lingual similarity search

As one of our evaluation methods, we follow
(Schwenk et al., 2017) in validating that the clos-
est sentence in an aligned corpus based on our sen-
tence embeddings is the aligned sentence. We use
cosine similarity. We use a Europarl development
set of 5k sentences across 6 languages and report
the accuracy of retrieval in each direction. Note
that the corpus has duplicates, thus retrieval can-
not be perfect, as reflected in the in-language re-
sults. We notice that Portuguese is best for retriev-
ing Spanish sentences and Spanish is best for re-
trieving Italian and Portuguese sentences.

The results are shown in table 2. As a baseline,
we take our setup with NMT loss only, and com-
pare the results with similarity loss added. We see
that both encoder weight regularization and sim-
ilarity loss significantly improve retrieval perfor-
mance, with similarity loss possibly slightly bet-
ter.

5 Cross-lingual document classification

One of the main motivations for pursuing multi-
lingual sentence embeddings is to achieve cross-
lingual transfer on NLP tasks such as document
classification. The multilingual Reuters News
Corpus has been adopted as a standard dataset for
this task. We will be using a version of this dataset
that has been subsampled to obtain even label dis-
tribution prior across languages (Schwenk and Li,
2018), to make the interpretation of transfer results
easier.

For these tests, we use a linear classifier
(logistic regression) and tune the regularization
parameter to the development set defined in
RCV2Balanced.

5.1 Document segmentation

Method Mean accuracy
Punctuation, meanpool 74.6
Punctuation, maxpool 67.0

Fixed window, meanpool 73.5
Fixed window, maxpool 68.2

Table 5: Comparison of aggregation methods for
document embedding (RCV2Balanced)

Documents in the Reuters corpus are composed of
many sentences. In principle, it is possible con-
sider each document as a long sequence and use
the resulting embedding from our encoder as-is;

177

Table 4: Cross-lingual document classification results (RCV2Balanced): from training { without encoder
regularization / with similarity loss }. Zero-shot paradigm. Bold indicates best result for target language.

De En Es Fr It Ru All
De (91.1 / 90.5) 76.8 / 77.1 67.2 / 76.4 75.3 / 81.7 63.5 / 71.8 49.5 / 60.5 70.5 / 73.3
En 72.9 / 80.2 (89.0 / 89.4) 72.2 / 74.1 73.0 / 81.0 63.4 / 70.8 60.9 / 65.7 71.9 / 76.8
Es 76.4 / 79.5 74.1 / 73.4 (92.0 / 92.4) 78.1 / 78.9 68.2 / 72.0 58.7 / 58.0 74.6 / 75.7
Fr 79.5 / 82.5 79.0 / 80.8 77.1 / 76.5 (87.5 / 89.9) 68.1 / 72.7 63.4 / 59.4 75.7 / 77.0
It 76.6 / 78.3 74.8 / 71.2 76.8 // 75.5 66.8 / 74.0 (81.3 / 81.8) 63.8 / 55.9 73.3 / 72.8

Ru 74.2 / 70.0 72.3 / 71.3 56.3 / 61.8 69.5 / 66.5 64.9 / 60.9 (82.2 / 84.0) 69.9 / 69.1
All 78.4 / 80.2 77.6 / 77.2 73.6 / 76.1 75.0 / 78.7 68.2 / 71.7 63.1 / 63.9 72.7 / 74.6

LOO - / 78.5 - / (89.4) - / 73.0 - / 80.5 - / 70.0 - / 65.6 - / (76.2)

Figure 1: t-SNE projection of document embeddings in RCV2Balanced, De test set

however, our encoder would have problems repre-
senting such long input sequences with fixed di-
mensional embeddings, especially because no at-
tention mechanism is present. As a result, we
need a method to split a document into smaller se-
quences, and an aggregation method to go from
short sequence embeddings to a document embed-
ding. For splitting we consider simply using the
sentences, delimited by punctuation (the charac-
ters [.!?]). We also try splitting by a fixed window
size (128 words) and fixed stride (64 words). For
aggregation, we try elementwise mean- and max-
pooling. We find that splitting on punctuation and
using mean pooling works best (Table 5).

5.2 Evaluation paradigms

Evaluation paradigm Mean accuracy
Zero-shot transfer 74.6
Targeted transfer 75.6

Table 6: Comparison of tuning to source- versus
target-language development data

Following (Schwenk and Li, 2018), we use two
transfer learning paradigms: zero-shot learning
and targeted transfer. In zero-shot learning, we
tune regularization hyperparameters to the devel-
opment set in the training/source language and
test on the transfer/target language, and the trained

model is the same for all directions with the same
source; in targeted transfer, we tune these para-
maters to the target development set and each
model is unique for each dialect direction.

Results are compiled in table 4. It can be seen
that adding similarity loss significantly improves
over our baseline on average by nearly 2 points.
Our best results per target language are better than
best results per target language in the zero-shot
paradigm in (Schwenk and Li, 2018) using word
embeddings and sentence embeddings; however,
these are not directly comparable given we are us-
ing significantly more training data. Finally, Fig-
ure 1 shows a t-SNE representation of the docu-
ment embeddings over the four classes on a sam-
ple of RCVBalanced dataset.

We also try “leaving one out" (LOO) where we
pool training data over all languages except the
target to augment training data, while tuning to
the English development set. However results do
not improve over the best single-language transfer
numbers (last row in table 4).

6 Conclusion

We presented an improved method for train-
ing multi-lingual sentence embeddings, including
higher benchmark results for the RCV2 balanced
dataset. We showed that including an explicit

178

similarity loss combined with the encoder-decoder
framework improves the quality of multilingual
representations. We demonstrated that our rep-
resentations allow better transfer from one lan-
guage to another of document classification per-
formance.

We note that although we have shown improve-
ments in RCV2Balanced, our English-only SentE-
val results are lagging state-of-the-art by at least 2
points. For future work, it is conceivable that start-
ing from a fixed state-of-the-art English encoder
(possibly with multitask training with a fixed de-
coder joint with the English encoder), the simi-
larity loss method could be used to produce the
same relative cross-lingual quality while preserv-
ing strong in-language performance.

Acknowledgments

We wish to thank Veselin Stoyanov for his men-
torship, and our anonymous reviewers for their in-
sightful comments. We look forward to improving
this work.

References
Waleed Ammar, George Mulcaire, Yulia Tsvetkov,

Guillaume Lample, Chris Dyer, and Noah A Smith.
2016. Massively multilingual word embeddings.
arXiv preprint arXiv:1602.01925.

Sarath Chandar AP, Mitesh M Khapra, Balaraman
Ravindran, Vikas Raykar, and Amrita Saha. 2013.
Multilingual deep learning. NIPS DL workshop.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. arXiv preprint
arXiv:1705.02364.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and
Haifeng Wang. 2015. Multi-task learning for mul-
tiple language translation. Proceedings of ACL-
IJNLP.

Orhan Firat, Kyunghyun Cho, Baskaran Sankaran,
Fatos T Yarman Vural, and Yoshua Bengio. 2017.
Multi-way, multilingual neural machine translation.
Computer Speech & Language, 45:236–252.

Orhan Firat, Baskaran Sankaran, Yaser Al-Onaizan,
Fatos T Yarman Vural, and Kyunghyun Cho.
2016. Zero-resource translation with multi-
lingual neural machine translation. arXiv preprint
arXiv:1606.04164.

Karl Moritz Hermann and Phil Blunsom. 2014. Multi-
lingual models for compositional distributed seman-
tics. arXiv preprint arXiv:1404.4641.

Melvin Johnson, Mike Schuster, Quoc V Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
et al. 2016. Google’s multilingual neural machine
translation system: enabling zero-shot translation.
arXiv preprint arXiv:1611.04558.

Philipp Koehn. 2005. Europarl: A Parallel Corpus for
Statistical Machine Translation. In Conference Pro-
ceedings: the tenth Machine Translation Summit,
pages 79–86, Phuket, Thailand. AAMT, AAMT.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. eprint arXiv:1703.03130.

Aditya Mogadala and Achim Rettinger. 2016. Bilin-
gual word embeddings from parallel and non-
parallel corpora for cross-language text classifica-
tion. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 692–702.

Hieu Pham, Thang Luong, and Christopher Manning.
2015. Learning distributed representations for mul-
tilingual text sequences. In Proceedings of the 1st
Workshop on Vector Space Modeling for Natural
Language Processing, pages 88–94.

Holger Schwenk and Xian Li. 2018. A corpus for mul-
tilingual document classification in eight languages.
In Eleventh International Conference on Language
Resources and Evaluation (LREC’18). European
Language Resources Association (ELRA).

Holger Schwenk, Ke Tran, Orhan Firat, and Matthijs
Douze. 2017. Learning joint multilingual sen-
tence representations with neural machine transla-
tion. arXiv preprint arXiv:1704.04154.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

179

Proceedings of the 3rd Workshop on Representation Learning for NLP, pages 180–186
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

LSTMs Exploit Linguistic Attributes of Data

Nelson F. Liu♠♦ Omer Levy♠ Roy Schwartz♠♣ Chenhao Tan♥ Noah A. Smith♠
♠Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA

♦Department of Linguistics, University of Washington, Seattle, WA, USA
♣Allen Institute for Artificial Intelligence, Seattle, WA, USA

♥Department of Computer Science, University of Colorado, Boulder, CO, USA
{nfliu,omerlevy,roysch,nasmith}@cs.washington.edu,

chenhao.tan@colorado.edu

Abstract

While recurrent neural networks have
found success in a variety of natural lan-
guage processing applications, they are
general models of sequential data. We
investigate how the properties of natural
language data affect an LSTM’s ability to
learn a nonlinguistic task: recalling ele-
ments from its input. We find that models
trained on natural language data are able to
recall tokens from much longer sequences
than models trained on non-language se-
quential data. Furthermore, we show that
the LSTM learns to solve the memoriza-
tion task by explicitly using a subset of
its neurons to count timesteps in the in-
put. We hypothesize that the patterns and
structure in natural language data enable
LSTMs to learn by providing approximate
ways of reducing loss, but understanding
the effect of different training data on the
learnability of LSTMs remains an open
question.

1 Introduction

Recurrent neural networks (RNNs; Elman, 1990),
especially variants with gating mechanisms such
as long short-term memory units (LSTM; Hochre-
iter and Schmidhuber, 1997) and gated recurrent
units (GRU; Cho et al., 2014), have significantly
advanced the state of the art in many NLP tasks
(Mikolov et al., 2010; Vinyals et al., 2015; Bah-
danau et al., 2015, among others). However,
RNNs are general models of sequential data; they
are not explicitly designed to capture the unique
properties of language that distinguish it from
generic time series data.

In this work, we probe how linguistic proper-
ties such as the hierarchical structure of language

(Everaert et al., 2015), the dependencies between
tokens, and the Zipfian distribution of token fre-
quencies (Zipf, 1935) affect the ability of LSTMs
to learn. To do this, we define a simple memoriza-
tion task where the objective is to recall the iden-
tity of the token that occurred a fixed number of
timesteps in the past, within a fixed-length input.
Although the task itself is not linguistic, we use
it because (1) it is a generic operation that might
form part of a more complex function on arbitrary
sequential data, and (2) its simplicity allows us to
unfold the mechanism in the trained RNNs.

To study how linguistic properties of the train-
ing data affect an LSTM’s ability to solve the
memorization task, we consider several training
regimens. In the first, we train on data sampled
from a uniform distribution over a fixed vocab-
ulary. In the second, the token frequencies have
a Zipfian distribution, but are otherwise indepen-
dent of each other. In another, the token frequen-
cies have a Zipfian distribution but we add Marko-
vian dependencies to the data. Lastly, we train the
model on natural language sequences. To ensure
that the models truly memorize, we evaluate on
uniform samples containing only rare words.1

We observe that LSTMs trained to perform the
memorization task on natural language data or
data with a Zipfian distribution are able to memo-
rize from sequences of greater length than LSTMs
trained on uniformly-sampled data. Interestingly,
increasing the length of Markovian dependencies
in the data does not significantly help LSTMs to
learn the task. We conclude that linguistic prop-
erties can help or even enable LSTMs to learn the
memorization task. Why this is the case remains
an open question, but we propose that the addi-
tional structure and patterns within natural lan-
guage data provide additional noisy, approximate

1This distribution is adversarial with respect to the Zipfian
and natural language training sets.

180

paths for the model to minimize its loss, thus of-
fering more training signal than the uniform case,
in which the only way to reduce the loss is to learn
the memorization function.

We further inspect how the LSTM solves the
memorization task, and find that some hidden
units count the number of inputs. Shi et al. (2016a)
analyzed LSTM encoder-decoder translation mod-
els and found that similar counting neurons reg-
ulate the length of generated translations. Since
LSTMs better memorize (and thus better count)
on language data than on non-language data, and
counting plays a role in encoder-decoder models,
our work could also lead to improved training for
sequence-to-sequence models in non-language ap-
plications (e.g., Schwaller et al., 2017).

2 The Memorization Task

To assess the ability of LSTMs to retain and use
information, we propose a simple memorization
task. The model is presented with a sequence of
tokens and is trained to recall the identity of the
middle token.2 We predict the middle token since
predicting items near the beginning or the end
might enable the model to avoid processing long
sequences (e.g., to perfectly memorize the last to-
ken, simply set the forget gate to 0 and the input
gate to 1).3 All input sequences at train and test
time are of equal length. To explore the effect of
sequence length on LSTM task performance, we
experiment with different input sequence lengths
(10, 20, 40, 60, . . . , 300).

3 Experimental Setup

We modify the linguistic properties of the train-
ing data and observe the effects on model perfor-
mance. Further details are found in Appendix A,
and we release code for reproducing our results.4

Model. We train an LSTM-based sequence pre-
diction model to perform the memorization task.
The model embeds input tokens with a randomly
initialized embedding matrix. The embedded in-
puts are encoded by a single-layer LSTM and the
final hidden state is passed through a linear projec-
tion to produce a probability distribution over the

2Or the (n
2
+ 1)th token if the sequence length n is even.

3We experimented with predicting tokens at a range of
positions, and our results are not sensitive to the choice of
predicting exactly the middle token.

4http://nelsonliu.me/papers/
lstms-exploit-linguistic-attributes/

vocabulary.
Our goal is to evaluate the memorization abil-

ity of the LSTM, so we freeze the weights of the
embedding matrix and the linear output projection
during training. This forces the model to rely on
the LSTM parameters (the only trainable weights),
since it cannot gain an advantage in the task by
shifting words favorably in either the (random) in-
put or output embedding vector spaces. We also
tie the weights of the embeddings and output pro-
jection so the LSTM can focus on memorizing the
timestep of interest rather than also transforming
input vectors to the output embedding space.5 Fi-
nally, to examine the effect of model capacity on
memorization ability, we experiment with differ-
ent hidden state size values.

Datasets. We experiment with several distribu-
tions of training data for the memorization task.
In all cases, a 10K vocabulary is used.

• In the uniform setup, each token in the train-
ing dataset is randomly sampled from a uni-
form distribution over the vocabulary.

• In the unigram setup, we modify the uniform
data by integrating the Zipfian token frequen-
cies found in natural language data. The in-
put sequences are taken from a modified ver-
sion of the Penn Treebank (Marcus et al.,
1993) with randomly permuted tokens.

• In the 5gram, 10gram, and 50gram settings,
we seek to augment the unigram setting with
Markovian dependencies. We generate the
dataset by grouping the tokens of the Penn
Treebank into 5, 10, or 50-length chunks and
randomly permuting these chunks.

• In the language setup, we assess the effect
of using real language. The input sequences
here are taken from the Penn Treebank, and
thus this setup further extends the 5gram,
10gram, and 50gram datasets by adding the
remaining structural properties of natural lan-
guage.

We evaluate each model on a test set of uni-
formly sampled tokens from the 100 rarest words
in the vocabulary. This evaluation setup ensures
that, regardless of the data distribution the models
were trained on, they are forced to generalize in

5Tying these weights constrains the embedding size to al-
ways equal the LSTM hidden state size.

181

order to perform well on the test set. For instance,
in a test on data with a Zipfian token distribution,
the model may do well by simply exploiting the
training distribution (e.g., by ignoring the long tail
of rare words).

4 Results

We first observe that, in every case, the LSTM is
able to perform the task perfectly (or nearly so),
up to some input sequence length threshold. Once
the input sequence length exceeds this threshold,
performance drops rapidly.

How does the training data distribution af-
fect performance on the memorization task?
Figure 1 compares memorization performance of
an LSTM with 50 hidden units on various input
sequence lengths when training on each of the
datasets. Recall that the test set of only rare words
is fixed for each length, regardless of the training
data. When trained on the uniform dataset, the
model is perfect up to length 10, but does no better
than the random baseline with lengths above 10.
Training on the unigram setting enables the model
to memorize from longer sequences (up to 20), but
it begins to fail with input sequences of length 40;
evaluation accuracy quickly falls to 0.6 Adding
Markovian dependencies to the unigram dataset
leads to small improvements, enabling the LSTM
to successfully learn on inputs of up to length 40
(in the case of 5gram and 10gram) and inputs of
up to length 60 (in the case of 50gram). Lastly,
training on language significantly improves model
performance, and it is able to perfectly memorize
with input sequences of up to 160 tokens before
any significant degradation. These results clearly
indicate that training on data with linguistic prop-
erties helps the LSTM learn the non-linguistic task
of memorization, even though the test set has an
adversarial non-linguistic distribution.

How does adding hidden units affect mem-
orization performance? Figure 2 compares
memorization performance on each dataset for
LSTMs with 50, 100, and 200 hidden units. When
training on the uniform dataset, increasing the
number of LSTM hidden units (and thus also the
embedding size) to 100 or 200 does not help it
memorize longer sequences. Indeed, even at 400

6Manual inspection of the trained models reveals that they
predict the most frequent words in the corpus. Since the eval-
uation set has only the 100 rarest types, performance (0%
accuracy) is actually worse than in the uniform setting.

0 100 200 300
Input Sequence Length

0

20

40

60

80

100

A
cc

ur
ac

y

Uniform
Unigram
5gram
10gram
50gram
Language

Figure 1: Test set accuracy of LSTMs with
50 hidden units trained on the uniform, ∗gram,
and language datasets with various input sequence
lengths. 5gram and 10gram perform nearly identi-
cally, so the differences may not be apparent in the
figure. unigram accuracy plateaus to 0, and uni-
form accuracy plateaus to ≈0.01% (random base-
line). Best viewed in color.

0 100 200 300
0

25
50
75

100

A
cc

ur
ac

y

Uniform

0 100 200 300

Unigram

0 100 200 300

5gram

0 100 200 300
0

25
50
75

100

A
cc

ur
ac

y

10gram

0 100 200 300

50gram

0 100 200 300

Language

Input Sequence Length

50d 100d 200d

Figure 2: Test set accuracy of LSTMs with 50,
100 or 200 hidden units trained on each dataset
with various input sequence lengths.

and 800 we saw no improvement (not shown in
Figure 2). When training on any of the other
datasets, adding more hidden units eventually
leads to perfect memorization for all tested input
sequence lengths. We take these results as a sug-
gestion that successful learning for this task re-
quires sufficiently high capacity (dimensionality
in the LSTM). The capacity need is diminished
when the training data is linguistic, but LSTMs
trained on the uniform set cannot learn the memo-
rization task even given high capacity.

182

5 Analysis

Throughout this section, we analyze an LSTM
with 100 hidden units trained with the language
setting with an input sequence length of 300. This
setting is a somewhat closer simulation of current
NLP models, since it is trained on real language
and recalls perfectly with input sequence lengths
of 300 (the most difficult setting tested).

How do LSTMs solve the memorization task?
A simple way to solve the memorization task is
by counting. Since all of the input sequences are
of equal length and the timestep to predict is con-
stant throughout training and testing, a successful
learner could maintain a counter from the start of
the input to the position of the token to be pre-
dicted (the middle item). Then, it discards its pre-
vious cell state, consumes the label’s vector, and
maintains this new cell state until the end of the
sequence (i.e., by setting its forget gate near 1 and
its input gate near 0).

While LSTMs clearly have the expressive
power needed to count and memorize, whether
they can learn to do so from data is another mat-
ter. Past work has demonstrated that the LSTMs
in an encoder-decoder machine translation model
learn to increment and decrement a counter to
generate translations of proper length (Shi et al.,
2016a) and that representations produced by auto-
encoding LSTMs contain information about the
input sequence length (Adi et al., 2017). Our ex-
periments isolate the counting aspect from other
linguistic properties of translation and autoencod-
ing (which may indeed be correlated with count-
ing), and also test this ability with an adversarial
test distribution and much longer input sequences.

We adopt the method of Shi et al. (2016a) to in-
vestigate whether LSTMs solve the memorization
task by learning to count. We identify the neu-
rons that best predict timestep information by fit-
ting a linear regression model to predict the num-
ber of inputs seen from the hidden unit activation.
When evaluating on the test set, we observe that
the LSTM cell state as a whole is very predictive
of the timestep, with R2 = 0.998.

While no single neuron perfectly records the
timestep, several of them are strongly correlated.
In our model instance, neuron 77 has the highest
correlation (R2 = 0.919), and neuron 61 is next
(R2 = 0.901). The activations of these neurons
over time for a random correctly classified test in-

0 50 100 150 200 250 300
Timestep

0

10

20

A
ct

iv
at

io
n

V
al

ue

Neuron 77
Neuron 61

Figure 3: Activations of the neurons at indices 77
and 61 over time, showing counter-like behavior
up to the target timestep to be remembered.

put linearly increase up to the target token, after
which the activations falls to nearly 0 (Figure 3).

One hypothesis for why linguistic data helps.
During training, the LSTM must: (1) determine
what the objective is (here, “remember the mid-
dle token”) and (2) adjust its weights to minimize
loss. We observed that adding hidden units to
LSTMs trained on unigram or language sets im-
proves their ability to learn from long input se-
quences, but does not affect LSTMs trained on the
uniform dataset. One explanation for this disparity
is that LSTMs trained on uniform data are simply
not learning what the task is—they do not real-
ize that the label always matches the token in the
middle of the input sequence, and thus they can-
not properly optimize for the task, even with more
hidden units. On the other hand, models trained on
unigram or language can determine that the label
is always the middle token, and can thus learn the
task. Minimizing training loss ought to be easier
with more parameters, so adding hidden units to
LSTMs trained on data with linguistic attributes
increases the length of input sequences that they
can learn from.

But why might LSTMs trained on data with lin-
guistic attributes be able to effectively learn the
task for long input sequences, whereas LSTMs
trained on the uniform dataset cannot? We conjec-
ture that linguistic data offers more reasonable, if
approximate, pathways to loss minimization, such
as counting frequent words or phrases. In the uni-
form setting, the model has only one path to suc-
cess: true memorization, and it cannot find an ef-
fective way to reduce the loss. In other words, lin-
guistic structure and the patterns of language may
provide additional signals that correlate with the
label and facilitate learning the memorization task.

183

0 10 20 30 40 50
Epochs

0
10
20
30
40
50
60
70
80
90

100
A

cc
ur

ac
y

Validation
Test

Figure 4: Model validation and test accuracy over
time during training. Validation improves faster
than test, indicating that the model exploits lin-
guistic properties of the data during training.

Figure 4 shows that models trained on the uni-
gram and language datasets converge to high val-
idation accuracy faster than high test accuracy.
This suggests that models trained on data with lin-
guistic attributes first learn to do well on the train-
ing data by exploiting the properties of language
and not truly memorizing. Perhaps the model gen-
eralizes to actually recalling the target token later,
as it refines itself with examples from the long tail
of infrequent tokens.

Figure 4 may show this shift from exploiting
linguistic properties to true memorization. The
validation and test accuracy curves are quite syn-
chronized from epoch 37 onward, indicating that
the model’s updates affect both sets identically.
The model clearly learns a strategy that works
well on both datasets, which strongly suggests that
it has learned to memorize. In addition, when
the model begins to move toward true memoriza-
tion, we’d expect validation accuracy to momen-
tarily falter as it moves away from the crutches
of linguistic features—this may be the dip at
around epoch 35 from perfect validation accuracy
to around 95% accuracy.

6 Related Work

To our knowledge, this work is the first to study
how linguistic properties in training data affect the
ability of LSTMs to learn a general, non-linguistic,
sequence processing task.

Previous studies have sought to better under-
stand the empirical capabilities of LSTMs trained
on natural language data. Linzen et al. (2016)
measured the ability of LSTMs to learn syntac-
tic long range dependencies commonly found in
language, and Gulordava et al. (2018) provide evi-
dence that LSTMs can learn the hierarchical struc-

ture of language. Blevins et al. (2018) show that
the internal representations of LSTMs encode syn-
tactic information, even when trained without ex-
plicit syntactic supervision.

Also related is the work of Weiss et al. (2018),
who demonstrate that LSTMs are able to count
infinitely, since their cell states are unbounded,
while GRUs cannot count infinitely since the ac-
tivations are constrained to a finite range. One
avenue of future work could compare the perfor-
mance of LSTMs and GRUs on the memorization
task.

Past studies have also investigated what infor-
mation RNNs encode by directly examining hid-
den unit activations (Karpathy et al., 2016; Li
et al., 2016; Shi et al., 2016a, among others) and
by training an auxiliary classifier to predict vari-
ous properties of interest from hidden state vectors
(Shi et al., 2016b; Adi et al., 2017; Belinkov et al.,
2017, among others).

7 Conclusion

In this work, we examine how linguistic attributes
in training data can affect an LSTM’s ability to
learn a simple memorization task. We find that
LSTMs trained on uniformly sampled data are
only able to learn the task with the sequence length
of 10, whereas LSTMs trained with language data
are able to learn on sequences of up to 300 tokens.

We further investigate how the LSTM learns to
solve the task, and find that it uses a subset of
its hidden units to track timestep information. It
is still an open question why LSTMs trained on
linguistic data are able to learn the task whereas
LSTMs trained on uniformly sampled data cannot;
based on our observations, we hypothesize that
the additional patterns and structure in language-
based data may provide the model with approx-
imate paths of loss minimization, and improve
LSTM trainability as a result.

Acknowledgments

We thank the ARK as well as the anonymous re-
viewers for their valuable feedback. NL is sup-
ported by a Washington Research Foundation Fel-
lowship and a Barry M. Goldwater Scholarship.
This work was supported in part by a hardware gift
from NVIDIA Corporation and a UW High Per-
formance Computing Club Cloud Credit Award.

184

References
Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer

Lavi, and Yoav Goldberg. 2017. Fine-grained anal-
ysis of sentence embeddings using auxiliary predic-
tion tasks. In Proc. of ICLR.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proc. of ICLR.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan
Sajjad, and James Glass. 2017. What do neural ma-
chine translation models learn about morphology?
In Proc. of ACL.

Terra Blevins, Omer Levy, and Luke Zettlemoyer.
2018. Deep RNNs learn hierarchical syntax. In
Proc. of ACL.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. In Proc. of
EMNLP.

Jeffrey L. Elman. 1990. Finding structure in time.
Cognitive Science, 14:179–211.

Martin B.H. Everaert, Marinus A.C. Huybregts, Noam
Chomsky, Robert C. Berwick, and Johan J. Bolhuis.
2015. Structures, not strings: linguistics as part
of the cognitive sciences. Trends in Cognitive Sci-
ences, 19(12):729–743.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave,
Tal Linzen, and Marco Baroni. 2018. Colorless
green recurrent networks dream hierarchically. In
Proc. of NAACL.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation, 9
8:1735–80.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. 2016.
Visualizing and understanding recurrent networks.
In Proc. of ICLR.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
a method for stochastic optimization. In Proc. of
ICLR.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2016. Visualizing and understanding neural models
in NLP. In Proc. of NAACL.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn
syntax-sensitive dependencies. Transactions of the
Association of Computational Linguistics, 4(1):521–
535.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of English: the Penn Treebank. Computa-
tional Linguistics, 19(2):313–330.

Tomáš Mikolov, Martin Karafiát, Lukás Burget, Jan
Cernocký, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In Proc.
of INTERSPEECH.

Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan
Černockỳ, and Sanjeev Khudanpur. 2011. Exten-
sions of recurrent neural network language model.
In Proc of. ICASSP.

Philippe Schwaller, Theophile Gaudin, David Lanyi,
Costas Bekas, and Teodoro Laino. 2017. “found
in translation”: predicting outcomes of complex or-
ganic chemistry reactions using neural sequence-to-
sequence models. In Proc. of NIPS Machine Learn-
ing for Molecules and Materials Workshop.

Xing Shi, Kevin Knight, and Deniz Yuret. 2016a. Why
neural translations are the right length. In Proc. of
EMNLP.

Xing Shi, Inkit Padhi, and Kevin Knight. 2016b. Does
string-based neural MT learn source syntax? In
Proc. of EMNLP.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey E. Hinton. 2015.
Grammar as a foreign language. In Proc. of NIPS.

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2018. On
the practical computational power of finite precision
RNNs for language recognition. In Proc. of ACL.

George Kingsley Zipf. 1935. The Psycho-biology of
Language. Houghton, Mifflin.

185

Appendices
A Experimental Setup Details

Penn Treebank Processing Our experiments
use a preprocessed version of the Penn Treebank
commonly used in the language modeling commu-
nity and first introduced by Mikolov et al. (2011).
This dataset has 10K types, hence why we use this
vocabulary size for all experiments. We generate
examples by concatenating the sentences together
and taking subsequences of the desired input se-
quence length.

Training The model is trained end-to-end to di-
rectly predict the tokens at a particular timestep in
the past; it is optimized with Adam (Kingma and
Ba, 2015) with an initial learning rate of 0.001,
which is halved whenever the validation dataset
(a held-out portion of the training dataset) loss
fails to improve for three consecutive epochs. The
model is trained for a maximum of 240 epochs
or until it converges to perfect validation perfor-
mance. We do not use dropout; we included it
in initial experiments, but it severely hampered
model performance and does not make much sense
for a task where the goal is to explicitly memo-
rize. We ran each experiment three times with dif-
ferent random seeds and evaluate the model with
the highest validation accuracy on the test set. We
take the best since we are interested in whether the
LSTMs can be trained for the task.

186

Proceedings of the 3rd Workshop on Representation Learning for NLP, pages 187–194
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

Learning Distributional Token Representations from Visual Features

Samuel Broscheit Rainer Gemulla Margret Keuper
University of Mannheim, Mannheim, Germany

{lastname}@informatik.uni-mannheim.de

Abstract

In this study, we compare token repre-
sentations constructed from visual features
(i.e., pixels) with standard lookup-based
embeddings. Our goal is to gain insight
about the challenges of encoding a text
representation from low-level features,
e.g. from characters or pixels. We fo-
cus on Chinese, which—as a logographic
language—has properties that make a rep-
resentation via visual features challenging
and interesting. To train and evaluate dif-
ferent models for the token representation,
we chose the task of character-based neu-
ral machine translation (NMT) from Chi-
nese to English. We found that a token
representation computed only from visual
features can achieve competitive results to
lookup embeddings. However, we also
show different strengths and weaknesses
in the models’ performance in a part-of-
speech tagging task and also a semantic
similarity task. In summary, we show that
it is possible to achieve a text representa-
tion only from pixels. We hope that this
is a useful stepping stone for future stud-
ies that exclusively rely on visual input, or
aim at exploiting visual features of written
language.

1 Introduction

Language representation beyond the word level
can be advantageous for words from the tail of the
distribution, as has been shown in recent neural
approaches for various tasks (Schütze, 2017; Kim
et al., 2016; Lee et al., 2017; Wu et al., 2016; Sen-
nrich et al., 2016). In these approaches, a neu-
ral model represents an input text based on its se-
quence of characters or character n-grams (instead

of its words). This helps the model to handle out-
of-vocabulary tokens and avoids the need of text
segmentation or tokenization, which remains an
unsolved problem for many languages. For some
applications, e.g. language processing for social
media, models should be able to capture the cre-
ative use of language. However, a disadvantage
is that we loose the certainty of a known vocab-
ulary. Also, regarding computational complexity,
there is a trade-off between the memory that is re-
quired for large embedding lookup tables and the
additional computational cost that is required to
compose representations from low-level features.

In contrast to the characters of languages based
on the Latin alphabet, the Chinese written lan-
guage is defined over a set of ≈ 8000 characters
that already carry meaning. The characters can
either appear in a traditional or simplified form,
and many share visual components that can in-
dicate a related meaning. Thus, it is reasonable
to hypothesize that encoding Chinese characters
directly from their visual components might im-
prove their token representation in a neural net-
work model.

In recent studies, Liu et al. (2017) evaluated
character encodings from visual features by clas-
sifying Wikipedia titles into 12 categories and
Su and Lee (2017) evaluated such encodings by
measuring correlation with human similarity judg-
ments. Both studies found that using character en-
codings from visual input did not outperform or
were equal to lookup-based embeddings. No sup-
port for the hypothesis above is thus provided.

In this study, we aim to explore the question of
whether and when visual-feature representations
are beneficial or detrimental. We make the follow-
ing contributions: (i) Since the evaluation tasks
from prior studies did not test the capabilities of
the visual features for text representation, we pro-
pose to employ the task of neural machine trans-

187

lation (NMT) for training and evaluation. We ar-
gue that NMT requires the token representation to
serve as a reliable syntactic and semantic signal.
(ii) Prior work reported evaluations for one archi-
tecture to encode the visual features. In this paper,
we evaluate different settings and argue for archi-
tecture choices that performed well in our experi-
ments. (iii) We provide evidence for the possibil-
ity to compute token representations from visual
features that perform on-par with lookup-based
embeddings in NMT. (iv) Finally, we revisit two
of the tasks from prior work that use visual fea-
tures: measuring correlation with semantic simi-
larity judgments by humans as well as joint seg-
mentation and part-of-speech tagging. We use the
best models from the NMT evaluation in these two
tasks. For semantic similarity, we find that token
representation from pixels are clearly beneficial
for unseen characters, while a lookup embedding
performs better for seen characters. For joint seg-
mentation and part-of-speech tagging we find no
clear difference between lookup embeddings and
character representation from pixels.

2 Related Work

We start by summarizing prior work, in which to-
ken representations were obtained from bitmaps of
Chinese characters.

Su and Lee (2017) propose several embedding
models for Chinese, including one from visual fea-
tures. For the evaluation they create a dataset with
Chinese word pairs in traditional Chinese. In their
evaluation, they measure the correlation of the co-
sine similarity of embedded word pairs against hu-
man similarity judgments for those word pairs. In
their experiments, they found that the representa-
tion from visual features was not competitive to
an embedding lookup model, but a combination
of lookup embeddings with visual features was.
For their model, they train a 5-layer CNN auto-
encoder on bitmaps of Chinese characters. The
auto-encoder character representation is fed into
two GRU layers and two fully connected layers
with ELU activation to encode the characters into
a word. The model was trained to predict the Skip-
Gram objective (Mikolov et al., 2013) or the Glove
objective (Pennington et al., 2014).

Liu et al. (2017) evaluate the classification of
Chinese Wikipedia titles into 12 categories. They
found that the representation from visual features
representations was not competitive to embedding

lookup models. They did find, however, that a
combination of lookup-based embeddings and vi-
sual features can be beneficial. Their character
encoder is a convolutional neural network (CNN).
The CNN consists of 3 convolutional layers with
max-pooling followed by a fully connected trans-
formation layer with ReLU activation. The char-
acter encodings are fed as input to a recurrent neu-
ral network (RNN) that encodes the Wikipedia ti-
tle. Both, character encoder and classifier were
trained jointly.

Costa-jussà et al. (2017) investigate the neural
machine translation from Chinese to Spanish. To
investigate the helpfulness of visual features they
augmented lookup embeddings by concatenating
the corresponding bitmap features of the charac-
ters. They showed that this approach improved
the performance of both, their character-based and
their word-based NMT system. They did not study
the exclusive use of visual features.

Shao et al. (2017) investigate joint part-of-
speech tagging and segmentation for Chinese. In
contrast to the studies mentioned above, they
found that the inclusion of visual features did not
help. However, in their study, the CNN encoder
was not pre-trained and only a small amount of
training data was available, which may explain
this finding. In their approach, they augmented
character and n-gram embeddings with visual fea-
tures. The model is a 2-layer CNN with max-
pooling and a consecutive fully-connected trans-
formation layer. They concatenated the CNN-
based character embeddings to the lookup embed-
dings and fed them to a BI-LSTM-CRF.

Other related approaches with regards to en-
coding symbols from visual features are: Deng
et al. (2017) proposed to translate from images
to a markup language; e.g.; images of mathemat-
ical expressions to LATEX code. While their sys-
tem performed remarkably well on those regular
languages, they did not discuss their approach in
the context of natural language. Remotely related
is optical character recognition (OCR) and multi-
model machine translation. While OCR could
benefit from this study, its main goal is character
recognition under noisy conditions. Multi-modal
machine translation augments a main task with ad-
ditional features or when the translation is from
a non-textual source, e.g. images, to text (Elliott
et al., 2017). In contrast, our goal is to study text
representation from low-level features.

188

Model transformation activation transformation activation

CNN+FC+ReLU CNN(484→ F), BN+ReLU FC(F → 512) BN+ReLU
CNN+SM+FC CNN(484→ F) Softmax FC(F → 512)
CNN+ReLU CNN(484→ 512) BN+ReLU
FC 1L FC(484→ 512)
FC 2L FC(484→ 512) BN+ReLU FC(512→ 512)

Table 1: Character encoder architectures. Abbreviations: FC = fully connected, SM = softmax, BN =
Batchnorm (Ioffe and Szegedy, 2015), F = CNN output size (see Table 2).

in out kernel stride

(0): Conv2d 1 32 (3, 3) (1, 1)
(1): ReLU
(2): MaxPool2d (2, 2) (2, 2)
(3): Conv2d 32 32 (3, 3) (1, 1)
(4): ReLU
(5): MaxPool2d (2, 2) (2, 2)
(6): Conv2d 32 F (4, 4) (1, 1)

Table 2: Configuration of the CNN layers. F is
the CNN output feature size and takes values in
[256, 512, 1024, 2048, 4096].

3 Character Encoding

In this section, we first describe how a tokenized
text is mapped to vector representations of its to-
kens. Then, we describe the character encoders
that we have evaluated.

3.1 Preliminaries

Neural approaches that compute a function from
text input commonly map each token ti (e.g., a
word) from the input text T to a dense vector rep-
resentation ti ∈ Rd via some function D(ti) →
ti. Lookup-based models associate each token
of a fixed vocabulary V with its own dense rep-
resentation (embedding). In particular, lookup-
based models use (or learn) an embedding matrix
E ∈ Rn×d, where n = |V |. The j-th row of E
holds the embedding of the j-th token in the vo-
cabulary. Thus D(ti) = eTj E, where j is the to-
ken number of token ti in V and ej denotes the
j-th standard basis vector.

If we represent each character from its visual
features—i.e., the pixels of its bitmap image—,
we compute the embedding instead of performing
a lookup in an embedding matrix. In particular,
D(ti) computes a dense representation of token

ti from its pixels p(ti) via a character encoder C.
Therefore, there is no fixed vocabulary of tokens
any more. We have D(ti) = C(p(ti)).

3.2 Character Encoders

As discussed in Section 2, most of the prior re-
lated work—except Costa-jussà et al. (2017)—
used CNNs to learn position-invariant features of
the character image. In Table 2, we report the con-
figuration of the convolutional layers that was used
in our models. All studies report different numbers
of layers and different numbers of CNN features,
therefore, we vary the CNN feature size F as a
hyper-parameter. In Table 1 we report the char-
acter encoder architectures, that roughly cover the
architectures from previous work. After the CNN,
Liu et al. (2017) and Shao et al. (2017) use fully
connected layers (CNN+FC+ReLU), while Su
and Lee (2017) directly feed the CNN features into
a recurrent neural network encoder (CNN+ReLU).
We also consider a similar setup as Costa-jussà
et al. (2017) by including two settings with one
or two fully connected layers, (FC 1L and FC 2L).
In addition to previous work, we also evaluated a
model architecture that computes a softmax acti-
vation over the image features (CNN+SM+FC).
Our hypothesis is that the sparse activation from
the softmax may act like a soft lookup (in an
F × 512 embedding matrix).

4 Experimental Study

In this section, we describe the results of our ex-
perimental study. First, we report how the char-
acter images were created, followed by the ex-
periments for the neural machine translation task.
To expand on these results, we describe experi-
ments and results for joint segmentation and part-
of-speech tagging, as well as for measuring corre-
lation with semantic similarity judgments.

189

4.1 Character Images

We convert each character from the source vocab-
ulary into a 22 × 22 binary representation of its
glyph.1 This was the lowest resolution that did
not collapse nearby strokes into indistinguishable
clusters.

4.2 Experiments for Machine Translation

For the machine translation experiments, we
trained a NMT model to translate from Chinese to
English. In the following sections, we describe the
model, the data and the training settings, followed
by the results.

NMT Model We used a standard sequence-to-
sequence model with a recurrent encoder and
attention-based decoder (Luong et al., 2015). This
architecture does not represent the state of the art
in neural machine translation. However, due to
its wide adoption in empirical research, there is
broad knowledge about suitable hyper-parameters,
which makes it a preferred choice for our study.

The coarse architecture of this model can be de-
scribed by an encoder enc and a decoder dec. The
encoder enc is a function that takes a tokenized
text T in a source vocabulary as input and com-
putes a representation that is the input for the sub-
sequent decoder. The decoder dec then creates a
sequence of tokens in the target vocabulary. The
final output is dec(enc(T)).

The input of the encoder enc is first transformed
to a dense vector representation, i.e., each input to-
ken is transformed by function D of Section 3.1.
In the following experiments, we evaluate differ-
ent choices for D.

Data For training the translation model, we used
a subset of the available data from the WMT 2017
Workshop on Machine Translation (Bojar et al.,
2017),2, namely the News Commentary v12 cor-
pus as well as Casia2015 and Neu2017 from the
CWMT Corpus. Overall, these datasets yielded
3,277,330 sentences. For development and eval-
uation, we used WMT 2017 dev and test data, re-
spectively.

Training For Chinese, we use characters as
input. For English, we use byte pair encod-
ing (Sennrich et al., 2016) with ≈32,000 sym-

1We use ImageMagick’s convert command together with
the open source font NotoSansCJK-Regular.

2See http://www.statmt.org/wmt17/
translation-task.html

Encoder Decoder

Emb. size 512 512
Layers bi-dir + uni-dir uni-dir + uni-dir
Hid. size 512 + 1024 512 + 1024
Voc. size 8457 32413
Voc. type character byte pair enc.

Table 3: Hyperparameters of the sequence-to-
sequence model for the NMT task.

bols. We implemented the model in PyTorch
(Version 0.3.1) (Paszke et al., 2017). The recur-
rent neural networks in the encoder and decoder
are LSTMs (Hochreiter and Schmidhuber, 1997).
Table 3 summarizes the hyper-parameters of the
NMT model.

For training, we used Adam (Kingma and Ba,
2014) with the standard parameters of PyTorch.
We used a learning rate of 10−3 for 4 epochs, then
we halved the learning rate every epoch until we
reached 10−5. For regularization, we used dropout
with probability 0.2 in both encoder and decoder
RNNs. We pretrained the decoder for 20 epochs
to a perplexity of 108.21 on the validation data.
This did result in: faster convergence, improved
fluency of translations, and less variance of eval-
uation results. We trained all the models for 10
epochs. We selected the models by the best batch-
based approximate BLEU score on the develop-
ment set. This worked slightly better than select-
ing them by the best perplexity. We perform trans-
lation via beam search with a beam-size of 10 and
length normalization of 0.9.

We trained the NMT models with each of the
character encoders of Table 1 as well as with
lookup-based embeddings (EMB) as a baseline.

Results Table 4 summarizes the results of the
machine translation experiments. We include the
result from a WMT 2017 system to give context
for the expected BLEU score in this task. This
result is from a baseline NMT system for Chi-
nese to English (Wang et al., 2017), which is most
comparable to our approach (i.e., no reranking,
no ensembles, no special treatment of names and
numbers). However, a crucial difference is that
the WMT 2017 system uses pre-segmented text,
which yields a vocabulary size of 300k on the

2We use the BLEU implementation sacrebleu,
https://github.com/awslabs/sockeye/tree/
master/contrib/sacrebleu.

190

Model F BLEU

EMB - 16.63
CNN+FC+ReLU 256 16.34

512 16.33
1024 16.60
2048 16.40
4096 16.20

CNN+SM+FC 512 15.85
1024 15.49
2048 15.36
4096 16.03

CNN+ReLU 512 16.22

FC 1L 512 15.75
FC 2L 512 16.32

Word-segmented - 19.4

Table 4: BLEU scores for translation zh-en on the
WMT17 test data. Result for a word-segmented
baseline model reported by Wang et al. (2017).

Model full low mid high

EMB 16.63 15.60 17.17 16.03
CNN+SM+FC 16.03 13.91 16.86 15.41
CNN+FC+R 16.60 14.47 17.11 16.91
FC 2L 16.32 15.10 17.20 16.37

Table 5: BLEU scores on the WMT17 test data
for sentence buckets with low, medium and high
frequency characters.

source side, while our system is character-based.
Our results indicate that using only one fully

connected transformation layer FC 1L for charac-
ter encoding is possible but does not yield compa-
rable results to the best-performing convolutional
architectures. However, the FC 2L comes close to
the CNN models. Note that CNN+SM+FC 4096
needs a larger number of CNN features to perform
comparable to CNN+FC+ReLU 1024. In terms of
BLEU score, the best character encoders perform
equal to a standard lookup embedding.

To gain insight into the differences between the
models, we split the test data into three buck-
ets. Each sentence is scored with 1/n

∑n
i=1#ti,

where #ti is the training data frequency of char-
acter ti. We partition the test data into a low and
high bucket with the sentences scored in the lower
and upper quartile, respectively, and a mid bucket
with the remaining 2nd and 3rd quartile. Table 5

Figure 1: Distributions of the top-3 softmax acti-
vation magnitudes per character.

shows the results per bucket for CNN+FC+ReLU
1024, CNN+SM+FC 4096, FC 2L and EMB. In-
terestingly, the CNN+FC+ReLU 1024 and EMB
perform differently well in the frequency buck-
ets. The CNN+FC+ReLU 1024 model, sur-
prisingly, performs better than EMB for high-
frequency characters, while this is inversed for the
low-frequency characters.

For the CNN+SM+FC encoders, our hypothe-
sis was that the sparse activation of the softmax
could act like a soft lookup function; i.e., it selects
only few rows for the subsequent fully connected
layer. We measured the top-3 softmax activation
magnitudes per character from a random sample
of 350 sentences from the training data (a total of
11234 words). As shown in Figure 1, the activa-
tions are indeed spiked, which supports our hy-
pothesis. However, in our evaluation, we found no
advantage over CNN+FC+ReLU encoders.

4.3 Experiments for Joint Part-of-Speech
Tagging and Segmentation

In the translation experiment we evaluated the to-
ken representations for a syntactic and semantic
signal. In this experiment, we want to investigate
the morpho-syntactic information in the represen-
tations. To evaluate this, we employ the task of
joint part-of-speech tagging and segmentation.

Model We used a Linear-Chain-CRF with a
CNN encoder (Strubell et al., 2017) to compute
the emissions. The encoder is a three-layer CNN
with kernel size 3, iteratively growing dilations,
residual connections, ReLU activations, and a hid-
den size of 512. We do not report numbers for
a BI-RNN-CRF similar to Shao et al. (2017), be-
cause our implementation did not yield their re-
sults for unigrams which is most likely caused by
the different embeddings.

191

Model F1

adapt fix

EMB 91.42 92.18
CNN+FC+ReLU 1024 91.99 90.75
FC2L 512 88.45 91.32
CNN+SM+FC 4096 71.54 87.63

1-gram BI-RNN-CRF*/** 92.45
3-gram BI-RNN-CRF* 94.07

Table 6: Results for joint segmentation and POS
tagging on the test set of CTB-5.0. (*) 1-gram
and 3-gram BI-RNN-CRF reported by Shao et al.
(2017), (**) the 1-gram BI-RNN-CRF result was
reported on the development set.

Data The Chinese Treebank 5.0 (Xue et al.,
2005) has joint annotations for word segmenta-
tion and part-of-speech tags. The commonly used
cross validation split was reported by Jiang et al.
(2008). Instead of the BIES tagging scheme (be-
gin, inside, end, single), we used the BI scheme,
which worked better for our models.

Training We use the parameters from the
EMB, CNN+FC+ReLU 1024, FC2L 512 and
CNN+SM+FC 4096 of the NMT task. We either
adjust these parameters during training (adapt) or
keep them fixed (fix). For training, we used Ada-
grad (Duchi et al., 2010) with an initial learning
rate of 0.1, and dropout for regularization with
probability 0.1 for the encoder and 0.5 for the out-
put classifier. We trained the models for 50 epochs
and selected the model with the best accuracy on
the development set.

Results Our results reported in Table 6 are av-
eraged over two distinct runs each. For compari-
son, we show results reported for the 1-gram and
3-gram lookup model of Shao et al. (2017). Our
models correspond to the 1-gram model, as they
are character-based. We find no clear difference
between lookup-based and the best character en-
coder models. Interestingly, CNN+SM+FC 4096
(softmax) is the weakest model. The sparseness
in the in the signal apparently removes syntactic
information. Comparing the adapt and the fix set-
ting, we see that adapting the character encoder
during training is —in most cases— not helpful.
This is most likely due to the small amount of
training data.

4.4 Experiments for Word Similarity

In our final experiment, we evaluated the repre-
sentation of semantic information. The task is
to compute a similarity score for pairs of words.
The evaluation is the Spearman’s correlation be-
tween the scores and numerical similarity judg-
ments by humans. The words in this data set are
translated into traditional Chinese. The training
data from the NMT task is mostly from news and
web sources, which is why our vocabulary con-
tains many but not all Chinese characters. The
characters in the modern simplified Chinese some-
times can be visually similar to their predecessors
in traditional Chinese, i.e. they share visual com-
ponents with a related meaning. Therefore, we can
also evaluate the capability of the models to gen-
eralize to unseen characters.

Data and Experimental Setup For the exper-
iments we use the WordSim-240, WordSim-296
and SimLex-999 datasets provided and described
by Su and Lee (2017). Due to the use of tradi-
tional Chinese we are missing at least one char-
acter in 430 out of 1536 test examples. On aver-
age, we are missing 1.1 characters per word, where
each word has in average 2.13 characters. We split
the data into word pairs in which all characters are
completely covered (seen words), and into word
pairs where at least one character is not seen (un-
seen words). We evaluate unseen words in two
settings: either we remove the unseen characters
(seen chars) or not (all chars).

We did not train any model for this experiments.
Most of the words in the dataset are composed of
multiple characters, therefore, we average the out-
put of the character encoder into a single word-
vector. Subsequently, we compute the cosine sim-
ilarity between these vectors of word pairs.

Results The results in Table 7 show that, for
words with seen characters, the lookup embed-
dings correlate better with human judgments of
similarity than the embeddings based on character
encoders. However, especially the results for un-
seen words in WordSim-240 show that the char-
acter encoders can generalize to all characters.
Surprisingly, the FC2L model, the model without
CNNs, yields the best results. In the results re-
ported by Su and Lee (2017), the lookup embed-
ding model SG-EMB performs much better than
EMB. However, they learn a RNN-based character
composition, while we average the embeddings.

192

Model WordSim-240 WordSim-297 SimLex-999

Words seen unseen seen unseen seen unseen

Characters all seen all seen all seen

EMB 0.33 n/a 0.06 0.47 n/a 0.15 0.32 n/a 0.32
CNN+SM+FC 4096 0.09 0.11 0.07 0.22 0.23 0.16 0.25 0.29 0.26
CNN+FC+R 1024 0.24 0.17 0.07 0.35 0.28 0.25 0.26 0.30 0.25
FC 2L 512 0.21 0.26 0.15 0.36 0.29 0.30 0.33 0.28 0.19

SG-EMB 0.59 n/a n/a 0.59 n/a n/a 0.36 n/a n/a
SG-CNN 0.34 n/a n/a 0.36 n/a n/a 0.24 n/a n/a

Table 7: Results for semantic similarity on the WordSim-240, WordSim-296 and SimLex-999 data.
Lookup SkipGram (SG-EMB) and SkipGram char. encoder (SG-CNN) reported by Su and Lee (2017).

5 Conclusion

We have shown that it is possible to compute use-
ful text representations from visual features, i.e.,
pixels of Chinese characters. We used neural ma-
chine translation as a framework for training and
evaluating token representations. In the NMT ex-
periment, we found that representations from vi-
sual features are competitive to lookup embed-
dings in a standard NMT model. In contrast to
our expectations, the visual features outperform
lookup embeddings on high-frequency characters,
but are weaker in low-frequency characters. We
conjecture that one of the reasons is that shared
visual features between characters can have re-
lated meanings or related syntactic functions, but
also the opposite can be true. For example, 沐
is the reflexive verb of ”washing” and it contains
the phonetic component 木 , which can also mean
”tree”. Therefore, the visual information for rare
characters introduces probably as many difficul-
ties as it can be helpful.

We performed additional experiments akin to
prior studies and could show that the advantage of
a representation by visual features is the ability to
generalize to unseen Chinese characters. Also, we
could show that joint part-of-speech tagging and
segmentation achieved similar results with repre-
sentation from visual features.

With regard to the character encoder architec-
ture, we find only a slight advantage of using
CNNs to simply using two fully connected lay-
ers in the NMT experiment, while 2 fully con-
nected layers outperform CNNs in the similarity
experiment. Whether or not there is an advantage
could only be answered by an exhaustive hyper-
parameter search.

Future work is to explore how we can create a
model that can distinguish helpful from unhelpful
visual information for rare characters.

References
Ondrej Bojar, Christian Buck, Rajen Chatterjee, Chris-

tian Federmann, Yvette Graham, Barry Haddow,
Matthias Huck, Antonio Jimeno-Yepes, Philipp
Koehn, and Julia Kreutzer, editors. 2017. Proceed-
ings of the Second Conference on Machine Transla-
tion, Copenhagen, Denmark, September 7-8, 2017,
WMT 2017.

Marta R. Costa-jussà, David Aldón, and José A. R.
Fonollosa. 2017. Chinese–Spanish neural ma-
chine translation enhanced with character and word
bitmap fonts. Machine Translation, 31(1):35–47.

Yuntian Deng, Anssi Kanervisto, Jeffrey Ling, and
Alexander M. Rush. 2017. Image-to-Markup Gen-
eration with Coarse-to-Fine Attention. In Proceed-
ings of the 34th International Conference on Ma-
chine Learning, Sydney, NSW, Australia, 6-11 Au-
gust 2017, ICML 2017, pages 980–989.

John Duchi, Elad Hazan, and Yoram Singer. 2010.
Adaptive Subgradient Methods for Online Learn-
ing and Stochastic Optimization. Technical Re-
port UCB/EECS-2010-24, EECS Department, Uni-
versity of California, Berkeley.

Desmond Elliott, Stella Frank, Loı̈c Barrault, Fethi
Bougares, and Lucia Specia. 2017. Findings of
the Second Shared Task on Multimodal Machine
Translation and Multilingual Image Description. In
Proceedings of the Second Conference on Machine
Translation, Volume 2: Shared Task Papers, Copen-
hagen, Denmark, September 7-8, 2017, WMT 2017,
pages 215–233, Copenhagen, Denmark.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation,
9(8):1735–1780.

193

Sergey Ioffe and Christian Szegedy. 2015. Batch Nor-
malization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift. In Proceed-
ings of the 32nd International Conference on Ma-
chine Learning, Lille, France, 6-11 July 2015, ICML
2015, pages 448–456.

Wenbin Jiang, Liang Huang, Qun Liu, and Yajuan Lü.
2008. A Cascaded Linear Model for Joint Chinese
Word Segmentation and Part-of-Speech Tagging. In
Proceedings of the 46th Annual Meeting of the Asso-
ciation for Computational Linguistics, June 15-20,
2008, Columbus, Ohio, USA, ACL 2008, pages 897–
904.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M. Rush. 2016. Character-aware Neural Lan-
guage Models. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, AAAI 2016,
pages 2741–2749, Phoenix, Arizona. AAAI Press.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A Method for Stochastic Optimization. CoRR,
abs/1412.6980.

Jason Lee, Kyunghyun Cho, and Thomas Hofmann.
2017. Fully Character-Level Neural Machine Trans-
lation without Explicit Segmentation. TACL, 5:365–
378.

Frederick Liu, Han Lu, Chieh Lo, and Graham Neu-
big. 2017. Learning Character-level Composition-
ality with Visual Features. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics, Vancouver, Canada, July 30 -
August 4, Volume 1: Long Papers, ACL 2017, Van-
couver, Canada.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective Approaches to Attention-
based Neural Machine Translation. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing, Lisbon, Portugal,
September 17-21, 2015, EMNLP 2015, pages 1412–
1421.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed Rep-
resentations of Words and Phrases and their Com-
positionality. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference on
Neural Information Processing Systems 2013. Pro-
ceedings of a meeting held December 5-8, 2013,
Lake Tahoe, Nevada, United States., NIPS 2013,
pages 3111–3119.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in PyTorch.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global Vectors
for Word Representation. In Proceedings of the
2014 Conference on Empirical Methods in Natural

Language Processing, October 25-29, 2014, Doha,
Qatar, EMNLP 2014, pages 1532–1543.

Hinrich Schütze. 2017. Nonsymbolic Text Representa-
tion. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Volume 1, Long Papers, EACL
2017, pages 785–796.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural Machine Translation of Rare Words
with Subword Units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics, August 7-12, 2016, Berlin, Germany,
Volume 1: Long Papers, ACL 2016.

Yan Shao, Christian Hardmeier, Jörg Tiedemann, and
Joakim Nivre. 2017. Character-based Joint Segmen-
tation and POS Tagging for Chinese using Bidirec-
tional RNN-CRF. In Proceedings of the Eighth In-
ternational Joint Conference on Natural Language
Processing, Taipei, Taiwan, November 27 - Decem-
ber 1, 2017 - Volume 1: Long Papers, IJCNLP 2017,
pages 173–183.

Emma Strubell, Patrick Verga, David Belanger, and
Andrew McCallum. 2017. Fast and Accurate Entity
Recognition with Iterated Dilated Convolutions. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, Copen-
hagen, Denmark, September 9-11, 2017, EMNLP
2017, pages 2670–2680.

Tzu-ray Su and Hung-yi Lee. 2017. Learning Chinese
Word Representations From Glyphs Of Characters.
In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, Copen-
hagen, Denmark, September 9-11, 2017, EMNLP
2017, pages 264–273, Copenhagen, Denmark.

Yuguang Wang, Shanbo Cheng, Liyang Jiang, Jia-
jun Yang, Wei Chen, Muze Li, Lin Shi, Yanfeng
Wang, and Hongtao Yang. 2017. Sogou Neural Ma-
chine Translation Systems for WMT17. In Proceed-
ings of the Second Conference on Machine Trans-
lation, WMT 2017, pages 410–415, Copenhagen,
Denmark.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
Neural Machine Translation System: Bridging the
Gap between Human and Machine Translation.
CoRR, abs/1609.08144.

Naiwen Xue, Fei Xia, Fu-dong Chiou, and Marta
Palmer. 2005. The Penn Chinese TreeBank: Phrase
Structure Annotation of a Large Corpus. Natural
Language Engineering, 11(2):207–238.

194

Proceedings of the 3rd Workshop on Representation Learning for NLP, pages 195–206
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

Jointly Embedding Entities and Text with Distant Supervision

Denis Newman-Griffis♣,♠, Albert M Lai♠,�, and Eric Fosler-Lussier♣
♣Department of Computer Science and Engineering, The Ohio State University, Columbus, OH

♠Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD
�Institute for Informatics, Washington University in St. Louis, St. Louis, MO

{newman-griffis.1, fosler-lussier.1}@osu.edu amlai@wustl.edu

Abstract

Learning representations for knowledge
base entities and concepts is becoming
increasingly important for NLP applica-
tions. However, recent entity embed-
ding methods have relied on structured re-
sources that are expensive to create for
new domains and corpora. We present
a distantly-supervised method for jointly
learning embeddings of entities and text
from an unnanotated corpus, using only a
list of mappings between entities and sur-
face forms. We learn embeddings from
open-domain and biomedical corpora, and
compare against prior methods that rely on
human-annotated text or large knowledge
graph structure. Our embeddings cap-
ture entity similarity and relatedness better
than prior work, both in existing biomed-
ical datasets and a new Wikipedia-based
dataset that we release to the community.
Results on analogy completion and entity
sense disambiguation indicate that entities
and words capture complementary infor-
mation that can be effectively combined
for downstream use.

1 Introduction

Distributed representations of knowledge base en-
tities and concepts have become key elements of
many recent NLP systems, for applications from
document ranking (Jimeno-Yepes and Berlanga,
2015) and knowledge base completion (Toutanova
et al., 2015) to clinical diagnosis code prediction
(Choi et al., 2016a,b). These works have taken two
broad tacks for the challenge of learning to rep-
resent entities, each of which may have multiple
unique surface forms in text. Knowledge-based
approaches learn entity representations based on

the structure of a large knowledge base, often aug-
mented by annotated text resources (Yamada et al.,
2016; Cao et al., 2017). Other methods utilize ex-
plicitly annotated data, and have been more popu-
lar in the biomedical domain (Choi et al., 2016a;
Mencia et al., 2016). Both approaches, however,
are often limited by ignoring some or most of
the available textual information. Furthermore,
such rich structures and annotations are lacking
for many specialized domains, and can be pro-
hibitively expensive to obtain.

We propose a fully text-based method for
jointly learning representations of words, the sur-
face forms of entities, and the entities themselves,
from an unannotated text corpus. We use distant
supervision from a terminology, which maps en-
tities to known surface forms. We augment the
well-known log-linear skip-gram model (Mikolov
et al., 2013) with additional term- and entity-based
objectives, and evaluate our learned embeddings
in both intrinsic and extrinsic settings.

Our joint embeddings clearly outperform prior
entity embedding methods on similarity and re-
latedness evaluations. Entity and word embed-
dings capture complementary information, yield-
ing improved performance when they are com-
bined. Analogy completion results further illus-
trate these differences, demonstrating that entities
capture domain knowledge, while word embed-
dings capture morphological and lexical informa-
tion. Finally, we see that an oracle combination
of entity and text embeddings nearly matches a
state of the art unsupervised method for biomed-
ical word sense disambiguation that uses complex
knowledge-based approaches. However, our em-
beddings show a significant drop in performance
compared to prior work in a newswire disam-
biguation dataset, indicating that knowledge graph
structure contains entity information that a purely
text-based approach does not capture.

195

2 Related Work

Knowledge-based approaches to entity represen-
tation are well-studied in recent literature. Sev-
eral approaches have learned representations from
knowledge graph structure alone (Grover and
Leskovec, 2016; Yang et al., 2016; Wang et al.,
2017). Wang et al. (2014), Yamada et al. (2016),
and Cao et al. (2017) all use a joint embedding
method, learning representations of text from a
large corpus and entities from a knowledge graph;
however, they rely on the disambiguated entity an-
notations in Wikipedia to align their models. Fang
et al. (2016) investigate heuristic methods for joint
embedding without annotated entity mentions, but
still rely on graph structure for entity training.

The robust terminologies available in the
biomedical domain have been instrumental to sev-
eral recent annotation–based approaches. De Vine
et al. (2014) use string matching heuristics to find
possible occurrences of known biomedical con-
cepts in literature abstracts, and use the sequence
of these noisy concepts (without the document
text) as input for skip-gram training. Choi et al.
(2016c) and Choi et al. (2016a) use sequences
of structured medical observations from patients’
hospital stays for context-based learning. Finally,
Mencia et al. (2016) take documents tagged with
Medical Subject Heading (MeSH) topics, and use
their texts to learn representations of the MeSH
headers. These methods are able to draw on rich
structured and semi-structured data from medical
databases, but discard important textual informa-
tion, and empirically are limited in the scope of
the vocabularies they can embed.

3 Methods

In order to jointly learn entity and text representa-
tions from an unannotated corpus, we use distant
supervision (Mintz et al., 2009) based on known
terms, strings which can represent one or more
entities. The mapping between terms and entities
is many-to-many; for example, the same infection
can be expressed as “cold” or “acute rhinitis”, but
“cold” can also describe the temperature or refer
to chronic obstructive lung disease.

Mappings between terms and entities are de-
fined by a terminology.1 We extracted terminolo-
gies from two well-known knowledge bases:

1Terminology is overloaded with both biomedical and lex-
ical senses; we use it here strictly to mean a mapping between
terms and entities.

UMLS Wikipedia
entities 3,590,353 9,723,785
terms 7,558,254 17,147,756
Max terms 495 7,077
entities represented by n terms
n = 1 1,823,569 (51%) 6,828,958 (70%)
n = 2 894,932 (25%) 1,565,109 (16%)
3 ≤ n ≤ 10 831,494 (23%) 1,143,452 (12%)
n > 10 40,358 (1%) 186,266 (2%)

terms mapping to n entities
n = 1 7,473,902 (98%) 16,127,138 (94%)
n = 2 69,816 (1%) 958,242 (5%)
3 ≤ n ≤ 10 14,366 (< 1%) 62,062 (< 1%)
n > 10 170 (� 1%) 15 (� 1%)

Table 1: Statistics of the many-to-many mapping
between terms and entities in our terminologies,
including the maximum # of terms per entity.

The Unified Medical Language System
(UMLS; Bodenreider, 2004); we use the mappings
between concepts and strings in the MRCONSO
table as our terminology. This yields 3.5 million
entities, represented by 7.6 million strings in total.

Wikipedia; we use page titles and redirects as
our terminology. This yields 9.7 million poten-
tial entities (pages), represented by 17.1 million
total strings. Table 1 gives further statistics about
the mapping between entities and surface forms in
each of these terminologies.

While iterating through the training corpus, we
identify any exact matches of the terms in our
terminologies.2 We allow for overlapping terms:
thus, “in New York City” will include an occur-
rence of both the terms “New York” and “New
York City.” Each matched term may refer to one
or more entities; we do not use a disambiguation
model in preprocessing, but rather assign a proba-
bility distribution over the possible entities.

3.1 Model

We extend the skip-gram model of Mikolov et al.
(2013), to jointly learn vector representations of
words, terms, and entities from shared textual con-
texts. For a given target word, term, or entity v,
let Cv = c−k . . . ck be the observed contexts in a
window of k words to the left and right of v, and
let Nv = n−k,1 . . . nk,d be the d random negative
samples for each context word. Then, the context-
based objective for training v is

O(v, Cv, Nv) =
∑

c∈Cv

logσ(~c ·~v)+
∑

n∈Nv

logσ(−~n ·~v) (1)

2We lowercase and strip special characters and punctua-
tion from both terms and corpus text, and then find all exact
matches for the terms.

196

Pubmed Wikipedia Gigaword
tokens 2.6B 1.9B 4.3B
mentions 1.5B 1.4B 3.2B
Avg CP 2.54 1.01 1.01
% of entities by polysemy impact
CP ≥ 1 99.1% 98.6% 98.8%
CP ≥ 2 9.3% 3.5% 2.2%
CP ≥ 10 0.3% 0% � 0.1%

Table 2: Statistics of our embedding training cor-
pora. # mentions is the number of exact matches
found for terms in the relevant terminology. CP =
corpus polysemy of a given entity. B = billion.

where σ is the logistic function.
We use a sliding context window to iterate

through our corpus. At each step, the word w
at the center of the window Cw is updated us-
ing O(w,Cw, Nw), where Nw are the randomly-
selected negative samples.

As terms are of variable token length, we treat
each term t as an atomic unit for training, and set
Ct to be the context words prior to the first token
of the term and following the final token. Negative
samples Nt are sampled independently of Nw.

Finally, each term t can represent a set of enti-
ties Et. Vectors for these entities are updated us-
ing the same Ct and Nt from t. Since the entities
are latent, we weight updates with uniform proba-
bility |Et|−1; attempts to learn this probability did
not produce qualitatively different results from the
uniform distribution. Thus, letting T be the set of
terms completed at w, the full objective function
to maximize is:

Ô = O(w,Cw, Nw)+
∑

t∈T

[
O(t, Ct, Nt) +

∑

e∈Et

1

|Et|
O(e, Ct, Nt)

] (2)

Term and entity updates are only calculated
when the final token of one or more terms is
reached; word updates are applied at each step. To
assign more weight to near contexts, we subsam-
ple the window size at each step from [1, k].

3.2 Training corpora
We train embeddings on three corpora. For our
biomedical embeddings, we use 2.6 billion to-
kens of biomedical abstract texts from the 2016
PubMed baseline (1.5 billion noisy annotations).
For comparison to previous open-domain work,
we use English Wikipedia (5.5 million articles
from the 2018-01-20 dump); we also use the Gi-
gaword 5 newswire corpus (Parker et al., 2011),
which does not have gold entity annotations.

As our model does not include a disambigua-
tion module for handling ambiguous term men-
tions, we also calculate the expected effect of pol-
ysemous terms on each entity that we embed us-
ing a given corpus. We call this the entity’s corpus
polysemy, and denote it with CP (e). For entity e
with corresponding terms Te, CP (e) is given as

CP (e) =
∑

t∈Te

f(t)

Z
polysemy(t) (3)

where f(t) is the corpus frequency of term t, Z is
the frequency of all terms in Te, and polysemy(t)
is the number of entities that t can refer to.

Table 2 breaks down expected polysemy im-
pact for each corpus. The vast majority of enti-
ties experience some polysemy effect in training,
but very few have an average ambiguity per men-
tion of 50% or greater. Most entities with high
corpus polysemy are due to a few highly ambigu-
ous generic strings, such as combinations and un-
known. However, some specific terms are also
high ambiguity: for example, Washington County
refers to 30 different US counties.

3.3 Hyperparameters
For all of our embeddings, we used the following
hyperparameter settings: a context window size of
2, with 5 negative samples per word; initial learn-
ing rate of 0.05 with a linear decay over 10 itera-
tions through the corpus; minimum frequency for
both words and terms of 10, and a subsampling
coefficient for frequent words of 1e-5.

3.4 Baselines
We compare the words, terms,3 and entities
learned in our model against two prior biomedical
embedding methods, using pretrained embeddings
from each. De Vine et al. (2014) use sequences
of automatically identified ambiguous entities for
skip-gram training, and Mencia et al. (2016) use
texts of documents tagged with MeSH headers to
represent the header codes. The most recent com-
parison method for Wikipedia entities is MPME
(Cao et al., 2017), which uses link anchors and
graph structure to augment textual contexts. We
also include skip-gram vectors as a final base-
line; for Pubmed, we use pretrained embeddings
with optimized hyperparameters from Chiu et al.
(2016a), and we train our own embeddings with
word2vec for both Wikipedia and Gigaword.

3Unknown terms were handled by backing off to words.

197

Full Filtered
Method Sim Rel Sim Rel
Prior work

word2vec 0.559 0.496
DeVine’14 0.455 0.422 0.534 0.482
Mencia’16 0.565 0.534 0.573 0.536

Proposed
Word 0.561 0.490
Term 0.619 0.557*
Entity 0.633* 0.563* 0.614* 0.567*
Entity+Word 0.653* 0.586* 0.615* 0.583*

+Cross 0.662* 0.588* 0.622* 0.573*

Table 3: Spearman’s ρ for similarity/relatedness
predictions in UMNSRS. Filtered results indi-
cate performance on the shared-vocabulary subset.
*=significantly better (p < 0.05) than word base-
line (full), DeVine et al (filtered).

4 Evaluations

Following Chiu et al. (2016b), Cao et al. (2017),
and others, we evaluate our embeddings on both
intrinsic and extrinsic tasks. To evaluate the se-
mantic organization of the space, we use the stan-
dard intrinsic evaluations of similarity and related-
ness and analogy completion. To explore the ap-
plicability of our embeddings to downstream ap-
plications, we apply them to named entity disam-
biguation. Results and analyses for each experi-
ment are discussed in the following subsections.

4.1 Similarity and relatedness

We evaluate our biomedical embeddings on the
UMNSRS datasets (Pakhomov et al., 2010), con-
sisting of pairs of UMLS concepts with judg-
ments of similarity (566 pairs) and relatedness
(587 pairs), as assigned by medical experts. For
evaluating our Wikipedia entity embeddings, we
created WikiSRS, a novel dataset of similarity and
relatedness judgments of paired Wikipedia entities
(people, places, and organizations), as assigned by
Amazon Mechanical Turk workers. We followed
the design procedure of Pakhomov et al. (2010)
and produced 688 pairs each of similarity and re-
latedness judgments; for further details on our re-
leased dataset, please see the Appendix.

For each labeled entity pair, we calculated the
cosine similarity of their embeddings, and ranked
the pairs in order of descending similarity. We re-
port Spearman’s ρ on these rankings as compared
to the ranked human judgments: Table 3 shows re-
sults for UMNSRS, and Table 4 for WikiSRS.

As the dataset includes both string and disam-
biguated entity forms for each pair, we evaluate

Wikipedia Gigaword
Method Sim Rel Sim Rel
Prior work

word2vec 0.630 0.630 0.624 0.623
MPME 0.506 0.567 – –

Proposed
Word 0.646 0.655 0.615 0.600
Term 0.607 0.667 0.625 0.673
Entity 0.594 0.648 0.634 0.686
Entity+Word 0.718* 0.754* 0.701* 0.722*

+Cross 0.697* 0.753* 0.695* 0.729*

Table 4: Spearman’s ρ for similarity/relatedness
predictions in WikiSRS, training on two cor-
pora. All Proposed results are significantly better
than MPME; *=significantly better than strongest
word-level baseline (p < 0.05).

each type of embeddings learned in our model.
Additionally, as words and entities are embed-
ded in the same space (and thus directly compa-
rable), we experiment with two methods of com-
bining their information. Entity+Word sums the
cosine similarities calculated between the entity
embeddings and word embeddings for each pair;
the Cross setting further adds comparisons of each
entity in the pair to the string form of the other.

4.1.1 Results
Our proposed method clearly outperforms prior
work and text-based baselines on both datasets.
Further, we see that the words and entities learned
by our model include complementary information,
as combining them further increases our ranking
performance by a large margin. As the results
on UMNSRS could have been due to our model’s
ability to embed many more entities than prior
methods, we also filtered the dataset to the 255
similarity pairs and 260 relatedness pairs that all
evaluated entity-level methods could represent;4

Table 3 shows similar gains on this even footing.
We follow Rastogi et al. (2015) in calculating sig-
nificance, and use their statistics to estimate the
minimum required difference for significant im-
provements on our datasets.

In UMNSRS, we found that cosine similarity of
entities consistently reflected human judgments of
similarity better than of relatedness; this reflects
previous observations by Agirre et al. (2009) and
Muneeb et al. (2015). Interestingly, we see the
opposite behavior in WikiSRS, where relatedness
is captured better than similarity in all settings.
In fact, we see a number of errors of relatedness

4For WikiSRS, all methods covered all pairs.

198

Dataset Words Entities Entity+Word+Cross

UMNSRS
Iron/Iron Iron/Iron Levaquin/Avelox

Nausea/Vomiting Sinemet/Sinemet Enalapril/Lisinopril
Lipitor/Zocor Enalapril/Lisinopril Carboplatin/Cisplatin

WikiSRS
Minas Tirith/Minas Morgul Real Madrid/FC Barcelona Ferrari/Lamborghini
Moscow/Moscow Kremlin Minas Tirith/Minas Morgul Moscow/Moscow Kremlin

Norway/Denmark Charlize Theron/Screen Actor’s Guild Toshiro Mifune/Akira Kurosawa

Table 5: Top 3 pairs in the Relatedness datasets, as ranked by different embedding methods.

in WikiSRS predictions, e.g., “Hammurabi I” and
“Syria” are marked highly similar, while the com-
posers “A.R. Rahman” and “John Phillip Sousa”
are marked dis-similar. MPME embeddings tend
towards over-relatedness as well (e.g., ranking
“Richard Feynman” and “Paris-Sorbonne Univer-
sity” much more highly than gold labels). Despite
better similarity performance, this trend of over-
relatedness also holds in biomedical embeddings:
for example, C0027358 (Narcan) and C0026549
(morphine) are consistently marked highly similar
across embedding methods, even though Narcan
blocks the effects of opioids like morphine.

4.1.2 Comparing entities and words

We observe clear differences in the rankings made
by entity vs word embeddings. As shown in Ta-
ble 5, highly related entities tend to have high co-
sine similarity, while word embeddings are more
sensitive to lexical overlap and direct cooccur-
rence. Combining both sources often gives the
most inuitive results, balancing lexical effects with
relatedness. For example, while the top three pairs
by combination in WikiSRS are likely to co-occur,
the top three in UMNSRS are pairs of drug choices
(antibiotics, ACE inhibitors, and chemotherapy
drugs, respectively), only one of which is likely
to be prescribed to any given patient at once.

These differences also play out in erroneous
predictions. Entity embeddings often fix the worst
misrankings by words: for example, “Tony Blair”
and “United Kingdom” (gold rank: 28) are ranked
highly unrelated (position 633) by words, but en-
tities move this pair back up the list (position 86).
However, errors made by entity embeddings are
often also made by words: e.g., C0011175 (dehy-
dration) and C0017160 (gastroenteritis) are erro-
neously ranked as highly unrelated by both meth-
ods. Interestingly, we find no correlation between
the corpus polysemy of entity pairs and ranking
performance, indicating that ambiguity of term
mentions is not a significant confound for this task.

Method B3 H1 C6 L1 L6
Words 2.9 0.4 7.9 51.5 69.3
Entities 18.3 22.4 4.5 10.6 10.0
Oracle 20.7 22.9 12.1 55.0 70.9

Table 6: Accuracy % on 5 of the relations in
BMASS with greatest absolute difference in word
performance vs entity performance: B3 (gene-
encodes-product), H1 (refers-to), C6 (associated-
with), L1 (form-of), and L6 (has-free-acid-or-
base-form). The better of word and entity per-
formance is highlighted; all entity vs word differ-
ences are significant (McNemar’s test; p� 0.01).

4.2 Analogy completion

We use analogy completion to further explore the
properties of our joint embeddings. Given anal-
ogy a : b :: c : d, the task is to guess d given
(a, b, c), typically by choosing the word or entity
with highest cosine similarity to b − a + c (Levy
and Goldberg, 2014). We report accuracy using
the top guess (ignoring a, b, and c as candidates,
per Linzen, 2016).

4.2.1 Biomedical analogies
To compare between word and entity representa-
tions, we use the entity-level biomedical dataset
BMASS (Newman-Griffis et al., 2017), which in-
cludes both entity and string forms for each anal-
ogy. In order to test if words and entities are
capturing complementary information, we also in-
clude an oracle evaluation, in which an analogy
is counted as correct if either words or entities
produce a correct response.5 We do not compare
against prior biomedical entity embedding meth-
ods on this dataset, due to their limited vocabulary.

Table 6 contrasts the performance of differ-
ent jointly-trained representations for five rela-
tions with the largest performance differences
from this dataset. For gene-encodes-product and
refers-to, both of which require structured do-
main knowledge, entity embeddings significantly

5We use the Multi-Answer setting for our evaluation (a
single (a, b, c) triple, but a set of correct values for d).

199

outperform word-level representations. Many
of the errors made by word embeddings in
these relations are due to lexical over-sensitivity:
for example, in the renaming analogy spinal
epidural hematoma:epidural hemorrhage::canis
familiaris: , words suggest latinate completions
such as latrans and caballus, while entities capture
the correct C1280551 (dog). However, on more
morphological relations such as has-free-acid-or-
base-form, words are by far the better option.

The success of the oracle combination method
for entity and word predictions clearly indicates
that not only are words and entities capturing dif-
ferent knowledge, but that it is complementary. In
the majority of the 25 relations in BMASS, oracle
results improved on words and entities alone by at
least 10% relative. In some cases, as with has-free-
acid-or-base-form, one method does most of the
heavy lifting. In several others, including the chal-
lenging (and open-ended) associated-with, entities
and words capture nearly orthogonal cases, lead-
ing to large jumps in oracle performance.

4.2.2 General-domain analogies
No entity-level encyclopedic analogy dataset is
available, so we follow Cao et al. (2017) in eval-
uating the effect of joint training on words us-
ing the Google analogy set (Mikolov et al., 2013).
As shown in Table 7, our Wikipedia embeddings
roughly match MPME embeddings (which use an-
notated entity links) on the semantic portion of the
dataset, but our ability to train on unannotated Gi-
gaword boosts our results on all relations except
city-in-state.6 Overall, we find that jointly-trained
word embeddings split performance with word-
only skipgram training, but that word-only train-
ing tends to get consistently closer to the correct
answer. This suggests that terms and entities may
conflict with word-level semantic signals.

4.3 Entity disambiguation

Finally, to get a picture of the impact of our
embedding method on downstream applications,
we investigated entity disambiguation.7 Given a
named entity occurrence in context, the task is to
assign a canonical identifier to the entity being re-
ferred to: e.g., to mark that “New York” refers to

6We failed to precisely replicate the analogy numbers re-
ported by Cao et al. (2017); we attribute this primarily to the
different training corpus and slightly different preprocessing.

7This task is also referred to as entity linking and entity
sense disambiguation.

Method Capital
(com-
mon)

Capital
(all)

Currency City
in

State

Family

word2vec (W) 89.1 86.0 15.0 55.5 82.4
word2vec (G) 90.9 89.7 18.4 38.4 81.0
MPME (W) 83.6 80.5 11.9 50.6 78.9
Proposed (W) 90.1 78.7 9.1 42.5 75.5
Proposed (G) 92.7 92.3 16.4 31.3 81.6

Table 7: Analogy completion accuracy % on the
semantic relations in the Google analogy dataset.
W=Wikipedia, G=Gigaword.

the city in the sentence, “The mayor of New York
held a press conference.” It bears noting that in un-
ambiguous cases, a terminology alone is sufficient
to link the correct entity: for example, “Barack
Obama” can only refer to a single entity, regard-
less of context. However, many entity strings (e.g.,
“cold”, “New York”) are ambiguous, necessitating
the use of alternate sources of information such as
our embeddings to assign the correct entity.

4.3.1 Biomedical abstracts
We evaluate on the MSH WSD dataset (Jimeno-
Yepes et al., 2011), a benchmark for biomedical
word sense disambiguation. MSH WSD consists
of mentions of 203 ambiguous terms in biomedical
literature, with over 30,000 total instances. Each
sample is annotated with the set of UMLS entities
the term could refer to. We adopt the unsupervised
method of Sabbir et al. (2016), which combines
cosine similarity and projection magnitude of an
entity representation e to the averaged word em-
beddings of its contexts Cavg as follows:

f(e, Cavg) = cos(Cavg, e) ·
||P (Cavg, e)||
||e|| (4)

The entity maximizing this score is predicted.
We compare against concept embeddings

learned by Sabbir et al. (2016). They used
MetaMap (Aronson and Lang, 2010) with the dis-
ambiguation module enabled on a curated corpus
of 5 million Pubmed abstracts to create a UMLS
concept cooccurrence corpus for word2vec train-
ing. As shown in Table 8, our method lags behind
theirs, though it clearly beats both random (49.7%
accuracy) and majority class (52%) baselines. In
addition, we leverage our jointly-embedded enti-
ties and words by adding in the definition-based
model used by Pakhomov et al. (2016), which cal-
culates an entity’s embedding as the average of
definitions of its neighbors in the UMLS hierar-
chy (McInnes et al., 2011). We use this alternate

200

Method Accuracy %
Baselines

Sabbir et al. (2016) (entities; +MetaMap) 89.3
Sabbir et al. (2016) (+MetaMap, UMLS) 92.2
Pakhomov et al. (2016) (words) 77.7

Proposed
Entities 76.4
Definitions (joint words) 80.8
Entities+Definitions 82.7
Oracle (Entities—Definitions) 90.9

Table 8: MSH WSD disambiguation accuracy.
Definitions is comparable to Pakhomov et al.
(2016), using jointly-embedded words. All differ-
ences are significant (McNemar’s test, p� 0.01).

entity embedding in Equation 4 to calculate a sec-
ond score that we add to the direct entity embed-
ding score. This yields a large performance boost
of over 6% absolute, indicating that using enti-
ties and words together makes up much of the gap
between our distantly supervised embeddings and
the external resources used by Sabbir et al. (2016).
Using the definition-based method alone with our
jointly-embedded words, we see a significant in-
crease over Pakhomov et al. (2016), indicating the
benefits of joint training. However, the combined
entity and definition model still yields a signifi-
cantly different 2% boost in accuracy over defini-
tions alone. Finally, we evaluate an oracle com-
bination that reports correct if either entity or def-
inition embeddings achieve the correct result; as
shown in the last row of Table 8, this combina-
tion outperforms the entity-only method of Sab-
bir et al. (2016), and approaches their state-of-the-
art result that combines entity embeddings with a
knowledge-based approach from the structure of
the UMLS.

Specific errors shed more light on these differ-
ences. The definition-based method performs bet-
ter in many cases where the surface form is a com-
mon word, such as coffee (68% definition accu-
racy vs 28% entity accuracy) and iris (93% defi-
nition accuracy vs 35% entity accuracy). Entities
outperform on some more technical cases, such as
potassium (74% entity accuracy vs 49% definition
accuracy). Combining both approaches in the joint
model recovers performance on several cases of
low entity accuracy; for example, joint accuracy
on coffee is 68%, and on lupus (53% entity accu-
racy), joint performance is 60%.

Method Accuracy %
MPME (entities; +graph structure) 89.0
Wikipedia 40.9
Wikipedia + mentions 44.6
Gigaword 58.0
Gigaword + mentions 63.9

Table 9: AIDA linking accuracy, using entity em-
beddings trained on Wikipedia and Gigaword. All
differences are significant (McNemar’s test, p �
0.01).

4.3.2 Newswire entities
AIDA (Hoffart et al., 2011) is a standard dataset
for entity linking in newswire, consisting of ap-
proximately 30,000 entities linked to Wikipedia
page IDs. To reduce the search space, Pershina
et al. (2015) provided a set of candidate entities
for each mention, which we use for our experi-
ments. The MPME model of Cao et al. (2017)
achieves near state-of-the-art performance accu-
racy on AIDA with this candidate set, using the
mention sense distributions and full document
context included in the model. As our embeddings
are trained without explicit entity annotations, we
instead use the same cosine similarity and pro-
jection model discussed in Section 4.3.1 for this
task. In contrast to our results on the biomedical
data, we see performance far below the baseline
on these data, as shown in Table 9.

However, we improve this performance slightly
by multiplying by the similarity between the entity
embedding and the average word embedding of
the mention itself; this gives us roughly a further
4% accuracy for both Wikipedia and Gigaword
embeddings. Using the surface form recovers sev-
eral cases where entities alone yield unlikely op-
tions, e.g. Roman-era Britain instead of the United
Kingdom for Britain. However, it also introduces
lexical errors: for example, British in several cases
refers to the United Kingdom, but the British peo-
ple are often selected instead. We note that this
extra score actually hurts performance on MSH
WSD, where the terms are curated to be highly
ambiguous, in contrast to the shorter contexts and
clearer terms used in AIDA.

Two other issues bear consideration in this eval-
uation. Prior approaches to the AIDA dataset, in-
cluding MPME, make use of the global context of
entity mentions within a document to improve pre-
dictions; by using local context only, we observe
some inconsistent predictions, such as selecting
the cricket world cup instead of the FIFA com-

201

Entity Words Terms Entities Joint

C0009443
(common

cold)

k(+)-grown cold C0041912 (upper respiratory
infections)

C0041912 (upper respiratory
infections)

legionella-
contaminated short periods C0234192 (cold sensation) C0234192 (cold sensation)

hyperinflating changed C0719425 (“Cold”
pharmaceutical brand)

C0719425 (“Cold”
pharmaceutical brand)

C0242797
(home health

aides)

homemaker-
home

home health
aide

C1553498 (home health
encounter) home health aide

voluntary-
sector

home health
aides

C0019855 (home care
services) home health aides

health/social home health C1317851 (home health care
specialty)

C1553498 (home health
encounter)

Table 10: Top 3 nearest neighbors to two UMLS entities, using words, terms, entities, or all three.

petition for world cup, in a document discussing
football. Additionally, in contrast to the MSH
WSD dataset, many instances in AIDA have sev-
eral highly-related candidates that introduce some
confusion in our results. For example, Ireland
could refer to the United Kingdom of Great Britain
and Ireland, the island of Ireland, or the Republic
of Ireland. As our embedding training does not
include gold entity links, cases like this are often
errors in our predictions.

5 Analysis of joint embeddings

To get a more detailed picture of our joint em-
bedding space, we investigate nearest neighbors
for each point by cosine similarity. As entities
in the UMLS are assigned one or more of over
120 semantic types, we first examine how inter-
mixed these types are in our biomedical embed-
dings. Figure 1 shows how often an entity’s near-
est neighbor shares at least one semantic type with
it, across the three biomedical embedding methods
we evaluated. As each set of embeddings has a
different vocabulary, we also restrict to the entities

Figure 1: Percentage of UMLS entities whose
nearest neighbor shares a semantic type, with no
vocabulary restriction (vocab size in parentheses)
and in a shared vocabulary subset.

that all three can embed (approximately 11,000).

We see that our method puts entities of the same
type together nearly 40% of the time, despite em-
bedding over 270 thousand entities. On an even
footing, our method puts types together signifi-
cantly more often Mencia et al. (2016) (McNe-
mar’s; p < 0.05), and equivalently with De Vine
et al. (2014), despite using less entity-level infor-
mation in training. Within our embeddings, ma-
jor biological types such as bacteria, eukaryotes,
mammals, and viruses all have more than 60% of
neighbors with the same type, while less struc-
tured clinical types such as Clinical Attribute and
Daily or Recreational Activity are in the 10-20%
range. Corpus polysemy does not appear to have
any effect on this type matching (mean polysemy
of 1.5 for both matched and non-matched entities).

Expanding to include the words and terms in
the joint embedding space, however, we see def-
inite qualitative effects of corpus polysemy on
entity nearest neighbors. Table 10 gives near-
est word, term, entity, and joint neighbors to
two biomedical entities: C0009443 (the common
cold; CP = 6.71) and C0242797 (home health
aides; CP = 1). For the more polysemous
C0009443, where 95% of its mentions are of the
word “cold” (polysemy=7), word-level neighbors
are mostly nonsensical, while term neighbors are
more logical, and entity neighbors reflect different
senses of “cold”. By contrast, the non-polysemous
C0242797, which is represented by 14 different
unambiguous strings, words, terms, and entities
are all very clearly in line with the theme of home
health aides. Notably, the common and unambigu-
ous terms for C0242797 are its nearest neighbors
out of all points, while only two of the top 10
neighbors to C0009443 are terms.

202

6 Discussion

Faruqui et al. (2016) observe that similarity and
relatedness are not clearly distinguished in seman-
tic embedding evaluations, and that it is unclear
exactly how vector-space models should capture
them. We see more evidence of this, as cosine
similarity seems to be capturing a mix of the two
properties in our data. This mix is clearly infor-
mative, but it empirically favors relatedness judg-
ments, and cosine similarity is insufficient to sep-
arate the two properties.

Corpus polysemy plays a qualitative role in our
embedding model, but less of a quantitative one. It
does not correlate with similarity and relatedness
judgments or entity disambiguation decisions, but
it clearly affects the organization of the embedding
space, by embedding entities with high corpus pol-
ysemy in less coherent areas than those with low
polysemy. Linzen (2016) points out that for anal-
ogy completion, local neighborhood structure can
interfere with standard methods; how this neigh-
borhood structure affects predictions in more com-
plex tasks is an open question.

Overall, we find two main advantages to our
model over prior work. First, by only using a ter-
minology and an unannotated corpus, we are able
to learn entity embeddings from larger and more
diverse data; for example, embeddings learned
from Gigaword (which has no entity annotations)
outperform embeddings learned on Wikipedia in
most of our experiments. Second, by embedding
entities and text into a joint space, we are able to
leverage complementary information to get higher
performance in both intrinsic and extrinsic tasks;
an oracle model nearly matches a state-of-the-art
ensemble vector and knowledge-based model for
biomedical word sense disambiguation. However,
our other entity disambiguation results demon-
strate that there is additional entity-level informa-
tion that we are not yet capturing. In particular,
it is unclear whether our low performance on dis-
ambiguating newswire entities is due to a disam-
biguation model mismatch, a lack of information
in our embeddings, or a combination of both.

7 Conclusions

We present a method for jointly learning em-
beddings of entities and text from an arbitrary
unannotated corpus, using only a terminology
for distant supervision. Our learned embed-
dings better capture both biomedical and en-

cyclopedic similarity and relatedness than prior
methods, and approach state-of-the-art perfor-
mance for unsupervised biomedical word sense
disambiguation. Furthermore, entities and words
learned jointly with our model capture comple-
mentary information, and combining them im-
proves performance in all of our evaluations. We
make an implementation of our method available
at github.com/OSU-slatelab/JET, along
with the source code used for our evaluations
and our pretrained entity embeddings. Our novel
Wikipedia similarity and relatedness datasets are
available at the same source.

Acknowledgments

We would like to thank Chaitanya Shivade for
helpful discussions, and all of our anonymous re-
viewers for their invaluable advice. This research
was supported in part by the Intramural Research
Program of the National Institutes of Health, Clin-
ical Research Center and through an Inter-Agency
Agreement with the US Social Security Adminis-
tration.

References
Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana

Kravalova, Marius Paca, and Aitor Soroa. 2009. A
study on similarity and relatedness using distribu-
tional and WordNet-based approaches. In Proceed-
ings of Human Language Technologies: The 2009
Annual Conference of the North American Chapter
of the Association for Computational Linguistics on
- NAACL ’09, pages 19–27, Boulder, Colorado. As-
sociation for Computational Linguistics.

Alan R Aronson and François-Michel Lang. 2010. An
overview of MetaMap: historical perspective and re-
cent advances. Journal of the American Medical In-
formatics Association : JAMIA, 17(3):229–36.

Olivier Bodenreider. 2004. The Unified Medical
Language System (UMLS): integrating biomed-
ical terminology. Nucleic Acids Research,
32(90001):D267–D270.

Yixin Cao, Lifu Huang, Heng Ji, Xu Chen, and Juanzi
Li. 2017. Bridge Text and Knowledge by Learn-
ing Multi-Prototype Entity Mention Embedding. In
Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1623–1633, Vancouver,
Canada. Association for Computational Linguistics.

Billy Chiu, Gamal Crichton, Anna Korhonen, and
Sampo Pyysalo. 2016a. How to Train Good Word
Embeddings for Biomedical NLP. Proceedings of
the 15th Workshop on Biomedical Natural Language
Processing, pages 166–174.

203

Billy Chiu, Anna Korhonen, and Sampo Pyysalo.
2016b. Intrinsic Evaluation of Word Vectors Fails to
Predict Extrinsic Performance. Proceedings of the
1st Workshop on Evaluating Vector Space Represen-
tations for NLP, pages 1–6.

Edward Choi, Mohammad Taha Bahadori, Andy
Schuetz, Walter F Stewart, and Jimeng Sun. 2016a.
RETAIN: Interpretable Predictive Model in Health-
care using Reverse Time Attention Mechanism. In
NIPS, pages 1–15.

Edward Choi, Mohammad Taha Bahadori, Eliza-
beth Searles, Catherine Coffey, Michael Thompson,
James Bost, Javier Tejedor-Sojo, and Jimeng Sun.
2016b. Multi-layer Representation Learning for
Medical Concepts. Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining - KDD ’16, pages 1495–
1504.

Youngduck Choi, Chill Yi-I Chiu, and David Sontag.
2016c. Learning Low-Dimensional Representations
of Medical Concepts. In AMIA Joint Summits on
Translational Science Proceedings, pages 41–50.

Lance De Vine, Guido Zuccon, Bevan Koopman, Lau-
rianne Sitbon, and Peter Bruza. 2014. Medical se-
mantic similarity with a neural language model. In
Proceedings of the 23rd ACM International Confer-
ence on Information and Knowledge Management -
CIKM ’14, CIKM ’14, pages 1819–1822, Shanghai,
China. ACM.

Wei Fang, Jianwen Zhang, Dilin Wang, Zheng Chen,
and Ming Li. 2016. Entity Disambiguation by
Knowledge and Text Jointly Embedding. In Pro-
ceedings of the 20th SIGNLL Conference on Compu-
tational Language Learning (CoNLL), pages 260–
269. Association for Computational Linguistics.

Manaal Faruqui, Yulia Tsvetkov, Pushpendre Rastogi,
and Chris Dyer. 2016. Problems With Evaluation
of Word Embeddings Using Word Similarity Tasks.
In Proceedings of the 1st Workshop on Evaluating
Vector-Space Representations for NLP, pages 30–
35, Berlin, Germany. Association for Computational
Linguistics.

Aditya Grover and Jure Leskovec. 2016. Node2Vec:
Scalable Feature Learning for Networks. In Pro-
ceedings of the 22Nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, KDD ’16, pages 855–864, New York, NY, USA.
ACM.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bor-
dino, Hagen Fürstenau, Manfred Pinkal, Marc Span-
iol, Bilyana Taneva, Stefan Thater, and Gerhard
Weikum. 2011. Robust Disambiguation of Named
Entities in Text. In Proceedings of the 2011 Con-
ference on Empirical Methods in Natural Language
Processing, pages 782–792, Edinburgh, Scotland,
UK. Association for Computational Linguistics.

Antonio Jimeno-Yepes and Rafael Berlanga. 2015.
Knowledge based word-concept model estimation
and refinement for biomedical text mining. Journal
of Biomedical Informatics, 53:300–307.

Antonio J Jimeno-Yepes, Bridget T McInnes, and
Alan R Aronson. 2011. Exploiting MeSH indexing
in MEDLINE to generate a data set for word sense
disambiguation. BMC Bioinformatics, 12:223.

Omer Levy and Yoav Goldberg. 2014. Linguistic Reg-
ularities in Sparse and Explicit Word Representa-
tions. In Proceedings of the Eighteenth Confer-
ence on Computational Natural Language Learning,
pages 171–180, Ann Arbor, Michigan. Association
for Computational Linguistics.

Tal Linzen. 2016. Issues in evaluating semantic spaces
using word analogies. In Proceedings of the 1st
Workshop on Evaluating Vector-Space Representa-
tions for NLP, pages 13–18.

Farzaneh Mahdisoltani, Joanna Biega, and Fabian M
Suchanek. 2015. YAGO3: A Knowledge Base from
Multilingual Wikipedias. In Conference on Innova-
tive Data Systems Research (CIDR).

Bridget T McInnes, Ted Pedersen, Ying Liu, Serguei V
Pakhomov, and Genevieve B Melton. 2011. Using
second-order vectors in a knowledge-based method
for acronym disambiguation. CoNLL 2011 - Fif-
teenth Conference on Computational Natural Lan-
guage Learning, Proceedings of the Conference,
(June):145–153.

Eneldo Loza Mencia, Gerard de Melo, and Jinseok
Nam. 2016. Medical Concept Embeddings via La-
beled Background Corpora. In Proceedings of the
Tenth International Conference on Language Re-
sources and Evaluation (LREC 2016), pages 4629–
4636. European Language Resources Association
(ELRA).

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient Estimation of Word
Representations in Vector Space. arXiv preprint
arXiv:1301.3781, pages 1–12.

Mike Mintz, Steven Bills, Rion Snow, and Dan Ju-
rafsky. 2009. Distant supervision for relation ex-
traction without labeled data. In Proceedings of
the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP,
pages 1003–1011, Suntec, Singapore. Association
for Computational Linguistics.

T H Muneeb, Sunil Kumar Sahu, and Ashish Anand.
2015. Evaluating distributed word representations
for capturing semantics of biomedical concepts. In
Proceedings of the 2015 Workshop on Biomedi-
cal Natural Language Processing (BioNLP 2015),
pages 158–163, Beijing, China. Association for
Computational Linguistics.

204

Denis Newman-Griffis, Albert M Lai, and Eric Fosler-
Lussier. 2017. Insights into Analogy Completion
from the Biomedical Domain. In BioNLP 2017,
pages 19–28, Vancouver, Canada. Association for
Computational Linguistics.

Serguei Pakhomov, Bridget McInnes, Terrence Adam,
Ying Liu, Ted Pedersen, and Genevieve B Melton.
2010. Semantic Similarity and Relatedness between
Clinical Terms: An Experimental Study. In AMIA
Annual Symposium Proceedings, pages 572–576.
American Medical Informatics Association.

Serguei V S Pakhomov, Greg Finley, Reed McEwan,
Yan Wang, and Genevieve B Melton. 2016. Cor-
pus domain effects on distributional semantic mod-
eling of medical terms. Bioinformatics, 32(Au-
gust):btw529.

Robert Parker, David Graff, Junbo Kong, Ke Chen, and
Kazuaki Maeda. 2011. English Gigaword Fifth Edi-
tion LDC2011T07. Linguistic Data Consortium.

Maria Pershina, Yifan He, and Ralph Grishman. 2015.
Personalized Page Rank for Named Entity Disam-
biguation. In Proceedings of the 2015 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 238–243, Denver, Colorado. Asso-
ciation for Computational Linguistics.

Pushpendre Rastogi, Benjamin Van Durme, and Ra-
man Arora. 2015. Multiview LSA : Representa-
tion Learning via Generalized CCA. Proceedings of
the 2015 Annual Conference of the North American
Chapter of the ACL, (1961):556–566.

A. K. M. Sabbir, Antonio Jimeno Yepes, and
Ramakanth Kavuluru. 2016. Knowledge-Based
Biomedical Word Sense Disambiguation with Neu-
ral Concept Embeddings.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoi-
fung Poon, Pallavi Choudhury, and Michael Gamon.
2015. Representing Text for Joint Embedding of
Text and Knowledge Bases. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1499–1509, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo.
2017. Knowledge Graph Embedding: A Survey of
Approaches and Applications. IEEE Transactions
on Knowledge and Data Engineering, 29(12):2724–
2743.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge Graph and Text Jointly
Embedding. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1591–1601, Doha, Qatar.
Association for Computational Linguistics.

Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda,
and Yoshiyasu Takefuji. 2016. Joint Learning of
the Embedding of Words and Entities for Named
Entity Disambiguation. In Proceedings of The
20th SIGNLL Conference on Computational Natu-
ral Language Learning (CoNLL), pages 250–259,
Berlin, Germany. Association for Computational
Linguistics.

Zhilin Yang, William Cohen, and Ruslan Salakhudi-
nov. 2016. Revisiting Semi-Supervised Learning
with Graph Embeddings. In Proceedings of The
33rd International Conference on Machine Learn-
ing, volume 48 of Proceedings of Machine Learning
Research, pages 40–48, New York, New York, USA.
PMLR.

205

A WikiSRS construction details

We followed a similar process to Pakhomov et al.
(2010) in selecting the entity pairs to be used
in our dataset. We first filtered the full list of
Wikipedia pages to the subset that we learned
embeddings for, and then used the entity types
assigned to these pages in YAGO (Mahdisoltani
et al., 2015) to restrict to only entities labeled
with WordNet types organization or person, or
with the YAGO type geoEntity. For each pairing
of these categories (Organization-Organization,
Organization-Place, Organization-Person, Place-
Place, Place-Person, and Person-Person), we man-
ually selected 30 pairs of entities for each of the
following relatedness categories: Completely Un-
related, Somewhat Unrelated, Somewhat Related,
and Highly Related. These produced the list of
720 entity pairs we used for our Mechanical Turk
surveys.

We augmented each survey of 30 questions with
4 manually-created validation pairs using common
entities (e.g., London, New York), each of which
was categorized as Highly Related or Completely
Unrelated. We included these validation questions
at random indices in our surveys. To evaluate if
participants were reading the questions, we binned
their ratings on these validation questions into 0-
25 (Completely Unrelated), 26-50 (Somewhat Un-
related), 51-75 (Somewhat Related), and 76-100
(Highly Related). If a participant’s ratings dis-
agreed with ours on multiple validation questions,
we discarded their data (we allowed disagreement
on a single question, as some validation questions
had high variance in responses among reliable an-
notators).

We recruited 6 participants for each survey, for a
total of 34 unique participants across the 48 HITs.
Participants were presented with a message de-
scribing the survey and stating that by clicking
the button at the bottom of the message to begin
the survey, they were providing informed consent
to participate. Identifying participant data was
not collected, and we used only the anonymous
worker IDs provided by the Mechanical Turk in-
terface to collate our data and remunerate work-
ers. Participants were asked optional demographic
questions about their age bracket and native lan-
guage at the end of the survey; we did not end up
using age information, but filtered our participants
for those that self-reported English reading profi-
ciency. The majority responded to a single HIT,

of raters
Similarity Relatedness

ICC # pairs ICC # pairs
4 0.531 419 0.467 180
5 0.520 267 0.540 207
6 0.560 299
> 6 – 2 – 2
Total 688 688

Table 11: The intraclass correlation coefficient
(ICC) among Amazon Mechanical Turk worker
judgments of similarity and relatedness of pairs of
Wikipedia entities. As ICC requires a fixed num-
ber of raters, but we had variable numbers of re-
sponses to each HIT, we break down the datasets
by the number of workers who rated each item.

while 3 completed more than 20. We discarded all
submissions from 3 participants, as they did not re-
port English reading proficiency (1) or did not sat-
isfy the validation questions (2). All participants
were paid state minimum wage at the time of the
study for their time, regardless of whether they an-
swered demographic questions or if we used their
data in the final sample. Collection of this data was
approved under Ohio State University IRB proto-
col 2017E0050.

To generate the final dataset, we assessed each
participant’s responses to the validation questions
in each survey. We kept surveys for which we had
at least 4 participants with satisfactory answers to
the validation questions; this resulted in discard-
ing 1 of the 24 HITs for each task. Due to 2 re-
peated pairs, this gave us final dataset sizes of 688
pairs for each of similarity and relatedness, 658 of
which were shared between the tasks.

Following Pakhomov et al. (2010), we assessed
inter-annotator agreement using the intraclass cor-
relation coefficient (ICC). Table 11 gives the val-
ues for our datasets. The numbers reported are
within the moderate range, and they correspond to
the ICC numbers reported by Pakhomov et al. on
the UMNSRS datasets.

The source code of our Mechani-
cal Turk interface and data files used
to generate the tasks are available at
github.com/OSU-slatelab/WikiSRS.

206

Proceedings of the 3rd Workshop on Representation Learning for NLP, pages 207–216
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

A Sequence-to-Sequence Model for Semantic Role Labeling

Angel Daza and Anette Frank
Leibniz ScienceCampus “Empirical Linguistics and Computational Language Modeling”

Department of Computational Linguistics
Heidelberg University

69120 Heidelberg, Germany
{daza,frank}@cl.uni-heidelberg.de

Abstract

We explore a novel approach for Seman-
tic Role Labeling (SRL) by casting it as
a sequence-to-sequence process. We em-
ploy an attention-based model enriched
with a copying mechanism to ensure faith-
ful regeneration of the input sequence,
while enabling interleaved generation of
argument role labels. Here, we apply this
model in a monolingual setting, perform-
ing PropBank SRL on English language
data. The constrained sequence generation
set-up enforced with the copying mecha-
nism allows us to analyze the performance
and special properties of the model on
manually labeled data and benchmarking
against state-of-the-art sequence labeling
models. We show that our model is able
to solve the SRL argument labeling task
on English data, yet further structural de-
coding constraints will need to be added
to make the model truly competitive. Our
work represents a first step towards more
advanced, generative SRL labeling setups.

1 Introduction

Semantic Role Labeling (SRL) is the task of
assigning semantic argument structure to con-
stituents or phrases in a sentence, to answer the
question: Who did what to whom, where and
when? This task is normally accomplished in two
steps: first, identifying the predicate and second,
labeling its arguments and the roles that they play
with respect to the predicate. SRL has been for-
malized in different frameworks, the most promi-
nent being FrameNet (Baker et al., 1998) and
PropBank (Palmer et al., 2005). In this work we
focus on argument identification and labeling us-
ing the PropBank (PB) annotation scheme.

Figure 1: An input sentence (top), its PropBank
predicate-argument structure (middle) and its lin-
earized labeled sequence produced by our system.

Recent end-to-end neural models considerably
improved the state-of-the-art results for SRL in
English (He et al., 2017; Marcheggiani and Titov,
2017). In general, such models treat the problem
as a supervised sequence labeling task, using deep
LSTM architectures that assign a label to each to-
ken within the sentence.

SRL training resources for other languages are
more restricted in size and thus, models suf-
fer from sparseness problems because specific
predicate-role instances occur only a handful of
times in the training set. Since annotating SRL
data in larger amounts is expensive, the use of a
generative neural network model could be ben-
eficial for automatically obtaining more labeled
data in low-resource settings. The model that
we present in this paper is a first step towards a
joint label and language generation formulation
for SRL, using the sequence-to-sequence architec-
ture as a starting point.

We explore a sequence-to-sequence formulation
of SRL that we apply, as a first step, in a classical
monolingual setting on PropBank data, as illus-
trated in Figure 1. This constrained monolingual
setting will allow us to analyze the suitablility of
a sequence-to-sequence architecture for SRL, by
benchmarking the system performance against ex-
isting sequence labeling models for SRL on well
known labeled evaluation data.

207

Sequence-to-sequence (seq2seq) models were
pioneered by Sutskever et al. (2014), and later en-
hanced with an attention mechanism (Bahdanau
et al., 2014; Luong et al., 2015). They have been
successfully applied in many related structure pre-
diction tasks such as syntactic parsing (Vinyals
et al., 2015), parsing into Abstract Meaning Rep-
resentation (Konstas et al., 2017), semantic pars-
ing (Dong and Lapata, 2016), and cross-lingual
Open Information Extraction (Zhang et al., 2017).

When applying a seq2seq model with attention
in a monolingual SRL labeling setup, we need to
restrict the decoder to reproduce the original input
sentence, while in addition inserting PropBank la-
bels into the target sequence in the decoding pro-
cess (see Figure 1). To achieve this, we encode
each input sentence into a suitable representation
that will be used by the decoder to regenerate word
tokens as given in the source sentence and intro-
ducing SRL labels in appropriate positions to la-
bel argument spans with semantic roles. In order
to avoid lexical deviations in the output string, we
add a copying mechanism (Gu et al., 2016) to the
model. This technique was originally proposed
to deal with rare words by copying them directly
from the source when appropriate. We apply this
mechanism in a novel way, with the aim of guid-
ing the decoder to reproduce the input as closely
as possible, while otherwise giving it the option of
generating role labels in appropriate positions in
the target sequence.

Our main contributions in this work are:
(i) We propose a novel neural architecture for

SRL using a seq2seq model enhanced with atten-
tion and copying mechanisms.

(ii) We evaluate this model in a monolingual set-
ting, performing PropBank-style SRL on standard
English datasets, to assess the suitability of this
model type for the SRL labeling task.

(iii) We compare the performance of our model
to state-of-the-art sequence labeling models, in-
cluding detailed (also comparative) error analysis.

(iv) We show that the seq2seq model is suited
for the task, but still lags behind sequence labeling
systems that include higher-level constraints.

2 Model

We propose an extension to the Sequence-to-
Sequence model of (Bahdanau et al., 2014) to per-
form SRL.1 The model will learn to map an unla-

1In this work we restrict ourselves to argument labeling.

beled source sequence of words (x1...xTx) into a
target sequence (y1...yTy) consisting of word to-
kens and SRL label tokens (see Figure 2). The
source sentence, represented as a sequence of
dense word vectors, is fed to an LSTM encoder
to produce a series of hidden states that represent
the input. This information is used by the decoder
to recursively generate tokens step-by-step, con-
ditioned on the previous generated tokens and the
source by attending the encoder’s hidden states as
proposed in Bahdanau et al. (2014). On top of
this architecture, we add the copying mechanism
(Gu et al., 2016), which helps the model to avoid
lexical deviations in the output while still having
the freedom of generating words and SRL labels
based on the context. The attention-based gener-
ation and copying mechanism will be competing
with each other so that the model learns when to
copy directly from the source and when to gener-
ate the next token.

In our current setup we restrict role labeling to
a single predicate per sentence. If a sentence has
more than one predicate, we create a separate copy
for each predicate; the same setting was applied
in Zhou and Xu (2015). In each sentence copy
the predicate whose roles are to be labeled is pre-
ceded by a special token <PRED> that marks the
position of the predicate under consideration. This
helps the decoder to focus on generating argument
labels for that specific predicate (see Table 1.)

2.1 Vocabulary

We assume a unique vocabulary for both en-
coder and decoder that comprises the words oc-
curring during training, the out-of-vocabulary to-
ken, and the special symbol used to mark the po-
sition of the predicate, thus V = {v1, ..., vN} ∪
{UNK,< PRED >}. In addition, we employ
a set L = {l1, ..., lM} with all the possible la-
beled brackets and a set X = {x1..., xTx}, a per-
instance set containing the Tx words from the cur-
rent source sequence. Thus, our total vocabulary
is defined for each instance as V ∪ L ∪ X .

The label set L contains one common opening
bracket (# for all argument types to indicate the
beginning of an argument span, and several label-
specific closing brackets, such as P0:A1), which
indicates in this case that the span for argument
A1 is ending (see also Table 1).

208

Figure 2: A sequence-to-sequence model for SRL. A score for copying and a score for generating tokens
is computed at each time step and a joint softmax determines the probability of the next token over the
extended vocabulary of words V , labels L and current instance words X .

2.2 Encoder

We use a two-layer bi-RNN encoder with LSTM
cells (Hochreiter and Schmidhuber, 1997) that
outputs a series of hidden states hj =

[−→
hj ;
←−
hj

]

where each hj contains information about the sur-
rounding context of the word xj . We refer to the
complete matrix of encoder hidden states as M,
since it acts as a memory that the decoder can use
to copy words directly from the source.

2.3 Attention Mechanism

We use the global dot product attention from Lu-
ong et al. (2015) to compute the context vector ci:

ci =
∑Tx

j=1 αijhj ; αij =
exp(ei,j)∑Tx

k=1 exp(ei,k)
(1)

where ei,j is the dot product function between de-
coder state si−1 and each encoder hidden state hj .

2.4 Decoder

The role of the decoder (a single-layer recurrent
unidirectional LSTM) is to emit an output token
yt from a learned distribution over the vocabulary
at each time step t given its state st, the previous
output token yt−1, the attention context vector ct,
and the memory M. To get this distribution it is
necessary to compute two separate modes: one for
generating and one for copying.

To obtain the probability of generating yt we
use the context vector produced by the attention
to learn a score ψg for each possible token vi of

being the next generated token. We define ψg as:

ψg(yt = vi) =Wo[st; ct], viεV ∪ L (2)

where WoεRN×2ds is a learnable parameter and
st, ct are the current decoder state and context vec-
tor respectively. This means that the model com-
putes a generation score for both words and labels,
based on what it is attending on at the current step.

For the probability of copying yt we compute
the score ψc of copying a token directly from the
source as:

ψc(yt = xj) = σ(hTj Wc)st, xjεX (3)

where WcεRdh×ds is a learnable parameter, hj is
the encoder hidden state representing xj , st is the
current decoder state, and σ is a non-linear trans-
formation; we used tanh for our experiments.

Using the two scoring methods, the decoder will
have two competing modes: the generation mode,
used to generate the most probable subsequent to-
ken based on attention; and the copying, used to
choose the next token directly from the encoder
memory M, which holds both positional and con-
tent information of the source. A final mixed dis-
tribution is calculated by adding the probability of
generating yt and the probability of copying yt:

p(yt|st, yt−1, ct,M) = p(yt,g|st, yt−1, ct)+
p(yt, c|st, yt−1,M) (4)

We use a softmax layer to convert the two scores
into a joint distribution that represents the mixed

209

Source-1: The trade figures <PRED> turn out well , and all those recently unloaded bonds spurt in price .
Target-1: (# The trade figures P0:A1) (# turn out P0:V) (# well P0:A2) , and all those recently unloaded bonds spurt in price .

Source-2: The trade figures turn out well , and all those recently <PRED> unloaded bonds spurt in price .
Target-2: The trade figures turn out well , and all those (# recently P0:AM-TMP) (# unloaded P0:V) (# bonds P0:A1) spurt in price .

Source-3: The trade figures turn out well , and all those recently unloaded bonds <PRED> spurt in price .
Target-3: The trade figures turn out well , and (# all those recently unloaded bonds P0:A1) (# spurt P0:V) (# in price P0:AM-ADV) .

Table 1: A single sentence with three labeled predicates is converted into three different source-target
pairs. The symbol <PRED> in each source marks the predicate for which the model is expected to
generate a correct predicate-argument structure.

likelihood of generating and copying yt. Again
following Gu et al. (2016), we define this as:

p(yt,g|·) =
{

1
Z e

ψg(yt) ytεV ∪ L
0 otherwise

p(yt, c|·) =
{

1
Z

∑
j:xj=yt

eψc(xj) ytεX
0 otherwise

(5)

where Z is the normalization term shared by the
two modes, Z =

∑
vεV e

ψg(v) +
∑

xεX e
ψc(x).

Since a single softmax is applied over the copying
and generating modes, the network learns by itself
when it is proper to copy a word from the source
and when it needs to generate a label.

During training, the objective is to minimize
the negative log-likelihood of the target token yt
for each time-step for both generate mode (given
previous generated tokens) and copy mode (given
source sequence X). We calculate the loss for the
whole sequence as:

loss = − 1

Ty

Ty∑

t=0

logP (yt|y<t, X) (6)

3 Experimental Setup

3.1 Datasets and Evaluation Measures

We test the performance of our system on
the span-based SRL datasets CoNLL-052 and
CoNLL-12.3 These datasets provide the gold
predicate as part of the input. Since we focus
on argument identification and classification, we
provide this information in the input to the sys-
tem. We use the standard training, development

2http://www.lsi.upc.edu/˜srlconll/
home.html

3http://conll.cemantix.org/2012/data.
html

and test splits and use the official CoNLL-05 eval-
uation script on both datasets. We compare our re-
sults with Collobert et al. (2011); FitzGerald et al.
(2015); Zhou and Xu (2015) and He et al. (2017)
who use the same datasets and evaluation script.
We show results separately for the Brown and WSJ
portion of the CoNLL-05 test dataset.

The CoNLL-05 Shared Task4 evaluation script
computes precision, recall and F1 measure (the
harmonic mean of precision and recall) for the pre-
dicted arguments. The script expects prediction-
gold pairs that have the same number of words in
order to consider them comparable, and only if this
is the case, it computes a score. Furthermore, an
argument is only considered correct if the words
spanning the argument as well as its role label
match with gold (Carreras and Màrquez, 2005).
This means that it is essential to predict perfect
argument spans besides the correct role label.

3.2 Pre-processing

For our seq2seq model we need to provide sources
and targets in a linearized manner. The sequences
are sentences with zero or more predicates. Fol-
lowing Zhou and Xu (2015), if a sentence has np
predicates we process the sentence np times, each
one with its corresponding predicate-argument
structure. As shown in Table 1, we linearize the
target side by converting the CoNLL format into
sequences of tokens that include brackets indicat-
ing the span of the argument and the argument la-
bel on the closing bracket. We inform the model
about the predicate that it should focus on by
adding the special token <PRED> to the source
sequence immediately before the predicate word.
This process is entirely reversible and thus we con-
vert the system outputs back to CoNLL format and
evaluate the results with the official script.

4http://www.lsi.upc.edu/˜srlconll/
soft.html

210

CoNLL-05 CoNLL-12
Dev WSJ Brown Dev Test

Seq2seq (attention-only)

same length 29.19 29.98 32.24 - -
brackets 95.25 94.93 94.24 - -

Seq2seq (w/ Attention & Copying)

same length 96.71 97.15 97.24 97.46 96.07
brackets 99.91 99.82 99.88 99.97 99.93

Table 2: Quality of reproducing words and SRL
brackets with seq2seq: Attention-only vs. Atten-
tion & Copying, on CoNLL-05 and CoNLL-12
datasets: percentage of correctly reproduced sen-
tence length and percentage of balanced brackets.

3.3 Training
Since we process as many copies of sentences as
it has predicates, the final amount of sequences is
approximately 94K for CoNLL-05 and 185K for
CoNLL-12 training sets. We keep linearized se-
quences up to 100 tokens long and lowercase all
tokens. Given this limit, we omit 30 (CoNLL-
05) and 900 (CoNLL-12) sequences from train-
ing. We initialize the model with pre-trained
100-dimensional GloVe embeddings (Pennington
et al., 2014) and update them during training.5 All
the tokens that are not covered by GloVe or that
appear less frequently than a given threshold6 in
the training dataset are mapped to the UNK em-
bedding. We keep track of this mapping to be able
to post-process the sequence and recover the rare
tokens. Our vocabulary size is set to |V| ≈ 20K
words for CoNLL-05 and |V| ≈ 18K words for
CoNLL-12.

We use Adam optimizer (Kingma and Ba,
2014), a learning rate lr = 0.001 and gradient
clipping at 5.0. Both encoder and decoder have
hidden layer of 512 LSTMs. We use dropout (Sri-
vastava et al., 2014) of 0.4 and train for 4 epochs
with batch size of 6.

4 Evaluation and Results

Initially, we trained a model using attention only,
and it learned to generate balanced brackets (ev-
ery opening bracket has a corresponding closing

5We also experimented with word2vec word embed-
dings (Mikolov et al., 2013) but found GloVe6B (trained
on Wikipedia2014+Gigaword5) embeddings to perform
better. Available at https://nlp.stanford.edu/
projects/glove/

6We used a threshold of 10 for CoNLL-05 and 15 for
CoNLL-12.

CoNLL-05 CoNLL-12
dev test WSJ Brown dev test

Collobert 72.29 74.15 - - - -
FitzGerald 78.3 - 79.4 71.2 79.2 79.6
Zhou & Xu 79.55 81.27 82.84 69.41 81.07 81.27
He 81.6 81.6 83.1 72.1 81.5 81.7
Ours (min) 76.05 76.7 78.13 66.28 73.4 73.61
Ours (max) 77.29 77.87 79.23 68.39 75.05 75.43

Table 3: F1 measure for argument role labeling
of our seq2seq model w/ Attention & Copying on
CoNLL-05 and CoNLL-12 dev and test sets, com-
pared to Collobert w/o parser, FitzGerald single
model, Zhou & Xu, and He single model .

bracket within the sequence) without further con-
straints. Yet, due to its generative nature, many
target sequences diverged from the source in both
length and token sequences. This was expected,
because the system has to learn to generate not
only the labels at the correct time-step but also to
re-generate the complete sentence accurately. This
is a disadvantage compared to the sequence label-
ing models where the words are already given.

By adding copying mechanism the model suc-
cessfully regenerates the source sentence in the
majority (up to 99%) of cases, as shown in Ta-
ble 2. Such behavior also enables us to measure
the performance of the model as an argument role
classifier against the gold standard. Thus, we can
benchmark its labeling performance against previ-
ous architectures built to solve the SRL task.

Table 3 displays the overall labeling perfor-
mance of our copying-enhanced seq2seq model in
comparison to previous neural sequence labeling
architectures. For sequences that do not fully re-
produce the input, we cannot compute appropriate
scores against the gold standard. We compute two
alternative scores for these cases: oracle-min, by
setting the score for these sentences to 0.0 F1, and
oracle-max, by setting their results to the scores
we would obtain with perfect (= gold) labels. With
these scores, we can better estimate the loss we
are experiencing by non-perfectly reproduced se-
quences (see Table 2.)

As seen in Table 3, our model achieves an F1
score of 76.05 on the CoNLL-05 development set,
and 73.4 on CoNLL-12 (min-oracle), and 77.29
and 75.05 (max-oracle), respectively. While these
scores are still low compared to the latest neural
SRL architectures, they are above the relatively
simple model of Collobert et al. (2011). Note also

211

Figure 3: Example of the alignments learned by
the attention mechanism.

that in contrast to the stronger models of FitzGer-
ald et al. (2015); Zhou and Xu (2015) and He et al.
(2017), our architecture is very lean and does not
(yet) employ structured prediction (e.g. Condi-
tional Random Field), to impose structural con-
straints on the label assignment. While this is cer-
tainly an extension we are going to explore in fu-
ture work, here we will conduct deeper investiga-
tion to learn more about the kind of errors that our
unconstrained seq2seq model makes. We report
the analysis on CoNLL-05 development set.

4.1 Analysis

Argument Spans The model needs to generate
labeled brackets at the appropriate time-step, in
other words, the prediction of correct spans for
arguments. To verify how well it is doing this,
we measure how much overlap exists between the
generated spans and the gold ones. This is equiva-
lent to computing unlabeled argument assignment.
We found that 77.5% of the spans match the gold
spans completely, 21.2% of spans are partially
overlapping with gold spans, and only 1.2% of the
spans do not overlap at all with gold.

Argument Labels Recall from Section 2 that
our model is labeling the sentences as in a trans-
lation task. It learns to use information from rel-
evant words in the source sequence, aligning the
labels to the argument words via learned attention
weights as it is shown in Figure 3. This allows
us to see where the model is looking when gen-
erating the labeled bracket. The confusion ma-
trix in Figure 4 shows predicted vs. gold labels
for all correctly assigned argument spans (i.e., the
spans that match the gold boundaries). We observe
that the model does very well for A0 and A1 gold
roles, and that it causes only few misclassifications
for A2. However, it frequently predicts core ar-

Figure 4: Confusion matrix showing percentage
of predicted labels compared to the gold labels on
the CoNLL-05 development set.

Figure 5: Percentage of sentences with 0,1,2 or
more missing (blue) or excess (orange) arguments
(seq2seq w/Copying, CoNLL-05, dev set).

gument roles A0–A3 for non-argument roles, and
also tends to mix predictions among non-core ar-
guments. Since A0 and A1 roles are most frequent
in the data, this indicates that the seq2seq model
would benefit from more training data, particularly
for less frequent roles, to better differentiate roles,
and this is more prominent for the ones that are
marked with prepositions.

Role co-occurrence and role set constraints
Despite the absence of more refined decoding con-
straints, our model learns to avoid generating du-
plicated argument labels in most of the sequences.
We find duplicated argument labels in less than
1% of the sequences. Figure 5 shows that the
majority (about 70%) of sentences do not involve
any missing or excess arguments; about 24/20%
of sentences experience a single missing/excess
role, and only 5/4% of the sentences experience
a higher amount of missed/excess roles. Overall,

212

Figure 6: Performance of the model based on the
number of tokens that the sequence has.

Figure 7: F1 score of arguments in buckets of in-
creasing distances from their predicate, with dis-
tance normalized by sentence length (CoNLL-05,
dev). We compare our model with He et al. (2017).

missed vs. excess arguments are balanced.
Sequence Length Another characteristic of the

seq2seq model is that it encodes within a single
sequence both words and labeled brackets. This
increases the length of the sequences that need to
be processed, and it is a well known problem that
sequence length affects performance of recurrent
neural models, even with the use of attention.

To measure the labeling performance difficulty
with increasing sequence length, we partitioned
the system outputs in six different bins containing
groups of sentences of similar length (see Figure
6). As expected, the F1 score degrades propor-
tionally to the length of the sequence, especially
in sentences with more than 30 tokens.

Distance to predicate He et al. (2017) show

Figure 8: Error ratio of arguments in different re-
gions of the sequences (CoNLL-05, dev).

that the surface distance between the argument and
the predicate is also proportional to the amount of
labeling errors. In our model, the distance between
argument words and the predicate is even longer
because of labeled brackets embedded in the se-
quence. Figure 7 displays the F1 score for differ-
ent token distances between predicate and the re-
spective argument. We see that the seq2seq model
follows the same trend as the sequence labeling
model, despite the fact that our model has access
to the hidden states from the encoded input sen-
tence; however, the real distance between predi-
cate and argument in the decoder is also bigger.

Distance from sentence beginning. With each
token that the model generates in decoding, the
distance to the end position of the encoded sen-
tence representation grows. While intuitively we
would expect the model performance to degrade
with larger distance to the input, it is also true that
the model could be more prone to making mistakes
at the beginning of the sequence, when the decoder
has not yet generated enough context. To investi-
gate this, we traced the ratio of errors that occur
in several ranges of the sequence. We can see in
Figure 8 that the first intuition was correct, the dis-
tance to the encoded representation is proportional
to the mistakes that the model makes. We com-
pare the error ratio to He et al. (2017) and show
that the seq2seq system follows a similar trend but
degrades faster with sequence length.

5 Related Work

Semantic Role Labeling. Traditional approaches
to SRL relied on carefully designed features and
expensive techniques to achieve global consis-
tency such as Integer Linear Programming (Pun-
yakanok et al., 2008) or dynamic programming

213

(Täckström et al., 2015). First neural SRL at-
tempts tried to mix syntactic features with neural
network representations. For example, FitzGerald
et al. (2015) created argument and role representa-
tions using a feed-forward NN, and used a graphi-
cal model to enforce global constraints. Roth and
Lapata (2016), on the other hand, proposed a neu-
ral classifier using dependency path embeddings
to assign semantic labels to syntactic arguments.

Collobert et al. (2011) proposed the first SRL
neural model that did not depend on hand-crafted
features and treated the task as an IOB sequence
labeling problem. Later, Zhou and Xu (2015) pro-
posed a deep bi-directional LSTM model with a
CRF layer on top. This model takes only the orig-
inal text as input and assigns a label to each in-
dividual word in the sentence. He et al. (2017)
also treat SRL as a IOB tagging problem, and
use again a deep bi-LSTM incorporating highway
connections, recurrent dropout and hard decod-
ing constraints together with an ensemble of ex-
perts. This represents the best performing sys-
tem on two span-based benchmark datasets so far
(namely, CoNLL-05 and CoNLL-12). Marcheg-
giani et al. (2017) show that it is possible to con-
struct a very accurate dependency-based SRL sys-
tem without using any kind of explicit syntactic
information. In subsequent work, Marcheggiani
and Titov (2017) combine their LSTM model with
a graph convolutional network to encode syntactic
information at word level, which improves their
LSTM classifier results on the dependency-based
benchmark dataset (CoNLL-09).

Sequence-to-sequence models. Seq2seq mod-
els were first discovered as powerful models for
Neural Machine Translation (Sutskever et al.,
2014; Cho et al., 2014) but soon proved to be use-
ful for any kind of problem that could be repre-
sented as a mapping between source and target se-
quences. Vinyals et al. (2015) demonstrate that
constituent parsing can be formulated as a seq2seq
problem by linearizing the parse tree. They obtain
close to state-of-the-art results by using a large
automatically parsed dataset. Dong and Lapata
(2016) built a model for a related problem, seman-
tic parsing, by mapping sentences to logical form.
Seq2seq models have also been widely used for
language generation (e.g. Karpathy and Li (2015);
Chisholm et al. (2017)) given their ability to pro-
duce linguistic variation in the output sequences.

More closely related to SRL is the AMR pars-

ing and generation system proposed by Konstas
et al. (2017). This work successfully constructs a
two-way mapping: generation of text given AMR
representations as well as AMR parsing of natural
language sentences. Finally, Zhang et al. (2017)
went one step further by proposing a cross-lingual
end-to-end system that learns to encode natural
language (i.e. Chinese source sentences) and to de-
code them into sentences on the target side con-
taining open semantic relations in English, using a
parallel corpus for training.

6 Conclusions

In this paper we explore the properties of a
Sequence-to-Sequence model for identifying and
labeling PropBank roles. This is motivated by the
fact that using a seq2seq model gives more flexi-
bility for further tasks such as constrained gener-
ation and cross-lingual label projection. Another
advantage is that our model is a very lean architec-
ture compared to the deep Bi-LSTM of the recent
SRL models.

To our knowledge, this is the first attempt to
perform SRL using a seq2seq approach. Specific
challenges emerged by formulating the problem
in this way, such as: (i) the decoding of labels
and words within a single sequence; (ii) generat-
ing balanced labeled brackets at the correct posi-
tion; (iii) avoiding repetition of tokens, and espe-
cially, (iv) generating labeled sequences that per-
fectly match the source sentence in order to make
the labeled sequence absolutely comparable.

Despite these difficulties, we could show that
a sequence-to-sequence model with attention and
copying achieves quite respectable labeling per-
formance with a lean architecture and without yet
considering structural constraints. For future work
we consider extensions towards joint semantic role
labeling and constrained generation, to produce
new variations of existing labeled data.

Acknowledgements

We thank the reviewers for their insightful com-
ments. We are also grateful to Éva Mújdricza-
Maydt for assistance with the PropBank label-
ing scheme and CoNLL datasets. This research
is funded by the Leibniz ScienceCampus Empiri-
cal Linguistics & Computational Language Mod-
eling, supported by Leibniz Association grant no.
SAS2015-IDS-LWC and by the Ministry of Sci-
ence, Research, and Art of Baden-Wurttemberg.

214

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural Machine Translation by Jointly
Learning to Align and Translate.

Collin F. Baker, Charles J. Fillmore, John B. Lowe,
Collin F. Baker, Charles J. Fillmore, and John B.
Lowe. 1998. The berkeley framenet project. In
Proceedings of the 17th international conference on
Computational linguistics, volume 1, page 86, Mor-
ristown, NJ, USA. Association for Computational
Linguistics.

Xavier Carreras and Lluı́s Màrquez. 2005. Intro-
duction to the conll-2005 shared task: Semantic
role labeling. In Proceedings of the Ninth Confer-
ence on Computational Natural Language Learn-
ing, CONLL ’05, pages 152–164, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Andrew Chisholm, Will Radford, and Ben Hachey.
2017. Learning to generate one-sentence biogra-
phies from wikidata. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 1, Long
Papers, pages 633–642. Association for Computa-
tional Linguistics.

Kyunghyun Cho, Bart van Merriënboer, Çalar
Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Ronan Collobert, Jason Weston, Lon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel P. Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12:2493–2537.

Li Dong and Mirella Lapata. 2016. Language to logi-
cal form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
33–43. Association for Computational Linguistics.

Nicholas FitzGerald, Oscar Täckström, Kuzman
Ganchev, and Dipanjan Das. 2015. Semantic role
labeling with neural network factors. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing (EMNLP ’15).

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1631–1640, Berlin, Germany. Association for
Computational Linguistics.

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle-
moyer. 2017. Deep semantic role labeling: What
works and whats next. In Proceedings of the An-
nual Meeting of the Association for Computational
Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Andrej Karpathy and Fei-Fei Li. 2015. Deep visual-
semantic alignments for generating image descrip-
tions. pages 3128–3137. IEEE Computer Society.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin
Choi, and Luke Zettlemoyer. 2017. Neural amr:
Sequence-to-sequence models for parsing and gen-
eration. pages 146–157.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2015, Lisbon, Portu-
gal, September 17-21, 2015, pages 1412–1421.

Diego Marcheggiani, Anton Frolov, and Ivan Titov.
2017. A simple and accurate syntax-agnostic neural
model for dependency-based semantic role labeling.
In Proceedings of the 21st Conference on Computa-
tional Natural Language Learning (CoNLL 2017),
pages 411–420, Vancouver, Canada. Association for
Computational Linguistics.

Diego Marcheggiani and Ivan Titov. 2017. Encoding
sentences with graph convolutional networks for se-
mantic role labeling. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1506–1515, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems -
Volume 2, NIPS’13, pages 3111–3119, USA. Curran
Associates Inc.

Martha Palmer, Paul Kingsbury, and Daniel Gildea.
2005. The proposition bank: An annotated corpus
of semantic roles. Computational Linguistics, 31.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

215

Vasin Punyakanok, Dan Roth, and Wen-tau Yih. 2008.
The importance of syntactic parsing and infer-
ence in semantic role labeling. Comput. Linguist.,
34(2):257–287.

Michael Roth and Mirella Lapata. 2016. Neural se-
mantic role labeling with dependency path embed-
dings. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1192–1202, Berlin,
Germany. Association for Computational Linguis-
tics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res., 15(1):1929–
1958.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. pages 3104–3112.

Oscar Täckström, Kuzman Ganchev, and Dipanjan
Das. 2015. Efficient inference and structured learn-
ing for semantic role labeling. Transactions of the
Association for Computational Linguistics, 3:29–41.

Oriol Vinyals, Ł ukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. pages 2773–2781.

Sheng Zhang, Kevin Duh, and Benjamin Van Durme.
2017. Mt/ie: Cross-lingual open information ex-
traction with neural sequence-to-sequence models.
In Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers, pages 64–70.
Association for Computational Linguistics.

Jie Zhou and Wei Xu. 2015. End-to-end learning of
semantic role labeling using recurrent neural net-
works. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1127–1137, Beijing, China. Association for
Computational Linguistics.

216

Proceedings of the 3rd Workshop on Representation Learning for NLP, pages 217–222
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

Predicting Concreteness and Imageability of Words
Within and Across Languages via Word Embeddings

Nikola Ljubešić
Dept. of Knowledge Technologies

Jožef Stefan Institute
Jamova cesta 39, SI-1000 Ljubljana
nikola.ljubesic@ijs.si

Darja Fišer
Dept. of Translation, Faculty of Arts

University of Ljubljana
Aškerčeva 2, SI-1000 Ljubljana

darja.fiser@ff.uni-lj.si

Anita Peti-Stantić
Faculty of Humanities and Social Sciences

University of Zagreb
Ivana Lučića 3, HR-10000 Zagreb

anita.peti-stantic@ffzg.hr

Abstract
The notions of concreteness and image-
ability, traditionally important in psy-
cholinguistics, are gaining significance in
semantic-oriented natural language pro-
cessing tasks. In this paper we investigate
the predictability of these two concepts via
supervised learning, using word embed-
dings as explanatory variables. We per-
form predictions both within and across
languages by exploiting collections of
cross-lingual embeddings aligned to a sin-
gle vector space. We show that the no-
tions of concreteness and imageability are
highly predictable both within and across
languages, with a moderate loss of up to
20% in correlation when predicting across
languages. We further show that the cross-
lingual transfer via word embeddings is
more efficient than the simple transfer via
bilingual dictionaries.

1 Introduction

Concreteness and imageability are very important
notions in psycholinguistic research, building on
the theory of the double, verbal and non-verbal,
modality of representation of concrete words in
the mental lexicon, contrasted to single verbal rep-
resentation of abstract words (Paivio, 1975, 2010).
Although often correlated with concreteness, im-
ageability is not a redundant property. While most
abstract things are hard to visualize, some call up
images, e.g., torture calls up an emotional and
even visual image. There are concrete things that
are hard to visualize too, for example, abbey is
harder to visualize than banana (Tsvetkov et al.,
2014).

Both notions have proven to be useful in com-
putational linguistics as well. Turney et al. (2011)
present a supervised model that exploits con-
creteness to correctly classify 79% of adjective-
noun pairs as having literal or non-literal mean-
ing. Tsvetkov et al. (2014) exploit both the no-
tions of concreteness and imageability to per-
form metaphor detection on subject-verb-object
and adjective-noun relations, correctly classifying
82% and 86% instances, respectively.

The aim of this paper is to investigate the pre-
dictability of concreteness and imageability within
a language, as well as across languages, by ex-
ploiting cross-lingual word embeddings as our
available signal.

2 Related Work

While much work has been done on exploiting
word embeddings in expanding sentiment lexicons
(Tang et al., 2014; Amir et al., 2015; Hamilton
et al., 2016), there is little work on predicting other
lexical variables, concreteness and imageability
included.

Tsvetkov et al. (2014) performed metaphor de-
tection, using, among others, concreteness and im-
ageability as their features. To propagate these
features, obtained from the MRC psycholinguis-
tic database (Wilson, 1988) to the entire lexicon,
they used a supervised learning algorithm on vec-
tor space representations, where each vector ele-
ment represented a feature. Performance of these
classifiers was 0.94 for concreteness and 0.85 for
imageability. They also applied the concreteness
and imageability features to other languages by
projecting features with bilingual dictionaries.

Broadwell et al. (2013) extended imageability
scores to the whole lexicon by using the MRC

217

imageability scores and hyponym and hyperonym
links from WordNet.

Rothe et al. (2016) trained an orthogonal trans-
formation to reorder word embedding dimensions
into one-dimensional ultradense subspaces, the
output thereby being a lexicon. They trained the
transformations for sentiment, concreteness and
frequency. For obtaining training data for con-
creteness, they used the BWK database (Brysbaert
et al., 2014). They showed that concreteness and
sentiment can be better extracted from embedding
spaces than frequency, with a Kendall τ correla-
tion coefficient of 0.623 for concreteness. Rothe
and Schütze (2016) further exploited this method
to perform operations over the extracted dimen-
sions, such as given a concrete word like friend,
find the related, but abstract word friendship.

Contributions In this paper we perform a sys-
tematic investigation of transfer of two lexical no-
tions, concreteness and imageability, (1) to the re-
mainder of the lexicon not covered in an annota-
tion campaign, and (2) to other languages.

While there were already successful transfers
within a language based on word embeddings
(Tsvetkov et al., 2014; Rothe and Schütze, 2016),
the only cross-lingual transfer was based on trans-
fer via bilingual dictionaries (Tsvetkov et al.,
2014). In this paper we compare the effectiveness
of cross-lingual transfer via word embeddings and
via bilingual dictionaries.

A byproduct of this research is a lexical re-
source in 77 languages containing per-word esti-
mates for concreteness and imageability.

3 Data

3.1 Lexicons

In our experiments we use two existing English
and one Croatian lexicon with concreteness and
imageability ratings.

For English we use the MRC database (Wilson,
1988) (MRC onwards), consisting of 4,293 words
with ratings for concreteness and imageability.
The ratings range from 100 to 700 and were ob-
tained by merging three different resources (Wil-
son, 1988).

We also use the BWK database consisting of
39,954 English words (Brysbaert et al., 2014)
(BWK onwards) with concreteness ratings summa-
rized through arithmetic mean and standard devi-
ation. The ratings were collected in a crowdsourc-

ing campaign in which each word was labeled by
20 annotators on a 1–5 scale.

For Croatian we use the MEGAHR database
(MEGA onwards), consisting of 3,000 words, with
concreteness and imageability ratings summarized
through arithmetic mean and standard deviation.
The ratings were collected in an annotation cam-
paign among university students, with each word
obtaining 30 annotations per variable on a 1–5
scale.

For performing cross-lingual transfer via a dic-
tionary, we use data from a large popular online
Croatian-English dictionary1 containing around
100 thousand entries.

3.2 Embeddings

For both in-language and cross-lingual experi-
ments we use the aligned Facebook collection of
embeddings2, trained with fastText (Bojanowski
et al., 2016) on Wikipedia dumps, with embed-
ding spaces aligned between languages with a lin-
ear transformation learned via SVD (Smith et al.,
2017) on a bilingual dictionary of 500 out of the
1000 most frequent English words, obtained via
the Google Translate API3.

We also experimented with another cross-
lingual embedding collection (Conneau et al.,
2017), obtaining similar results and backing all
our conclusions. This is in line with recent work
on comparing cross-lingual embedding models
which suggests that the actual choice of monolin-
gual and bilingual signal is more important for the
final model performance than the actual underly-
ing architecture (Levy et al., 2017; Ruder et al.,
2017). Given that one of our goals is to trans-
fer concreteness and imageability annotations to
as many languages as possible, using cross-lingual
word embeddings based on Wikipedia dumps and
dictionaries obtained through a translation API is
the most plausible option.

4 Experiments

4.1 Setup

We perform two sets of experiments: one within
each language, and another across languages.

1http://www.taktikanova.hr/eh/
2https://github.com/facebookresearch/

fastText/blob/master/pretrained-vectors.
md

3https://github.com/Babylonpartners/
fastText_multilingual

218

While in-language experiments are always
based on supervised learning, in cross-lingual ex-
periments we compare two transfer approaches:
one based on a simple dictionary transfer, and
another on supervised learning on the word em-
beddings in the source language, and perform-
ing predictions on word embeddings in the target
language, with the two embedding spaces being
aligned.

We perform our prediction experiments by
training SVM regression models (SVR) and deep
feedforward neural networks (FFN) over standard-
ized (zero mean, unit variance) embeddings and
each specific response variable. We experiment
with all available gold annotations as our response
variables, namely both the arithmetic mean and
standard deviation of concreteness and imageabil-
ity.

We tuned the hyperparameters of each of the re-
gressors on a subset of the Croatian, MEGA dataset
in the case of the in-language experiments, and
another subset of the BWK dataset for the cross-
lingual experiments. Given that we perform the
final experiments on the whole datasets, and that
we have two additional English datasets at our dis-
posal for the in-language experiments and three
additional dataset pairs for the cross-lingual exper-
iments, we consider our approach to be resistant to
the overfitting of the hyperparameters going unno-
ticed.

While the SVR proved to work well with the
RBF kernel, theC hyperparameter of 1.0 and the γ
hyperparameter of 0.003, the feedforward network
obtained strong results with two fully-connected
hidden layers, consisting of 128 and 32 units each
and ReLU activation functions, with a dropout
layer after each of the hidden layers, and an out-
put layer with a linear activation function. We op-
timized for the mean squared error loss function
and ran 50 epochs on each of the datasets, with a
batch size of 32.

While we used the same regressor setup for
the SVR system for both the in-language and
cross-lingual experiments, for the FFN system
the dropout probability in the in-language exper-
iments was 0.5, while in the cross-lingual setting
the dropout probability was set to 0.8, obtaining
thereby a more general model which transfers bet-
ter to the other language.

We perform in-language experiments via 3-fold
cross-validation, while we train models on our

source language dataset and evaluate the models
on our target language dataset for cross-lingual
experiments. We evaluate each approach via the
Spearman rank and Pearson linear correlation co-
efficients. In the paper we report the Spear-
man correlation coefficient only as the relation-
ships across both metrics in all the experiments
are identical. We perform our experiments with
the scikit-learn (Pedregosa et al., 2011) and
keras (Chollet et al., 2015) toolkits.

4.2 In-language Experiments

We start our experiments in the in-language set-
ting, running cross-validation experiments over
each of our three datasets on all available vari-
ables. The results of these experiments, with
some basic information on the size of the datasets,
are given in Table 1. Aside from the three lex-
icons introduced in Section 3.1, we experiment
with another lexicon, BWK.3K, which is a ran-
domly downsampled version of the BWK lexicon
to the size of the two remaining lexicons. We in-
troduce this additional resource (1) to control for
dataset size when comparing results on our differ-
ent datasets and (2) to measure the impact of train-
ing data size by comparing the results on the two
flavours of the BWK dataset.

The results in Table 1 show that the support vec-
tor regressor consistently performs better than the
feedforward neural network at predicting almost
all values, with relative error reduction lying be-
tween 7% and 12%. The bold results are statis-
tically significantly better than the corresponding
non-bold ones given the approximate randomiza-
tion test (Edgington, 1969) with p < 0.05. Our as-
sumption is that the stronger FFN model does not
show a positive impact primarily due to the small
size of the datasets and the simplicity of the mod-
eling problem.

We can further observe that the arithmetic mean
is much easier to predict than standard deviation
on both variables in all the datasets. This can be
explained by the fact that standard deviation on the
two phenomena can partially be explained with the
level of ambiguity of a specific word, and this type
of information is at least not directly available in
context-based word embeddings.

Furthermore, imageability seems to be consis-
tently slightly harder to predict than concreteness.
Our initial assumption regarding this difference
was that imageability is a more vague notion for

219

dataset MEGA BWK BWK.3K MRC

lang hr en en en
size 2,682 22,797 3,000 4,061
method SVR FFN SVR FFN SVR FFN SVR FFN

C.M 0.760 0.742 0.887 0.879 0.848 0.834 0.872 0.863
C.STD 0.265 0.274 0.484 0.461 0.376 0.364 - -
I.M 0.645 0.602 - - - - 0.803 0.787
I.STD 0.439 0.415 - - - - - -

Table 1: Results of the in-language experiments on predicting mean (.M) and standard deviation (.STD)
of concreteness (C) and imageability (I), either using a support vector regressor (SVR) or feed-forward
network (FFN). Evaluation metric is the Spearman correlation coefficient.

human subjects, and therefore their responses are
more dispersed, adding to the complexity of the
prediction. However, analyzing standard devia-
tions over concreteness and imageability showed
that these are rather the same. We leave this open
question for future research.

When comparing the results on predicting mean
concreteness on the full BWK and the trimmed
BWK.3K datasets, we see a significant improve-
ment of the predictions of the on the larger dataset,
showing that having 10 times more data for learn-
ing can produce significant improvements in the
prediction quality.

4.3 Cross-lingual Experiments

In cross-lingual experiments we compare our two
approaches to cross-lingual transfer: dictionary
lookup (DIC onwards) and supervised learning on
aligned word embedding spaces via the two meth-
ods introduced in Section 4.2, SVR and FFN.

The DIC method simply looks up for each word
in the source language resource all possible trans-
lations to the target language and directly trans-
fers the concreteness and imageability ratings to
the target language words. In case of collisions
in the target language (two source language words
being translated to the same word in the target lan-
guage), we perform averaging over the transfered
ratings. In our experiments, the arithmetic mean
showed to be a better averaging method than the
median, we therefore report the results on that av-
eraging method.

The SVR and FFN methods use supervised learn-
ing in a very similar fashion to the in-language
experiments described in Section 4.2. We train a
supervised regression model on the whole source
language dataset, using word embedding dimen-

sions as features and the variable of choice as
our target. We obtain estimates of our vari-
able of choice in the target language by applying
the source-language model on the target-language
word embeddings since the two embedding spaces
are aligned.

For both approaches we compare the target-
language estimates with the gold data available
from our lexicons.

We present the results of the cross-lingual ex-
periments in Table 2. Our first observation is that,
while in the in-language setting the SVR method
has regularly outperformed the FFN method, in the
cross-lingual setting this is not the case any more,
with SVR and FFN obtaining very similar results,
in five out of six cases in the range of no statis-
tically significant difference. Our explanation for
the loss of the positive impact in using the weaker,
support vector regression model, is that with the
noisy alignment of the two embedding spaces the
prediction problem became harder, now both mod-
els performing similarly. While the strong point of
SVR is that it performs very well on small datasets,
the strong point of the FFN method is that it gener-
alizes better.

That higher generalization is beneficial in case
of the cross-lingual problem is observable in the
difference in the hyperparameter tuning results on
the FFN method, where in the in-language setting
the optimal dropout was 0.5, while in the cross-
lingual setting it is 0.8.

Our second observation is that all the predicted
ratings suffer in the cross-lingual setting, when
compared to the in-language results presented in
Table 1, observing for the SVR method a drop of
around 5 to 15%. While standard deviation was
already poorly predicted in the in-language set-

220

source MEGA (hr) BWK (en) MEGA (hr) MRC (en)
target BWK (en) MEGA (hr) MRC (en) MEGA (hr)

SVR FFN DIC SVR FFN DIC SVR FFN DIC SVR FFN DIC

C.M 0.791 0.793 0.728 0.724 0.719 0.641 0.797 0.794 0.611 0.651 0.644 0.638
C.STD 0.178 0.141 0.224 0.185 0.145 0.137 - - - -
I.M - - - - - - 0.694 0.683 0.523 0.548 0.531 0.503

Table 2: Results of the cross-lingual experiments, either using supervised learning (SVR, FFN), or simple
dictionary lookup (DIC). Evaluation metric is the Spearman correlation coefficient. Results in bold are
best results per problem with no statistically significant difference.

ting, in the cross-lingual setting it drops even fur-
ther to a non-useful level, below 0.2. This is the
reason why we do not calculate statistical signifi-
cance of the differences in these results and do not
include their estimates in our final 77-languages-
strong resource. In the final cross-lingual resource
we include only the mean of concreteness and
imageability, the notions for which we have ob-
tained strong correlation in our cross-lingual ex-
periments.

Finally, when comparing the cross-lingual
transfer via embeddings (SVR and FFN) and via a
dictionary (DIC), the learning-on-embeddings ap-
proach outperforms the dictionary method in each
instance, with the relative loss in correlation when
moving from the EMB to the DIC approach of 5%
to 25%.

4.4 Regressor Coefficient Analysis

Our final analysis concerns the question of how
many of the embedding dimensions are crucial for
our regressors to predict the notions of concrete-
ness and imageability. We consider two potential
scenarios: (1) each of the notions are encoded in
one or a few of the embedding dimensions and (2)
the notions are encoded in many embedding di-
mensions.

The analysis is performed by calculating the
cumulative distribution of absolute and normal-
ized (sum to 1), reversely sorted coefficients of the
SVM regressor with a linear kernel. For both phe-
nomena, concreteness and imageability, the dis-
tributions show that the predictions are based on
a significant number of embedding dimensions.
Namely, while 80 most informative dimensions
cover 50% of the coefficients’ mass, half of the
dimensions (150) cover 80% of that mass. This
shows for the second scenario – concreteness and
imageability are encoded in a significant number
of embedding dimensions – to be true.

5 Conclusion

In this paper we have shown that concreteness and
imageability ratings can be successfully transfered
both to non-covered portions of the lexicon and to
other languages via (cross-lingual) word embed-
dings.

With the in-language experiments we have
shown that the arithmetic mean of both notions is
much easier to predict than their standard devia-
tion, the latter probably encoding word ambiguity,
type of information not directly present in word
embeddings.

Our experiments across languages have shown
that the loss in comparison to in-language ex-
periments on predicting the means of both con-
creteness and imageability are around 15%, a rea-
sonable price to pay given the applicability of
the method to all of the 77 languages present
in the word embedding collection. The predic-
tions of concreteness and imageabililty obtained in
the 77 languages are available at http://hdl.
handle.net/11356/1187.4

Comparing the two methods of transfer – dic-
tionary vs. cross-lingual embeddings, shows regu-
larly better (5%–15%) results of the latter, proving
once more the usefulness of word embeddings, es-
pecially in the currently expanding cross-lingual
setup.

Acknowledgements

The work described in this paper has been funded
by the Croatian National Foundation project
HRZZ-IP-2016-06-1210, the Slovenian Research
Agency project ARRS J7-8280, and by the Slove-
nian research infrastructure CLARIN.SI.

4Ongoing developments are stored at https://
github.com/clarinsi/megahr-crossling/.

221

References
Silvio Amir, Ramón Astudillo, Wang Ling, Bruno

Martins, Mario J Silva, and Isabel Trancoso. 2015.
Inesc-id: A regression model for large scale twitter
sentiment lexicon induction. In Proceedings of the
9th International Workshop on Semantic Evaluation
(SemEval 2015). pages 613–618.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606 .

George Aaron Broadwell, Umit Boz, Ignacio Cases,
Tomek Strzalkowski, Laurie Feldman, Sarah Tay-
lor, Samira Shaikh, Ting Liu, Kit Cho, and
Nick Webb. 2013. Using imageability and topic
chaining to locate metaphors in linguistic cor-
pora. In Ariel M. Greenberg, William G. Kennedy,
and Nathan D. Bos, editors, Social Comput-
ing, Behavioral-Cultural Modeling and Prediction.
Springer Berlin Heidelberg, Berlin, Heidelberg,
pages 102–110.

Marc Brysbaert, AB Warriner, and V Kuperman.
2014. Concreteness ratings for 40 thousand gener-
ally known english word lemmas. BEHAVIOR RE-
SEARCH METHODS 46(3):904–911.

François Chollet et al. 2015. Keras. https://
keras.io.

Alexis Conneau, Guillaume Lample, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou. 2017.
Word translation without parallel data. arXiv
preprint arXiv:1710.04087 .

Eugene S. Edgington. 1969. Approxi-
mate randomization tests. The Jour-
nal of Psychology 72(2):143–149.
https://doi.org/10.1080/00223980.1969.10543491.

William L. Hamilton, Kevin Clark, Jure Leskovec, and
Dan Jurafsky. 2016. Inducing domain-specific sen-
timent lexicons from unlabeled corpora. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2016,
Austin, Texas, USA, November 1-4, 2016. pages
595–605. http://aclweb.org/anthology/D/D16/D16-
1057.pdf.

Omer Levy, Anders Søgaard, and Yoav Goldberg.
2017. A strong baseline for learning cross-lingual
word embeddings from sentence alignments. In
Proceedings of the 15th Conference of the Eu-
ropean Chapter of the Association for Computa-
tional Linguistics: Volume 1, Long Papers. Associa-
tion for Computational Linguistics, pages 765–774.
http://aclweb.org/anthology/E17-1072.

A. Paivio. 1975. Coding Distinctions and Repetition
Effects in Memory. Research bulletin. Department
of Psychology, University of Western Ontario.

Allan Paivio. 2010. Dual coding theory and the mental
lexicon. The Mental Lexicon 5(2):205–230.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research
12:2825–2830.

Sascha Rothe, Sebastian Ebert, and Hinrich Schütze.
2016. Ultradense word embeddings by orthogonal
transformation. CoRR abs/1602.07572.

Sascha Rothe and Hinrich Schütze. 2016. Word
embedding calculus in meaningful ultradense sub-
spaces. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers). volume 2, pages 512–517.

Sebastian Ruder, Ivan Vulić, and Anders
Søgaard. 2017. A survey of cross-lingual
embedding models. CoRR abs/1706.04902.
http://arxiv.org/abs/1706.04902.

Samuel L. Smith, David H. P. Turban, Steven Ham-
blin, and Nils Y. Hammerla. 2017. Offline bilin-
gual word vectors, orthogonal transformations and
the inverted softmax. CoRR abs/1702.03859.
http://arxiv.org/abs/1702.03859.

Duyu Tang, Furu Wei, Bing Qin, Ming Zhou, and Ting
Liu. 2014. Building large-scale twitter-specific sen-
timent lexicon: A representation learning approach.
In Proceedings of COLING 2014, the 25th Inter-
national Conference on Computational Linguistics:
Technical Papers. pages 172–182.

Yulia Tsvetkov, Leonid Boytsov, Anatole Gershman,
Eric Nyberg, and Chris Dyer. 2014. Metaphor de-
tection with cross-lingual model transfer. In ACL.

Peter D. Turney, Yair Neuman, Dan Assaf, and Yohai
Cohen. 2011. Literal and metaphorical sense iden-
tification through concrete and abstract context. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, Stroudsburg, PA,
USA, EMNLP ’11, pages 680–690.

Michael Wilson. 1988. Mrc psycholinguistic database:
Machine-usable dictionary, version 2.00. Behav-
ior Research Methods, Instruments, & Computers
20(1):6–10.

222

Author Index

Üstün, Ahmet, 144

Alacam, Özge, 41
Altszyler, Edgar, 1
António Rodrigues, João, 122
Asano, Hisako, 58

Bengio, Yoshua, 154
Branco, António, 122
Broscheit, Samuel, 187

Can, Burcu, 144
Cer, Daniel, 164
Chen, Wenfan, 84
Choi, Stanley Jungkyu, 24
Constant, Noah, 164

Dai, Tao, 113
Daza, Angel, 207
de Sa, Virginia, 69

Ethayarajh, Kawin, 91

Fang, Chen, 69
Fernandez Slezak, Diego, 1
Fišer, Darja, 217
Fosler-Lussier, Eric, 195
Frank, Anette, 207

Gao, Shang, 11
Ge, Heming, 164

Hartmann, Mareike, 159

Jacob, Athul Paul, 154
Jin, Hailin, 69
Jo, Hwiyeol, 24

Kann, Katharina, 101
Kong, Sheng-Yi, 164
Kurfalı, Murathan, 144
Kurzweil, Ray, 164

Lai, Albert M., 195
Lee, Minho, 30
Levi, Gil, 79
Levy, Omer, 180

Li, Haoran, 175
Li, Qiuchi, 50
Lin, Zhouhan, 154
Liu, Nelson F., 180
Ljubešić, Nikola, 217
Luo, Shiying, 113

Menzel, Wolfgang, 41
Moirangthem, Dennis Singh, 30

Newman-Griffis, Denis, 195
Nishida, Kosuke, 58
Nishida, Kyosuke, 58

Oguz, Barlas, 175

Peti-Stantić, Anita, 217
Pilar, Petr, 164
Pivovarova, Lidia, 64
Purwarianti, Ayu, 107

Ramanathan, Arvind, 11
Romadhony, Ade, 107

Søgaard, Anders, 159
Saedi, Chakaveh, 122
Salama, Amr Rekaby, 41
Schütze, Hinrich, 101
Schwartz, Roy, 180
Sheng, Weiguo, 84
Shi, Weiyan, 113
Sigman, Mariano, 1
Silva, João, 122
Smith, Noah A., 180
Song, Dawei, 50
Sordoni, Alessandro, 154
Strope, Brian, 164
Sung, Yun-hsuan, 164

Tan, Chenhao, 180
Tang, Shuai, 69
Tomita, Junji, 58
Tourassi, Georgia, 11

Uprety, Sagar, 50

223

Vulić, Ivan, 137

Wang, Benyou, 50
Wang, Jilei, 113
Wang, Zhaowen, 69
Wang, Zhichun, 132
Wicaksono, Alfan Farizki, 107
Widyantoro, Dwi Hendratmo, 107
Wu, Yanrong, 132

Xia, Shu-Tao, 113

Yaghoobzadeh, Yadollah, 101
Yang, Yinfei, 164
Yangarber, Roman, 64
Yu, Katherine, 175
Yuan, Steve, 164

	Program
	Corpus Specificity in LSA and Word2vec: The Role of Out-of-Domain Documents
	Hierarchical Convolutional Attention Networks for Text Classification
	Extrofitting: Enriching Word Representation and its Vector Space with Semantic Lexicons
	Chat Discrimination for Intelligent Conversational Agents with a Hybrid CNN-LMTGRU Network
	Text Completion using Context-Integrated Dependency Parsing
	Quantum-Inspired Complex Word Embedding
	Natural Language Inference with Definition Embedding Considering Context On the Fly
	Comparison of Representations of Named Entities for Document Classification
	Speeding up Context-based Sentence Representation Learning with Non-autoregressive Convolutional Decoding
	Connecting Supervised and Unsupervised Sentence Embeddings
	A Hybrid Learning Scheme for Chinese Word Embedding
	Unsupervised Random Walk Sentence Embeddings: A Strong but Simple Baseline
	Evaluating Word Embeddings in Multi-label Classification Using Fine-Grained Name Typing
	A Dense Vector Representation for Open-Domain Relation Tuples
	Exploiting Common Characters in Chinese and Japanese to Learn Cross-Lingual Word Embeddings via Matrix Factorization
	WordNet Embeddings
	Knowledge Graph Embedding with Numeric Attributes of Entities
	Injecting Lexical Contrast into Word Vectors by Guiding Vector Space Specialisation
	Characters or Morphemes: How to Represent Words?
	Learning Hierarchical Structures On-The-Fly with a Recurrent-Recursive Model for Sequences
	Limitations of Cross-Lingual Learning from Image Search
	Learning Semantic Textual Similarity from Conversations
	Multilingual Seq2seq Training with Similarity Loss for Cross-Lingual Document Classification
	LSTMs Exploit Linguistic Attributes of Data
	Learning Distributional Token Representations from Visual Features
	Jointly Embedding Entities and Text with Distant Supervision
	A Sequence-to-Sequence Model for Semantic Role Labeling
	Predicting Concreteness and Imageability of Words Within and Across Languages via Word Embeddings

