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Abstract

We investigate the use of different syntac-
tic dependency representations in a neu-
ral relation classification task and compare
the CoNLL, Stanford Basic and Universal
Dependencies schemes. We further com-
pare with a syntax-agnostic approach and
perform an error analysis in order to gain
a better understanding of the results.

1 Introduction

The neural advances in the field of NLP challenge
long held assumptions regarding system architec-
tures. The classical NLP systems, where compo-
nents of increasing complexity are combined in a
pipeline architecture are being challenged by end-
to-end architectures that are trained on distributed
word representations to directly produce different
types of analyses traditionally assigned to down-
stream tasks. Syntactic parsing has been viewed
as a crucial component for many tasks aimed at
extracting various aspects of meaning from text,
but recent work challenges many of these assump-
tions. For the task of semantic role labeling for
instance, systems that make little or no use of
syntactic information, have achieved state-of-the-
art results (Marcheggiani et al., 2017). For tasks
where syntactic information is still viewed as use-
ful, a variety of new methods for the incorpora-
tion of syntactic information are employed, such
as recursive models over parse trees (Socher et al.,
2013; Ebrahimi and Dou, 2015) , tree-structured
attention mechanisms (Kokkinos and Potamianos,
2017), multi-task learning (Wu et al., 2017), or the
use of various types of syntactically aware input
representations, such as embeddings over syntac-
tic dependency paths (Xu et al., 2015b).

Dependency representations have by now be-
come widely used representations for syntactic
analysis, often motivated by their usefulness in
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Figure 1: Dependency representations for the ex-
ample sentence.

downstream application. There is currently a wide
range of different types of dependency represen-
tations in use, which vary mainly in terms of
choices concerning syntactic head status. Some
previous studies have examined the effects of de-
pendency representations in various downstream
applications (Miyao et al., 2008; Elming et al.,
2013). Most recently, the Shared Task on Extrinsic
Parser Evaluation (Oepen et al., 2017) was aimed
at providing better estimates of the relative util-
ity of different types of dependency representa-
tions and syntactic parsers for downstream appli-
cations. The downstream systems in this previous
work have, however, been limited to traditional
(non-neural) systems and there is still a need for
a better understanding of the contribution of syn-
tactic information in neural downstream systems.

In this paper, we examine the use of syntactic
representations in a neural approach to the task
of relation classification. We quantify the effect
of syntax by comparing to a syntax-agnostic ap-
proach and further compare different syntactic de-
pendency representations that are used to generate
embeddings over dependency paths.
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2 Dependency representations

Figure 1 illustrates the three different depen-
dency representations we compare: the so-
called CoNLL-style dependencies (Johansson and
Nugues, 2007) which were used for the 2007,
2008, and 2009 shared tasks of the Conference on
Natural Language Learning (CoNLL), the Stan-
ford ‘basic’ dependencies (SB) (Marneffe et al.,
2006) and the Universal Dependencies (v1.3)
(UD; McDonald et al., 2013; Marneffe et al.,
2014; Nivre et al., 2016). We see that the analy-
ses differ both in terms of their choices of heads
vs. dependents and the inventory of dependency
types. Where CoNLL analyses tend to view func-
tional words as heads (e.g., the auxiliary verb are),
the Stanford scheme capitalizes more on content
words as heads (e.g., the main verb treated). UD
takes the tendency to select contentful heads one
step further, analyzing the prepositional comple-
ment functions as a head, with the preposition as
itself as a dependent case marker. This is in con-
trast to the CoNLL and Stanford scheme, where
the preposition is head.

For syntactic parsing we employ the parser de-
scribed in Bohnet and Nivre (2012), a transition-
based parser which performs joint PoS-tagging
and parsing. We train the parser on the standard
training sections 02-21 of the Wall Street Jour-
nal (WSJ) portion of the Penn Treebank (Mar-
cus et al., 1993). The constituency-based treebank
is converted to dependencies using two different
conversion tools: (i) the pennconverter software1

(Johansson and Nugues, 2007), which produces
the CoNLL dependencies2, and (ii) the Stanford
parser using either the option to produce basic de-
pendencies 3 or its default option which is Uni-
versal Dependencies v1.34. The parser achieves a
labeled accuracy score of 91.23 when trained on
the CoNLL08 representation, 91.31 for the Stan-
ford basic model and 90.81 for the UD representa-
tion, when evaluated against the standard evalua-
tion set (section 23) of the WSJ. We acknowledge
that these results are not state-of-the-art parse re-
sults for English, however, the parser is straight-

1http://nlp.cs.lth.se/software/
treebank-converter/

2The pennconverter tool is run using the
rightBranching=false flag.

3The Stanford parser is run using the -basic flag to pro-
duce the basic version of Stanford dependencies.

4Note, however, that the Stanford converter does not pro-
duce UD PoS-tags, but outputs native PTB tags.

forward to use and re-train with the different de-
pendency representations. We also compare to an-
other widely used parser, namely the pre-trained
parsing model for English included in the Stanford
CoreNLP toolkit (Manning et al., 2014), which
outputs Universal Dependencies only. However,
it was clearly outperformed by our version of the
Bohnet and Nivre (2012) parser in the initial de-
velopment experiments.

3 Relation extraction system

We evaluate the relative utility of different types of
dependency representations on the task of seman-
tic relation extraction and classification in scien-
tific papers, SemEval Task 7 (Gábor et al., 2018).
We make use of the system of Nooralahzadeh et al.
(2018): a CNN classifier with dependency paths
as input, which ranked 3rd (out of 28) partici-
pants in the overall evaluation of the shared task.
Here, the shortest dependency path (sdp) connect-
ing two target entities for each relation instance
is provided by the parser and is embedded in the
first layer of a CNN. We extend on their system by
(i) implementing a syntax-agnostic approach, (ii)
implementing hyper-parameter tuning for each de-
pendency representation, and (iii) adding Univer-
sal Dependencies as input representation. We thus
train classifiers with sdps extracted from the differ-
ent dependency representations discussed above
and measure the effect of this information by the
performance of the classifier.

3.1 Dataset and Evaluation Metrics

We use the SemEval-2018, Task 7 dataset (Gábor
et al., 2018) from its Subtask 1.1. The training data
contains abstracts of 350 papers from the ACL An-
thology Corpus, annotated for concepts and se-
mantic relations. Given an abstract of a scien-
tific paper with pre-annotated domain concepts,
the task is to perform relation classification. The
classification sub-task 1.1 contains 1228 entity
pairs that are annotated based on five asymmet-
ric relations (USAGE, RESULT, MODEL-FEATURE,

PART WHOLE, TOPIC) and one symmetric relation
(COMPARE). The relation instance along with its
directionality are provided in both the training and
the test data sets. The official evaluation metric
is the macro-averaged F1-scores for the six se-
mantic relations, therefore we will compare the
impact of different dependency representations on
the macro-averaged F1-scores.
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Figure 2: Model architecture with two channels for an example shortest dependency path (CNN model
from Kim (2014)).

The training set for Subtask 1.1 is quite small,
which is a challenge for end-to-end neural meth-
ods. To overcome this, we combined the provided
datasets for Subtask 1.1 and Subtask 1.2 (relation
classification on noisy data), which provides addi-
tional 350 abstracts and 1248 labeled entity pairs
to train our model. This yields a positive impact
(+16.00% F1) on the classification task in our ini-
tial experiments.

3.2 Pre-processing

Sentence and token boundaries are detected us-
ing the Stanford CoreNLP tool (Manning et al.,
2014). Since most of the entities are multi-word
units, we replace the entities with their codes
in order to obtain a precise dependency path.
Our example sentence All knowledge sources are
treated as feature functions, an example of the
USAGE relation between the two entities knowl-
edge sources and feature functions, is thus trans-
formed to All P05 1057 3 are treated
as P05 1057 4.

Given an encoded sentence, we find the sdp
connecting two target entities for each relation
instance using a syntactic parser. Based on
the dependency graph output by the parser, we
extract the shortest dependency path connecting
two entities. The path records the direction of
arc traversal using left and right arrows (i.e. ←
and →) as well as the dependency relation of
the traversed arcs and the predicates involved,
following Xu et al. (2015a). The entity codes in
the final sdp are replaced with the corresponding
word tokens at the end of the pre-processing step.

For the sentence above, we thus extract the path:
knowledge sources ← SBJ ← are →
VC → treated → ADV → as → PMOD
→ feature functions

3.3 CNN model

The system is based on a CNN architecture sim-
ilar to the one used for sentence classification in
Kim (2014). Figure 2 provides an overview of
the proposed model. It consists of 4 main layers
as follows: 1) Look-up Table and Embedding
layer: In the first step, the model takes a shortest
dependency path (i.e., the words, dependency edge
directions and dependency labels) between entity
pairs as input and maps it into a feature vector us-
ing a look-up table operation. Each element of the
dependency path (i.e. word, dependency label and
arrow) is transformed into a embedding layer by
looking up the embedding matrix M ∈ Rd×V ,
where d is the dimension of CNN embedding layer
and V is the size of vocabulary. Each column in
the embedding matrix can be initialized randomly
or with pre-trained embeddings. The dependency
labels and edge directions are always initialized
randomly. 2) Convolutional Layer: The next
layer performs convolutions with ReLU activation
over the embeddings using multiple filter sizes and
extracts feature maps. 3) Max pooling Layer: By
applying the max operator, the most effective local
features are generated from each feature map. 4)
Fully connected Layer: Finally, the higher level
syntactic features are fed to a fully connected soft-
max layer which outputs the probability distribu-
tion over each relation.
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Hyper parameters F1.(avg. in 5-fold)

Representation Filter
size

Num. Feature
maps

Activation
func.

L2 Reg. Learning
rate

Dropout
Prob.

with default
values

with optimal
values

CoNLL08 4-5 1000 Softplus 1.15e+01 1.13e-03 1 73.34 74.49
SB 4-5 806 Sigmoid 8.13e-02 1.79e-03 0.87 72.83 75.05
UD v1.3 5 716 Softplus 1.66e+00 9.63E-04 1 68.93 69.57

Table 2: Hyper parameter optimization results for each model with different representation. The max
pooling strategy consistently performs better in all model variations.

best F1 (in 5-fold)

Relation without sdp with sdp Diff.

USAGE 60.34 80.24 + 19.90
MODEL-FEATURE 48.89 70.00 + 21.11
PART WHOLE 29.51 70.27 +40.76
TOPIC 45.80 91.26 +45.46
RESULT 54.35 81.58 +27.23
COMPARE 20.00 61.82 + 41.82
macro-averaged 50.10 76.10 +26.00

Table 1: Effect of using the shortest dependency
path on each relation type.

4 Experiments

We run all the experiments with a multi-channel
setting5 in which the first channel is initialized
with pre-trained embeddings 6 in static mode (i.e.
it is not updated during training) and the second
one is initialized randomly and is fine-tuned dur-
ing training (non-static mode). The macro F1-
score is measured by 5-fold cross validation and to
deal with the effects of class imbalance, we weight
the cost by the ratio of class instances, thus each
observation receives a weight, depending on the
class it belongs to.

4.1 Effect of syntactic information

To evaluate the effects of syntactic information
in general for the relation classification task, we
compare the performance of the model with and
without the dependency paths. In the syntax-
agnostic setup, a sentence that contains the partici-
pant entities is used as input for the CNN. We keep
the value of hyper-parameters equal to the ones
that are reported in the original work (Kim, 2014).
To provide the sdp for the syntax-aware version
we compare to, we use our parser with Stanford

5Initial experiments show that the multi-channel model
works better than the single channel model

6We train 300-d domain-specific embeddings on the ACL
Anthology corpus using the available word2vec implementa-
tion gensim for training.

dependencies. We find that the effect of syntac-
tic structure varies between the different relation
types. However, the sdp information has a clear
positive impact on all the relation types (Table 1).
It can be attributed to the fact that the context-
based representations suffer from irrelevant sub-
sequences or clauses when target entities occur far
from each other or there are other target entities
in the same sentence. The sdp between two enti-
ties in the dependency graph captures a condensed
representation of the information required to assert
a relationship between two entities (Bunescu and
Mooney, 2005).

4.2 Comparison of different dependency
representations

To investigate the model performance with various
parser representations, we create a sdp for each
training example using the different parse models
and exploit them as input to the relation classi-
fication model. With the use of default parame-
ters there is a chance that these favour one of the
representations. In order to perform a fair com-
parison, we make use of Bayesian optimization
(Brochu et al., 2010) in order to locate optimal
hyper parameters for each of the dependency rep-
resentations. We construct a Bayesian optimiza-
tion procedure using a Gaussian process with 100
iterations and Expected Improvement (EI) for its
acquisition functions. We set the objective func-
tion to maximize the macro F1 score over 5-fold
cross validation on the training set. Here we inves-
tigate the impact of various system design choices
with the following parameters: 7: I) Filter re-
gion size: ∈ {3, 4, 5, 6, 7, 8, 9, 3-4, 4-5, 5-6,
6-7, 7-8, 8-9, 3-4-5, 4-5-6, 5-6-7, 6-7-8, 7-8-9}
II) Number of feature maps for each filter region
size: ∈ {10 : 1000} III) Activation function: ∈
{Sigmoid,ReLU, Tanh, Softplus, Iden}. IV)
Pooling strategy: ∈ {max, avg}. V) L2 regular-

7Default values are {3-4-5, 128, ReLU, max, 3, 1e-3, 0.5}
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Sentence This indicates that there is no need to add punctuation in transcribing spoken corpora simply in order to help parsers. class: PART WHOLE

CoNLL08 punctuation← obj← add→ adv→ in→ pmod→ transcribing→ obj→ spoken corpora

SB punctuation← dobj← add→ prep→ in→ pcomp→ transcribing→ dobj→ spoken corpora

UD v1.3 punctuation← dobj← add→ advcl→ transcribing→ dobj→ spoken corpora

Sentence In the process we also provide a formal definition of parsing motivated by an informal notion due to Lang . class: MODEL-FEATURE

CoNLL08 formal definition→ nmod→ of→ pmod→ parsing

SB formal definition→ prep→ of→ pobj→ parsing

UD v1.3 formal definition→ nmod→ parsing

Sentence This paper describes a practical ”black-box” methodology for automatic evaluation of question-answering NL systems in spoken dialogue. class: USAGE

CoNLL ” ”black-box” methodology→ nmod→ for→ pmod→ evaluation→ nmod→ of→ pmod→ question-answering NL systems

SB ”black-box” methodology→ prep→ for→ pobj→ evaluation→ prep→ of→ pobj→ question-answering NL systems

UD v1.3 ”black-box” methodology→ nmod→ evaluation→ nmod→ question-answering NL systems

Table 4: The examples for which the CoNLL/SB-based models correctly predict the relation type in
5-fold trials, whereas the UD based model has an incorrect prediction.

ization: ∈ {1e − 4 : 1e + 2}. VI) Learning rate:
∈ {1e − 6 : 1e − 2}. VII) Dropout probability 8:
∈ {0.1 : 1}. Table 2 presents the optimal values
for each configuration using different dependency
representations. We see that the optimized param-
eter settings vary for the different representations,
showing the importance of tuning for these types
of comparisons. The results furthermore show that
the sdps based on the Stanford Basic (SB) repre-
sentation provide the best performance, followed
by the CoNLL08 representation. We observe that
the results for the UD representation are quite a bit
lower than the two others.

5 Error analysis

Table 3 presents the effect of each parser represen-
tation in the classification task, broken down by re-
lation type. We find that the UD-based model falls
behind the others on the most relation types (i.e,
COMPARE, MODEL-FEATURE, PART WHOLE, TOP-

ICS). To explore these differences in more detail,
we manually inspect the instances for which the
CoNLL/SB-based models correctly predict the re-
lation type in 5-fold trials, whereas the UD-based
model has an incorrect prediction. Table 4 shows
some of these examples, marking the entities and
the gold class of each instance and also showing
the sdp from each representation. We observe that
the UD paths are generally shorter. A striking sim-
ilarity between most of the instances is the fact that
one of the entities resides in a prepositional phrase.
Whereas the SB and CoNLL paths explicitly rep-
resent the preposition in the path, the UD represen-
tation does not. Clearly, the difference between for

8The probability that each element is kept, in which 1 im-
plies that none of the nodes are dropped out

best F1 (in 5-fold)

Relation Frq. CoNLL SB UD

USAGE 947 76.84 82.39 77.56
MODEL-FEATURE 498 68.27 68.54 66.36
PART WHOLE 425 75.32 71.28 67.11
TOPIC 258 89.32 90.57 87.62
RESULT 193 82.35 81.69 82.86
COMPARE 136 66.67 66.67 54.24
macro-averaged 76.94 77.57 72.83

Table 3: Effect of using the different parser repre-
sentation on each relation type.

instance the USAGE and PART WHOLE relation may
be indicated by the presence of a specific prepo-
sition (X for Y vs. X of Y). This is also interest-
ing since this particular syntactic choice has been
shown in previous work to have a negative effect
on intrinsic parsing results for English (Schwartz
et al., 2012).

6 Conclusion

This paper has examined the use of dependency
representations for neural relation classification
and has compared three widely used representa-
tions. We find that representation matters and that
certain choices have clear consequences in down-
stream processing. Future work will extend the
study to neural dependency parsers and other rela-
tion classification data sets.
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