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Introduction

Machine Reading for Question Answering (MRQA) has become an important testbed for evaluating
how well computer systems understand human language, as well as a crucial technology for industry
applications such as search engines and dialog systems. The research community has recently
created a multitude of large-scale datasets over text sources such as Wikipedia (WikiReading, SQuAD,
WikiHop), news and other articles (CNN/Daily Mail, NewsQA, RACE), fictional stories (MCTest, CBT,
NarrativeQA), and general web sources (MS MARCO, TriviaQA, SearchQA). These new datasets have
in turn inspired an even wider array of new question answering systems.

Despite this rapid progress, there is yet much to understand about these datasets and systems. While
model performance is rapidly improving in domain for each dataset, generalization suffers when models
are evaluated on new domains and datasets. Moreover, current model development focuses primarily on
improving the test accuracy of models trained on in-domain data. Focusing solely on accuracy obscures
other important desiderata, including model interpretability, robustness to distributional shift, ability to
abstain from answering when there is no adequate answer, and adequate modeling of inference (e.g.,
entailment and multi-sentence reasoning). Similarly, the diversity of recent datasets call for an analysis
of various natural language phenomena (coreference, paraphrase, entailment, multi-hop reasoning) these
datasets present.

The goal of this workshop is to gather researchers to address and discuss recent research on MRQA
systems and datasets. Currently, reading comprehension models are commonly presented at various
venues such as ACL, EMNLP, NIPS, ICML, ICLR; this workshop will benefit the community by serving
as a central venue for discussions.

The program features 11 new papers and 5 cross-submissions from related areas, to be presented as both
posters and talks. We are also excited to host remarkable invited speakers, including Phil Blunsom,
Antoine Bordes, Jianfeng Gao, Hannaneh Hajishirzi, Sebastian Riedel, Richard Socher.

We thank the program committee, the ACL workshop chairs, the invited speakers, our sponsors Facebook
and Naver and our steering committee: Antoine Bordes, Percy Liang, Luke Zettlemoyer.

Eunsol Choi, Minjoon Seo, Danqi Chen, Robin Jia, Jonathan Berant
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Ruminating Reader: Reasoning with Gated Multi-Hop Attention

Yichen Gong and Samuel R. Bowman
New York University

New York, NY
{yichen.gong,bowman}@nyu.edu

Abstract

To answer the question in machine com-
prehension (MC) task, the models need
to establish the interaction between the
question and the context. To tackle the
problem that the single-pass model can-
not reflect on and correct its answer, we
present Ruminating Reader. Ruminating
Reader adds a second pass of attention and
a novel information fusion component to
the Bi-Directional Attention Flow model
(BIDAF). We propose novel layer struc-
tures that construct a query aware con-
text vector representation and fuse encod-
ing representation with intermediate rep-
resentation on top of BIDAF model. We
show that a multi-hop attention mecha-
nism can be applied to a bi-directional
attention structure. In experiments on
SQuAD, we find that the Reader outper-
forms the BIDAF baseline by 2.1 F1 score
and 2.7 EM score. Our analysis shows that
different hops of the attention have differ-
ent responsibilities in selecting answers.

1 Introduction

The majority of recorded human knowledge is cir-
culated in unstructured natural language. It is
tremendously valuable to allow machines to read
and comprehend the text knowledge. Machine
comprehension (MC)—especially in the form of
question answering (QA)—is therefore attracting
a significant amount of attention from the ma-
chine learning community. Recently introduced
large-scale datasets like CNN/Daily Mail (Her-
mann et al., 2015), the Stanford Question Answer-
ing Dataset (SQuAD; Rajpurkar et al., 2016) and
the Microsoft MAchine Reading COmprehension
Dataset (MS-MARCO; Nguyen et al., 2016) have

(a) The high-level structure of BIDAF.

(b) The high-level structure of Ruminating Reader.

Figure 1: The high-level comparison between
BIDAF and Ruminating Reader.

allow data-driven methods, including deep learn-
ing, to become viable.

Recent approaches toward solving machine
comprehension tasks using neural networks can
be viewed as falling into two broad categories:
single-pass reasoners and multiple-pass reasoners.
Single-pass models read a question and a source
text once and often adopt the differentiable atten-
tion mechanism that emphasizes important parts
of the context related to the question.

BIDAF (Seo et al., 2017) represents one of the
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competitive single-pass models in Machine Com-
prehension. BIDAF uses a bi-directional attention
matrix which calculates the correlations between
each word pair in context and query to build query-
aware context representation. However, BIDAF
and some similar models miss some questions be-
cause they don’t have the capacity to reflect on
problematic candidate answers and revise their de-
cisions.

When humans are reading a text with the goal of
answering a question, they tend to read it multiple
times to get a better understanding of the context
and question, and to give a better response. With
this intuition, recent multi-pass models revisit the
question and the context passage (or ruminate) to
infer the relations between the context, the ques-
tion and the answer.

We propose an extension of BIDAF, called Ru-
minating Reader, which uses a second pass of
reading and reasoning to allow it to learn to avoid
mistakes and to ensure that it is able to effectively
use the full context when selecting an answer. In
addition to adding a second pass, we also intro-
duce two novel layer types, the ruminate layers,
which use gating mechanisms to fuse the obtained
from the first and second passes. We observe a
surprising phenomenon that when an LSTM layer
in the context ruminate layer takes same input in
each timestep, it can produce useful representation
for the gates. In addition, we introduce an answer–
question similarity loss to penalize overlap be-
tween question and predicted answer, a common
feature in the errors of our base model. This allows
us to achieve an F1 score of 79.5 and Exact Match
(EM) score of 70.6 on hidden test set,1 an im-
provement of 2.2 F1 score and 2.9 EM on BIDAF.
Figure 1 shows a high-level comparison between
BIDAF and Ruminating Reader. Our analysis
shows that the first hop attention is responsible for
identifying key informative word while the second
hop is responsible for finding candidate answers.
The gates are effective in selecting useful infor-
mation from different representations.

This paper is organized as follows: In Section
2 we define the problem to be solved and intro-
duce the SQuAD task. In Section 3 we introduce
Ruminating Reader, focusing on the information-
extracting and information-digesting components
and how they integrate. Section 4 discusses related

1The latest results are listed at https://rajpurkar.
github.io/SQuAD-explorer/

Figure 2: The model structure of our Ruminating
Reader.

work. Section 5 presents the experimental setting,
results and analysis. Section 6 concludes.

2 Question Answering

The task of the Ruminate Reader is to answer
a question by reading and understanding a para-
graph of text and selecting a span of words within
the context. Formally, the Training and develop-
ment data consist of tuples (Q, P, A), where Q =
(q1, ..., qi, ...q|Q|) is the question, a sequence of
words with length |Q|, C = (c1, ...cj , ..., c|C|) is the
context, a sequence of words with length |C|, and
A = (ab, ae) is the answer span marking the begin-
ning and end indices of the answer in the context
(1 <= ab <= ae <= |C|).

SQuAD The SQuAD corpus is built using
536 articles randomly selected from English
Wikipedia. Images, figures, tables are stripped
and any paragraphs shorter than 500 characters
are discarded. Unlike other datasets that such
as CNN/Daily Mail whose questions are synthe-
sized, Rajpurkar et al. (2016) uses a crowdsourc-
ing platform to generate realistic question and an-
swer pairs. SQuAD contains 107,785 question-

2



answer pairs. The typical context length spans
from 50 tokens to 250 tokens. The typical length
of a question is around 10 tokens. The answer
be any span of words from the context, result-
ing in O(|C|2) possible outputs. While model
pefromance on SQuAD is nearing human perfor-
mance, and systems trained on the task are known
to be brittle when presented with unexpected con-
texts (Jia and Liang, 2017), the dataset nonetheless
remains the standard evaluation task for reading
comprehension.

3 Related Work

Recently, both QA and Cloze-style machine com-
prehension tasks like CNN/Daily Mail have seen
fast progress. Much of this recent work has been
based on end-to-end trained neural network mod-
els, and within that, most have used recurrent neu-
ral networks with soft attention (Bahdanau et al.,
2015), which emphasizes one part of the data over
the others. These models can be coarsely divided
into two categories: single-pass and multi-pass
reasoners.

Most papers on single-pass reasoning systems
propose novel ways to use the attention mech-
anism: Wang and Jiang (2016) propose match-
LSTM to model the interaction between context
and query, as well as introducing the use of a
pointer network (Vinyals et al., 2015) to extract
the answer span from the context. Xiong et al.
(2017b) propose the Dynamic Coattention Net-
work, which uses co-dependent representations of
the question and the context, and iteratively up-
dates the start and end indices to recover from lo-
cal maxima and to find the optimal answer span.
Wang et al. (2016) propose the Multi-Perspective
Context Matching model that matches the encoded
context with query by combining various match-
ing strategies, aggregates matching vector with bi-
directional LSTM, and predict start and end po-
sitions. Chen et al. (2016) propose to use a bi-
linear term to calculate the attentional alignment
between context and query.

Among multi-hop reasoning systems: Hill et al.
(2015) apply attention on window-based mem-
ory, by extending multi-hop end-to-end mem-
ory network (Sukhbaatar et al., 2015). Dhin-
gra et al. (2016) extend attention-sum reader to
multi-turn reasoning with an added gating mech-
anism. The Iterative Alternative (IA) reader (Sor-
doni et al., 2016) produces query glimpse and

document glimpse in each iteration and uses both
glimpses to update recurrent state in each iteration.
Shen et al. (2017) propose a multi-hop attention
model that used reinforcement learning to dynam-
ically determine when to stop digesting intermedi-
ate information and produce an answer. The r-net
(Wang et al., 2017) adopts self-attention mecha-
nism to allow the representation to select the im-
portant information in both context and query. Yu
et al. (2018) design a new non-recurrent neural
network topology, that achieves 13x faster in train-
ing and 4x to 9x faster in inference without losing
accuracy with respect to its recurrent counterpart.

4 Our Model

4.1 Ruminating Reader

In this section, we review the BIDAF model (Seo
et al., 2017) and introduce our extension, the Ru-
minating Reader.

Our additions to the base model are motivated
by the intuition that adding an additional pass
of reading will allow the model to better inte-
grate information from the question and answer
and to better weigh possible answers, and that by
interpolating the results of the second pass with
those of the first pass through gating, we can pre-
vent the additional complexity that we add to the
model from substantially increasing the difficulty
of training. The structure of our model is shown in
Figure 2 and explained in the following sections.

Character Embedding Layer Just as in the
base BIDAF model, the character embedding
layer maps each word to a high dimensional vector
using character features. It does so using a con-
volutional neural network with max pooling over
learned character vectors (Lee et al., 2017; Kim
et al., 2016). Thus we have a context character
representation M ∈ Rf×C and a query repre-
sentation N ∈ Rf×Q, where C is the sequence
length of the context, Q is the sequence length of
the query and f is the number of 1D convolutional
neural network filters.

Word Embedding Layer Again as in the base
model, the word embedding layer uses pretrained
word vectors (the 6B GloVe vectors of Pennington
et al., 2014) to map the word into a high dimen-
sional vector space. We do not update the word
embeddings during training. The character em-
bedding and the word embedding are concatenated
and passed into a two-layer highway network (Sri-
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vastava et al., 2015) to obtain a d dimensional vec-
tor representation of each single word. Hence, we
have a context representation H ∈ Rd×C and a
query representation U ∈ Rd×Q.

Sequence Encoding Layers As in BIDAF, we
use two LSTM RNNs (Hochreiter and Schmidhu-
ber, 1997) with d-dimensional outputs to encode
the context and query representations in both di-
rections. Therefore, we obtain a context encoding
matrix C ∈ R2d×C , and a query encoding matrix
Q ∈ R2d×Q.

Attention Flow Layer As in BIDAF, the atten-
tion flow layer constructs a query-aware context
representation G from inputs C and Q. This layer
takes two steps. In the first step, an interaction ma-
trix I ∈ RC×Q is computed, which indicates the
affinities between each context word encoding and
each query word encoding. Icq indicates the cor-
relation between the c-th word in context and q-th
word in query. The interaction matrix is computed
by

Icq = w>(I)[Cc;Qq;Cc ◦Qq] (1)

where wI ∈ R6d is a trainable parameter, Cc is
c-th column of context encoding and Qq is q-th
column of query encoding, ◦ is elementwise mul-
tiplication, and [; ] is vector concatenation.

Context-to-query Attention As in BIDAF, the
context-to-query attention component generates,
for each context word, an attention-weighted sum
of query word encodings. Let Q̃ ∈ R2d×C rep-
resent the context-to-query attention matrix. For
column c in Q̃ is defined by Q̃c =

∑
(acqQq),

where a is the attention weight. a is computed by
ac = softmax(Ic) ∈ RQ.

Query-to-context Attention Query-to-context
attention indicates the most relevant context words
to query. The most relevant word vector repre-
sentation is an attention-weighted sum defined by
c̃ =

∑
bcCc where b, is an attention weight which

is calculated by b = softmax(maxcol(I)) ∈ RC .
c̃ is replicated C times across the column, there-
fore giving C̃ ∈ R2d×C .

We then obtain the final query-aware context
representation by

Gc = [Cc; Q̃c;Cc ◦ Q̃c;Cc ◦ C̃c] (2)

where Gc ∈ R8d×C .

Summarization Layer We propose summariza-
tion layer which produces a vector representa-
tion that summarizes the information in the query-
aware context representation. The input to sum-
marization layer is G. We use one bi-directional
LSTM network to model the learned information.
We select the final states from both directions and
concatenate them together as s = [sf ; sb] . where
s ∈ R2d represents the representation summarized
from the reading of context and query, sf is the fi-
nal state of LSTM in forward direction, and sb is
the final state of LSTM in backward direction.

Query Ruminate Layer The query ruminate
layer fuses the summarization vector representa-
tion with the query encoding Q, helping reformu-
late the query representation in order to maximize
the chance of retrieving the correct answer. The in-
put to this layer is s tiled Q times (SQ ∈ R2d×Q).
A gating function then fuses this with the existing
query encoding:

zi = tanh(W 1>
Qz SQi +W 2>

Qz Qi + bQz) (3)

fi = σ(W 1>
Qf SQi +W 2>

QfQi + bQf ) (4)

Q̃i = fi ◦Qi + (1− fi) ◦ zi (5)

where W 1
Qz,W

2
Qz,W

1
Qf ,W

2
Qf ∈ R2d×2d and

bQz, bQf ∈ R2d are trainable parameters, SQiis
the i-th column of the SQ, Qi is the i-th column
of Q.

Context Ruminate Layer Context ruminate
layer digests the summarization and integrates it
with the context encoding C to facilitate answer
extraction. In this layer, we tile s C times and
we have SC ∈ R2d×C . To incorporate the posi-
tional information into this relatively long tiled se-
quence, we feed it into an additional bidirectional
LSTM with output size d in each direction. This
approach, while somewhat inefficient, proves to be
a valuable addition to the model and allows it to
better track position information, loosely follow-
ing the positional encoding strategy of Sukhbaatar
et al. (2015). Hence we obtain S̃C ∈ R2d×C ,
which is fused with context encoding C via a gate:

zi = tanh(W 1>
Cz S̃Ci +W 2>

Cz Ci + bCz) (6)

fi = σ(W 1>
Cf S̃Ci +W 2>

Cf Ci + bCf ) (7)
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C̃i = fi ◦Ci + (1− fi) ◦ zi (8)

where W 1
Cz,W

2
Cz,W

1
Cf ,W

2
Cf ∈ R2d×2d and

bCz, bCf ∈ R2d are trainable parameters, S̃Ciis
the i-th column of the S̃C , Ci is the i-th column
of C.

Second Hop Attention Flow Layer We take
Q̃ ∈ R2d×Q and C̃ ∈ R2d×C as the input to an-
other attention flow layer with the same structure
as described above, yielding G(2) ∈ R8d×C .

Modeling Layer We use two layers of bi-
directional LSTM with output size d in each direc-
tion to aggregate the information in G(2), yielding
a pre-output matrix M s ∈ R2d×C .

Output Layer As in BIDAF, our output layer
independently models the probability of each
word being selected as the start or end of an an-
swer span. We calculate the probability distribu-
tion of the start index of the answer span by

ps = softmax(w>p1 [G;M s]) (9)

where w(p1) ∈ R10d is a trainable parameter.
We pass the matrix M s to another bi-directional
LSTM with output size d in single direction yield-
ing M e. We obtain the probability distribution of
the end index of the answer span by

pe = softmax(w>(p2)[G;M e]) (10)

Training Loss We define the training loss as the
sum of three components: negative log likelihood
loss, L2 regularization loss, and a novel answer–
question similarity loss.

Answer–Question Similarity Loss We observe
that a version of our model trained only on the two
standard loss terms often selects answers that over-
lap substantially in content with their correspond-
ing questions, and that this nearly always results
in an error. A sample error of this kind is shown in
Table 1. This motivates an additional loss term at
training time: We penalize the similarity between
the question and the selected answer. Formally,
the answer question similarity loss is defined as

s = Argmax(p1) (11)

e = Argmax(p2) (12)

Context: The Broncos took an early lead in Su-
per Bowl 50 and never trailed. Newton was
limited by Denver’s defense, which sacked him
seven times and forced him into three turnovers,
including a fumble which they recovered for a
touchdown. Denver linebacker Von Miller was
named Super Bowl MVP, recording five solo
tackles, 2 sacks, and two forced fumbles.

Question: Which Newton turnover resulted in
seven points for Denver?

Ground Truth: {a fumble, a fumble, Fumble}
Prediction: three turnovers

Table 1: An error of the type that motivated the
answer–question similarity loss.

~qBoW =
Sumrow(Q)

Q
(13)

AQSL(θ) = cos(Cs, ~qBoW ) + cos(Ce, ~qBoW )
(14)

where s refers to the start index of answer span,
e refers to the end index of the answer span, ~qBoW

is the bag of words representation of query encod-
ing, cos(a, b) is the cosine similarity between a
and b, Cs and Ce are the s-th and e-th vector rep-
resentation of context encoding.

Prediction During prediction, we use a local
search strategy that for token indices a and a′, we
maximize ps

a × pe
a′ , where 0 ≤ a′ − a ≤ 15 .

Dynamic programming is applied during search,
resulting in O(C) time complexity.

5 Evaluation

5.1 Implementation details
Our model configuration closely follows that of
Seo et al. (2017): In the character encoding layer,
we use 100 filters of width 5. In the remainder
of the model, we set the hidden layer dimension
(d) to 100. We use pretrained 100D GloVe vec-
tors (6B-token version) as word embeddings. Out-
of-vocobulary tokens are represented by an UNK
symbol in the word embedding layer, but treated
normally by the character embedding layer. The
BiLSTMs in context and query encoding layers
share same weights. We use the AdaDelta opti-
mizer (Zeiler, 2012) for optimization.
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Model Test
F1 EM

Match-LSTMa 73.743 64.744
Bidirectional Attention Flowb 77.323 67.974
Multi-perspective Matchingc 77.771 68.877
FastQAExtd 78.857 70.849
Document Readere 79.353 70.733
ReasoNetf 79.364 70.555
DCN+g 83.081 75.087
Reinforced Mnemonic Readerh 86.654 79.545
r-neti 88.170 81.391
QANetj 88.608 82.209
Human Performance k 91.221 82.304

Ruminating Reader 79.456 70.639

Table 2: Selected results on SQuAD leader-
board.
a Wang and Jiang (2016); b Seo et al. (2017);
c Wang et al. (2016); d Weissenborn et al. (2017);
e Chen et al. (2017); f Shen et al. (2017);
g Xiong et al. (2017a); h Hu et al. (2018);
i Wang et al. (2017); j Yu et al. (2018);
k Rajpurkar et al. (2016)

We selected hyperparameter values through ran-
dom search (Bergstra and Bengio, 2012). Batch
size is 30. Learning rate starts at 0.5, and
decreases to 0.2 once the model stops improv-
ing. The L2-regularization weight is 1e-4, AQSL
weight is 1 and dropout with a drop rate of 0.2 is
applied to all forward connections in the CNN, the
LSTMs, and all feedforward layers.

A typical model run converges in about 40k
steps. This takes two days using Tensorflow
(Abadi et al., 2015) and a single NVIDIA K80
GPU.

5.2 Evaluation Method

Rajpurkar et al. (2016) provide an official evalua-
tion script that allows us to measure F1 score and
EM score by comparing the prediction and ground
truth answers. Three answers are provided for
each question. The prediction is compared to each
of the answer and best score is selected. F1 score
is defined by recall and precision of words and EM
score, as Exact Match score, is defined as the score
of 100% accuracy in prediction. We do not use
any kind of ensembling, and compare our results
primarily with other single-model (non-ensemble)
results. The test set performance is evaluated us-
ing the CodaLab platform by a task administrator.

Ablation Variant Dev
F1 EM

1. BIDAF 77.3 67.7
2. BIDAF w/ L2 Reg., AQSL, LS 77.7 68.6
3. RR w/o query ruminate layer 78.7 69.6
4. RR w/o context ruminate layer 78.9 70.0
5. RR w/ BiLSTM in QRL 79.4 70.4
6. RR w/o BiLSTM in CRL 74.0 64.2
7. RR w/o query input at s,f in QRL 78.8 70.1
8. RR w/o context input at s,f in CRL 78.9 70.3
9. RR w/o query input in QRL 63.3 54.1
10. RR w/o context input in CRL 27.0 9.4
11. RR w/o summ. input in QRL 79.2 70.1
12. RR w/o summ. input in CRL 79.2 70.3

Ruminating Reader 79.5 70.6

Table 3: Layer ablation results. The order of
the listing corresponds to the description in Ap-
pendix A.1. CRL refers to context ruminate layer
and QRL refers to query ruminate layer.

5.3 Results

The Ruminating Reader achieves an F1 score of
79.5 and EM score of 70.6. The SQuAD leader-
board with selected result is displayed in Table 2.
The leaderboard is listed in descending order of F1
score, but if an entry’s F1 score is better than the
adjacent entry’s, while its EM score is worse, then
these two entries are considered tied.

5.4 Analysis

Layer Ablation Analysis To analyze how each
component contribute to the model, we run a layer
ablation experiment. We present results for twelve
versions of the model on the development set, each
missing some or all of the major components of
the full Ruminating Reader. The precise definition
of each of the twelve ablated models can be found
in Appendix A.1.

The results of the ablation experiment are
shown in Table 3. The ablation experiments show
how each component contribute to the model. Ex-
periments 3 and 4 show that the two ruminate lay-
ers are both important and helpful in contributing
performance. It is worth noting that the BiLSTM
in the context ruminate layer contributes substan-
tially to model performance. We find this some-
what surprising, since it takes the same input in
each timestep, but it nonetheless successfully di-
gests the summarization information representa-
tion and produces a useful input for the gating
component. Experiments 7 and 8 show that the
modeled summarization vector representation can
provide information to gates reasonably well. The
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Figure 3: The visualization of first hop (top) and second hop (bottom) attention interaction matrix. We
use coolwarm colormap, where red is close to 1 and blue is close to 0. In the question “What is the name
of the trophy given to anyone who plays on the winning team in a super Bowl?”, the key words name,
trophy, given, who are strongly attended to in the first hop.

Figure 4: Visualizations of gate values for the
query (top) and context (bottom) ruminate layers.
The order of words is the same as in Figure 3. We
use coolwarm colormap, where red means the gate
uses more information from intermediate repre-
sentation, and blue from encoding representation.

drop in performance in both experiments 9 and 10
shows that the key information for new query and
context representation is the first stage query and
context encodings. Experiments 11 and 12 shows
that the summarization vector representation does
help the later stage of reasoning.

Visualization Figure 3 provides a visualization
of the first hop and second hop attention interac-

tion matrix I . We also provide a sample of visual-
ization for the L2 sum of gate value in context and
query ruminate layers in Figure 4.

From Figure 3 we see that though the struc-
tures of two hops of attention flow layer are the
same, they function quite differently in typical
cases. The first hop attention appears to be primar-
ily concerned with identifying the key informative
word (or words, as here) in the query. Though in
Figure 3 four key words are signified, one or two
words are attended to in the first hop in the com-
mon case. The second hop is then responsible for
finding candidate answers that are relevant to those
key words and generating a query-aware context
representation. We observe the first hop attention
shows a consistent attention pattern across context
words, suggesting that there may be room to make
the first hop component more efficient in future
work.

From Figure 4, we see the gate value on both
query ruminate layer and context ruminate layer
shows that the gates are working to fuse informa-
tion to original query encoding and context encod-
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Figure 5: An analysis according to answer length
of questions and question types. The top graph
shows the comparison of F1 score between Rumi-
nating Reader and the BIDAF model on the devel-
opment set by answer length. The blue line shows
the distribution of questions by answer length. The
bottom graph shows a corresponding comparison
BIDAF by question type (wh-word).

ing. We observe that in most of the case the gates
in ruminate layers uses more information from en-
coding than from summarization representation.
The observation matches our expectation that the
gates modify and improve on the encoding repre-
sentation.

We also provide a comparison of F1 score be-
tween BIDAF and Ruminating Reader on ques-
tion with different ground truth answer length and
different types of questions in Figure 5. Exact
match score is highly correlated with F1 score so
we omit it for clarity. We observe that the Rumi-
nating Reader outperforms BIDAF on most of the
questions with respect to different answer length.
On the question with long answer length, of 5, 8
and 9, Ruminating Reader outperforms BIDAF by
a great margin. Questions with longer reference
answers appear to be more difficult to answer. In
addition, the Ruminating Reader does better on
each type of question. Both models work best

for when questions—these question are answer-
able by temporal expressions, which are relatively
easy to recognize. The Why questions are hardest
to answer—they tend to have long answers with
no purely lexical cues marking their beginnings
or ends. Ruminating Reader outperforms BIDAF
model on why questions by a substantial margin.

Performance Breakdown Following Zhang
et al. (2017), we break down Ruminating Reader’s
79.5% F1 score on the development set into three
sub-scores, representing failures, partial suc-
cesses, and successes. On 13.5% of development
set examples, Ruminate Reader fails, yielding 0%
F1. On 70.6% of examples, Ruminate Reader
achieves a perfect F1 score. On the remaining
15.9%, Ruminate Reader got only partial matches
(i.e., answers that partially overlapped with
reference answers), with an average F1 score
of 56.0%. Comparing to the jNet (Zhang et al.,
2017) whose success answers occupy 69.1% of
all answers, failure score answers 14.9% and
partial success 16.01% with an average F1 score
of 58.0%, our model works better on increasing
successes and reducing failures.

6 Conclusion

We propose the Ruminating Reader, an exten-
sion to the BIDAF model with two-hop atten-
tion. The model surpasses the original BIDAF
model’s performance on Stanford Question An-
swering Dataset (SQuAD) by a large margin.
These results and our qualitative analysis both
suggest that the model successfully fuses the in-
formation from two passes of reading using gat-
ing and uses the result to identify appropriate an-
swers to Wikipedia questions. An ablation experi-
ment shows that each of components of this com-
plex model contribute substantially. The analysis
shows that the first hop attention is responsible for
identifying key informative word while the second
hop is responsible for finding candidate answers.
The gate is empirically proved to be effective in se-
lecting information from different representations.
In future work, we aim to find ways to simplify
this model without impacting performance, to ex-
plore the possibility of yet deeper models, and to
expand our study to machine comprehension tasks
more broadly.
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A Appendix

A.1 Layer Ablation Experiments setup
In this section we show the setup of layer ablation
experiment details in Table 3.

1. Vanilla BIDAF

2. Ruminating Reader without context and
query ruminate layer. Therefore, the model
is equivalent to original BIDAF model with
L2-regurization, answer-question similarity
penalization and local search prediction fea-
ture.

3. Ruminating Reader without query ruminate
layer. The query encoding Q is directly fed
into the second hop attention flow layer.

4. Ruminating Reader without context ruminate
layer. The context encoding C is directly
connected to the second hop attention flow
layer without digesting newly acquired infor-
mation.

5. Ruminating Reader with BiLSTM modeling
in query ruminate layer. Formally, we have
S̃Q = BiLSTM(SQ) in query ruminate
layer. Therefore, the query ruminate layer is
defined by

zi = tanh(W 1>
Qz S̃Qi +W 2>

Qz Qi + bQz)
(15)

fi = σ(W 1>
Qf S̃Qi +W 2>

QfQi + bQf ) (16)

Q̃i = fi ◦Qi + (1− fi) ◦ zi (17)

6. Ruminating Reader without BiLSTM model-
ing in context ruminate layer. Formally, we
have S̃C = SC in query ruminate layer and
all other components remains the same.

7. Ruminating Reader without query input at z,
f in query ruminate layer. While all other
components remain the same as in Ruminat-
ing Reader, the gate in query ruminate layer
is defined by

zi = tanh(W 1>
Qz SQi + bQz) (18)

fi = σ(W 1>
Qf SQi + bQf ) (19)

Q̃i = fi ◦Qi + (1− fi) ◦ zi (20)

8. Ruminating Reader without context input at
z, f in context ruminate layer. While all
other components remain the same as in Ru-
minating Reader, the gate in context ruminate
layer is defined by

zi = tanh(W 1>
Cz S̃Ci + bCz) (21)

fi = σ(W 1>
f S̃Ci + bCf ) (22)

C̃i = fi ◦Ci + (1− fi) ◦ zi (23)

9. Ruminating Reader without query input in
query ruminate layer. In this version, we dis-
card query encoding input Q in the gate of
query ruminate layer. Formally, the gate in
Query Ruminate layer is

zi = tanh(W 1>
Qz SQi + bQz) (24)

fi = σ(W 1>
Qf SQi + bQf ) (25)

Q̃i = (1− fi) ◦ zi (26)

10. Ruminating Reader without context encoding
input in context ruminate layer. We ablate
the context encoding input C in the gate of
context ruminate layer. Therefore, the gate in
context ruminate layer is

zi = tanh(W 1>
Cz S̃Ci + bCz) (27)
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fi = σ(W 1>
f S̃Ci + bCf ) (28)

C̃i = (1− fi) ◦ zi (29)

11. Ruminating Reader without summarization
information input in query ruminate layer.
In case that the summarization do not help
the encoding, while on the other hand, the
gate contributes to the learning, we design
the experiment that allows to eliminate the
influence of summarization. We discard the
summarization input in query ruminate layer.
Formally, the gate in query ruminate layer is
defined as

zi = tanh(W 2>
Qz Qi + bQz) (30)

fi = σ(W 2>
QfQi + bQf ) (31)

Q̃i = fi ◦Qi + (1− fi) ◦ zi (32)

12. Ruminating Reader without summarization
information input in context ruminate layer.
The summarization information is not in-
cluded in zi,fi

zi = tanh(W 2>
Cz Ci + bCz) (33)

fi = σ(W 2>
Cf Ci + bCf ) (34)

C̃i = fi ◦Ci + (1− fi) ◦ zi (35)
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Abstract

We analyzed the outputs of multiple ques-
tion answering (QA) models applied to
the Stanford Question Answering Dataset
(SQuAD) to identify the core challenges
for QA systems on this data set. Through
an iterative process, challenging aspects
were hypothesized through qualitative
analysis of the common error cases. A
classifier was then constructed to predict
whether SQuAD test examples were likely
to be difficult for systems to answer based
on features associated with the hypothe-
sized aspects. The classifier’s performance
was used to accept or reject each aspect
as an indicator of difficulty. With this ap-
proach, we ensured that our hypotheses
were systematically tested and not simply
accepted based on our pre-existing biases.
Our explanations are not accepted based
on human evaluation of individual exam-
ples. This process also enabled us to iden-
tify the primary QA strategy learned by the
models, i.e., systems determined the ac-
ceptable answer type for a question and
then selected the acceptable answer span
of that type containing the highest density
of words present in the question within its
local vicinity in the passage.

1 Introduction

Since the introduction of the Stanford Question
Answering Dataset (SQuAD, Rajpurkar et al.,
2016), research groups have directed significant
efforts towards achieving a high position on the
SQuAD leaderboard.1 This competition has re-

1https://rajpurkar.github.io/
SQuAD-explorer/

sulted in many new models for question answering
using machine reading comprehension.

Within SQuAD, a single test example consists
of three components: a question, a text passage
and an answer. The answer is a span extracted
from the passage answering the question. Ques-
tions were created by human annotators, who were
shown a passage and asked to produce question
and answer pairs. In performing the question an-
swering task, the best performing systems em-
ployed complex attention flow mechanisms for
matching questions to substrings of the text pas-
sage. These models, while varied, all belong to
the same general family of neural network archi-
tectures.

In this work, we conducted a systematic error
analysis on the development set of SQuAD to ex-
plain the common failures and successes of some
of these models; the results can be expected to
generalize to the entire family. Our goal was to ex-
plain the models’ failures and successes using well
defined features automatically extracted from ex-
amples. We wanted to use simple features, such as
word identity, over complex features. We wanted
to avoid explanations based on the human strat-
egy used to answer a question, or complex features
that cannot be extracted automatically, such as rea-
soning, common sense or external knowledge. Fi-
nally, we wanted to isolate a passages’ readability
from the strategy required to answer questions.

Our methodology used classifiers to predict the
difficulty of questions. The classifier performance
was used to confirm or refute the validity of a hy-
pothesized challenge using its true and false posi-
tive rates over the entire development set. System-
atic testing across all system failures and successes
can reduce the risk of confirmation bias inherent to
random spot checks.

A key difference with previous error analysis on
SQuAD is that we looked for successes present-
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ing the same challenges observed in failures. This
confirms that the same explanations are not appli-
cable to the successes. While many system errors
could be explained in term of human challenges,
features related to those challenges were usually
independent of failures and successes. This can
easily be missed by random spot checks relying
on human evaluation.

From our evaluations, we identified a reading
strategy that matched the observed failures and
successes. We believe that this methodology is
more robust than the common ad-hoc approaches
purely based on human evaluations over a small
random sample. The reading strategy we iden-
tified indicates that SQuAD is surprisingly well
suited for neural network based models. While
it remains a valuable resource, this now limits its
suitability for further improvement of QA models.

1.1 Text Organization

In this paper, we will first present some related
works, and explain how our methodology differs.
A description of our methodology will follow. We
will then present experimental results for three
groups of hypotheses (readability, Q-words, and
acceptability), and a combined model. Finally,
we will describe the human analog of the models’
strategy, followed by our conclusions.

2 Related Works

Sugawara et al. (2017) evaluated various datasets,
in particular SQuAD, to determine how many hu-
man reading skills were required to answer ques-
tions. They described SQuAD as “difficult to
read but easy to answer” for humans, finding that
SQuAD requires only a few simple skills. In con-
trast, we are identifying skills used by machines.

FastQA (Weissenborn et al., 2017) added sim-
ple word matching features, indicating that a word
was in both the passage and question, to a sim-
ple MRC model. Those simple features improved
performance using this simple MRC model. We
observed that variations of this feature were ac-
ceptable predictors of failures and successes

Adversarial SQuAD (Jia and Liang, 2017)
added distractor sentences at the end of SQuAD
examples. Model specific distractors were cre-
ated by adding random words, guided by the tar-
get model’s output, until it predicted a wrong an-
swer. The resulting sentences are ungrammati-
cal and have no semantic significance, but match

words present in the question. Similarly, a more
generic set of distractors was created using a sim-
ple set of rules to transform the question into a
statement, and replacing keywords. The result-
ing sentence is grammatical and meaningful, but
is irrelevant to the question. The significant num-
ber of word matches between the question and the
distractor significantly reduces performance.

Those related works indicates that word to word
matching, similar to the reserved engineered strat-
egy described in Section 8, is sufficient to obtain
good performance on SQuAD.

In this work, we used systematic hypothesis
testing over both failures and successes to identify
the strategy used by machines to reach high per-
formance on SQuAD. Systematic testing based on
automatically extracted features prevent us from
relying on human explanation. It also limits con-
firmation bias, which is a concern for qualitative
analysis. Human investigators will tend to explain
errors in term of the human skills required, even
when a simpler explanation is possible. It is also
important to confirm that the same explanation is
not applicable to the models’ successes. Previous
error analysis focused on errors, and ignored suc-
cesses.

3 Methodology

We want to explain models’ failures and successes
while avoiding explanations based on human read-
ing comprehension, and to test our explanations
systematically. We defined empirical difficulty
classes (Section 3.1) and used the linear separabil-
ity of those classes using the extracted features to
accept or reject a hypothetical explanation. We it-
erated qualitative analysis, hypothesis generation
and the creation of corresponding feature extrac-
tors, and testing.

3.1 Difficulty Classes Used

We used the single and ensemble outputs of the
three models listed in Table 1, for a total of six
models. The models were chosen due to their per-
formance on SQuAD: all were near the top of the
leaderboard at the time this work began. While
these models are only a subset of the models on the
SQuAD leaderboard, they share similar features
with the others. We believe that that our findings
generalize to the others. Questions were divided
into 3 classes : easy, hard and other. EASY ques-
tions were those questions where all six models re-
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BiDAF (Seo et al., 2016)
Reasonet (Shen et al., 2017)
FusionNet (Huang et al., 2017)

Table 1: Models used for error analysis. The sin-
gle and ensemble version of each was used

Class Count Frequency (%)
EASY (6 EMs) 5,874 55.57

6 PMs 459 4.34
5 PMs 1,179 11.15
4 PMs 753 7.12
3 PMs 611 5.78
2 PMs 634 6.00
1 PM 631 5.97

HARD (0 PMs) 429 4.06

Table 2: Distribution of question as a function of
the number of models predicting a partial match
(PM). Also includes the two main classes, EASY

(all models predicted exact matches, EMs), and
HARD (no prediction is a match.)

turned an exact match (EM) with a human answer,
and HARD questions were those where none of the
answers was a partial match (PM). All other ques-
tions were placed in the OTHERS class. Table 2
shows the resulting distribution, with the OTHERS

class subdivided according to the number of par-
tial or exact matches.2

3.2 Classifier and Hypothesis Testing
Classifiers trained and tested on the entire devel-
opment set were used to measure the linear sepa-
rability of the questions’ empirical difficulty class.
We focused on the EASY vs (HARD ∪ OTHERS)
case. Feature were accepted if the area under the
receiver operating characteristic curve (AUC) was
0.6 or more; This threshold was picked based on
the performance of text complexity features. Fea-
tures were also accepted if they improved the AUC
when combined with the existing features.

Our goal was to identify features with two prop-
erties:

1. Features are linearly correlated with failures
or successes, and

2. The intersection between the feature values
for question in the EASY and HARD sets is as
small as possible.

2The 6 PMs may include up to five EMs.

This is equivalent to linear separability, which we
can evaluate using classifiers.

This process allowed for hypothesis testing: a
hypothesized explanation was rejected when it
was not possible to create corresponding features
that would improved the classifier, or be predictive
by themselves.

3.3 Receiver Operating Characteristic
Curves

Receiver operating characteristic (ROC) curves
are used to compare the performance of classi-
fiers. They illustrate the trade-offs between false
positives and false negatives. In practice, they can
measure the linear separability of the feature used
in a linear classifier.

In a linear classifier, one or more features are
projected down to one dimension. If the projected
value is greater than the threshold t, then the ex-
ample is classified as belonging to the class, oth-
erwise it is classified as outside the class.

The ROC curve contains all the points (P (X ≥
t|c = 0), P (X ≥ t|c = 1))∀t ∈ supp(X), where
X is a random variable corresponding to the pro-
jected value for a random example, and supp(X)
is its support. P (X ≥ t|c = 0) is the false posi-
tive rate, while P (X ≥ t|c = 1) is the true posi-
tive rate. The area under the curve (AUC) can be
used to summarize the performance of the corre-
sponding classifier. It would be 0.5 for a perfectly
random classifier, and 1.0 for a perfect classifier.

3.4 Iterative Procedure

We used an iterative process where ques-
tion/passage pairs were selected randomly, mainly
from the HARD class described in Section 3.1. A
qualitative analysis of this sample was then used to
identify common features that would explain the
models’ failure or success. Corresponding feature
extractors were then created, and used in logistic
regression classifiers in order to assign questions
to one of the difficulty classes described below.
Good features would be correlated with either fail-
ures or successes. The explanation was then ac-
cepted if it was sufficient to separate, at least par-
tially, the two classes, or if it improved the classi-
fier performance when combined with previously
accepted features. This process was repeated until
no new hypotheses were generated.
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What is the name of an algebraic structure
in which addition, subtraction and multi-
plication are defined?
Prime numbers give rise to two more gen-
eral concepts that apply to elements of any
commutative ring R, an algebraic struc-
ture where addition, subtraction and
multiplication are defined: prime ele-
ments and irreducible elements. An ele-
ment p of R is called prime element if it is
neither zero nor a unit (i.e., does not have
a multiplicative inverse) and satisfies the
following requirement: given x and y in R
such that p divides the product xy, then p
divides x or y. An element is irreducible if
it is not a unit and cannot be written as a
product of two ring elements that are not
units.

Table 3: Example of hard to read passage associ-
ated with an easy to answer question

4 Reading difficulty

Features based on text complexity and human
readability were used as control. Those features
were used to confirm that the hypothesized expla-
nations were not proxies for human text complex-
ity. They were also used to establish the perfor-
mance threshold required to accept hypotheses.

We used the grade level metric (Kincaid et al.,
1975), commonly used to evaluate the readabil-
ity of document for humans. The grade level is
a weighted sum of the average number of sylla-
bles per word and words per sentences, weighted
to match reading ability expected of a student in
that grade, in the US education system. Figure 1
shows the ROC curve when predicting the error
class of a question given the grade level of the pas-
sage and question. The AUC is 0.53 when classi-
fying EASY vs (HARD ∪ OTHERS), which is effec-
tively random. Table 3 shows an example of a hard
to read passage associated with an EASY question.

We also investigated other features measuring
text complexity. Those features and their individ-
ual performance are described in Appendix AUs-
ing a combination of those features, the AUC is
0.54 when classifying EASY vs (HARD ∪ OTH-
ERS), which is effectively random. This indicates
that those features are not predictors of failures
or successes. In practice, the difficulty class of
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Figure 1: ROC curve using Grade level to detect
EASY questions

a question is not based on the human readability
of the associated passage. In particular, complex
internal dependencies and co-referral structures,
which would support complicated questions, are
not predictors of failures or successes. This sug-
gests that the failures are not caused by the com-
plexity of the human strategy required to solve a
question, assuming complicated questions tend to
be associated with complicated passages.

5 Density and Proximity to Q-Words

To shorten notation, we refer to words present
in the question as Q-words. Qualitative analysis
suggested that successes tended to have many Q-
words nearby. Similarly, failures tended to have
few Q-words in their vicinity. Table 4 shows an ex-
ample of this concept extracted from SQuAD. All
systems selected the same incorrect answer, which
is in a region of high Q-word density. The correct
human answer is in a region of lower density, and
unlike the systems’ answer it is not adjacent to Q-
words.

Figure 2 shows the corresponding ROC curves
for a classifier using density and proximity fea-
tures. The number of Q-words within up to 10
words from a human answer was the best individ-
ual feature. This measures the density of Q-words
in the vicinity of human answers. The AUC was
0.60 when classifying EASY vs (HARD ∪ OTH-
ERS), 0.66 for HARD vs (EASY ∪ OTHERS), and
0.70 for EASY vs HARD.

The second best individual feature was the dis-
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What was the name of the first Doctor
Who story released as an LP?
The earliest Doctor Who-related au-
dio release was a 21-minute narrated
abridgement of the First Doctor tele-
vision story The Chase released in
1966. Ten years later, the first origi-
nal Doctor Who audio was released on
LP record; Doctor Who and the Pescatons
featuring the Fourth Doctor. The first
commercially available audiobook was an
abridged reading of the Fourth Doctor
story State of Decay in 1981. In 1988,
during a hiatus in the television show, Slip-
back, the first radio drama, was transmit-
ted.

Table 4: Example of Q-word density and prox-
imity. The systems’ answer, in italic, is closer to
Q-Words, in bold, than the underlined human an-
swer.

tance between human answers and the nearest
peak in the Q-word density. This measures the
proximity of Q-word clusters to human answers.
The AUC was 0.59 when classifying EASY vs
(HARD ∪ OTHERS), 0.66 for HARD vs (EASY ∪
OTHERS), and 0.69 for EASY vs HARD.

The classifiers were able to classify EASY vs
HARD more easily than EASY vs (HARD ∪ OTH-
ERS) and HARD vs (EASY ∪ OTHERS). Those re-
sults shows that the overlap between EASY and
HARD is smaller than the overlaps between EASY

and OTHERS, and between HARD and OTHERS.
This indicates that there is an approximate order-
ing HARD ≤ OTHERS ≤ EASY when going from
low to high values of those density and proximity
metrics.

The density and proximity features are accept-
able predictors of failures and successes. This sim-
ple mechanical explanation shows that similarity
between the question and the answer’s surround-
ings will contribute to the machine difficulty of the
question. The features used were based on direct,
exact matches between words. Capitalization was
ignored, but we did not perform any other form
of normalization, or accept any other differences
when matching, including trivial ones such as plu-
ralization. This very strict matching was sufficient
to create an acceptable predictor.3

3Better matching (e.g.cosine distance between word vec-
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Figure 2: ROC when using Q-words density and
proximity to detect EASY questions

6 Acceptability

Qualitative analysis of the false-negatives and of
randomly sampled false-positives, using the den-
sity and proximity classifier, suggested that mod-
els were returning answers that were “acceptable”
to the question. Questions would correspond to
one or more answer types, and the models would
retrieve the span belonging to one of those types
with the highest Q-word density and proximity.
While this notion of acceptability is hard to define,
a significant portion of the answers are named en-
tities (NEs) of various types. This can be used to
test this hypothesis. We used CoreNLP (Manning
et al., 2014) to identify which answers are NEs, as
well as their type and competing spans.

Table 5 shows an example of acceptability. All
systems select the only date presents in the pas-
sage. The correct answer is the proper name of an
event. Unlike dates, “Super Bowl LI” would not
usually be used to answer “when” questions, and
would not generally be considered acceptable.

6.1 Typed and Competition Features

We created a typed feature indicating that a least
one human answer overlapped with a NE. The
AUC was 0.63 when classifying EASY vs (HARD

∪ OTHERS), 0.54 for HARD vs (EASY ∪ OTHERS),
and 0.60 for EASY vs HARD. The typed feature is
binary; this result is caused by the fact 53.18% of

tors) should improve performance, but would be less explain-
able than direct matches. As our goal is to explain errors,
rather than predict them, we decided to use direct matching.
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When will Roman numerals be used again
to denote the Super Bowl number?
On June 4, 2014, the NFL announced
that the practice of branding Super Bowl
games with Roman numerals, a practice
established at Super Bowl V, would be
temporarily suspended, and that the game
would be named using Arabic numerals as
Super Bowl 50 as opposed to Super Bowl
L. The use of Roman numerals will be re-
instated for Super Bowl LI . . .

Table 5: Example of acceptability. The systems’
answer, in italic, is the only date in the passage.
The human answer is underlined.
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Figure 3: ROC when using typed and competition
features to detect easy questions

EASY questions are typed, but only 26% of (HARD

∪ OTHERS) questions are typed. This will be in-
vestigated in more details below.

A feature indicating the acceptable spans count
was also created. This feature is equal to the num-
ber of NE of the same type when least one human
answer overlap with a NE, falling back to the num-
ber of words in the passage in the case where no
human answer is a NE. In the NE case, this should
correspond to the number of competing hypothe-
ses; otherwise, the number of words in the passage
was picked as a simple heuristic. The AUC was
0.65 when classifying EASY vs (HARD ∪ OTH-
ERS), 0.54 for HARD vs (EASY ∪ OTHERS), and
0.61 for EASY vs HARD.

Figure 3 shows the corresponding ROC curves.

Type Count Freq. (%) EASY (%)
Non-NE 6,217 58.82 44.44
All NEs 4,353 41.18 72.11
DATE 968 9.16 83.37
PER 956 9.04 69.67
LOC 632 5.98 68.99

NUMBER 618 5.85 73.46
ORG 573 5.42 63.18

Others 606 5.73 68.27

Table 6: Distribution of questions by NE type and
difficulty class.

The overlap between the typed feature’s predic-
tions and the acceptable span count’s prediction is
clearly visible in this figure.

When used only for typed questions, the AUC
was 0.59 when classifying EASY vs (HARD ∪
OTHERS), 0.62 for HARD vs (EASY ∪ OTHERS),
and 0.64 for EASY vs HARD. This shows that suc-
cesses and failures are correlated with the number
of acceptable spans, when the answer is a NE. This
will be investigated in more details below.

6.2 Named Entity Answers
Table 6 shows the distribution of question by
named entity type and difficulty class. When the
answer is not a named entity, 44.44% of ques-
tions are in the EASY class. This proportion is
72.11% when the answer is a named entity. As
shown in Figure 4, the proportion of EASY ques-
tions decreases as the number of named entities of
the same type in the passage increases. Figure 5
shows that the rank of the human answer, rela-
tive to the number of competing named entities,
based on the combined density and proximity fea-
tures, is a predictor of failures and successes. The
AUC was 0.61 when classifying EASY vs (HARD

∪ OTHERS), 0.68 for HARD vs (EASY ∪ OTHERS),
and 0.70 for EASY vs HARD.

Those results indicate that the models are selec-
tive and can ignore high Q-words density regions
of the passage if those regions do not contain an
acceptable span. They also indicates that the den-
sity and proximity of Q-words is used to select
which acceptable span should be retrieved.

7 Combination of Features

Complementarity between density, proximity and
acceptability, as well as some rejected features,
was tested in a single combined logistic regres-
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Figure 5: ROC when using the rank of named-
entities human answers to detect EASY questions

sion classifier. Those features and their individ-
ual performance are described in details in Ap-
pendix B.The results are shown in Figure 6. The
AUC was 0.71 when classifying EASY vs (HARD

∪ OTHERS), 0.67 for HARD vs (EASY ∪ OTHERS),
and 0.74 for EASY vs HARD. Adding the read-
ability features described in Appendix A did not
significantly improve results, with AUCs of 0.71,
0.66, and 0.74 respectively. This confirms that
readability is not a predictor of failures or suc-
cesses, while the Q-words density and proximity,
and acceptability features are.

8 Reverse Engineered Strategy

Based on the density, proximity and acceptability
results presented above, we conclude that the mod-
els’ QA strategy is analogous to:

1. Classify question to identify acceptable span
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Figure 6: ROC using combination of features to
detect EASY questions

Features EASY HARD

All Readability 0.54 0.52
All Density 0.71 0.67
+ All Proximity
+ All Acceptability

All Readability 0.71 0.66
+ All Density
+ All Proximity
+ All Acceptability

Table 7: Area under the curve (AUC) per group of
features

types,

2. Extract acceptable spans from passage,

3. Rank extracted spans by Q-word density and
proximity, and

4. Return best span.

This simple strategy is a human equivalent that
would reproduce the failures and successes ob-
served; it is doubtful that the models are im-
plementing it literally. It also hides significant
complexity in the acceptability and density steps,
which were not properly modeled in our experi-
ments as we wanted to ensure interpretablity. A
more powerful model would be better at model-
ing those concepts, but such a model would be
very similar to the models we are trying to ana-
lyze. This is similar to the results of the related
works listed in Section 2.
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9 Priming During Data Collection

We attribute the success of the simple strategy de-
scribed above to priming and biases during ques-
tion generation. While we cannot confirm prim-
ing experimentally, as this would involve asking a
justification for the question during the initial data
collection, we can extrapolate from our own at-
tempts at question generation.

Reading the passage will prime the question
creators towards questions based on interrogative
paraphrases of the passage. As noted by Sug-
awara et al. (2017), “SQuAD was difficult to read,”
which should further magnify this effect: when the
passage is hard to read, it is easier and faster to
scan it for a sentence stating a fact and to refor-
mulate that sentence as a question. In particular,
since crowdworkers are not motivated by a gen-
uine need for information, we can expect them to
use the first question that came to mind. Table 3
shows such an example, where the question is a
slight reformulation of part of the passage.

We find this priming issue concerning, and sus-
pect that it affects many datasets. It should be pos-
sible to avoid it by using true questions, collected
from various sources. Those questions should
be the product of a genuine need for information
rather than created for the sake of creating a ques-
tion, and should be created before reading a poten-
tially answering passage. Those can be matched
to relevant documents, and answered by human
annotators. If keyword search is used to retrieve
relevant documents, there is of course a risk of
retrieving documents containing declarative para-
phrases of the questions, which would effectively
prime the passage on the question.

10 Conclusion

We presented a methodology used to systemati-
cally analyze the errors of six models on SQuAD.
This methodology relies on simple feature extrac-
tors and classifiers to ensure that any hypothesized
explanation does not also co-occur with correct
answers. By iteratively sampling falsely negative
and positive predictions of this classifiers, we were
able to reverse engineer a simple QA strategy that
would match the models’ failures and successes.
While labor intensive4, this methodology avoids
confirmation bias during a qualitative analysis of
a random sample. In particular, human readability

4Approximately 3-4 weeks, mostly creating and testing
hypotheses.

might mask the true cause of an error, as human in-
vestigators will tend to explain errors by the chal-
lenges they faced when examining the question.
This methodology can be applied to large datasets,
and also ensures that the errors are attributed to
well defined causes. We recommend its use when
the challenges remaining in a dataset need to be
identified.

We attribute the success of the simple strategy
we identified to priming by the passage during
question generation. This limits the challenges,
for machines, truly present in SQuAD, and in-
dicates that, while necessary, good performance
on SQuAD is not sufficient to say that a ma-
chine reading question answering model would
have good performance in general. As such, we
recommend the use of datasets where question cre-
ation is independent of the passage, such as:

• MSMarco (Nguyen et al., 2016)

• NarrativeQA (Kociský et al., 2017)

• NewsQA (Trischler et al., 2017)

• SearchQA (Dunn et al., 2017)

• TriviaQA (Joshi et al., 2017)
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Abstract

Reading Comprehension (RC) of text is
one of the fundamental tasks in natu-
ral language processing. In recent years,
several end-to-end neural network mod-
els have been proposed to solve RC tasks.
However, most of these models suffer in
reasoning over long documents. In this
work, we propose a novel Memory Aug-
mented Machine Comprehension Network
(MAMCN) to address long-range depen-
dencies present in machine reading com-
prehension. We perform extensive exper-
iments to evaluate proposed method with
the renowned benchmark datasets such as
SQuAD, QUASAR-T, and TriviaQA. We
achieve the state of the art performance
on both the document-level (QUASAR-T,
TriviaQA) and paragraph-level (SQuAD)
datasets compared to all the previously
published approaches.

1 Introduction

Reading Comprehension (RC) is essential for
understanding human knowledge written in text
form. One possible way of measuring RC is
by formulating it as answer span prediction style
Question Answering (QA) task, which is finding
an answer to the question based on the given doc-
ument(s). Recently, influential deep learning ap-
proaches have been proposed to solve this QA
task. Wang and Jiang (2017); Seo et al. (2017) pro-
pose the attention mechanism between question
and context for question-aware contextual repre-
sentation. Wang et al. (2017) refine these con-
textual representations by using self-attention to
improve the performance. Even further perfor-
mance improvement is gained by using contextu-
alized word representations for query and context

(Salant and Berant, 2017; Peters et al., 2018; Yu
et al., 2018).

Based on those approaches, several methods
have successfully made progress towards reaching
human-level performance on SQuAD (Rajpurkar
et al., 2016). Each training example in the SQuAD
only has the relevant paragraph with the corre-
sponding answer. However, most of the docu-
ments present in the real-world are long, contain-
ing relevant and irrelevant paragraphs, and do not
guarantee answer presence. Therefore the models
proposed to solve SQuAD have difficulty in apply-
ing to real-world documents (Joshi et al., 2017).
Recently, QUASAR-T (Dhingra et al., 2017) and
TriviaQA (Joshi et al., 2017) datasets have been
proposed to resemble real-world document. These
datasets use document-level evidence as training
example instead of using only the relevant para-
graph and evidence does not guarantee answer
presence, which makes them more realistic.

To effectively comprehend long documents
present in the QUASAR-T and TriviaQA datasets,
the QA models have to resolve long-range de-
pendencies present in these documents. In this
work, we build a QA model that can understand
long documents by utilizing Memory Augmented
Neural Networks (MANNs) (Graves et al., 2014;
Weston et al., 2015b). This type of neural net-
works decouples the memory capacity from the
number of model parameters. While there have
been several attempts to use MANNs in managing
long-range dependencies, applications are limited
to only toy datasets (Sukhbaatar et al., 2015; We-
ston et al., 2015a; Kumar et al., 2016; Graves et al.,
2016). Compared to the previous approaches, we
mainly focus on the document-level QA task on
QUASAR-T and TriviaQA. We also apply our
model to SQuAD to show that our model even
works well on the paragraph-level.

Our contributions in this work are as follows:
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(1) We develop Memory Augmented Machine
Comprehension Network (MAMCN) to solve
document-level RC task. (2) Our method achieves
the state of the art performance compared to all
the published results on both the document-level
(QUASAR-T and TriviaQA) and paragraph-level
(SQuAD) benchmarks. In TriviaQA we achieve
71.91 and 69.60 F1 scores for Web and Wikipedia
domains respectively. Also, we achieved 86.73 F1
compared to the human performance of 91.22 F1
in SQuAD benchmark. These results show that
MAMCN is a crucial component for QA task, es-
pecially they are useful in comprehending long
documents.

2 Related Work

Many neural networks have been proposed to
solve answer span QA task. Ranking continu-
ous text spans within a passage was proposed by
Yu et al. (2016) and Lee et al. (2016). Wang
and Jiang (2017) combine match-LSTM, origi-
nally introduced in (Wang and Jiang, 2016) and
pointer networks to produce the boundary of the
answer. Since then, most of the models adopted
pointer networks as a prediction layer and then
focused on improving other layers. Some meth-
ods focused on devising more accurate attention
method; Seo et al. (2017); Wang et al. (2017);
Xiong et al. (2017) employ attention mechanism
to match the question context mutually; In addi-
tion, Liu et al. (2017a) apply multi-layer attention
and Huang et al. (2017b) expand to multi-level at-
tention to get more enriched attention information.

Other approaches use contextualized word rep-
resentations to further improve the performance.
Salant and Berant (2017); Peters et al. (2018) uti-
lize embedding from pre-trained language model
as an additional feature and Yu et al. (2018) select
machine translation model instead. Also, there are
few attempts at augmenting memory capacity of
the model (Hu et al., 2017; Pan et al., 2017). Hu
et al. (2017) refine the contextual representation
with multi-hops, and Pan et al. (2017) simply use
the encoded query representations as a memory
vector for refining the answer prediction, which
are not meant to handle long-range dependency
that we consider in this work.

3 Proposed Model

We propose a memory augmented reader for
answer-span style QA task. Answer-span style QA

task is defined as follows. Question and document
can be represented by sequence of words q =
{wq

i }mi=1, d = {wd
j }nj=1 respectively. Answer-

span a = {wd
k}ek=s (where, 1 ≤ s ≤ e ≤ n)

should be returned, given q and d. We embed the
sequence of words in q and d to get contextual rep-
resentations. These contextual representations are
used for calculating question-aware context repre-
sentation which is controlled by external memory
unit and used for predicting answer-span. We de-
scribe more details of each layer in following sec-
tions and depict overall architecture of proposed
model in Figure 1.

3.1 Contextual Representation

Word Embedding: We use two different kinds of
embeddings to get the richer feature representa-
tion for each word in the question and document.
Word-level embedding helps to have a represen-
tation explaining semantic similarities as proxim-
ity in high dimensional vector space. In addi-
tion to this, we utilize character-level embedding
by applying convolution filters to address out-of-
vocabulary and infrequent words problem. We
concatenate both embeddings [ew; ec] to represent
each word embedding as e ∈ Rl.

Contextual Embedding: We compute the con-
textual representation for each word in the ques-
tion and document by using bi-directional GRU
(Cho et al., 2014) as follows:

cqi = BiGRUq(e
q
i ,hi−1,hi+1), (1)

cdj = BiGRUd(e
d
j ,hj−1,hj+1), (2)

where eqi , e
d
j are the word embeddings for

each word in the question and document, and
hi−1,hi+1 are the hidden states of the forward
and reverse GRUs respectively. The final ques-
tion and document contextual representation are
Cq ∈ Rm×2l and Cd ∈ Rn×2l.

Co-attention: We compute question-aware rep-
resentations for each word in the document by
adopting the attention mechanism in (Clark and
Gardner, 2017). To get these representations, we
first compute the similarity matrix S followed by
bi-directional attention between the words in the
question and document as follows:

sij = wqC
q
i,: +wdC

d
j,: +wh(C

q
i,: �Cd

j,:) (3)

wq, wd, and wh are trainable weights and �
is element-wise multiplication. Each element of
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Figure 1: The architecture of Memory Augmented Machine Comprehension Network (MAMCN).

similarity matrix sij represents attention between
ith word in the question and jth word in the docu-
ment. We can get the attention weights of ques-
tion words to each document word by applying
column-wise softmax to S.

aqij =
( esij∑m

k=1 e
skj

)
(4)

Aq
:,j is attention weights of questions to jth

word in the document. We can get attended ques-
tion vectors for the document words by multiply-
ing entire attention matrix Aq to the contextual
embedding of question Cq.

C̃
q
= AqTCq ∈ Rn×2l (5)

Also, we can get attention weights on the docu-
ment words for the question ad by applying soft-
max to the column-wise max values (vd) of atten-
tion matrixAq.

adj =
( ev

d
j

∑n
k=1 e

vdk

)
, (vdj = max

1≤i≤m
aqij) (6)

This attention weight on the document words ad

is duplicated n times for each row to makeAd and

applied to contextual embedding of document Cd

to get attended document vectors.

C̃
d
= AdCd ∈ Rn×2l (7)

Finally, we can make question-aware contextual
representation C by concatenating as follows:

C = [Cd; C̃
q
;Cd� C̃q

;Cd� C̃d
] ∈ Rn×8l (8)

3.2 Memory Controller
Memory controller allows us to utilize external
memory to compensate for the limited memory
capacity of the recurrent layers. We develop the
memory controller inspired by the memory frame-
work of (Graves et al., 2016). The operation of the
controller at time step t is given by:

ot, it = Controller(Ct,:,M t−1) (9)

It takes the contextual representation vectorCt,:

as input, and the external memory matrix of the
previous time step M t−1 ∈ Rp×q, where p is the
number of memory locations, and q is the dimen-
sion of each location. We choose two layers of
BiGRUs as the recurrent layer for the controller.
The contextual representations are fed into the first
layer to capture interactions between contexts.

st = BiGRU(Ct,:,ht−1,ht+1) ∈ R2l. (10)
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Then, st and the subset of memory vectors ob-
tained from the memory matrix are concatenated
to generate an input vector xt for the second layer,

xt = [st;m
1
t−1; · · · ;ms

t−1] ∈ R2l+sq, (11)

where s is the number of read vectors. After feed-
ing the input vector xt to the second recurrent
layer, the controller uses the outputs of the layer
hm
t to emit the output vector ot and the interface

vector it. We describe details of obtaining each
vector as follows:

hm
t = BiGRU(xt,h

m
t−1,h

m
t+1) (12)

Output Vector: The controller makes the out-
put vector as a weighted sum vt of hidden state of
the recurrent layer and memory vectors.

vt = Woh
m
t +Wm[m1

t ; · · · ;ms
t ] (13)

We add a residual connection between the con-
troller’s input and output to mitigate the infor-
mation morphing that can occur when interacting
with memory. As a result, we get a long-term
dependency-aware output vector as follows:

ot = Wvvt +WcCt,: ∈ R2l (14)

Interface Vector: At the same time, the con-
troller generates interface vector it for the memory
interaction based on hmt as follows:

it = Wih
m
t ∈ Rsq+5s+3q+3. (15)

We consider it as a concatenation of various
functional vectors which determine the basic op-
eration of the memory such as memory address-
ing, read and write. The complete list of functional
vectors is described in Table 1.

Memory Addressing : We use content-based
addressing mechanism for read and write opera-
tions. In content-based addressing, the memory
locations required to read/write at the current time
step t are obtained by using the probability distri-
bution over the memory locations, which is a sim-
ilarity function between the key vector and each
memory vector.

ci = softmax (cos(M i,:,k)α̃) (16)

cos is the cosine similarity and α̃ is a constrained
strength value to [1,∞) by (1 + log(1 + eα)).

Operation Name Vector

Read
key {kr,it }si=1 ∈ Rq

strength {αr,i
t }si=1 ∈ R

mode {πi
t}si=1 ∈ R3

Write

key kwt ∈ Rq

strength αw
t ∈ R

erase vector et ∈ Rq

write vector vt ∈ Rq

free gate {gf,it }si=1 ∈ R
allocate gate gat ∈ R

write gate gwt ∈ R

Table 1: The list of functional vectors that make
up the interface vector of controller.

Read Operation: Each read head performs a
read operation by weighting over entire memory.

crt = softmax (cos(M t,k
r
t )α̃

r
t ) (17)

Along with this, we use a temporal memory
linkage matrix to associate memories together,
which keep track of consecutively modified loca-
tions in the memory. The multiplication of tempo-
ral link matrix and read weights from the previous
time-step gives backward bt and forward weights
f t which helps to track the temporal order of the
memory. The read weights are obtained from the
linear combination of corresponding weights and
the mode vectors π̃ normalized by softmax.

wr
t = π̃[0]bt + π̃[1]c

r
t + π̃[2]f t (18)

These read weights are applied to memory loca-
tions to get the final read vectors as follow:

mi =

p∑

i

Mi,:w
r,i
t (19)

Write Operation: Similar to the read heads in
read operation, a write head determines where to
write by using content-based weighting.

cwt = softmax (cos(M t−1,k
w
t )α̃

w
t ) (20)

We adopted dynamic memory allocation as de-
scribed in (Graves et al., 2016) to maintain a free
list and a usage vector to track the memory free-
ness. Based on the memory freeness, allocation
weights at are calculated to indicate where to
write, and it is interpolated with content-based
weights to get locations for writing. Write gate
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Dataset
Total

ADL
Train / Dev / Test

SQuAD 87,599 / 10,570 / UNK 142
QUASAR-T

25,465 / 2,043 / 2,068 221
(Short)

QUASAR-T
26,318 / 2,129 / 2,102 392

(Long)
TriviaQA

528,979 / 68,621 / 65,509 631
(Web)

TriviaQA
110,648 / 14,229 / 13,661 955

(Wikipedia)

Table 2: Data statistics of SQuAD, QUASAR-
T, and TriviaQA. The Average Document Length
(ADL) represents the average number of words.
In TriviaQA, ADL was calculated after truncating
the documents to the first 1200 words.

gwt decides whether to write or not and allocation
gate gat determines the degree of interpolation.

ww
t = gwt [g

a
tat + (1− gat )cwt ] (21)

After finding the location to write with this
weight, write operation on the memory is per-
formed as follows:

M t =M t−1 � (Jp,q −ww
t e

T
t ) +w

w
t v

T
t (22)

where � is element-wise multiplication and Jp,q

is p by q matrix of ones.

3.3 Prediction Layer
We feed output vector o from memory controller
to prediction layer. First, it goes to bi-directional
GRU and is then linearly projected to get prob-
ability distribution of start position of answer
Pr(as|q,d). The end position Pr(ae|q,d) is cal-
culated the same way with the hidden states of the
start position concatenated as an additional input.
These probabilities are also used for model op-
timization while training in the form of negative
log-likelihood probability.

4 Experimental Results

In this section, we present our experimental setup
for evaluating the performance of our MAMCN
model. We select different datasets based on their
average document length to check the effective-
ness of external memory on RC task. We com-
pare the performance of our model with all the
published results and the baseline memory aug-
mented model. The baseline model is developed

by replacing modeling layer in BiDAF (Seo et al.,
2017) model with the memory controller from
DNC (Graves et al., 2016).

4.1 Data Set

We perform experiments with recently proposed
QUASAR-T and TriviaQA datasets to see the
performance of our model on the long docu-
ments. The QUASAR-T dataset consists of fac-
toid question-answer pairs and a corresponding
large background corpus (Callan et al., 2009) to
comprehend. In TriviaQA, question-answers pairs
are collected from trivia and quiz-league websites.
The evidence documents for these QA pairs are
collected from Wikipedia articles and Web search
results. The average length of the documents in
these datasets are much longer than SQuAD and
question-documents pairs are collected in a decou-
pled way, making them more difficult to compre-
hend. In the case of TriviaQA, we truncate the
documents to 1200 words for training and 2000
words for the test. Even these truncated docu-
ments are 3 to 5 times longer than SQuAD doc-
uments. The average length of original documents
in TriviaQA is about 3,000 words, so there is no
guarantee that above truncated documents contain
the answer for a given question.

We also conduct experiments on SQuAD
dataset to show our model can even work well on
paragraph-level data. The SQuAD contains a col-
lection of Wikipedia articles and crowd-sourced
question-answer pairs. Even though SQuAD
dataset pushed existing models to achieve signif-
icant performance improvements in solving RC
task, the document length does not resemble the
length of the real-world document.

The statistics of all these datasets are shown in
Table 2. We use official train, dev, and test splits
provided in all these datasets for experiments.

4.2 Implementation Details

We develop MAMCN using Tensorflow1 deep
learning framework and Sonnet2 library. For
the word-level embedding, we tokenize the docu-
ments using NLTK toolkit (Bird and Loper, 2004)
and substitute words with GloVe 6B (Pennington
et al., 2014) 300-dimensional word embeddings.
We also use 20-dimensional character-level em-
beddings which are learned during training. The

1www.tensorflow.org
2https://github.com/deepmind/sonnet
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Dataset Model
Dev set Test set

EM F1 EM F1
Short-documents MAMCN 64.87 68.88 68.13 70.32

(ADL=221) BiDAF + DNC 51.18 54.77 54.81 58.24
BiDAF 45.40 50.90 47.60 52.40

Long-documents MAMCN 60.05 63.23 63.44 65.19
(ADL=392) BiDAF + DNC 48.67 52.25 52.15 54.43

BiDAF 37.00 42.50 39.50 44.50

Table 3: Performance results on QUASAR-T dataset.

Domain Model
Full Verified

EM F1 EM F1
Web MAMCN 66.82 71.91 81.01 84.12

(ADL=631) BiDAF + SA + SN (Clark and Gardner, 2017) 66.37 71.32 79.97 83.70
Reading Twice for NLU (Weissenborn, 2017) 50.56 56.73 63.20 67.97

M-Reader (Hu et al., 2017) 46.65 52.89 56.96 61.48
BiDAF + DNC 42.34 48.65 51.50 57.17

MEMEN (Pan et al., 2017) 44.25 48.34 53.27 57.64
BiDAF (Seo et al., 2017) 40.74 47.05 49.54 55.80

Wikipedia MAMCN 64.41 69.60 70.21 75.49
(ADL=955) BiDAF + SA + SN (Clark and Gardner, 2017) 63.99 68.93 67.98 72.88

QANet (Yu et al., 2018) 51.10 56.60 53.30 59.20
Reading Twice for NLU (Weissenborn, 2017) 48.60 55.10 53.40 59.90

M-Reader (Hu et al., 2017) 46.94 52.85 54.45 59.46
BiDAF + DNC 42.57 48.30 46.23 51.61

MEMEN (Pan et al., 2017) 43.16 46.90 49.28 55.83
BiDAF (Seo et al., 2017) 40.32 45.91 44.86 50.71

Table 4: Single model results on TriviaQA dataset3 (Web and Wikipedia). SA: Self-attention, SN: Shared
normalization.

hidden size is set to 200 for QUASAR-T and Triv-
iaQA, and 100 for SQuAD. In the memory con-
troller, we use 100 x 36 size memory initialized
with zeros, 4 read heads and 1 write head. The
optimizer is AdaDelta (Zeiler, 2012) with an ini-
tial learning rate of 0.5. We train our model for
12 epochs, and batch size is set to 30. During the
training, we keep the exponential moving average
of weights with 0.001 decay and use these aver-
ages at test time.

4.3 Results
We use Exact Match (EM) and F1 Score as evalu-
ation metrics for all the datasets. EM measures the
percentage of the predictions that exactly matches
with the corresponding ground truth answers. The
F1 score measures the overlap between the predic-
tions and corresponding ground truth answers.

QUASAR-T: The results on QUASAR-T are
3https://competitions.codalab.org/competitions/17208

shown in Table 3. As described in Table 3, the
baseline (BiDAF + DNC) results in a reason-
able gain, however, our proposed memory con-
troller gives more performance improvement. We
achieve 68.13 EM and 70.32 F1 for short docu-
ments and 63.44 and 65.19 for long documents
which are the current best results.

TriviaQA: We compare proposed model with
all the previously suggested approaches as shown
in Table 4. We perform the experiments on both
Web and Wikipedia domains and report evalua-
tion results for “Full” and “Verified” cases. “Full”
is not guaranteed to have all the supporting fac-
tors to answer the question, however, it is the en-
tire dataset selected with distant supervision. The
“Verified” is a subset of the “Full” dataset cleaned
by the human annotators to guarantee the presence
of supporting facts to answer.

Our model achieves the state of the art perfor-
mance over the existing approaches as shown in
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Model
Test set

AF SA
EM F1

MAMCN + ELMo + DC 79.69 86.73 O O
BiDAF + Self-attention + ELMo (Peters et al., 2018) 78.58 85.83 O O
MAMCN + ELMo 77.44 85.13 O -
RaSoR + TR + LM (Salant and Berant, 2017) 77.58 84.16 O -
QANet (Yu et al., 2018) 76.24 84.60 O O
SAN (Liu et al., 2017b) 76.83 84.40 O O
FusionNet (Huang et al., 2017b) 75.97 83.90 O O
RaSoR + TR (Salant and Berant, 2017) 75.79 83.26 O -
Conducter-net (Liu et al., 2017a) 74.41 82.74 O O
Reinforced Mnemonic Reader (Hu et al., 2017) 73.20 81.80 O O
BiDAF + Self-attention (Clark and Gardner, 2017) 72.14 81.05 - O
MEMEN (Pan et al., 2017) 70.98 80.36 O -
MAMCN 70.99 79.94 - -
r-net (Wang et al., 2017) 71.30 79.70 - O
Document Reader (Chen et al., 2017) 70.73 79.35 O -
FastQAExt (Weissenborn et al., 2017) 70.85 78.86 - O

...
...

...
...

...
Human Performance 82.30 91.22

Table 5: Single model results on SQuAD dataset4. The last two columns in tables indicate whether mod-
els use additional feature and self-attention. AF: Additional feature augmentation for word embedding,
SA: Self-attention, DC: Densely connected embedding block.

Table 4. In the case of full evaluation, we get
66.82 EM, 71.91 F1 for web domain, and 64.41
EM, 69.60 F1 for Wikipedia domain. The pro-
posed model works best in noisy data with dis-
tant supervision. In the case of human verified
data, performance increases further. We get 81.01
EM and 84.12 F1 for web domain and 70.21 EM
and 75.49 F1 for Wikipedia. It is encouraging
that these results were obtained without any help
of additional feature augmentation, such as utiliz-
ing hidden states of pre-trained language model
or additional semantic/syntactic features which are
commonly used in other models. Also, our model
does not need self-attention layer which is preva-
lently used in previous models.

SQuAD: The results on SQuAD are shown in
Table 5. In the longer documents case (QUASAR-
T and TriviaQA), MAMCN with external mem-
ory performed well because the controller can ag-
gregate information effectively from the long se-
quences, however, due to the small length of the
documents in SQuAD, the existing methods based
on the recurrent layers without external memory
are also sufficient to achieve reasonable perfor-

4https://rajpurkar.github.io/SQuAD-explorer/

Self-attention

FC

Input

BiGRU

Output

Figure 2: Densely connected embedding block

mance. The last two columns in the Table 5 indi-
cate whether each model uses any additional fea-
ture augmentation and/or self-attention. All the
models with the help of these additional feature
augmentation and/or self-attention achieve further
performance gain on SQuAD dataset.

Our vanilla model (MAMCN) achieved the best
performance among the models which are not us-
ing additional feature augmentation and/or self-
attention layer mechanisms. We also adopted
these mechanisms one by one to show that our
model is compatible with them. First, we add
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No. Question-Document-Answer triplet
Question : In which activity are banderillas used ?

1

Context : Semi-naked animal rights activists staged a fake - bloody protest outside the
European Parliament on Thursday to draw attention to the suffering of bulls during
bullfights . Around 30 people taking part in the protest organized by PETA ( People for the

Ethical Treatment of Animals ) lay on the ground with banderillas, the traditional darts used
to wound and weaken bulls in the fight, attached to their backs, some spattered with fake
blood. Bullfighting - ever popular in Spain - and the European Union’s ...
Ground truth: Bullfight, Bullfights
Question : What boxer was stripped of his heavyweight boxing titles when he refused his US
army induction in April, 1967 ?

2

Context : ... This slideshow consists mostly of boxers who have continued to fight on, despite
the hindrance of being in their senior years. It also includes two or three boxers who have
launched stellar career comebacks from the brink of failure, or exile. George Foreman Al
Bello retirement after being defeated by Jimmy Young in Puerto Rico in 1977 shocked the
boxing community, the announcement of his return in 1987 sent the sport into raptures. In
what ... Muhammad Ali made several comebacks in his career, but the one that stands out
has to be the rebuilding of his career after being stripped of his titles for refusing to go to war
in Vietnam ... After the U.S army found him to have sub-par reading and spelling skills, he
was deemed unsuitable for service in 1966. One year later, however, they revised their criteria,
making the champion eligible for national service. Ali refused, on moral grounds, and was
consequently stripped of his boxing license and titles permanently. After three years of legal
proceedings ...
Ground truth: Muhammad Ali

Table 6: Examples are from devset of TriviaQA (Web). The solid and dashed rectangular text boxes
indicate predictions from the MAMCN and ‘BiDAF + Self-attention’ models respectively.

ELMo (Peters et al., 2018) which is the weighted
sum of hidden layers of language model with reg-
ularization as an additional feature to our word
embeddings. This helped our model (MAMCN +
ELMo) to improve F1 to 85.13 and EM to 77.44
and is the best among the models only with the
additional feature augmentation.

Secondly, we add self-attention with dense con-
nections to our model. Recently, Huang et al.
(2017a) have shown that adding a connection be-
tween each layer to every other layer in con-
volutional networks improves the performance
by a huge margin. Inspired by this, we build
densely connected embedding block along with
self-attention to increase performance further in
the case of SQuAD. The suggested embedding
block is shown in Figure 2. Each layer concate-
nates all the inputs from the previous layers di-
rectly connected to it. We replace all the BiGRU
units with this embedding block except the con-
troller layer in our model (MAMCN + ELMo +
DC). We achieve the state of the art performance,
86.73 F1 and 79.69 EM, with the help of this em-

bedding block.
To show the effectiveness of our method in

addressing long-term dependencies, we collected
two examples from the devset of TriviaQA, shown
in Table 6. Finding an answer in these examples
require resolving long-term dependencies. The
first example requires understanding dependency
present between two sentences while answering.
The ‘BiDAF + Self-attention’ model predicts in-
correct answer by shallow matching a sentence
which is syntactically close to the question. Our
model predicts the correct answer by better com-
bining the information from the two sentences.
In the second example, the answer is present
remotely in the document, the ‘BiDAF + Self-
attention’ model without external memory face
difficulty in comprehending this long document
and predicts the wrong answer whereas our model
predicts correct answer.

5 Conclusion

We proposed a multi-stage memory augmented
neural network model to comprehend long docu-
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ments in QA task. The proposed model achieved
the state of the art results on the recently re-
leased large-scale QA benchmark datasets such
as QUASAR-T, TriviaQA, and SQuAD. The re-
sults suggest that proposed method is helpful for
addressing long-range dependencies in QA task.
The future work involves implementing scalable
read/write heads to handle larger size external
memory to reason over multiple documents.
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Abstract

Question answering systems deteriorate
dramatically in the presence of adversar-
ial sentences in articles. According to Jia
and Liang (2017), the single BiDAF sys-
tem (Seo et al., 2016) only achieves an
F1 score of 4.8 on the ADDANY adver-
sarial dataset. In this paper, we present a
method to tackle this problem via answer
sentence selection. Given a paragraph of
an article and a corresponding query, in-
stead of directly feeding the whole para-
graph to the single BiDAF system, a sen-
tence that most likely contains the answer
to the query is first selected, which is done
via a deep neural network based on Tree-
LSTM (Tai et al., 2015). Experiments on
ADDANY adversarial dataset validate the
effectiveness of our method. The F1 score
has been improved to 52.3.

1 Introduction

Question answering is an important task in evalu-
ating the ability of language understanding of ma-
chines. Usually, given a paragraph and a corre-
sponding question, a question answering system
is supposed to generate the answer of this ques-
tion from the paragraph. By comparing the pre-
dicted answer with human-approved answers, the
performance of the system can be assessed. Re-
cently, many systems have achieved great results
on this task (Shen et al., 2017b; Wang and Jiang,
2016; Hu et al., 2017). However, Jia and Liang
(2017) show that these systems are very vulnera-
ble to paragraphs with adversarial sentences. For
instance, the single BiDAF system (Seo et al.,
2016), which achieves an F1 of 75.5 on Standford
Question Answering Dataset (SQuAD), deterio-
rates significantly to an F1 of 4.8 on the ADDANY

adversarial dataset. Besides the single BiDAF, the
single Match LSTM, the ensemble Match LSTM,
and the ensemble BiDAF achieve an F1 of 7.6,
11.7, and 2.7 respectively in question answering
on ADDANY adversarial dataset (Jia and Liang,
2017). Therefore, question answering with adver-
sarial sentences in paragraphs is a prominent issue
and is the focus of this study.

In this paper, we propose a method to improve
the performance of the single BiDAF system1 on
ADDANY adversarial dataset. Given a paragraph
and a corresponding question, our method works
in two steps to generate an answer. In the first step,
a deep neural network named the QA Likelihood
neural network is deployed to predict the likeli-
hood of each sentence in the paragraph to be an
answer sentence, i.e., the sentence that contains
the answer. The architecture and the loss of the
QA Likelihood neural network follow the neural
network for semantic relatedness proposed by Tai
et al. (2015). Its main ingredient is the Tree-LSTM
model. While the neural network for semantic re-
latedness is used to predict the similarity between
sentence A and B, the QA Likelihood neural net-
work is used to predict if sentence A contains the
answer to query B. In the second step, only the
sentence with the highest likelihood is paired with
the question and passed to the single BiDAF to
further output an answer. In summary, compared
to the original BiDAF that is an end-to-end ques-
tion answering system, our method first selects a
sentence that is most likely to be an answer sen-
tence. Since adversarial sentences are not sup-
posed to contain the answer, they can be screened
out. Therefore, the distractions of adversarial sen-
tences are reduced. Experiments on ADDANY
adversarial dataset demonstrates the effectiveness

1Since all the QA systems tested in Jia and Liang (2017)
deteriorate on the ADDANY adversarial dataset, we arbitrar-
ily choose one of them, the single BiDAF, as the benchmark.
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Figure 1: The Architecture of Our Approach

of our method. The F1 has been significantly im-
proved from 4.8 to 52.3.

The contributions of this study are in three
folds. First, to the best of our knowledge, it’s
the first work that tries to address the problem
of Question Answering with Adversarial Exam-
ples. Our results show the effectiveness of an-
swer sentence selection to tackle adverserial sen-
tences in ADDANY dataset. Second, the power
of sentence representation of Tree-LSTM has been
demonstrated in different NLP tasks, such as se-
mantic relatedness computation, machine transla-
tion evaluation and natural language inference (Tai
et al., 2015; Gupta et al., 2015; Chen et al., 2017);
meanwhile, multiple methods have been proposed
for answer sentence selection (Wang and Nyberg,
2015; Rao et al., 2016; Wang et al., 2017; Shen
et al., 2017a; Choi et al., 2017). We are the first to
design a framework that illustrates the effective-
ness of Tree-LSTM in answer sentence selection.
Third, two sampling methods are implemented to
build the training set for the QA Likelihood neural
network. We show that different sampling meth-
ods do influence the performance of question an-
swering in this scenario.

2 Methods

Given a paragraph C and a corresponding query
Q, the paragraph is split into a bunch of sen-
tences C = {Si|i = 1, 2, . . . , |C|}. By combin-
ing each sentence Si with the query Q, a set of
sentence pairs PC,Q = {(Si,Q)|i = 1, 2, . . . , |C|}
is obtained. Then, the dependency parsing (Man-
ning et al., 2014) is used to get the tree repre-
sentation TSi for Si and TQ for Q. Based on
TSi and TQ, two Tree-LSTMs, Tree-LSTMSi and
Tree-LSTMQ, are built respectively (Tai et al.,
2015). The inputs to the leafs of both Tree-LSTMs
are GloVe word vectors generated by Pennington
et al. (2014). The output hidden vectors of the

Tree-LSTM for Si and Q are hSi and hQ respec-
tively. Then, hSi and hQ are concatenated and
passed to a feed forward neural network to out-
put the likelihood that Si contains the answer to
Q. The architecture and the loss of the feed for-
ward neural network follows the neural network
for semantic relatedness (Tai et al., 2015). Dur-
ing training, the likelihood is supervised by 1 if Si

contains the answer and 0 otherwise. The proce-
dure above is summarized as the QA Likelihood
neural network that is illustrated in Part 1 of Fig-
ure 1. Following that, the sentence that is most
likely to be an answer sentence,

S∗ = argmax
Si∈C

LSi,Q,

is selected, where L stands for the likelihood pre-
dicted by the QA Likelihood neural network. Af-
ter that, a pair of sentences S∗ andQ are passed to
the pre-trained single BiDAF(Seo et al., 2016) to
generate an answer â to Q. This process is illus-
trated in Part 2 of Figure 1.

3 Experiments

Dataset for Training. As Figure 1 shows, the in-
put of our system is a pair of sentences. Thus, the
training instances for the QA Likelihood neural
network are in the form of sentence pairs. They are
sampled from the training set of SQuAD v1.1 (Ra-
jpurkar et al., 2016) that contains no adversarial
sentences. Specifically, there are 87,599 queries
of 18,896 paragraphs in the training set of SQuAD
v1.1. While each query refers to one paragraph, a
paragraph may refer to multiple queries.

For the k-th query Qk, by splitting its corre-
sponding paragraph Ck into separate sentences and
combining them with the query, a set of sentence
pairs is obtained,

Dk = {(Sk
i ,Qk)|i = 1, 2, . . . ,mk}
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where Dk represents the set of sentence pairs for
the k-th query, mk is the number of sentences in
the paragraph Ck, Sk

i is the i-th sentence in Ck. A
sentence pair (Sk

i ,Qk) is called a positive instance
if Sk

i contains the answer to Qk; otherwise, it is
called a negative instance. Then, the union of the
sets Dk for all the 87,599 queries in SQuDA is

D =

d⋃

k=1

Dk

where d=87,599 is the number of queries. The set
D contains 440,135 sentence pairs, among which
87,306 are positive instances and 352,829 are neg-
ative instances.

In order to train our model properly and effi-
ciently, both downsampling of D and undersam-
pling of negative instances must be done. In this
paper, we implement two different sampling meth-
ods: pair-level sampling and paragraph-level
sampling. In pair-level sampling, 45,000 positive
instances and 45,000 negative instances are ran-
domly selected from D as the training set. By
contrast, in paragraph-level sampling, we first ran-
domly select a query Qk without replacement,
then one positive instance and one negative in-
stance are randomly sampled from the set of sen-
tence pairsDk. This operation is repeated until we
get 45,000 positive instances and 45,000 negative
instances. Finally, two different training sets are
generated by pair-level sampling and paragraph-
level sampling. Each set has 90,000 instances.
The validation set with 3,000 instances are sam-
pled through these two methods as well.
Dataset for Testing. Our test set is Jia and Liang
(2017)’s ADDANY adversarial dataset. It in-
cludes 1,000 paragraphs and each paragraph refers
to only one query, i.e., 1,000 (C,Q) pairs. By
splitting and combining, 6,154 sentence pairs are
obtained.
Experimental Settings. The dimension of GloVe
word vectors (Pennington et al., 2014) is set as
300. The sentence scoring neural network is
trained by Adagrad (Duchi et al., 2011) with a
learning rate of 0.01 and a batch size of 25. Model
parameters are regularized by a 10−4 strength of
per-minibatch L2 regularization.

4 Results

The performance of question answering is evalu-
ated by the Macro-averaged F1 score (Rajpurkar

QA System F1 Precision Recall
QA Likelihood 50.6 51.4 53.0(pair-level sampling)
QA Likelihood 52.3 53.1 54.9(paragraph-level sampling)
Single BiDAF 4.8 4.8 6.2

Table 1: Results of QA with Adversarial Examples

QA System F1 Accuracy Precision Recall
QA Likelihood 62.5 87.4 64.8 60.2(pair-level sampling)
QA Likelihood 63.4 87.7 65.8 61.2(paragraph-level sampling)
Single BiDAF 17.0 72.0 17.6 16.4

Table 2: Results of Answer Sentence Selection

et al., 2016; Jia and Liang, 2017). It measures the
average overlap between the predicted answer â
and real answers on token-level. We also com-
pute the Macro-averaged Precision and Recall fol-
lowing the same procedure. The results are in
Table 1. As it shows, both the systems based
on pair-level sampling and paragraph-level sam-
pling significantly outperform the single BiDAF
system2. The Macro-averaged F1 has been im-
proved from 4.8 to 52.3. Besides, the paragraph-
level sampling achieves better results than the pair-
level sampling.

In order to analyze the source of performance
improvements, we further evaluate the perfor-
mance of the QA Likelihood neural network and
the single BiDAF system on answer sentence se-
lection3. Here, we consider the problem as a bi-
nary classification problem. In the test set, posi-
tive instances are labeled with 1 and negative ones
are labeled with 0. A sentence pair selected by a
QA system (QA Likelihood neural network or the
single BiDAF) has a predicted label 1, while the
others have a predicted label 0. The results are
shown in Table 2. It shows that both of our sys-
tems outperform the single BiDAF on all of the
four metrics in the table.

We further evaluate the performance of the QA
Likelihood neural network and the single BiDAF
system on answer sentence selection from another
perspective. Here, we consider three types of sen-
tences: adversarial sentences, answer sentences,
and the sentences that include the answers re-
turned by the single BiDAF system. Given a QA

2Since Jia and Liang (2017) and we are evaluating the
systems on the same test set, the results of the single BiDAF
in our paper are derived from the results published by them on
https://worksheets.codalab.org/worksheets/0xc86d3ebe69a34
27d91f9aaa63f7d1e7d/

3The sentences which include the answers generated by
the single BiDAF are regarded as the answer sentences se-
lected by the single BiDAF.
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Figure 2: Sentences Ranking Statistics

Likelihood neural network, we draw a histogram
in which the x-axis denotes the ranked position
for each sentence according to its likelihood score
4, while the y-axis is the number of sentences for
each type ranked at this position. The results are
presented in Figure 2. It shows that among the
1,000 (C,Q) pairs, 647 and 657 answer sentences
are selected by the QA Likelihood neural network
based on pair-level sampling and paragraph-level
sampling respectively, but only 136 and 141 ad-
versarial sentences are selected by the QA Likeli-
hood neural network. It indicates the effectiveness
of the QA Likelihood neural network to reduce the
impact of adversarial sentences.

5 Related works

With the help of deep learning, many techniques
have been investigated to achieve exciting results
on answer sentence selection and QA. Wang and
Nyberg (2015) measure the relevance between
sentences through a stacked bidirectional LSTM
network. They show that these scores are effec-
tive in answer sentence selection. He et al. (2015)
embed sentences with CNN at multiple levels of
granularity to model the similarity between sen-
tences. Rao et al. (2016) extend the method of
Noise-Contrastive Estimation to questions paired
with positive and negative sentences. Based on
that, they present a pairwise ranking approach
to select an answer from multiple candidate sen-
tences. Wang et al. (2017) propose a bilateral
multi-perspective matching model which achieves
rivaling results in the task of answer sentence se-
lection. Shen et al. (2017a) measure the similar-
ity between sentences by utilizing the word level

4The x-axis is truncated to save the space.

similarity matrix. This approach is validated in
answer selection. To efficiently tackle question
answering for long documents, Choi et al. (2017)
propose a method based on answer sentence selec-
tion to first narrow down a document and then use
RNN to generate an answer.

However, following the idea of adversarial ex-
amples in image recognition(Goodfellow et al.,
2014; Kurakin et al., 2016; Papernot et al., 2016),
Jia and Liang (2017) point out the unreliability of
existing question answering models in the pres-
ence of adversarial sentences. In this study, we
propose a method to tackle this problem through
answer sentence selection. The main compo-
nent of our system is Tree-LSTM which is a
powerful variant of Tree-RNN. Therefore, studies
about Tree-RNN(Pollack, 1990; Goller and Kch-
ler, 1996; Socher et al., 2011, 2012, 2013; Zhang
et al., 2016) are also related.

6 Conclusions

In this paper, we propose a method to address the
problem of question answering with adversarial
sentences in paragraphs. Specifically, our system
via the QA Likelihood neural network based on
Tree-LSTMs successfully boost the performance
of the single BiDAF on ADDANY adversarial
dataset. Experiments show the F1 score has been
largely improved from 4.8 to 52.3. To the best
of our knowledge, we are the first to apply Tree-
LSTMs in answer sentence selection and the first
to tackle question answering with adversarial ex-
amples on ADDANY adversarial dataset.

However, Jia and Liang (2017) also present the
deterioration of QA systems on another dataset,
ADDSENT adversarial dataset. Question answer-
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ing on this dataset remains unsolved. We leave it
as a future work.
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Abstract

This paper introduces DuReader, a new
large-scale, open-domain Chinese ma-
chine reading comprehension (MRC)
dataset, designed to address real-world
MRC. DuReader has three advantages
over previous MRC datasets: (1) data
sources: questions and documents are
based on Baidu Search and Baidu Zhi-
dao1; answers are manually generated.
(2) question types: it provides rich
annotations for more question types,
especially yes-no and opinion questions,
that leaves more opportunity for the
research community. (3) scale: it contains
200K questions, 420K answers and 1M
documents; it is the largest Chinese
MRC dataset so far. Experiments show
that human performance is well above
current state-of-the-art baseline systems,
leaving plenty of room for the community
to make improvements. To help the
community make these improvements,
both DuReader2 and baseline systems3

have been posted online. We also organize
a shared competition to encourage the
exploration of more models. Since the
release of the task, there are significant
improvements over the baselines.

1 Introduction

The task of machine reading comprehension
(MRC) aims to empower machines to answer
questions after reading articles (Rajpurkar et al.,

1Zhidao (https://zhidao.baidu.com) is the
largest Chinese community-based question answering
(CQA) site in the world.

2http://ai.baidu.com/broad/download?
dataset=dureader

3https://github.com/baidu/DuReader

2016; Nguyen et al., 2016). In recent years, a
number of datasets have been developed for MRC,
as shown in Table 1. These datasets have led to
advances such as Match-LSTM (Wang and Jiang,
2017), BiDAF (Seo et al., 2016), AoA Reader (Cui
et al., 2017), DCN (Xiong et al., 2017) and R-
Net (Wang et al., 2017). This paper hopes to
advance MRC even further with the release of
DuReader, challenging the community to deal
with more realistic data sources, more types of
questions and more scale, as illustrated in Tables
1-4. Table 1 highlights DuReader’s advantages
over previous datasets in terms of data sources and
scale. Tables 2-4 highlight DuReader’s advantages
in the range of questions.

Ideally, a good dataset should be based on ques-
tions from real applications. However, many ex-
isting datasets have been forced to make vari-
ous compromises such as: (1) cloze task: Data
is synthesized missing a keyword. The task is
to fill in the missing keyword (Hermann et al.,
2015; Cui et al., 2016; Hill et al., 2015). (2)
multiple-choice exams: Richardson et al. (2013)
collect both fictional stories and the corresponding
multiple-choice questions by crowdsourcing. Lai
et al. (2017) collect the multiple-choice questions
from English exams. (3) crowdsourcing: Turkers
are given documents (e.g., articles from the news
and/or Wikipedia) and are asked to construct ques-
tions after reading the documents(Trischler et al.,
2017; Rajpurkar et al., 2016; Kočiskỳ et al., 2017).

The limitations of the datasets lead to build
datasets based on queries that real users submit-
ted to real search engines. MS-MARCO (Nguyen
et al., 2016) is based on Bing logs (in English),
and DuReader (this paper) is based on the logs
of Baidu Search (in Chinese). Besides question
sources, DuReader complements MS-MARCO
and other datasets in the following ways:

question types: DuReader contains a richer in-
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Dataset Lang #Que. #Docs Source of Que. Source of Docs Answer Type
CNN/DM (Hermann et al., 2015) EN 1.4M 300K Synthetic cloze News Fill in entity

HLF-RC (Cui et al., 2016) ZH 100K 28K Synthetic cloze Fairy/News Fill in word
CBT (Hill et al., 2015) EN 688K 108 Synthetic cloze Children’s books Multi. choices
RACE (Lai et al., 2017) EN 870K 50K English exam English exam Multi. choices

MCTest (Richardson et al., 2013) EN 2K 500 Crowdsourced Fictional stories Multi. choices
NewsQA (Trischler et al., 2017) EN 100K 10K Crowdsourced CNN Span of words
SQuAD (Rajpurkar et al., 2016) EN 100K 536 Crowdsourced Wiki. Span of words
SearchQA (Dunn et al., 2017) EN 140K 6.9M QA site Web doc. Span of words
TrivaQA (Joshi et al., 2017) EN 40K 660K Trivia websites Wiki./Web doc. Span/substring of words

NarrativeQA (Kočiskỳ et al., 2017) EN 46K 1.5K Crowdsourced Book&movie Manual summary
MS-MARCO (Nguyen et al., 2016) EN 100K 200K1 User logs Web doc. Manual summary

DuReader (this paper) ZH 200k 1M User logs Web doc./CQA Manual summary

Table 1: DuReader has three advantages over previous MRC datasets: (1) data sources: questions and documents are based on Baidu
Search & Baidu Zhidao; answers are manually generated, (2) question types, and (3) scale: 200k questions, 420k answers and 1M
documents (largest Chinese MRC dataset so far). The next three tables address advantage (2).

1 Number of unique documents

ventory of questions than previous datasets. Each
question was manually annotated as either Entity,
Description or YesNo and one of Fact or Opin-
ion. In particular, it annotates yes-no and opin-
ion questions that take a large proportion in real
user’s questions. Prior work has largely empha-
sized facts, but DuReader are full of opinions as
well as facts. Much of the work on question an-
swering involves span selection, methods that an-
swer questions by returning a single substring ex-
tracted from a single document. Span selection
may work well for factoids (entities), but it is less
appropriate for yes-no questions and opinion ques-
tions (especially when the answer involves a sum-
mary computed over several different documents).

document sources: DuReader collects docu-
ments from the search results of Baidu Search as
well as Baidu Zhidao. All the content in Baidu
Zhidao is generated by users, making it different
from the common web pages. It is interesting to
see if solutions designed for one scenario (search)
transfer easily to another scenario (question an-
swering community). Additionally, previous work
provides only a single paragraph (Rajpurkar et al.,
2016) or a few passages (Nguyen et al., 2016) to
extract or generate answers, while DuReader pro-
vides multiple full documents (that contains a lot
of paragraphs or passages) for each question to
generate answers. This will raise paragraph selec-
tion (i.e. select the paragraphs likely containing
answers) an important challenge as shown in Sec-
tion 4.

data scale: The first release of DuReader con-
tains 200K questions, 1M documents and more
than 420K human-summarized answers. To the
best of our knowledge, DuReader is the largest

Chinese MRC dataset so far.

2 Pilot Study

What types of question queries do we find in the
logs of a search engine? A pilot study was per-
formed to create a taxonomy of question types.
We started with a relatively small sample of 1000
question queries, selected from a single day of
Baidu Search logs.

The pilot helped us to agree on the following
taxonomy of question types. Each question was
manually annotated as:
• either Fact or Opinion, and
• one of: Entity, Description or YesNo
Regarding to Entity questions, the answers are

expected to be a single entity or a list of entities.
While the answers to Description questions are
usually multi-sentence summaries. The Descrip-
tion questions contain how/why questions, com-
parative questions that comparing two or more ob-
jects, and the questions that inquiring the mer-
its/demerits of goods, etc. As for YesNo questions,
the answers are expected to be an affirmative or
negative answers with supporting evidences. Af-
ter the deep analysis of the sampled questions, we
find that whichever the expected answer type is,
a question can be further classified into Fact or
Opinion, depending on whether it is about asking
a fact or an opinion. Table 2 gives the examples of
the six types of questions.

The pilot study helped us identify a number of
important issues. Table 3 shows that all six types
of question queries are common in the logs of
Baidu Search, while previous work has tended to
focus on fact-entity and fact-description questions.
As shown in Table 3, fact-entity questions account
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Fact Opinion
Entity iphone哪天发布 2017最好看的十部电影

On which day will iphone be released Top 10 movies of 2017
Description 消防车为什么是红的 丰田卡罗拉怎么样

Why are firetrucks red How is Toyota Carola
YesNo 39.5度算高烧吗 学围棋能开发智力吗

Is 39.5 degree a high fever Does learning to play go improve intelligence

Table 2: Examples of the six types of questions in Chinese (with glosses in English). Previous datasets
have focused on fact-entity and fact-description, though all six types are common in search logs.

Fact Opinion Total
Entity 23.4% 8.5% 31.9%
Description 34.6% 17.8% 52.5%
YesNo 8.2% 7.5% 15.6%
Total 66.2% 33.8% 100.0%

Table 3: Pilot Study found that all six types
of question queries are common in search logs.
Previous MRC datasets have emphasized span-
selection methods. Such methods are appropriate
for fact-entity and fact-description. Opinions and
yes-no leave big opportunities (about 33.8% and
15.6% of the sample, respectively).

for a relatively small fraction (23.4%) of the sam-
ple. Fact-descriptions account for a larger fraction
of the sample (34.6%). From this Table, we can
see that opinions (33.8%) are common in search
logs. Yes-No questions account for 15.6%, with
one half about fact, another half about opinion.

Previous MRC datasets have emphasized span-
selection methods. Such methods are appropriate
for fact-entity and fact-description, but it is prob-
lematic when the answer involves a summary of
multiple sentences from multiple documents, es-
pecially for Yes-no and opinion questions. This
requires methods that go beyond currently popu-
lar methods such as span selection, and leave large
opportunity for the community.

3 Scaling up from the Pilot to DuReader

3.1 Data Collection and Annotation

3.1.1 Data Collection
After the successful completion of the pilot study,
we began work on scaling up the relatively small
sample of 1k questions to a more ambitious col-
lection of 200k questions.

The DuReader is a sequence of 4-tuples: {q, t,
D, A}, where q is a question, t is a question type, D

is a set of relevant documents, and A is an answer
set produced by human annotators.

Before labeling question types, we need to col-
lect a set of questions q from search logs. Accord-
ing to our estimation, there are about 21% ques-
tion queries in search logs. It would take too much
time, if human annotators manually label each
query in search logs. Hence, we first randomly
sample the most frequent queries from search logs,
and use a pre-trained classifier (with recall higher
than 90%) to automatically select question queries
from search logs. Then, workers will annotate the
question queries selected by the classifier. Since
this annotation task is relatively easy, each query
was annotated by one worker. The experts will
further review all the annotations by workers and
correct them if the annotation is wrong. The accu-
racy of workers’ annotation (judged by experts) is
higher than 98%.

Initially, we have 1M frequent queries sam-
pled from search logs. The classifier automati-
cally selected 280K question queries. After human
annotation, there are 210K question queries left.
Eventually, we uniformly sampled 200K questions
from the 210K question queries.

We then collect the relevant documents, D, by
submitting questions to two sources, Baidu Search
and Baidu Zhidao. Note that the two sources are
very different from one another; Zhidao contains
user-generated content and tends to have more
documents relevant to opinions. Since the two
sources are so different from each another, we de-
cided to randomly split the 200k unique questions
into two subsets. The first subset was used to pro-
duce the top 5 ranked documents from one source,
and the second subset was used to produce the top
5 ranked documents from the other source.

We also believe that it is important to keep the
entire document unlike previous work which kept
a single paragraph (Rajpurkar et al., 2016) or a few
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Fact Opinion Total
Entity 14.4% 13.8% 28.2%
Description 42.8% 21.0% 63.8%
YesNo 2.9% 5.1% 8.0%
Total 60.1% 39.9% 100.0%

Table 4: The distribution of question types in
DuReader is similar to (but different from) the Pi-
lot Study (Table 3), largely because of duplicates.
The duplicates were removed from DuReader (but
not from the Pilot Study) to reduce the burden on
the annotators.

passages (Nguyen et al., 2016). In this case, para-
graph selection (i.e. select the paragraphs likely
containing answers) becomes critical to the MRC
systems as we will show in Section 4.

Documents are parsed into a few fields includ-
ing title and main content. Text has been tokenized
into words using a standard API.4

3.1.2 Question Type Annotation
As mentioned above, annotators labeled each
question in two passes. The first pass classified
questions into one of three types: Entity, Descrip-
tion and YesNo questions. The second pass classi-
fied questions as either Fact or Opinion.

Statistics on these classifications are reported in
Table 4. Note that these statistics are similar to
those reported for the pilot study (Table 3), but dif-
ferent because duplicates were removed from Ta-
ble 4 (but not from Table 3). We don’t want to bur-
den the annotators with lots of copies of the most
frequent questions, hence we kept unique ques-
tions in DuReader. That said, both tables agree
on a number of important points. As pointed out
above, previous work has tended to focus on fact-
entity and fact-description, while leaves large op-
portunity on yes-no and opinion questions.

3.1.3 Answer Annotation
Crowd-sourcing was used to generate answers.
Turkers were given a question and a set of relevant
documents. He/she was then asked to write down
answers in his/her own words by reading and sum-
marizing the documents. If no answers can be
found in the relevant documents, the annotator was
asked to give an empty answer. If more than one
answer can be found in the relevant documents,
the annotator was asked to write them all down.

4http://ai.baidu.com/tech/nlp/lexical

In some cases, multiple answers were merged into
a single answer, when it was determined that the
multiple answers were very similar to one another.

Note that the answers to Entity questions and
YesNo questions are more diverse. The answers to
the Entity questions include both the entities and
the sentences containing them. See the first ex-
ample in Table 5. The bold words (i.e. green,
gray, yellow, pink) are the entity answers to the
question, and the sentences after the entities are
the sentence containing them. The answers to the
YesNo questions include the opinion types (Yes, No
or Depend) as well as the supporting sentences.
See the last example in Table 5. The bold words
(i.e. Yes and Depend) are the opinion types by
following the supporting sentences. The second
example shows that a simple yes-no question isn’t
so simple. The answer can be almost anything,
including not only Yes and No, but also Depends,
depending on context (supporting sentences).

3.1.4 Quality Control
Quality control is important because of the size
of this project: 51, 408 man-hours distributed over
about 800 workers and 52 experts.

We have an internal crowdsourcing platform
and annotation guidelines to annotate data. When
annotating answers, workers are hired to create the
answers and experts are hired to validate the an-
swer quality. The workers will be hired if they
pass an examine on a small dataset. The accuracy
of workers’ annotation should be higher than 95%
(judged by the experts). Basically, there are three
rounds for answer annotations: (1) the workers
will give the answers to the questions after read-
ing the relevant documents. (2) the experts will re-
view all answers created by the workers, and they
will correct the answers if they consider that the
answers are wrong. The accuracy (judged by the
experts) of answers by the workers is around 90%.
(3) The dataset is divided into 20 groups according
to the workers and experts who annotate the data.
5% of data will be sampled from each group. The
sampled data in each group will be further checked
again by other experts. If the accuracy is lower
than 95%, the corresponding workers and the ex-
perts need to revise the answers again. The loop
will end until the overall accuracy reaches 95%.

3.1.5 Training, Development and Test Sets
In order to maximize the reusability of the dataset,
we provide a predefined split of the dataset into
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Question 学士服颜色/ What are the colors of academic dresses?
Question Type Entity-Fact
Answer 1 [绿绿绿色色色,灰灰灰色色色,黄黄黄色色色,粉粉粉色色色]：农学学士服绿色，理学学士服灰色，工学学士服黄色，管

理学学士服灰色，法学学士服粉色，文学学士服粉色，经济学学士服灰色。/
[green, gray, yellow, pink] Green for Bachelor of Agriculture, gray for Bachelor of Science,
yellow for Bachelor of Engineering, gray for Bachelor of Management, pink for Bachelor
of Law, pink for Bachelor of Art, gray for Bachelor of Economics

Document 1 农学学士服绿色，理学学士服灰色，... ，确定为文、理、工、农、医、军事六大
类，与此相应的饰边颜色为粉、灰、黄、绿、白、红六种颜色。

...
Document 5 学士服是学士学位获得者在学位授予仪式上穿戴的表示学位的正式礼服，... ，男女

生都应着深色皮鞋。
Question 智慧牙一定要拔吗/ Do I have to have my wisdom teeth removed
Question Type YesNo-Opinion
Answer 1 [Yes]因为智齿很难清洁的原因，比一般的牙齿容易出现口腔问题，所以医生会建议

拔掉/
[Yes] The wisdom teeth are difficult to clean, and cause more dental problems than normal
teeth do, so doctors usually suggest to remove them

Answer 2 [Depend]智齿不一定非得拔掉，一般只拔出有症状表现的智齿，比如说经常引起发
炎... /
[Depend] Not always, only the bad wisdom teeth need to be removed, for example, the one
often causes inflammation ...

Document 1 为什么要拔智齿? 智齿好好的医生为什么要建议我拔掉?主要还是因为智齿很难清
洁...

...
Document 5 根据我多年的临床经验来说,智齿不一定非得拔掉.智齿阻生分好多种...

Table 5: Examples from DuReader. Annotations for these questions include both the answers, as well as
supporting sentences.

training, development and test sets. The training,
development and test sets consist of 181K, 10K
and 10K questions, 855K, 45K and 46K doc-
uments, 376K, 20K and 21K answers, respec-
tively.

3.2 DuReader is (Relatively) Challenging

Figures 1-2 illustrate some of the challenges of
DuReader.

The number of answers. One might think that
most questions would have one (and only one) an-
swer, but Figure 1 shows that this is not the case,
especially for Baidu Zhidao (70.8% questions in
Baidu Zhidao have multiple answers, while the
number in Baidu Search is 62.2%), where there is
more room for opinions and subjectivity, and con-
sequently, there is more room for diversity in the
answer set. Meanwhile, we can see that 1.5% of
questions have zero answers in Baidu Search, but
this number increases to 9.7% in Baidu Zhidao. In
the later case, no answer detection is a new chal-
lenge.

The edit distance. One might also have been
tempted, based on prior work, to start with a span
selection method, based on the success of such
methods with previous datasets, many of which
were designed for span selection, such as: SQuAD
(Rajpurkar et al., 2016), NewsQA (Trischler et al.,
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Figure 1: A few questions have one (and only one)
answer, especially for Zhidao.

2017) and TriviaQA (Joshi et al., 2017). How-
ever, this may not work well on DuReader, since
the difference between the human generated an-
swers and the source documents is large. To mea-
sure the difference, we use as an approximate mea-
surement the minimum edit distance (MED) be-
tween the answers generated by human and the
source documents5. A large MED means that an
annotator needs to make more efforts on summa-

5Here MED is the minimum edit distance between the an-
swer and any consecutive span in the source document.
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Figure 2: Span selection is unlikely to work well
for DuReader because many of the answers are
relatively far (in edit distance) from source doc-
uments (compared to MSMARCO).

rizing and paraphrasing the source documents to
generate an answer, instead of just copying words
from the source documents. Figure 2 compares
DuReader and MS-MARCO in terms of MED,
and suggests that span selection is unlikely to work
well for DuReader where many of the answers are
relatively far from source documents compared
to MSMARCO. Note that the MED of SQuAD,
NewsQA and TriviaQA should be zero.

The document length. In DuReader, ques-
tions tend to be short (4.8 words on average) com-
pared to answers (69.6 words), and answers tend
to be short compared to documents (396 words
on average). The documents in DuReader are 5x
longer than documents in MS-MARCO (Nguyen
et al., 2016). The difference is due to a design
decision to provide unabridged documents (as op-
posed to paragraphs). We believe unabridged doc-
uments may be helpful because there may be use-
ful clues throughout the document well beyond a
single paragraph or a few passages.

4 Experiments

In this section, we implement and evaluate the
baseline systems with two state-of-the-art mod-
els. Furthermore, with the rich annotations in
our dataset, we conduct comprehensive evalua-
tions from different perspectives.

4.1 Baseline Systems

As we discussed in previous section, DuReader
provides each question the full documents that

contain multi-paragraphs or multi-passages, while
previous work provides only a single para-
graph (Rajpurkar et al., 2016) or a few pas-
sages (Nguyen et al., 2016) to extract or generate
answers. The average length of each document is
much longer than previous ones (Nguyen et al.,
2016). If we directly apply the state-of-the-art
MRC models that was designed for answer span
selction, there will be efficiency issues. To im-
prove both the efficiency of training and testing,
our designed systems have two steps: (1) select
one most related paragraph from each document,
and (2) apply the state-of-the-art MRC models on
the selected paragraphs.

4.1.1 Paragraph Selection
In this paper, we apply simple strategies to select
the most relevant paragraph from each document.
In training stage, we select one paragraph from a
document as the most relevant one, if the para-
graph has the largest overlap with human gener-
ated answer. We select one most relevant para-
graph for each document. Then, MRC models de-
signed for answer span selection will be trained on
these selected paragraphs.

In testing stage, since we have no human gener-
ated answer, we select the most relevant paragraph
that has the largest overlap with the corresponding
question. Then, the trained MRC models designed
for answer span selection will be applied on the
these selected paragraphs.

4.1.2 Answer Span Selection
We implement two typical state-of-the-art models
designed for answer span selection as baselines.

Match-LSTM Match-LSTM is a widely used
MRC model and has been well explored in recent
studies (Wang and Jiang, 2017). To find an answer
in a paragraph, it goes through the paragraph se-
quentially and dynamically aggregates the match-
ing of an attention-weighted question representa-
tion to each token of the paragraph. Finally, an an-
swer pointer layer is used to find an answer span
in the paragraph.

BiDAF BiDAF is a promising MRC model, and
its improved version has achieved the best single
model performance on SQuAD dataset (Seo et al.,
2016). It uses both context-to-question attention
and question-to-context attention in order to high-
light the important parts in both question and con-
text. After that, the so-called attention flow layer
is used to fuse all useful information in order to
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Systems Baidu Search Baidu Zhidao All
BLEU-4% Rouge-L% BLEU-4% Rouge-L% BLEU-4% Rouge-L%

Selected Paragraph 15.8 22.6 16.5 38.3 16.4 30.2
Match-LSTM 23.1 31.2 42.5 48.0 31.9 39.2

BiDAF 23.1 31.1 42.2 47.5 31.8 39.0
Human 55.1 54.4 57.1 60.7 56.1 57.4

Table 6: Performance of typical MRC systems on the DuReader.

BLEU-4% Rouge-L%
Gold Paragraph 31.7 61.3

Match-LSTM 46.3 52.4
BiDAF 46.3 51.8

Table 7: Model performance with gold paragraph.
The use of gold paragraphs could significantly
boosts the overall performance.

get a vector representation for each position.
Implementation Details We randomly initial-

ize the word embeddings with a dimension of 300
and set the hidden vector size as 150 for all lay-
ers. We use the Adam algorithm (Kingma and Ba,
2014) to train both MRC models with an initial
learning rate of 0.001 and a batch size of 32.

4.2 Results and Analysis

We evaluate the reading comprehension task via
character-level BLEU-4 (Papineni et al., 2002) and
Rouge-L (Lin, 2004), which are widely used for
evaluating the quality of language generation. The
experimental results on test set are shown in Ta-
ble 6. For comparison, we also evaluate the Se-
lected Paragraph that has the largest overlap with
the question among all documents. We also assess
human performance by involving a new annotator
to annotate on the test data and treat his first an-
swer as the prediction.

The results demonstrate that current reading
comprehension models can achieve an impressive
improvement compared with the selected para-
graph baseline, which approves the effectiveness
of these models. However, there is still a large per-
formance gap between these models and human.
An interesting discovery comes from the compar-
ison between results on Baidu Search and Baidu
Zhidao data. We find that the reading comprehen-
sion models get much higher score on Zhidao data.
This shows that it is much harder for the models to
comprehend open-domain web articles than to find
answers in passages from a question answering

community. In contrast, the performance of hu-
man beings on these two datasets shows little dif-
ference, which suggests that human’s reading skill
is more stable on different types of documents.

As described in Section 4.1, the most relevant
paragraph of each document is selected based on
its overlap with the corresponding question during
testing stage. To analyze the effect of paragraph
selection and obtain an upper bound of the base-
line MRC models, we re-evaluate our systems on
the gold paragraphs, each of which is selected if
it has the largest overlap with the human gener-
ated answers in a document. The experiment re-
sults have been shown in Table 7. Comparing Ta-
ble 7 with Table 6, we can see that the use of gold
paragraphs could significantly boosts the overall
performance. Moreover, directly using the gold
paragraph can obtain a very high Rouge-L score.
It meets the exception, because each gold para-
graph is selected based on recall that is relevant to
Rouge-L. Though, we find that the baseline mod-
els can get much better performance with respect
to BLEU, which means the models have learned to
select the answers. These results show that para-
graph selection is a crucial problem to solve in real
applications, while most current MRC datasets
suppose to find the answer in a small paragraph
or passage. In contrast, DuReader provides the
full body text of each document to stimulate the
research in a real-world setting.

To gain more insight into the characteristics of
our dataset, we report the performance across dif-
ferent question types in Table 8. We can see
that both the models and human achieve relatively
good performance on description questions, while
YesNo questions seem to be the hardest to model.
We consider that description questions are usually
answered with long text on the same topic. This
is preferred by BLEU or Rouge. However, the
answers to YesNo questions are relatively short,
which could be a simple Yes or No in some cases.
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Question type Description Entity YesNo
BLEU-4% Rouge-L% BLEU-4% Rouge-L% BLEU-4% Rouge-L%

Match-LSTM 32.8 40.0 29.5 38.5 5.9 7.2
BiDAF 32.6 39.7 29.8 38.4 5.5 7.5
Human 58.1 58.0 44.6 52.0 56.2 57.4

Table 8: Performance on various question types. Current MRC models achieve impressive improvements
compared with the selected paragraph baseline. However, there is a large gap between these models and
human.

Fact Opinion
BLEU-4% Rouge-L% BLEU-4% Rouge-L%

Opinion-unaware 6.3 8.3 5.0 7.1
Opinion-aware 12.0 13.9 8.0 8.9

Table 9: Performance of opinion-aware model on YesNo questions.

4.3 Opinion-aware Evaluation

Considering the characteristics of YesNo ques-
tions, we found that it’s not suitable to directly use
BLEU or Rouge to evaluate the performance on
these questions, because these metrics could not
reflect the agreement between answers. For exam-
ple, two contradictory answers like ”You can do
it” and ”You can’t do it” get high agreement scores
with these metrics. A natural idea is to formulate
this subtask as a classification problem. However,
as described in Section 3, multiple different judg-
ments could be made based on the evidence col-
lected from different documents, especially when
the question is of opinion type. In real-world set-
tings, we don’t want a smart model to give an ar-
bitrary answer for such questions as Yes or No.

To tackle this, we propose a novel opinion-
aware evaluation method that requires the evalu-
ated system to not only output an answer in natu-
ral language, but also give it an opinion label. We
also have the annotators provide the opinion label
for each answer they generated. In such cases, ev-
ery answer is paired with an opinion label (Yes, No
or Depend) so that we can categorize the answers
by their labels. Finally, the predicted answers are
evaluated via Blue or Rouge against only the refer-
ence answers with the same opinion label. By us-
ing this opinion-aware evaluation method, a model
that can predict a good answer in natural language
and give it an opinion label correctly will get a
higher score.

In order to classify the answers into different
opinion polarities, we add a classifier. We slightly
change the Match-LSTM model, in which the fi-

nal pointer network layer is replaced with a fully
connected layer. This classifier is trained with the
gold answers and their corresponding opinion la-
bels. We compare a reading comprehension sys-
tem equipped with such an opinion classifier with
a pure reading comprehension system without it,
and the results are demonstrated in Table 9. We
can see that doing opinion classification does help
under our evaluation method. Also, classifying the
answers correctly is much harder for the questions
of opinion type than for those of fact type.

4.4 Discussion

As shown in the experiments, the current state-of-
the-art models still underperform human beings by
a large margin on our dataset. There is consider-
able room for improvement on several directions.

First, there are some questions in our dataset
that have not been extensively studied before,
such as yes-no questions and opinion questions
requiring multi-document MRC. New methods
are needed for opinion recognition, cross-sentence
reasoning, and multi-document summarization.
Hopefully, DuReader’s rich annotations would be
useful for study of these potential directions.

Second, our baseline systems employ a simple
paragraph selection strategy, which results in great
degradation of the system performance as com-
pared to gold paragraph’s performance. It is nec-
essary to design a more sophisticated paragraph
ranking model for the real-world MRC problem.

Third, the state-of-the-art models formulate
reading comprehension as a span selection task.
However, as shown in previous section, human be-
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ings actually summarize answers with their own
comprehension in DuReader. How to summarize
or generate the answers deserves more research.

Forth, as the first release of the dataset, it is far
from perfection and it leaves much room for im-
provement. For example, we annotate only opin-
ion tags for yes-no questions, we will also anno-
tate opinion tags for description and entity ques-
tions. We would like to gather feedback from the
community to improve DuReader continually.

Overall, it is necessary to propose new algo-
rithms and models to tackle with real-world read-
ing comprehension problems. We hope that the
DuReader would be a good start for facilitating the
MRC research.

5 A Shared Task

To encourage the exploration of more models from
the research community, we organize an online
competition6. Each participant can submit the re-
sult and evaluate the system performance at the
online website. Since the release of the task, there
are significant improvements over the baselines,
For example, a team obtained 51.2 ROUGE-L on
our dataset (when the paper was submitted). The
gap between our BiDAF baseline model (with 39.0
ROUGE-L) and human performance (with 57.4
ROUGE-L) has been significantly reduced. It is
expected that the remaining gap the system per-
formances and human performance will be harder
to close, but such efforts will lead to advances in
machine reading comprehension.

6 Conclusion

This paper announced the release of DuReader, a
new dataset for researchers interested in machine
reading comprehension (MRC). DuReader has
three advantages over previous MRC datasets: (1)
data sources (based on search logs and the ques-
tion answering community), (2) question types
(fact/ opinion & entity/ description/ yes-no) and
(3) scale (largest Chinese MRC dataset so far).

We have made our dataset freely available and
organize a shared competition to encourage the ex-
ploration of more models. Since the release of
the task, we have already seen significant improve-
ments from more sophisticated models.

6https://ai.baidu.com/broad/
leaderboard?dataset=dureader
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Abstract

Deep learning models are often not eas-
ily adaptable to new tasks and require
task-specific adjustments. The differen-
tiable neural computer (DNC), a memory-
augmented neural network, is designed as
a general problem solver which can be
used in a wide range of tasks. But in re-
ality, it is hard to apply this model to new
tasks. We analyze the DNC and identify
possible improvements within the appli-
cation of question answering. This mo-
tivates a more robust and scalable DNC
(rsDNC). The objective precondition is to
keep the general character of this model
intact while making its application more
reliable and speeding up its required train-
ing time. The rsDNC is distinguished by a
more robust training, a slim memory unit
and a bidirectional architecture. We not
only achieve new state-of-the-art perfor-
mance on the bAbI task, but also min-
imize the performance variance between
different initializations. Furthermore, we
demonstrate the simplified applicability of
the rsDNC to new tasks with passable re-
sults on the CNN RC task without adap-
tions.

1 Introduction

In contrast to traditional statistical models, which
often require a large amount of human effort on
feature engineering and task-specific adjustments,
a promise of deep learning is that little task-
specific knowledge and minimal adaption is re-
quired to achieve state-of-the-art performance on
different tasks. But in reality, many deep learning
solutions have to be adapted to a specific task to
achieve good performance.

However, there are more universal approaches
for example the differentiable neural computer
(DNC). It is introduced by Graves et al. (2016) as
a general artificial neural network (ANN) model
with an external memory “to solve complex, struc-
tured tasks”. It can be seen as a generic memory-
augmentation framework. Unlike a vanilla ANN,
it separates computation and memorization with
a computational controller and a memory unit,
which are independently modifiable. This allows
a more accurate model design. Due to its fully dif-
ferentiable design, it can be learned in a supervised
fashion.

The original paper shows applications on the
bAbI question answering (QA) task, graph exper-
iments and a reinforcement learning block puzzle
solver (Graves et al., 2016). But when applying
this model to new QA tasks, no satisfying results
are achieved. The issues of QA are the huge vo-
cabulary, the length of the contexts and the re-
quired model complexity to find the correct an-
swer.

In this work, we analyze the DNC in QA tasks
and identify four main challenges: 1. High mem-
ory consumption makes it hard to train large mod-
els efficiently. 2. The large variance in training
performance within different initializations. 3. A
slow and unstable convergence requires long vary-
ing training times. 4. The unidirectional architec-
ture makes it hard to handle variable question ap-
pearance.

This work addresses these issues while keeping
the general character of the model intact. We ex-
tend the DNC to be more robust and scalable (rs-
DNC) with the following contributions:

1. A robust training with a strong focus on an
early memory usage and normalization.

2. The usage of a slim, memory efficient,
content-based memory unit for QA tasks.
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3. A bidirectional DNC which allows a richer
encoding of the input sequences.

The rsDNC is evaluated on two datasets. On
the synthetic bAbI task (Weston et al., 2016), we
show performance improvements by 80% com-
pared to the DNC. These are new state-of-the-
art results within multiple runs in a joint training.
We also decrease the variance by up to 90% be-
tween different random initializations. Addition-
ally, with training-data augmentation on one task,
our model solves all tasks and provides the best-
recorded results to the best of our knowledge. On
the CNN RC task (Hermann et al., 2015), we show
the adaptability of the rsDNC and achieve passable
results without task-specific adaption.

2 Related Work

This section considers the related work regarding
the two used datasets.

Related to bAbI task Rae et al. (2016) pro-
vides technical enhancements with the introduc-
tion of the sparse DNC (SDNC) with sparse read
and write operations. They allow to modifying
only a sparse subset of interesting memory loca-
tions instead of manipulating all. This renders
the memory consumption independent of mem-
ory size. A different approach provides the dy-
namic memory network (DMN) and its succes-
sor the DMN+ (Kumar et al., 2016; Xiong et al.,
2016). They store sentence representations in an
episodic memory and use attention to find the cor-
rect answer. The relation memory network (RMN)
embeds sentences into a memory object and ap-
plies multiple times attention to find the answer
(Yang et al., 2018). In contrast to our model, the
DMN+ and the RMN are optimized for QA tasks,
uses sentence representation and require a dedi-
cated question. The recurrent entity network (Ent-
Net) “can be viewed as a set of separate recur-
rent models whose hidden states store the mem-
ory slots” (Henaff et al., 2017). The memory slots
or locations consist of a key vector and a content
vector and have their own gated RNN as a con-
troller. In contrast, our model has one memory
matrix with no distinction between key and con-
tent.

Related to CNN RC task Hermann et al. (2015)
introduce the Deep LSTM Reader and the Atten-
tive Reader which build a document representa-
tion by direct attention. Chen et al. (2016) in-

Figure 1: System overview of the DNC. The dot-
ted lines illustrate recurrent connections.

troduce the Stanford Attentive Reader which en-
hances the attentive reader and adds a bilinear
term to compute the attention between document
and query. The Attention-Sum (AS) Reader from
Kadlec et al. (2016) also uses separate encoding
for the document and the query. Its successor, the
Attention-over-Attention (AoA) Reader, applies a
two-way attention mechanism to find the answer
(Cui et al., 2017). The ReasoNet uses iterative
reasoning over a hidden representation of the doc-
ument (Shen et al., 2017). The Gated-Attention
(GA) Reader from Dhingra et al. (2017) uses mul-
tiple hops over the document to build an atten-
tion over the candidates to select the answer to-
ken. These models are all conceptually adapted to
the QA tasks they solve. In contrast, our solution
is more versatile due to a more flexible and uni-
versal design. The different parts of the DNC can
be exchanged or adjusted independently which al-
lows simpler handling of new tasks. The versatil-
ity is shown in the original paper with three differ-
ent tasks (Graves et al., 2016).

3 Differentiable Neural Computer

System overview The DNC model consists of
two main parts, a controller and a memory unit
(MU), see Figure 1. The controller is either a
fully-connected ANN or a RNN. It receives at
each time step a concatenation of the input signal
xt ∈ RX and the MU output from the last time
step µt−1 ∈ RP . C is the controller output size
and P the MU output size. The controller can be
considered as a closed function with a set of train-
able weight parameters θc:

ht = Controller([xt,µt−1], θc) . (1)

The purpose of the controller is to manage the
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MU and additionally to help building the output
signal via a weighted bypass connection. The MU
receives the controller output ht as input and con-
tains a set of trainable weight parameters θµ as
well:

µt = MemoryUnit(ht, θµ) . (2)

The output signal of the whole DNC yt ∈ RY
is a sum of the weighted controller output and the
weighted MU output.

yt = Whht +Wµµt + bt . (3)

Let Y be the size of the target vector zt ∈ RY .
Wh ∈ RY×C , Wµ ∈ RY×P and bt ∈ RY are
trainable weights.

The hyperparameters of the controller network
are the number of layers l and the nodes per layer
Cl. The hyperparameters of the MU are the width
W of the internal memory matrix and the number
of locations N . There can be multiple read heads
R which extract information from the memory
matrix. The MU output size is then P = R×W .

Memory Unit The MU contains a memory ma-
trix Mt ∈ RN×W which stores information in
form of row-wise vectors. For controlling the
memory matrix, the input signal from the con-
troller is weighted and divided into different con-
trol signals including gates, vectors or keys. They
allow to write and read from the memory matrix.

For writing to or erasing the memory matrix
two mechanisms are available to find the location
where to manipulate Mt: By the least used mem-
ory location or content-based addressing. The
least used memory location is used to find free
space for new information. A free gate determines
the freeing of used memory to allow forgetting
content. Content-based addressing finds the loca-
tion in Mt which has the lowest cosine-similarity
to a given key kt ∈ RW . An allocation gate deter-
mines which mechanism is used and a write gate
determines the intensity of writing or erasing new
information to Mt.

Two mechanisms are also available for reading
from Mt: A content-based addressing similar to
the writing and a temporal linkage mechanism.
The temporal linkage mechanism contains a link-
age matrix LM t ∈ RN×N which stores the transi-
tion of the current write location and the previous
location to repeat the sequences in forward direc-
tion or with a transposed linkage matrix in back-
ward direction. A read mode determines which

mode is used. Furthermore, a DNC may have
multiple (R) read heads with such reading mech-
anisms. The MU’s output is a concatenation of the
read vectors from all read headsµt ∈ RW×R. The
DNC is described in detail in the appendix of the
original paper (Graves et al., 2016).

4 Analysis of the DNC

This section describes the analysis of the DNC
with regard to question answering.

Training progress We trained multiple models
with same parameters but different initializations
on different bAbI tasks. While some models con-
verges, other do not. This depends only on the ini-
tialization. If a model does not converge but learns
to solve the task, it is overfitting the training data.

We further analyze the influence of the mem-
ory unit. The output of the DNC is a weighted
sum of the controller output and the MU output.
The influence is determinable by exclusively using
the memory output and comparing it to the perfor-
mance when using both. While training, we found
a strong correlation between a high usage of the
MU and a good performance of the model. When
a model does not converges, the memory unit has
nearly no influence on finding the correct answer.

We assume that the direct training signal over
the bypass connection between controller and out-
put leads to a fast success in learning to use the
controller exclusively. This could prevent learn-
ing to use the MU. Additionally, the MU output in
the beginning is noisy which could guide the con-
troller to ignore the MU. This could be influenced
by the initialization.

Functionality The functionality of the DNC can
be analyzed by observing the gates which deter-
mine the mechanisms to write or read content.
We find the DNC to exclusively use content-based
reading when answering a question. The reading
from the the temporal linkage mechanism (in for-
ward and backward direction) has only little im-
pact on finding the answer. Furthermore, the us-
age of the different gates for freeing memory space
(free gate), determine the write mechanism (allo-
cate gate) or write intensity (write gate) does not
seem very meaningful. Figure 3a in Appendix A
shows a plot of the DNC gates during a bAbI task
1 sample.

Computing resources In comparison to a
LSTM, the DNC requires over two times more
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memory during training. It mainly depends on
the memory size of the DNC and the sequence
length. A closer analysis exhibits that the linkage
matrix and the temporal memory linkage mech-
anism are the main drivers behind memory con-
sumption. This biggest influence is the linkage
matrix of size N × N . The temporal memory
linkage mechanism of the DNC with the config-
uration of the original bAbI experiment accounts
for 50% of the total memory consumption. In our
implementation, the training time per sample is
four times higher in comparison to a TensorFlow
LSTM with the aforementioned configuration.

5 Robust and Scalable DNC

This section describes in detail the two enhance-
ments of the robust and scalable DNC (rsDNC):
An efficient memory unit and a more robust train-
ing. Additionally, it introduces a bidirectional
DNC architecture.

5.1 Efficient Memory Unit for QA

For an efficient usage of the model and the scala-
bility to large-scale tasks, less memory consump-
tion is relevant. This allows dealing with larger se-
quences and bigger batch sizes for faster iterations
needed e.g. for feasible hyperparameter tuning.
The memory consumption of the DNC is very high
compared to other recurrent models. As the anal-
ysis in Section 4 shows, the main cause for mem-
ory consumption is the temporal memory linkage
mechanism. But the analysis also shows that the
DNC does not use them in the bAbI task. This
makes sense since restoring sequences is barely
necessary for finding the correct answer in a QA
task.

To allow a more efficient usage in QA we used
a slim, only content-based memory unit (CBMU).
The CBMU has the same features as the DNC’s
MU but without the temporal memory linkage
mechanism. Consequently, the linkage matrix and
all related components are removed. The read
weightings are only based on the content-based
addressing. The write head, memory update and
the actual memory reading stay the same.

The drop in memory consumption depends on
the hyperparameters and the sequence length but
in this paper, it is between 30% and 70%. The
computation time is also reduced by 10% to 50%.

5.2 Robust DNC Training
A more robust training improves the large variance
in the training progress within different initializa-
tions as well as the slow and unstable convergence
behaviour. This makes the training repeatable and
reduces the training time. To achieve this, we ap-
ply normalization to the DNC and present Bypass
Dropout to force a faster memory usage.

DNC Normalization Analysis of the DNC
shows a high variance in performance between dif-
ferent runs. We approach this issue with a normal-
ization technique to enforce a robust and smooth
convergence behaviour. In recent years especially
layer normalization (LN) shows performance im-
provements in ANNs on several applications (Ba
et al., 2016; Klambauer et al., 2017). In the DNC
setup, it can be applied to the controller as well as
the MU. Let µt be the mean of a vector xt and σ2t
the variance of it. Then the normalization

LN(xt) = g ◦
xt − µt√
σ2t + ε

+ b (4)

is applied before each activation function. The
recurrent and current input signals are computed
jointly. Each LN has trainable variables, called
bias b and gain g for scaling the normalization.

In the MU we applied LN to the gates, the vec-
tors and the keys separately but this gave no per-
formance increase compared to a joint normaliza-
tion of all signals. Thus, we apply it after the
weighting of the controller output ht

ξt = LN(htWξ) (5)

and before the vector ξt is split into the different
control signals. It is applied during training and
test times. The drawbacks are increased compu-
tation time and memory need due to momentum
calculation and the additional gain and bias vari-
ables.

Bypass Dropout The analysis in Section 4
shows that convergence behaviour of the DNC de-
pends on the usage of the MU. If the MU strongly
impacts the system output, the model achieves a
good performance. This insight demands the ex-
plicit force of MU usage during training to reach
convergence faster and obtain better performance.

To force the MU’s influence, the impact of the
controller to the output via the bypass connection
can be limited. This can be achieved by reduc-
ing the connectivity between the controller and the
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output. A reduction of the connectivity by weight-
ing or lower the feature space would be permanent
and not adjustable. By using dropout in the by-
pass connection between controller and output is a
controllable lowering of the connectivity possible.
Dropout is a regularization technique introduced
2014 in Srivastava et al. (2014) to prevent ANNs
from overfitting. In our use-case, dropout allows
a adjustable reduction of the bypass connectivity.
It can be controlled with the keep probability and
is only used during training. His helps to enforce
a faster usage of the MU. We call this technique
Bypass Dropout (BD).

The dropout probability p regularizes the signal
flow exactly without permanent declining the con-
troller’s functionality. Bypass Dropout is applied
to the DNC setup by multiplying a Bernoulli vec-
tor rt to the bypass connection:

rt ∼ Bernoulli(p)

yt = Wh(ht ◦ rt) +Wµµt .
(6)

5.3 Bidirectional DNC
The unidirectional architecture of the DNC makes
it hard to handle variable input where for example
the question appears in the middle of a text and the
full text is relevant. It also prevents a rich informa-
tion extraction in forward and backward direction
in any sequential task.

Therefore, this work introduces a bidirectional
setup to provide complete availability of the in-
put sequence to the model. No more distinction
between context and question is necessary. The
model is able to use information from a later point
in the input sequence to determine what to store.
In the bidirectional DNC (BDNC) and rsDNC
(BrsDNC) an additional RNN in backward link-
age provides a sequential comprehension in both
directions.

Due to the recurrent connection from MU to
controller, an encapsulated bidirectional controller
is not possible, since such a model is not unfold-
able in time. The solution presented in this work
applies an independent backward-directed recur-
rent controller which provides an additional input
signal to the MU and the output layer, illustrated in
Figure 2. Hence, the BrsDNC has two controllers,
a forward controller and a backward controller

hfwt = ForwardController([xt,h
fw
t−1,µt−1], θcfw)

hbwt = BackwardController([xt,hbwt+1], θcbw)

(7)

Figure 2: The bidirectional DNC architecture un-
folded in time.

with independent weights θ and recurrent connec-
tions. The MU receives a concatenation of the two
controller outputs

µt = MemoryUnit([hfwt ,hbwt ], θmu) . (8)

The output of the BrsDNC system is the sum of
the weighted memory output, the weighted back-
ward controller output and the weighted forward
controller output:

yt = Wµµt +Wfwhh
fw
t +Wbwhh

bw
t

. (9)

This architecture allows first an independent un-
folding of the backward controller and second an
unfolding of the forward controller and MU.

6 Experiments

The rsDNC and the BrsDNC are evaluated on two
datasets, the bAbI task and the CNN RC task.1

6.1 bAbI Task
Task description The bAbI task is a set of 20
synthetic QA tasks for testing text understanding
and logical reasoning (Weston et al., 2016). Each
task has several stories and each story contains a
context, one or more questions and the correct an-
swers. There are different sets available but this
work only uses the 10k set in English. Each story
is pre-processed by removing numbers, transform-
ing all words to lower case and splitting the se-
quences into word tokens. The whole set contains

1All experiments are implemented in TensorFlow (Abadi
et al., 2015) and are trained on a single K80 GPU within
two to nine days. The source code is available at
https://github.com/joergfranke/ADNC.
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156 unique words and three symbols: ’?’, ’!’, and
’-’. The ’-’ symbol in an input sequence sym-
bolizes that an answer is requested. From each
task 10% of the samples are used as a validation
set. The test set is separate and has 1k questions
per task. Inconsistencies in the training set, like a
question asked twice, are deleted. The loss met-
ric for the bAbI task is the word error rate (WER),
the fraction of incorrectly answered words to all
requested words.

Task 16 augmentation Many related models
struggle with task 16 in the bAbI dataset and only
achieve a WER of roughly 50% (Graves et al.,
2016; Sukhbaatar et al., 2015; Xiong et al., 2016).
The task is to find a colour given a name and
name-animal-colour constellations. In the dataset
are four different colours, four animals and five
names but not equally distributed in the samples.
In many samples one or more colours or animals
are present multiple times, see training sample of
task 16:

Greg is a lion. Julius is a swan. Julius is yellow.
Greg is yellow. Brian is a swan. Bernhard is a
frog. Brian is white. Lily is a frog. Bernhard is
yellow. What colour is Lily? yellow

There are 9k samples in the training set, but in
4181 cases the correct word appears only once in
the context. In all other cases, the correct word ap-
pears two, three or four times in the context. If the
model learns only to count the colour words and to
answer the colour that appears multiple times, then
it is correct in 3449 cases and in 1370 additional
cases with a 50/50 probability. In 4181 cases it is
able to guess and has a 1/4 probability to be cor-
rect. This leads to a mean probability over 50% for
a correct answer by guessing and counting words.
This is a strong local optimum and makes it hard
to find a better solution strategy.

We provide an augmentation of task 16 so that
each sample contains different colours and differ-
ent animals. We pretrain a model on augmented
task 16 plus all other tasks and then fine-tune it
without any augmentation to learn the original dis-
tribution of the data. This model is marked as
+aug16. The augmentation also could be helpful
in related models but it is only evaluated with this
work.

Training details Different enhanced DNC mod-
els are evaluated on the bAbI task as well as the
rsDNC with Bypass Dropout, DNC Normaliza-

tion and the CBMU, the bidirectional rsDNC (Brs-
DNC) and the BrsDNC with augmented task 16
(BrsDNC +aug16). All tasks are trained jointly on
all bAbI tasks without any additional information.

For a direct comparison, the hyperparameters
are based on the original paper (Graves et al.,
2016). The unidirectional controller has one
LSTM layer and 256 hidden units and the bidirec-
tional has 172 hidden units in each direction. Thus
both models have about 891k parameters. The MU
of all models has 192 locations, a width of 64 and
4 read heads. All models have a dropout probabil-
ity of 10%.

Each word of the bAbI task is encoded as a one-
hot vector with the size of 159. An additional se-
quence mask is used to generate only training sig-
nals when an answer is requested, so the outputs
of all other time steps are ignored. The output is a
vector of size 159 and normalized with a softmax
function. For training, the cross-entropy loss be-
tween the prediction vector and the target one-hot
vector is minimized.

Each training uses mini-batches with a batch
size of 32. Different-length sequences are padded.
The maximum sequence length during training is
limited to 800 words. The optimizer is found us-
ing a grid search, the underlined options are used:
optimization algorithm [SGD, Adam, RMSprop]
with a learning rate of [1, 3, 6] ∗ 10−[3,4,5] and a
momentum of 0.9 (Kingma and Ba, 2015; Tiele-
man and Hinton, 2012). Each model runs five ex-
periments with different initializations.

Model Mean WER

DNC* 16.7 ± 7.6
EntNet* 9.7 ± 2.6
SDNC* 6.4 ± 2.5

DNC +CBMU 17.6 ± 1.6
DNC +CBMU+Norm 13.6 ± 3.3
DNC +CBMU+BD 9.7 ± 2.9
rsDNC (CBMU+Norm+BD) 6.3 ± 2.7
BrsDNC (bidirectional rsDNC) 3.2 ± 0.5
BrsDNC +aug16 0.4 ± 0.0

Table 1: Mean word error rate of different mod-
els and our enhancements to the DNC in the bAbI
task. All models are trained jointly on all 20 bAbI
tasks at once without information about the actual
task. *Result from (Graves et al., 2016; Henaff
et al., 2017; Rae et al., 2016)
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Results Table 1 shows the mean word error rate
and variance on the test set from all tasks and all
models of this work in comparison to the original
paper (DNC) (Graves et al., 2016) and the EntNet,
the best model with reported mean results as far as
we know (Henaff et al., 2017).

It also shows the performance impact of the dif-
ferent enhancements: DNC Normalization, By-
pass Dropout (BD) and the content-based memory
unit (CBMU). The use of CBMU leads to a drop
in performance but it also reduces the required
memory consumption and lowers the standard de-
viation within different initializations. Both DNC
Normalization and BD show a clear performance
gain and together they achieve the best perfor-
mance.

Experiments on a single bAbI task with step-
wise validation provides a closer insight on these
results. The usage of the CBMU affects the con-
vergence behaviour only marginally. With use of
DNC normalization, the time until convergence is
reduced by more than 50%. Additional use of BD
lowers the mean convergence time further and in-
creases the reliability of convergence. A bidirec-
tional controller speeds up convergence even more
and allowing improvements of up to 75% less re-
quired iterations. Figure 4 in Appendix B shows
the impacts in bAbI task 1.

In Appendix C, Table 3 shows the mean word
error rate of all tasks and Table 4 contains the re-
sults of the best runs with additional comparison
to the RMN (Yang et al., 2018), the best-reported
model in literature as far as we know.

The rsDNC outperforms the DNC from the
original paper as well as the jointly trained EntNet.
This shows the impact of the normalization and the
BD which improves the model performance even
without the temporal memory linkage mechanism.
This could imply that this mechanism is not im-
portant for QA tasks. It also leads to a significant
drop in variance which demonstrates that our mod-
els are more robust.

The additional model complexity through the
bidirectional design shows clear improvements
without requiring more parameters. It outperforms
the DNC in terms of mean error as well as vari-
ance. The lower variance indicates a very robust
model for different random initializations. But
through the bidirectional controller, the model has
access to information about the question while
reading the context similar to the RMN or DMN+.

Particularly the performance on task 3, 17 and 19
reaches a new quality in the mean results without
any failed tasks.

The BrsDNC with augmentation of task 16
leads to the best-reported overall results as far as
we know. The modifications allow to learn the
task correctly and solves it completely. Even when
ignoring the task 16 in the results, the perfor-
mance of this model is better than previous results.
This indicates that the corrected task has a positive
cross-effect on the learning of the other tasks.

But the advancements of the rsDNC not only
improve the overall performance. The function-
ality of the MU, as analyzed in Section 4, shows
more meaningful control signals, see Figure 3b in
appendix A. The allocate gate chooses the writ-
ing by the least used location when it writes new
information and uses content-based writing when
it adds supplementary information to existing en-
tries. The write gate prevents writing of unin-
formative words like articles or prepositions. The
free gate prevents freeing memory when adding
new information to not overwrite stored informa-
tion. The memory influence is maximal when a
answer is requested. All of this shows that our
advancements probably increase the fundamental
functionality of the DNC.

The training time of our implementation is 40
min per epoch for the rsDNC and 45 min per epoch
for the BrsDNC. An epoch of training a DNC takes
double the time due to smaller batch sizes and
additional computation for the temporal linkage
mechanism.

6.2 CNN Reading Comprehension Task

Task description The CNN reading comprehen-
sion (RC) task is introduced by Hermann et al.
(2015) and is based on crawling the online news
articles published on the CNN website from April
2007 to April 2015. The dataset contains samples
with news article as context and short article sum-
maries as query statements. The articles and query
statements are anonymized by replacing all name
entities with tokens. This is required since the arti-
cles contain name entities, for example celebrities,
and the task aims to exploit general relationships
between anonymized entities rather than common
knowledge. Each article is the source for four
queries on average and each query is the finding
of a token which is replaced by a placeholder in
the query statement.
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The task is divided into training, validation and
test sets on a monthly base. The training set con-
tains 90,266 articles and 380,298 samples with
a mean length of 775 words. The used pre-
processed dataset has all words in lower case and
reduced inconsistencies. The vocabulary size of
118,497 is limited to 50k by replacing rarely-seen
words with a ’zero’ token. The task contains 408
name entity tokens. The loss metric for the CNN
is the accuracy, the fraction of all samples with
correct words to the number of samples in total.

Training details The query and the article are
concatenated (the query first) as an input se-
quence. The sequence is fed to the model word
by word and each word is represented as a word
vector with a size of 100 and GloVe initialization
(Pennington et al., 2014). The word vector is op-
timized during training. The target is the correct
word represented as the index of a one-hot vector
with the size of all name entity tokens. A can-
didate mask is created which masks out all name
entity tokens which are not present in the sam-
ple. The last model output predicts the word and
is normalized with a softmax function. The cross-
entropy loss between the prediction output vector
and the target one-hot vector is minimized.

We use a batch size of 32; different-length se-
quences are padded starting from the beginning.
Two models are evaluated on this task, rsDNC and
BrsDNC. All hyperparameters are chosen inspired
by related work. The controller is a LSTM with
one hidden layer and a layer size of 512 in the
unidirectional setup and 384 each in the bidirec-
tional setup. Both models have a memory matrix
with 256 locations, a width of 128 and four read
heads. Bypass Dropout is applied with a dropout
rate of 10%. The maximum sequence length dur-
ing training is limited to 1400 words. The model is
optimized with RMSprop with fixed learning rate
of 3e-05 and momentum of 0.9.

Results The results on the CNN RC task are
shown in Table 2. Both models achieve passable
results compared to task-specific state-of-the-art
models. But when focusing on the fact that our
model is trained without any adaption to the task
like sentence representations or word-windows,
without hyperparameter tuning or any other op-
timization it is a satisfactory result. The bidi-
rectional model outperforms the unidirectional rs-
DNC, but only on the test set. The training time of

Model valid test

Deep LSTM Reader 55.0 57.0
Attentive Reader 61.6 63.0
rsDNC 67.5 69.0
AS Reader 68.6 69.5
BrsDNC 67.1 69.8
Stanford AR 72.2 72.4
AoA Reader 73.1 74.4
ReasoNet 72.9 74.7
GA Reader 77.9 77.9

Table 2: The validation and test accuracy (%) of
the rsDNC/BrsDNC and others on CNN dataset.

our implementation is 14/16 hours per epoch on
the rsDNC/BrsDNC. A DNC/BDNC requires up
to 35/41h per epoch. The overall training time is
7 epochs on average. The memory savings of the
CBMU result in 4 training days instead of 12. This
shows the model’s adaptability to perform other
tasks without any task-specific adjustment and its
scalability due to a drastic reduction of training
time.

7 Conclusion

This work introduces the robust and scalable DNC
(rsDNC), an improved DNC applied in QA tasks.
It achieves state-of-the-art results on the bAbI task
and passable results on the CNN RC task without
any task-specific model adaption.

We show that the rsDNC is more robust and
usable in contrast to the vanilla DNC due to a
faster and more stable training behaviour as well
as less dependence on the initialization. This
is caused by the introduced Bypass Dropout and
DNC Normalization. These advancements make
the DNC easier applicable to other tasks. Further-
more, we demonstrate the scalability of the rsDNC
to a large-scale QA task by introducing a contend-
based memory unit. It lowers memory consump-
tion and training time accompanied by only a min-
imal loss of performance. A novel bidirectional
architecture improves the contextual accessibility
and allows questions at every position in the input
sequence. Additionally, we provide a training aug-
mentation for one of the bAbI tasks to solve all of
them.

In further work, the rsDNC architecture could
be extended to a sequence-to-sequence model
which enables the usage in other NLP tasks.
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A DNC functionality on the bAbI task 1
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B Convergence behaviour on the bAbI task 1
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Figure 4: The convergence behaviour of the DNC with different improvements on the bAbI task 1. The
plot shows the validation loss for 5 model with the same parameters but different initializations, the red
line is the worst model and the green line the best.
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C Results on the bAbI task

Task DNC EntNet SDNC rsDNC BrsDNC
BrsDNC
+aug16

1: 1 supporting fact 9.0 ± 12.6 0.0 ± 0.1 0.0 ± 0.0 0.1 ± 0.0 0.1 ± 0.1 0.1 ± 0.0
2: 2 supporting facts 39.2 ± 20.5 15.3 ± 15.7 7.1 ± 14.6 0.8 ± 0.5 0.8 ± 0.2 0.5 ± 0.2
3: 3 supporting facts 39.6 ± 16.4 29.3 ± 26.3 9.4 ± 16.7 6.5 ± 4.6 2.4 ± 0.6 1.6 ± 0.8
4: 2 argument relations 0.4 ± 0.7 0.1 ± 0.1 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
5: 3 argument relations 1.5 ± 1.0 0.4 ± 0.3 0.9 ± 0.3 1.0 ± 0.4 0.7 ± 0.1 0.8 ± 0.4
6: yes/no questions 6.9 ± 7.5 0.6 ± 0.8 0.1 ± 0.2 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0
7: counting 9.8 ± 7.0 1.8 ± 1.1 1.6 ± 0.9 1.0 ± 0.7 1.0 ± 0.5 1.0 ± 0.7
8: lists/sets 5.5 ± 5.9 1.5 ± 1.2 0.5 ± 0.4 0.2 ± 0.2 0.5 ± 0.3 0.6 ± 0.3
9: simple negation 7.7 ± 8.3 0.0 ± 0.1 0.0 ± 0.1 0.0 ± 0.0 0.1 ± 0.2 0.0 ± 0.0
10: indefinite knowledge 9.6 ± 11.4 0.1 ± 0.2 0.3 ± 0.2 0.1 ± 0.2 0.0 ± 0.0 0.0 ± 0.1
11: basic coreference 3.3 ± 5.7 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
12: conjunction 5 ± 6.3 0.0 ± 0.0 0.2 ± 0.3 0.0 ± 0.0 0.0 ± 0.1 0.0 ± 0.0
13: compound coreference 3.1 ± 3.6 0.0 ± 0.1 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
14: time reasoning 11 ± 7.5 7.3 ± 4.5 5.6 ± 2.9 0.2 ± 0.1 0.8 ± 0.7 0.3 ± 0.1
15: basic deduction 27.2 ± 20.1 3.6 ± 8.1 3.6 ± 10.3 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1
16: basic induction 53.6 ± 1.9 53.3 ± 1.2 53.0 ± 1.3 52.1 ± 0.9 52.6 ± 1.6 0.0 ± 0.0
17: positional reasoning 32.4 ± 8 8.8 ± 3.8 12.4 ± 5.9 18.5 ± 8.8 4.8 ± 4.8 1.5 ± 1.8
18: size reasoning 4.2 ± 1.8 1.3 ± 0.9 1.6 ± 1.1 1.1 ± 0.5 0.4 ± 0.4 0.9 ± 0.5
19: path finding 64.6 ± 37.4 70.4 ± 6.1 30.8 ± 24.2 43.3 ± 36.7 0.0 ± 0.0 0.1 ± 0.1
20: agents motivation 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1

Mean WER: 16.7 ± 7.6 9.7 ± 2.6 6.4 ± 2.5 6.3 ± 2.7 3.2 ± 0.5 0.4 ± 0.3
Failed Tasks (>5%): 11.2 ± 5.4 5.0 ± 1.2 4.1 ± 1.6 3.2 ± 0.8 1.4 ± 0.5 0.0 ± 0.0

Table 3: The mean word error rate (WER) of the different models on the 20 bAbI tasks . All models
are trained jointly on all 20 bAbI tasks at once without information about the actual task. Best results in
bold.

Task DNC EntNet
EntNet
†

DMN+
† SDNC RMN rsDNC BrsDNC

BrsDNC
+aug16

1: 1 supporting fact 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1
2: 2 supporting facts 0.4 2.8 0.1 0.3 0.6 0.5 0.8 0.5 0.6
3: 3 supporting facts 1.8 10.6 4.1 1.1 0.7 14.7 2.5 2.5 1.6
4: 2 argument relations 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5: 3 argument relations 0.8 0.4 0.3 0.5 0.3 0.4 1.6 0.7 0.4
6: yes/no questions 0.0 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0
7: counting 0.6 0.8 0.0 2.4 0.2 0.5 1.5 0.3 0.6
8: lists/sets 0.3 0.1 0.5 0.0 0.2 0.3 0.1 0.4 0.6
9: simple negation 0.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
10: indefinite knowledge 0.2 0.0 0.6 0.0 0.2 0.0 0.0 0.0 0.0
11: basic coreference 0.0 0.0 0.3 0.0 0.0 0.5 0.0 0.0 0.0
12: conjunction 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
13: compound coreference 0.0 0.0 1.3 0.0 0.1 0.0 0.0 0.0 0.0
14: time reasoning 0.4 3.6 0.0 0.2 0.1 0.0 0.1 0.1 0.5
15: basic deduction 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.0
16: basic induction 55.1 52.1 0.2 45.3 54.1 0.9 52.0 49.9 0.0
17: positional reasoning 12.0 11.7 0.5 4.2 0.3 0.3 11.1 0.8 0.2
18: size reasoning 0.8 2.1 0.3 2.1 0.1 2.3 1.6 1.0 0.9
19: path finding 3.9 63.0 2.3 0.0 1.2 2.9 0.8 0.0 0.3
20: agents motivation 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.0

Mean WER: 3.8 7.4 0.5 2.8 2.9 1.2 3.6 2.8 0.3
Failed Tasks (>5%): 2 4 0 1 1 1 2 1 0

Table 4: The word error rate (WER) of the best runs on the bAbI 20 task. Best results per row in bold.
Models tagged with † are trained on each task individually, the other are trained on all tasks jointly.
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Abstract

The recent work of Clark et al. (2018)
introduces the AI2 Reasoning Challenge
(ARC) and the associated ARC dataset
that partitions open domain, complex sci-
ence questions into an Easy Set and a
Challenge Set. That paper includes an
analysis of 100 questions with respect to
the types of knowledge and reasoning re-
quired to answer them; however, it does
not include clear definitions of these types,
nor does it offer information about the
quality of the labels. We propose a com-
prehensive set of definitions of knowledge
and reasoning types necessary for answer-
ing the questions in the ARC dataset. Us-
ing ten annotators and a sophisticated an-
notation interface, we analyze the distri-
bution of labels across the Challenge Set
and statistics related to them. Addition-
ally, we demonstrate that although naive
information retrieval methods return sen-
tences that are irrelevant to answering
the query, sufficient supporting text is of-
ten present in the (ARC) corpus. Eval-
uating with human-selected relevant sen-
tences improves the performance of a neu-
ral machine comprehension model by 42
points.

1 Introduction

The recent work of Clark et al. (2018) introduces
the AI2 Reasoning Challenge (ARC)1 and the as-
sociated ARC dataset. This dataset contains sci-
ence questions from standardized tests that are
separated into an Easy Set and a Challenge Set.
The Challenge Set is comprised of questions that
are answered incorrectly by two solvers based on

1http://data.allenai.org/arc/

Pointwise Mutual Information (PMI) Information
Retrieval (IR). In addition to this division, a survey
of the various types of knowledge as well as the
types of reasoning that are required to answer var-
ious questions in the ARC dataset was presented.
This survey was based on an analysis of 100 ques-
tions chosen at random from the Challenge Set.
However, very little detail is provided about the
questions chosen, the annotations provided, or the
methodology used. These questions surround the
very core of the paper, since the main contribution
is a dataset that contains complex questions.

Additionally, while their manual analysis sug-
gests that 95% of the questions can be answered
using the ARC corpus, Clark et al. (2018) note that
the IR system (Elasticsearch2) serves as a severe
bottleneck. Our annotation process supports this
observation, but we also find that simple reformu-
lations to the query can greatly increase the quality
of the retrieved sentences.

Contributions: In this work, in order to overcome
some of the limitations of Clark et al. (2018) de-
scribed above, we present a detailed annotation
process for the ARC dataset. Specifically, we (a)
introduce a novel labeling interface that allows a
distributed set of annotators to label the knowledge
and reasoning types; and (b) improve upon the
knowledge and reasoning type categories provided
previously, in order to make the annotation more
intuitive and accurate. Following an annotation
round involving over ten people at two institutions,
we measure and report statistics such as inter-rater
agreement, and the distribution of knowledge and
reasoning type labels in the dataset. We then (c)
clarify the role of knowledge and reasoning within
the ARC dataset with a comprehensive set of an-
notations for both the questions and returned re-
sults, demonstrating the efficacy of query refine-

2https://www.elastic.co/products/elasticsearch
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ment to improve existing QA systems. Our anno-
tators were also asked to mark whether individ-
ual retrieved sentences were relevant to answering
a given question. Our labeling interface logs the
reformulated queries issued by each annotator, as
well as their relevance annotations. To quantita-
tively demonstrate the effectiveness of the relevant
sentences, we (d) evaluate a subset of questions
and the relevant retrieval results with a pre-trained
DrQA model (Chen et al., 2017), and find that the
performance of the system increases by 42 points.

2 Related Work

To explore reading comprehension as a research
problem, Hirschman et al. (1999) manually cre-
ated a dataset of 3rd and 6th grade reading com-
prehension questions with short answers. The
techniques that were explored for this dataset in-
cluded pattern matching, rules, and logistic re-
gression. More such datasets have been created
that include natural language questions: for in-
stance, MCTest (Richardson et al., 2013). MCTest
is crowdsourced and comprises of 660 elementary-
level childrens fictional stories, which are the
source of questions and multiple choice answers.
Questions and answers were constructed with a re-
strictive vocabulary that a 7 year-old could under-
stand. Half of the questions constructed necessi-
tated the answer to be derived from two sentences,
with the motivation being to encourage research
in multi-hop (one-hop) reasoning. Recent tech-
niques such as Wang et al. (2015) and Yin et al.
(2016) have performed well on this dataset. Cur-
rently, SQuAD (Rajpurkar et al., 2016) is one of
the most popular datasets for reading comprehen-
sion: it uses Wikipedia passages as its source, and
question-answer pairs are created using crowd-
sourcing. While it is stated that SQuAD requires
logical reasoning, the complexity of reasoning re-
quired is far less than that for the AI2 standardized
tests dataset (Clark and Etzioni, 2016; Kembhavi
et al., 2017). NewsQA (Trischler et al., 2016) is
another dataset that was created using crowdsourc-
ing; it utilizes passages from 10,000 news articles
to create questions.

Most of the datasets mentioned above are closed
domain, where the answer exists in a given snippet
of text. On the other hand, in the open domain set-
ting, the question-answer datasets are constructed
to encompass the whole pipeline for question-
answering, starting with the retrieval of relevant

documents. SearchQA (Dunn et al., 2017) is an
effort to create such a dataset; it contains 140K
question-answer (QA) pairs. While the motivation
was to create an open domain dataset, SearchQA
provides text that contains ‘evidence’ (a set of an-
notated search results) and hence falls short of be-
ing a complete open-domain QA dataset. Trivi-
aQA (Joshi et al., 2017) is another reading com-
prehension dataset that contains 650K QA pairs
with evidence.

Datasets created from standardized science tests
offer some of the few existing examples of ques-
tions that require exploration of complex reason-
ing techniques to find solutions. A number of
science-question focused datasets have been re-
leased over the past few years. The AI2 Science
Questions dataset was introduced by Clark (2015)
along with the Aristo Framework, which we build
off of. This dataset contains over 1,000 multi-
ple choice questions from state and federal sci-
ence questions for elementary and middle school
students.3 A survey of the knowledge base re-
quirements for accomplishing this task was per-
formed by Clark et al. (2013), and concluded
that advanced inference methods were necessary
for many of the questions, as they could not
be answered by simple fact-based retrieval. The
SciQ Dataset (Welbl et al., 2017) contains 13,679
crowdsourced multiple choice science questions.
To construct this dataset, workers were shown a
passage and asked to construct a question along
with correct and incorrect answer options. The
dataset contains both the source passage as well
as the question and answer options.

3 ARC Dataset Annotations

In previous work (Clark et al., 2018), the stan-
dardized test questions under consideration are
split into various categories based on the kinds of
knowledge and reasoning that are needed to an-
swer those questions. The idea of classifying ques-
tions by these two types is central to the notion
of standardized testing, which endeavors to test
students on various kinds of knowledge, as well
as various problem types and solution techniques.
In accordance with this, Clark et al. provide pre-
liminary definitions for knowledge and reasoning
categories that can be employed by a QA system
to solve a given question. These categories allow

3This dataset can be downloaded at http://data.
allenai.org/ai2-science-questions/
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Knowledge Label Instructions Example Question

Definition

A question should be labeled definition if it requires you to
know the definition of a term and use only that definition to
answer the question.

Recall is necessary to answer the question. Examples in-
clude questions that require direct recall, questions that re-
quire picking an exemplar or element from a set.

What is a worldwide increase in temperature called?
(A) greenhouse effect
(B) global warming
(C) ozone depletion
(D) solar heating

Basic Facts

A question should be labeled basic facts if you would require
basic facts or properties about a term that would not neces-
sarily capture the full textbook definition.

Examples include, how many earth rotations are in a day and
what the advantage of large family sizes are for animals.

Which element makes up most of the air we breathe?
(A) carbon
(B) nitrogen
(C) oxygen
(D) argon

Causes & Processes
A question should be labeled causes if answering it requires
recognizing an ordered process (two or more sequential, re-
lated events) described in the question.

What is the first step of the process in the formation of sedi-
mentary rocks?
(A) erosion
(B) deposition
(C) compaction
(D) cementation

Purpose
A question should be labeled purpose if answering it requires
understanding the function of one or more terms in the ques-
tion/answer.

What is the main function of the circulatory system?
(A) secrete enzymes
(B) digest proteins
(C) produce hormones
(D) transport materials

Algebraic

A question should be labeled algebraic if answering it re-
quires any kind of numerical calculation, including basic
arithmetic, solving equations (including equations retrieved
from a knowledge base, e.g. a physics equation like F =m ·a),
etc.

A 72 W navigation unit on a commercial aircraft has a 24 V
power supply and uses 3 A of electric current. What is the
electrical resistance of the navigation unit?
(A) 4 ohms
(B) 8 ohms
(C) 13 ohms
(D) 22 ohms

Experiments Questions about the Scientific Method, laboratory experi-
ments, and/or experimental best practices.

Scientists perform experiments to test hypotheses. How do
scientists try to remain objective during experiments?
(A) Scientists analyze all results.
(B) Scientists use safety precautions.
(C) Scientists conduct experiments once.
(D) Scientists change at least two variables.

Physical Model
Any question that refers to a spatial / kinematic / physical
relationship between entities and likely requires a model of
the physical world in order to be answered.

What most likely happens when a cold air mass comes into
contact with a warm, moist air mass?
(A) The sky becomes clear.
(B) Rain or snow begins to fall.
(C) Cold air is pushed to high altitudes.
(D) Warm air is pushed to ground level.

Table 1: Knowledge type definitions and examples given to the annotators.

for the classification of questions, which makes it
easier to partition them into sets to measure per-
formance and improve solution strategies. In this
work, we present an interface (c.f. Section 4) and
annotation rules that seek to turn this classification
of questions into a systematic process. In this sec-
tion, we first discuss the classification types and
associated annotation rules.

3.1 Knowledge Types
In most question-answering (QA) scenarios, the
knowledge that is present with the system (or the
agent) determines whether a given question can be
answered. The full list of the revised knowledge
labels (types) – along with the instructions given
to annotators and respective exemplars from the

ARC question set – is given in Table 1. The la-
belers were given the following instructions at the
beginning of the annotation process:

You are to answer the question, “In a perfect
world given an ideal knowledge source, what
types of knowledge would you as a human need
to answer this question?” You are allowed to se-
lect multiple labels for this type which will be
recorded as an ordered list. You are to assign la-
bels in the order of importance to answering the
questions at hand.

The wording of the paragraph above is quite de-
liberate. First, we make the non-trivial point that
the kind of knowledge that is available determines
the reasoning type to be employed, and eventually
whether the given question can be answered or
not. For example, the question:
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Reasoning Label Instructions Example Question

Question Logic

Questions which only make sense in the context of a multiple-
choice question. That is, absent the choices, the question
makes no sense; after being provided the choices, the ques-
tion contains (nearly) all necessary information to answer the
question. If taking away the answer options makes it impos-
sible to answer, then it is question logic.

Example: pick the element of a set that does not belong, pick
one of a grouping, etc.

Which item below is not made from a material grown in na-
ture?
(A) a cotton shirt
(B) a wooden chair
(C) a plastic spoon
(D) a grass basket

Linguistic Matching

Any question that requires aligning a question with retrieved
results (sentences or facts). This can be paired with multihop
and other reasoning types where the facts that are retrieved
need to be aligned with the particular questions.

This often goes with knowledge types like questions and ba-
sic facts in the case that the retrieved results do not perfectly
align with the answer choices.

Which of the following best describes a mineral?
(A) the main nutrient in all foods
(B) a type of grain found in cereals
(C) a natural substance that makes up rocks
(D) the decomposed plant matter found in soil

Causal / Explanation

Given the facts retrieved from web sentences or another rea-
sonable corpus the answer can be extrapolated from a single
fact or element. This category also includes single hop causal
processes and scenarios where the question asks in the form
“What is the most likely result of X happening?”

Example: if you need to explain this to a 10 year old, it would
require one statement of fact to explain.

Why can steam be used to cook food?
(A) Steam does work on objects.
(B) Steam is a form of water.
(C) Steam can transfer heat to cooler objects.
(D) Steam is able to move through small spaces.

Multihop Reasoning

Given the facts retrieved from web sentences or another rea-
sonable corpus it requires at least two or more distinct pieces
of evidence. This category also includes multi hop causal pro-
cesses and scenarios where the question asks in the form “if
X happens what is the result on Y?”

Example: if you need to explain this to a 10 year old, it would
require at least two distinct factual statements.

Which property of a mineral can be determined just by look-
ing at it?
(A) luster
(B) mass
(C) weight
(D) hardness

Hypothetical / Counterfactual

Any question that requires reasoning about or applying ab-
stract facts to a hypothetical/scenario situation that is de-
scribed in the question. In some cases the hypotheticals are
described in the answer options.

A hypothetical / counterfactual is an entity/scenario that may
not be not mentioned as a fact in the corpus, e.g. “..a gray
squirrel gave birth to a ...”, “When lemon juice is added to
water..”

If the Sun were larger, what would most likely also have to be
true for Earth to sustain life?
(A) Earth would have to be further from the Sun.
(B) Earth would have to be closer to the Sun.
(C) Earth would have to be smaller.
(D) Earth would have to be larger.

Comparison

Comparison questions ask to compare one or more enti-
ties/classes found in the question and/or answers along one
or more dimensions.

This includes questions like “what is the most likely place to
find water?” and ”what is the brightest star in our galaxy?”

Compared to the Sun, a red star most likely has a greater
(A) volume.
(B) rate of rotation.
(C) surface temperature.
(D) number of orbiting planets

Algebraic

A question should be labeled algebraic if answering it re-
quires any kind of numerical calculation, including basic
arithmetic, solving equations (including those retrieved from
a knowledge base, e.g. a physics equation like F = m ·a), etc.

A 72 W navigation unit on a commercial aircraft has a 24 V
power supply and uses 3 A of electric current. What is the
electrical resistance of the navigation unit?
(A) 4 ohms
(B) 8 ohms
(C) 13 ohms
(D) 22 ohms

Physical Model
Any question that refers to a physical / spatial / kinematic
relationship between entities and likely requires a model of
the physical world in order to be answered.

Where will a sidewalk feel hottest on a warm, clear day?
(A) Under a picnic table
(B) In direct sunlight
(C) Under a puddle
(D) In the shade

Analogy Is a direct statement of analogy.

Inside cells, special molecules carry messages from the mem-
brane to the nucleus. Which body system uses a similar pro-
cess?
(A) endocrine system
(B) lymphatic system
(C) excretory system
(D) integumentary system

Table 2: Reasoning type definitions and examples given to the annotators.
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Giant redwood trees change energy from one form to
another. How is energy changed by the trees?
(A) They change chemical energy into kinetic energy.

(B) They change solar energy into chemical energy.

(C) They change wind energy into heat energy.

(D) They change mechanical energy into solar energy.

can be answered using two different kinds of
reasoning depending on the knowledge retrieved:

(1) Trees change solar energy into chemical energy: Lin-
guistic Reasoning
(2a) Solar energy is changed into chemical energy by plants;

(2b) Trees are classified as plants: Multi-hop Reasoning

In order to level the field among annotators,
we include the phrasing about an ideal knowl-
edge source. Additionally, displaying the retrieved
search results in the interface provides another
way for the annotators to share some common
ground with respect to the typical kind of knowl-
edge that is likely to be available – in this case,
from the ARC corpus.

In comparison to the knowledge types provided
by Clark et al. (2018), we make the following
changes. First – and most important – we provide
instruction-based definitions for each class, as op-
posed to the single exemplars provided previously.
We believe this greatly simplifies the annotation
task for new annotators, since they no longer need
to perform a preliminary manual analysis of the
QA set in order to understand the distinctions be-
tween the classes. Second, we completely elimi-
nate the Structure type – this is a very specific type
of knowledge, and we believe it is not represented
in any significant percentage in the current ARC
QA set. Third, we rename some of the labels to
bring them more in line with the specific proper-
ties of the knowledge that they are describing – for
example, spatial / kinematic is renamed to Physi-
cal Model in our table.

3.2 Reasoning Types
The analysis of reasoning types with an eye to-
wards annotation follows a similar pattern to the
knowledge types described in the previous section.
Table 2 shows the reasoning labels and classifica-
tion rules that we used for labeling the dataset. The
annotators were given the following instructions:

You are to answer the question, “What types
of reasoning or problem solving would a
competent student with access to Wikipedia need

to answer this question?” You are allowed to
select multiple labels for this type which will be
recorded as an ordered list. You are to assign
labels in the order of importance to answering
the questions at hand.

You may use the search results to help dif-
ferentiate between the linguistic and multi-hop
reasoning types. Any label other than these
should take precedence if they apply. For
example, a question that requires using a mathe-
matical formula along with linguistic matching
should be labeled algebraic, linguistic.

Notice that the instructions in this case refer to be-
ing able to access a specific knowledge corpus,
and allow for the selection of multiple labels in
decreasing order of applicability. We also provide
specific instructions on the order of precedence
as relates to linguistic and multi-hop reasoning
types: this is based on our empirical observation
that many questions can be classified trivially into
these reasoning categories, and we would prefer
(for downstream application use) a clean split into
as many distinct categories as possible.

4 Labeling Interface

The labeling interface is shown in Figure 1. The
text of the question is displayed at the top of the
left side, followed by the answer options. Each of
the answer options is preceded by a radio button:
each button is initially transparent, but the anno-
tator can click on a button to check whether the
corresponding option is the answer to the ques-
tion. This facility is to help annotators with extra
information if it is needed in labeling the question;
however, we leave it blank initially to avoid bias-
ing the annotations.

Clicking on a specific answer option runs a
search on the ARC corpus, with the query text set
to the last sentence of the question appended with
the entire text of the clicked answer option. The
retrieved search results are shown in the bottom
left half of the interface. Annotators have the op-
tion of labeling retrieved search results as irrele-
vant or relevant to answering the question at hand.
The query box also accepts free text, and annota-
tors who wish to craft more specific queries are
free to do so. We collect all the queries executed,
as well as the relevant/irrelevant annotations.

The right hand side of the interface deals with
the labeling process itself. There are two boxes for
annotating knowledge and reasoning types respec-
tively. The labels are populated from Table 1 and
Table 2. The annotator can also provide optional
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Figure 1: A screenshot of the interface to our labeling system, described in Section 4.

information on the quality of the retrieved search
results if they chose to run a query. Finally, the an-
notator can use the optional field below quality to
enter additional notes about the question which are
stored and can be retrieved for subsequent discus-
sion and refinement of the labels.

5 Human Annotated Search Results

In addition to labeling the knowledge and reason-
ing types systematically, we demonstrate yet an-
other capability of our interface: given a corpus
of knowledge, we are able to retrieve and display
search results that may be relevant to the question
(and its corresponding options) at hand. This is
useful because it gives a solution technique an ad-
ditional signal as it tries to identify the correct an-
swer to a given question. In open-domain question
answering, the retriever plays as important a role
as the machine reader (Chen et al., 2017). In the
past few years, there has been a lot of effort in de-
signing sophisticated neural architectures for read-

ing a small piece of text (e.g. paragraph) (Wang
and Jiang, 2016; Xiong et al., 2016; Seo et al.,
2016; Lee et al., 2016, inter alia). However, most
work in open domain settings (Chen et al., 2017;
Clark and Gardner, 2017; Wang et al., 2018) only
uses a simple retriever (such as TF-IDF based). As
a result, there is a notable decrease in the perfor-
mance of the QA system. One roadblock for train-
ing a sophisticated retriever is the lack of available
training data which annotates the relevance of a
retrieved context with respect to the question. We
believe our annotated retrieval data can be used to
train a better ranker/retriever.

The underlying retriever in our interface is a
simple Elasticsearch, similar to the one used by
Clark et al. (2018). The interface is populated
by default with the top ranked sentences that
are retrieved with the given question as the in-
put query. However, we noticed that results thus
retrieved were often irrelevant to answering the
question. To address this, our labeling interface
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also allows annotators to input their own custom
queries. We found that reformulating the initial
query significantly improved the quality of the re-
trieved context (results). While not the main fo-
cus of this work, we encouraged the annotators
to mark the contexts (results) that they thought
were relevant to answering the question at hand.
For example, in Figure 1, the annotator came up
with a novel query – ‘metals are solid
at room temperatures’ – and also marked
the relevant sentences which are needed to answer
this question. Note that sometimes we need to rea-
son over multiple sentences to arrive at the answer.
For example, the question in Figure 1 can be an-
swered by combining the first and third sentences
in the ‘Relevant Results’ tab.

To quantitatively measure the efficacy of the an-
notated context, we evaluated 47 questions and
their respective human-annotated relevant sen-
tences with a pretrained DrQA model (Chen et al.,
2017). We compared this to a baseline which only
returned the sentences retrieved by using the text
of the question plus given options as input queries.
Since DrQA returns a span from the input sen-
tences, we picked the multiple choice option that
maximally overlapped with the returned answer
span. Our baseline results are 7 correct out of 47
questions. With the annotated context, the perfor-
mance increased to 27 correctly answered ques-
tions - a 42% increase in accuracy. Encouraged by
these results, we posit that the community should
focus a lot of attention on improving the retrieval
portions of the various QA systems available; we
think that annotated context will certainly help in
training a better ranker.

6 Results

Each of the team members were given access to
the labeling interface (which includes the ques-
tion, answers, query search results and more infor-
mation as described above). Each annotator was
shown the questions in a random order, and was
allowed to skip or pass any question.

Statistics. We collected labels from at least 3
unique annotators (out of the possible 10) for 192
distinct questions. This labeling process produced
1.42 knowledge type labels and 1.7 reasoning type
labels per question. Figure 2 and Figure 3 shows
the distribution of annotation labels by all raters
at any position. While Basic Facts dominates the
knowledge type labels, there is no clear cut con-
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Figure 2: Histogram of the first (most important) knowledge
label for each question; the Y-axis refers to annotations.
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Figure 3: Histogram of the first (most important) reasoning
label for each question; the Y-axis refers to annotations.

sensus for the reasoning type. Indeed, qn logic,
linguistic, and explanation occur most frequently.

Inter-Rater Agreement. A comprehensive look
at the labels and inter-rater agreement can be
found in Table 3 and Table 4. Fleiss’ κ is of-
ten used to measure inter-rater agreement (Cohen,
1995). Informally, this measures the amount of
agreement, beyond chance, based on the number
of raters, objects and classes. κ > 0.2 is typically
taken to denote good agreement between raters,
while a negative value means that there was lit-
tle to no agreement. Since Fleiss’ κ is only de-
fined for a single set of labels, we consider only
the first (most important) label for each question
in the statistic we report.
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In addition to Fleiss’ κ we also use the Kemeny
voting rule (Kemeny, 1959) to measure the con-
sensus by the annotators. The Kemeny voting rule
minimizes the Kendall Tau (Kendall, 1938) (flip)
distance between the output ordering and the or-
dering of all annotators. One theory of voting (ag-
gregation) is that there is a true or correct ordering
and all voters provide a noisy observation of the
ground truth. This method of thinking is largely
credited to Condorcet (de Caritat, 1785; Young,
1988) and there is recent work in characterizing
other voting rules as maximum likelihood estima-
tors (MLEs) (Conitzer et al., 2009). The Kemeny
voting rule is the MLE of the Condorcet Noise
Model, in which pairwise inversions of the pref-
erence order happen uniformly at random (Young,
1988, 1995). Hence, if we assume all annotators
make pairwise errors uniformly at random then
Kemeny is the MLE of label orders they report.

Label Appears Majority Consensus

basic facts 125 69 28
algebraic 13 5 2
definition 52 16 5

causes 78 33 15
experiments 35 19 13

purpose 30 13 0
physical 21 3 1

Fleiss’ κ = 0.342

Table 3: Pairwise inter-rater agreement along with the mean
and Fleiss’ κ for survey responses.

Label Appears Majority Consensus

linguistic 66 31 8
algebraic 15 8 3

explanation 80 22 4
hypothetical 62 21 6

multihop 45 6 0
comparison 46 13 3

qn logic 78 33 2
physical 18 3 0
analogy 4 1 1

Fleiss’ κ =−0.683

Table 4: Pairwise inter-rater agreement along with the mean
and Fleiss’ κ for survey responses.

Knowledge Labels. We achieve κ = 0.342, which
means that our raters did a good job of indepen-
dently agreeing on the types of knowledge re-
quired to answer the questions. The mean Kemeny
score of the consensus ranking for each question is
2.57, meaning on average there are less than three
flips required to get from the consensus ranking
to each of the annotators’ rankings. The most fre-
quent label in the first position was basic facts,
followed by causes. Overall, there was a reason-
able amount of consensus between the raters for
knowledge type: 64/192 questions had a consensus
amongst all the raters. Taken together, our results
on knowledge type indicate that most questions

deal with basic facts, causes, and definitions; and
that labeling can be done reliably.

Reasoning Labels. The reasoning labels tell a
very different story from the knowledge labels.
The agreement was κ = −0.683, which indicates
that raters did not agree above chance on their la-
bels. Strong evidence for this comes from the fact
that only 27/192 questions had a consensus label.
This may be due to the fact that we allow multi-
ple labels, and the annotators simply disagree on
the order of the labels. However, the score of the
consensus ranking for each question is 6.57, which
indicates that on average the ordering of the labels
is quite far apart.

Considering the histogram in Figure 3, we see
that qn logic, linguistic, and explanation are the
most frequent label types; this may indicate that
getting better at understanding the questions them-
selves could lead to a big boost for reasoners. For
Figure 4, we have merged the first and second la-
bel (if present) for all annotators. Now, the set of
all possible labels is all singletons as well as all
pairs of labels. Comparing this histogram to the
one in Figure 3, we see that while linguistic and
explanation remain somewhat unchanged, the qn
logic label becomes very spread out across the
types. This is more support for our hypothesis that
annotators may be disagreeing on the ordering of
the labels, rather than the content itself.
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Figure 4: Histogram of the reasoning labels when we com-
bine the first and (if present) second label of every annotator.
The count refers to annotations.

Baseline Performance. Using the Kemeny vot-
ing rule to partition the set of questions based on
their top reasoning and knowledge labels, we eval-
uate the performance of several baseline systems:
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Label (#) Text Search word2vec SemanticILP DecompAttn DGEM BiDAF

R
ea

so
ni

ng
Ty

pe
s

qn logic (63) 14.3 25.4 22.2 16.3 19.8 23.4
linguistic (38) 26.3 21.1 28.9 26.3 29.6 34.9

hypothetical (27) 18.5 29.6 18.5 29.4 33.3 22.0
explanation (25) 12.0 28.0 12.0 25.0 29.3 26.3

multihop (19) 21.1 15.8 15.8 22.4 32.9 25.9
comparison (11) 18.2 9.1 18.2 29.5 13.6 47.0

algebraic (8) 37.5 0.0 25.0 0.0 3.1 15.6
physical (7) 14.3 14.3 14.3 28.6 35.7 17.9
analogy (1) 0.0 0.0 100.0 0.0 0.0 0.0

K
no

w
le

dg
e

Ty
pe

s basic facts (78) 19.2 20.5 29.5 21.8 27.4 29.3
causes (39) 23.1 25.6 12.8 23.7 25.0 32.7

experiments (25) 4.0 16.0 8.0 21.8 22.0 24.1
definition (24) 16.7 29.2 16.7 26.0 34.4 16.7

purpose (21) 19.0 28.6 23.8 27.4 25.0 27.4
algebraic (6) 50.0 0.0 50.0 0.0 0.0 16.7
physical (6) 16.7 16.7 0.0 4.2 8.3 12.5

Overall acc. 18.2 21.7 20.7 21.7 24.9 26.5

Table 5: Accuracy on our subset of ARC Challenge Set questions, partitioned based on the first label from the Kemeny ordering
of the reasoning and knowledge type annotations, respectively; 1/k partial credit is given when the correct answer is in the set
of k selected answers. The number of questions assigned each primary label is indicated by (#).

word2vec similarity (Mikolov et al., 2013),
Text Search based on the scores assigned by
Elasticsearch over the Aristo-mini corpus, and
the SemanticILP system that uses constrained
search over semantically-motivated graph struc-
tures (Khashabi et al., 2018). Additionally, we also
test the three pre-trained neural baselines released
by (Clark et al., 2018): DecompAttn, the De-
composable Attention natural language inference
model (Parikh et al., 2016); DGEM, the Decompos-
able Graph Entailment Model (Khot et al., 2018);
and BiDAF, the Bi-Directional Attention Flow
reading comprehension model (Seo et al., 2016).

Results are shown in Table 5. While none of the
systems approach human performance on any of
the categories, they do illustrate some particular
difficulties of the ARC Challenge Set that moti-
vate our future work. Specifically, all techniques
perform at or below chance on questions that pri-
marily require qn logic reasoning. Unremarkable
performance on the popular basic facts and causes
knowledge types also illustrates the shortcomings
of sophisticated language processing systems that
still rely on basic text retrieval. Bridging this gap
appears to be a requirement for making progress
on this and similar datasets.

7 Conclusion & Future Work

In this paper, we introduce a novel annotation in-
terface and define annotation instructions for the
knowledge and reasoning type labels that are used
for question analysis for standardized tests. We an-

notate approximately 200 questions from the ARC
Challenge Set shared by AI2 with the types of
knowledge and reasoning required to answer the
respective questions. Each question has at least 3
annotators, with high agreement on the require-
ments for knowledge type. While standard base-
lines do not perform significantly better on any of
the different subsets of questions (partitioned by
type), we offer a preliminary demonstration that
search annotations collected through our interface
can significantly improve the performance of state
of the art systems. We will leverage the knowl-
edge and reasoning type annotations, as well as the
search annotations, to improve the performance of
QA systems. We will also release these annota-
tions to the community to complement the ARC
Dataset.
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Abstract

We describe our experiences in us-
ing an open domain question answering
model (Chen et al., 2017) to evaluate an
out-of-domain QA task of assisting in
analyzing privacy policies of companies.
Specifically, Relevant CI Parameters Ex-
tractor (RECIPE) seeks to answer ques-
tions posed by the theory of contextual
integrity (CI) regarding the information
flows described in the privacy statements.
These questions have a simple syntactic
structure and the answers are factoids or
descriptive in nature. The model achieved
an F1 score of 72.33, but we noticed that
combining the results of this model with a
neural dependency parser based approach
yields a significantly higher F1 score of
92.35 compared to manual annotations.
This indicates that future work which in-
corporates signals from parsing like NLP
tasks more explicitly can generalize better
on out-of-domain tasks.

1 Introduction

Open domain question answering approaches of-
fer a promising glimpse into a future in which ma-
chines are able to perform sophisticated cognitive
tasks on behalf of a human. Recent advances in
deep neural networks applied to reading compre-
hension and document retrieval (Chen et al., 2017;
Wang et al., 2017) have achieved competitive re-
sults for answering questions based on a large and
diverse corpus of documents. These models are
trained on Wikipedia text and are capable of an-
swering various factoid and descriptive questions.
Specifically, the distribution of the interrogative
words used, lexical and syntactic variations, rea-
soning across multiple sentences and ambiguous

statements in such Wikipedia datasets (Ryu et al.,
2014; Rajpurkar et al., 2016) results in a robust
QA model.

Motivated by their success, we set to apply one
such model (Chen et al., 2017) to evaluate an out-
of-domain QA task to assist in analysis and un-
derstanding of privacy policies. The text in pri-
vacy policies is notoriously cumbersome, confus-
ing and hard to comprehend even for legal ex-
perts (Reidenberg et al., 2015). So when it comes
to reading privacy policies, users often miss im-
portant information or skip reading them alto-
gether. Past efforts have applied NLP (Sathyendra
et al., 2017, 2016; Evans et al., 2017), Machine
Learning (Ammar et al., 2012) and crowdsourc-
ing (Wilson et al., 2016b) techniques to identify
important and relevant privacy statements. How-
ever, identifying paragraphs that mention sensitive
information in privacy policies only takes us half-
way because we still need to understand who col-
lects that information, who receives it, and under
what conditions the collection happens. To sup-
port this finer-grained analysis, we present a case
for using an machine comprehension model for
answering questions posed by the theory of con-
textual integrity (CI) (Nissenbaum, 2010).

To understand the privacy implications, the CI
theory (see Section 2) calls for answering to the
following questions: who are the actors (sender,
recipient, subject) involved in the information
flow? What are the type of information (at-
tribute), and condition (transmission principle) un-
der which information is exchanged? The an-
swers are used to formulate information flows (CI
flows) into a five element tuple (sender, attribute,
receiver, subject, transmission principle).

Unfortunately, because privacy policies are not
written with CI in mind, manually identifying CI
flows in text is a time consuming exercise. It re-
quires substantial cognitive effort to understand
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and answer CI related questions. Automating this
task is not trivial either. The syntax of privacy
statements varies a lot, some relevant information
might not be specified at all. So, the answers are
not always obvious and cannot be identified using
a simple model. Even with the simple syntactic
structure of the questions, the trained model needs
to take into account the variations and complexity
in syntax and semantics used in privacy policies.

To help address these issues, we are design-
ing a Relevant CI Parameters Extractor (RECIPE)
that uses a pre-trained 3 layer bi-directional LSTM
reading comprehension (RC) model (Chen et al.,
2017). Our experiments show that, in itself, the
model achieved an F1 score of 72.33 for identify-
ing answers in the text. However, the results sig-
nificantly improved by combining the results from
the model and that of a neural dependency parser.
The combination of the two approaches yielded an
overall F1 score of 92.35 against the baseline of
six manually annotated privacy policies.

2 Contextual Integrity Primer

Questions underpinning the theory of Contextual
Integrity (CI) are used by many research efforts for
understanding privacy implications in a given con-
text. Legal and privacy scholars draw on CI to ex-
amine existing data sharing practices in companies
like Facebook (Hull et al., 2011) and Google (Zim-
mer, 2008) and to identify important contextual
elements behind users privacy expectations (Mar-
tin and Nissenbaum, 2016). In computer science,
CI has been used to build privacy compliance and
verification tools (Barth et al., 2006; Chowdhury
et al., 2013).

The CI theory defines privacy as appropriate
flow of information. The appropriateness is de-
termined by established norms in a given con-
text. CI offers a framework to capture the infor-
mation flow and contextual norms using a five ele-
ment tuple that specifies the following CI parame-
ters: (sender, attribute, receiver, subject, transmis-
sion principle). Therefore, answering the ques-
tions about who are the actors (sender, recipient,
subject) involved in the information flow, what
are the type of information (attribute), and con-
dition (transmission principle) of the information
exchange, is crucial for identifying potential pri-
vacy violations.

In our work, the answers to the questions are
highlighted in the text, as shown in Figure 1 to

Figure 1: Example of a Walmart privacy state-
ment. The coloring of the text identifies the CI
parameters.

assist consumers in understanding the information
flows described in the privacy policy. These anno-
tations can also help identify potentially confusing
or misleading statements, e.g., cases where one of
the five parameters such as transmission principle
or receiver is missing or ambiguous.

3 Related work

The problem of automatic parsing of privacy
policies was tackled by multiple efforts, as part
of the “Usable Privacy Project” (Sadeh et al.,
2013), which included training machine learning
models to identify paragraphs containing specific
data practices information (Wilson et al., 2016b),
identifying provision of choice statements, au-
tomatic extraction of the opt-out choice state-
ments (Sathyendra et al., 2016, 2017) and oth-
ers (Evans et al., 2017; Hosseini et al., 2016; Bha-
tia et al., 2016b). More recent work by Harkous
et al. (2018) looked at neural network classifiers
for annotation and support of free-form querying
of the privacy policy content.

Compared to these efforts, our work is the first
step towards bringing a formal analysis of pri-
vacy policies through the use of CI. We used de-
pendency parsing to extract CI parameters from
individual sentences, which was previously suc-
cessfully used for various privacy policy analy-
sis tasks. Bhatia and Breaux (2015) used depen-
dency types to construct an information type lex-
icon from manual human annotations and an en-
tity extractor based on part-of-speech tagging. In a
more recent work, Bhatia et al. (2016a) employed
typed dependency parsing to extract privacy goals
from privacy policies. In our work, we were able
to show that a machine reading comprehension
model (Chen et al., 2017; Hermann et al., 2015;
Seo et al., 2017), needs to additionally have the
capacity to capture the semantic relationships as-
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sociated with dependency parsing structure from
the privacy policy text.

Furthermore, the problem of identifying CI pa-
rameters can be modeled as a sequence tagging
task using LSTMs combined with CRFs (Lample
et al., 2016; Ma and Hovy, 2016) to learn clas-
sification models for entity recognition and end-
to-end sequence labeling. However, training these
models requires large amounts of annotated data,
which in our case means hiring highly skilled (i.e.,
expensive) annotators to produce a high quality
corpus of CI-based annotated policies. In fact, our
work aims at reducing that effort.

4 Relevant CI Parameters Extractor
(RECIPE) using open-domain QA

In this section we describe our approach of for-
mulating the CI parameter extraction as an open-
domain QA task. Given a privacy statement
paragraph, such as shown in Figure 1, we pose
questions that correspond to each of the CI pa-
rameters, i.e.., what type of information be-
ing exchange (“technical information”), who is
the sender (“You”), receiver (“We”) and subject
(“your”) involved in the information exchange and
under what conditions (“when visiting websites or
using a mobile application service”)?

As in the example paragraph, some parameters
can be mentioned elsewhere, e.g., in the next sen-
tence. To identify CI parameters at a paragraph
level using global relationships across sentences,
we used a 3 layer bi-directional LSTM reading
comprehension (RC) model (Chen et al., 2017).
The model uses features of Glove word embed-
dings trained from 840B Web crawl data (Pen-
nington et al., 2014) and token features like pres-
ence of exact match with question’s tokens, parts
of speech, named entity relationship and term fre-
quency. We also align the question embedding
with the paragraph token embedding using soft
attention (Lee et al., 2016). During the predic-
tion phase, we perform two classification tasks to
predict the beginning and ending of the span of
the answer. The model is trained on the SQuAD
dataset (Rajpurkar et al., 2016) for machine com-
prehension (87k examples for training and 10k for
development) based on Wikipedia. Each question
in the dataset has an answer which is contained
within the paragraph. In our case, the answer span
detection is identical to the task of manually an-
notating CI parameters. In order to extract the 5

Parameter Type Question
Attribute What is the information?
Receiver Who is receiving the information?
Sender Who is sending the information?
Transmission Principle When is the information sent?
Subject Whose information is it?

Table 1: Questions asked for each contextual in-
tegrity parameter

parameters, we ask a fixed set of questions for a
given paragraph as can be seen in Table 1. The
top 5 answers from the reading comprehension
model are then used to evaluate the accuracy via
fuzzy string token match above a certain threshold
(>80%). We again manually validate if the an-
swers provided by the model match the manually
annotated answers semantically. For example dur-
ing extraction of “receiver” in the New York Times
policy, the model answered with the entity “New
York Times” whereas it was manually annotated as
“we”, which referred to NYT in the context. This
manual validation is required due to the ambiguity
prevalent in the privacy policy text and relying on
exact match can be misleading during evaluation.

In order to understand the limitations of this
model’s performance (discussed in Section 5), we
compared the results produced by dependency
parsing which is limited to identifying CI param-
eters at a single sentence level using local rela-
tionships. We discuss the dependency-parsing ap-
proach next.

Algorithm 1
paras← CI relevant paragraphs
sentences← segments.split(‘.’)
CIDP ← DependencyParser(sentences)
CIRC ← ReadingCompr(paras)
Return CIDP ∪ CIRC

4.1 Dependency parsing

We run a typed dependency parser (DP) on the text
of the policies by splitting the paragraph into indi-
vidual sentences and then parsing each sentence
using the Spacy I/O1 dependency parser. The li-
brary (Honnibal and Montani, 2018) achieves near
state of the art performance on most NLP tasks.2

We then match dependency types to specific CI
parameters. For example, in the sentence ”You

1https://spacy.io
2https://spacy.io/usage/facts-figures
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may be asked to provide your personal informa-
tion anytime you are in contact with Apple or an
Apple affiliated company: The nominal subject
“you” and conjunct “Apple affiliated company”
are sender and receiver respectively, the direct ob-
ject “your personal information” is an attribute,
and the open clausal complement adverbial clause
modifier “anytime you are in contact with Apple
or an Apple affiliated company” is the transmis-
sion principle.

Table 2 shows all the mappings of dependency
types to CI parameters. For the sake of brevity,
we represent type dependencies as they are de-
fined in the Stanford Typed Dependency Man-
ual (De Marneffe and Manning). We then present
the options of the CI parameters as extracted by
the dependency parsers to the annotators, who
then validate them as explained in the previous
section, without having an option to modify the
text for the annotation.

CI Parameter Type Dependency types
Attribute dobj, parataxis, nsubjpass
Sender/Receiver nsubj, pronouns
Transmission Principle xcomp, ccomp, advcl, oprd
Subject poss, agent

Table 2: Mapping of dependency types corre-
sponding to CI parameters

In summary, in our approach we rely on depen-
dency parsing to extract CI parameters based on
the syntactic structure of a single sentence, and a
reading comprehension model to capture CI pa-
rameters based on the semantic understanding of
the larger scope. More specifically, the approach
consists of two rounds of extraction, as shown in
Algorithm 1, to return the union of the two sets
of parameters after manual validation assisted by
a fuzzy token match (Cohen, 2011) that uses Lev-
enshtein Distance to calculate the differences be-
tween sequences.

5 Evaluation

For our evaluation, we analyze the ensemble al-
gorithm against each of its sub-algorithms using
manually annotated policies as a baseline.

5.1 Dataset
We use OPP-115 Corpus (Wilson et al., 2016a)
that contains website privacy policies in natu-
ral text along side annotations (done by law stu-
dents) specifying the corresponding text data prac-

Parameter Type F1 score Validated
F1 score

Attribute 61.53 83.65
Receiver 48.57 75.00
Sender 37.70 56.55
Transmission Principle 52.20 67.29
Subject 25.00 26.56

Overall 49.20 72.33

Table 3: Validated F1 score of manually validated
reading comprehension based annotation

Parameter Type Valid (%) Validated F1 score
Attribute 23.73 84.39
Sender/Receiver 40.41 73.04
Subject 17.42 86.05
Transmission Principle 27.47 69.48

Overall 26.40 77.07

Table 4: F1 scores of dependency parsing based
annotation

tices. We rely on these labels to extract segments
within the privacy statement about information ex-
changes. Specifically, we chose segments related
to First Party Collection/Use, Third party shar-
ing/collection, Data Retention to extract CI pa-
rameters. We then manually annotated a total of
715 parameters (219 Attributes, 65 Subjects, 164
Transmission Principles, 124 Senders and 143 Re-
ceivers) from 6 privacy policies from Amazon,
Google, New York Times, The Atlantic, Bank of
America and Walmart. This forms the ground
truth of our evaluation.

5.2 Results and Discussion

Table 3 shows the F1 scores of the reading com-
prehension model alone. We see that subject, re-
ceiver and sender have relatively low F1 scores
and this is due to the absence of entities in the
paragraphs as they are usually referred to as pro-
nouns. We noticed that the reading comprehension
model outputs such pronoun answers only for 15%
of these parameters and prefers to answer with of-
ten incorrect entities for these questions.

Table 4 shows the results from using the depen-
dency parser on its own. Since dependency pars-
ing is restricted to a single sentence, it misses out
on some contextual information spread across sen-
tences as shown in Figure 1, leading to a loss in
accuracy, even after manual validation.

Table 5 compares the results from each algo-
rithm individually with the result achieved by en-
sembling the approaches. Exclusive contributions
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Parameter DP only RC only DP ∩ RC DP ∪ RC
Attribute 12.98 16.34 67.31 96.63
Sender/Receiver 29.57 30.28 33.1 92.95
Transmission
Principle

20.75 23.27 44.02 88.05

Subject 57.14 19.05 7.14 83.33

Overall 24.24 23.81 44.30 92.35

Table 5: Validated F1 score by ensembling

by each of the individual models (“Parsing only”,
“RC only”) demonstrate how each model is able
to capture syntactic and semantic features respec-
tively, which the other could not. Column “DP ∩
RC” shows that many parameters are extracted by
both the approaches used to formulate CI parame-
ter extraction. This confirms that the task of CI pa-
rameter extraction is non-trivial and composes se-
mantic and syntactic relationship extraction within
it. Finally, “DP ∪ RC” achieves the highest F1
score, significantly improving over both of the
component scores individually.

Table 6 shows the number of incorrect answers
yielded by the hybrid approach, i.e., the answers
where neither RC nor DP performed well.

Parameter Incorrect (%)

Sender 4 (7.55 %)
Subject 7 (13.21 %)
Attribute 7 (13.21 %)
Receiver 16 (30.19 %)
Transmission Principle 19 (35.85 %)

Overall 53

Table 6: A summary of inaccurate labeling by the
emsebling approach. The percentage is out of total
number of invalid labels.

The inaccurate results for these answers can be
partially attributed to the fact that our approach
has to produce an answer (label) each time,
which in some cases is not explicitly stated in
the text. Furthermore, some paragraphs have a
complex syntactic structure, comprising very long
sentences glued together by semicolons. This
poses a challenge to both DP and RC, which rely
on the sentence structure and model trained on
syntactically proper sentences, respectively, to
identify the relevant parameters. Dealing with
such semantic and syntactic ambiguities while
correctly identifying relevant entities remains an
open research question.

6 Conclusion

In this paper we present our work towards design-
ing a Relevant CI Parameters Extractor (RECIPE)
that leverages an open domain QA model on Pri-
vacy Policies to answer questions posed by CI.
The theory of CI relies on identifying five param-
eters to reason about privacy violation. This is
done by asking questions about who are the actors
(sender, recipient, subject), what type of informa-
tion being conveyed and under what conditions in
an information flow.

This paper evaluates an open-domain QA model
to find answers to contextual integrity questions in
privacy policy texts, a complex task which is tra-
ditionally delegated to legal and privacy experts.
We perform an error analysis of the model on this
out-of-domain task and show that this error can be
reduced by combining the open domain QA model
with a neural dependency parser.

Through this paper, we hope to motivate the
community to incorporate signals from depen-
dency parsing like NLP tasks more explicitly in
solving complex tasks like open-domain QA for
generalizing on out-of-domain tasks.
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Abstract

We propose a two-stage neural model
to tackle question generation from doc-
uments. First, our model estimates the
probability that word sequences in a doc-
ument are ones that a human would
pick when selecting candidate answers by
training a neural key-phrase extractor on
the answers in a question-answering cor-
pus. Predicted key phrases then act as tar-
get answers and condition a sequence-to-
sequence question-generation model with
a copy mechanism. Empirically, our key-
phrase extraction model significantly out-
performs an entity-tagging baseline and
existing rule-based approaches. We fur-
ther demonstrate that our question genera-
tion system formulates fluent, answerable
questions from key phrases. This two-
stage system could be used to augment or
generate reading comprehension datasets,
which may be leveraged to improve ma-
chine reading systems or in educational
settings.

1 Introduction

Question answering and machine comprehension
has gained increased interest in the past few
years. An important contributing factor is the
emergence of several large-scale QA datasets (Ra-
jpurkar et al., 2016; Trischler et al., 2016; Nguyen
et al., 2016; Joshi et al., 2017). However, the cre-
ation of these datasets is a labour-intensive and ex-
pensive process that usually comes at significant
financial cost. Meanwhile, given the complexity
of the problem space, even the largest QA dataset
can still exhibit strong biases in many aspects in-
cluding question and answer types, domain cover-
age, linguistic style, etc.

To address this limitation, we propose and eval-
uate neural models for automatic question-answer
pair generation that involves two inter-related
components: first, a system to identify candidate
answer entities or events (key phrases) within a
passage or document (Becker et al., 2012); second,
a question generation module to construct ques-
tions about a given key phrases. As a financially
more efficient and scalable alternative to the hu-
man curation of QA datasets, the resulting system
can potentially accelerate further progress in the
field.

Specifically, We formulate the key phrase ex-
traction component as modeling the probability of
potential answers conditioned on a given docu-
ment, i.e., P (a|d). Inspired by successful work
in question answering, we propose a sequence-to-
sequence model that generates a set of key-phrase
boundaries. This model can flexibly select an ar-
bitrary number of key phrases from a document.
To teach it to assign high probability to human-
selected answers, we train the model on large-
scale, crowd-sourced question-answering datasets.

We thus take a purely data-driven approach
to understand the priors that humans have when
selecting answer candidates, working from the
premise that crowdworkers tend to select enti-
ties or events that interest them when formulat-
ing their own comprehension questions. If this
premise is correct, then the growing collection of
crowd-sourced question-answering datasets (Ra-
jpurkar et al., 2016; Trischler et al., 2016) can be
harnessed to learn models for key phrases of inter-
est to human readers.

Given a set of extracted key phrases, we then
approach the question generation component by
modeling the conditional probability of a ques-
tion given a document-answer pair, i.e., P (q|a, d).
To this end, we use a sequence-to-sequence
model with attention (Bahdanau et al., 2014) and
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the pointer-softmax mechanism (Gulcehre et al.,
2016). This component is also trained to max-
imize the likelihood of questions estimated on a
QA dataset. When training this component, the
model sees the ground truth answers from the
dataset.

Empirically, our proposed model for key phrase
extraction outperforms two baseline systems by
a significant margin. We support these quantita-
tive findings with qualitative examples of gener-
ated question-answer pairs given documents.

2 Related Work

2.1 Key Phrase Extraction

An important aspect of question generation is
identifying which elements of a given document
are important or interesting to inquire about. Ex-
isting studies formulate key-phrase extraction in
two steps. In the first, lexical features (e.g., part-
of-speech tags) are used to extract a key-phrase
candidate list exhibiting certain types (Liu et al.,
2011; Wang et al., 2016; Le et al., 2016; Yang
et al., 2017). In the second, ranking models are of-
ten used to select a phrase from among the candi-
dates. Medelyan et al. (2009); Lopez and Romary
(2010) used bagged decision trees, while Lopez
and Romary (2010) used a Multi-Layer Perceptron
(MLP) and Support Vector Machine to perform
binary classification on the candidates. Mihalcea
and Tarau (2004); Wan and Xiao (2008); Le et al.
(2016) scored key phrases using PageRank. Heil-
man and Smith (2010b) asked crowdworkers to
rate the acceptability of computer-generated nat-
ural language questions as quiz questions, and
Becker et al. (2012) solicited quality ratings of text
chunks as potential gaps for Cloze-style questions.

These studies are closely related to our pro-
posed work by the common goal of modeling
the distribution of key phrases given a document.
The major difference is that previous studies begin
with a prescribed list of candidates, which might
significantly bias the distribution estimate. In con-
trast, we adopt a dataset that was originally de-
signed for question answering, where crowdwork-
ers presumably tend to pick entities or events that
interest them most. We postulate that the resulting
distribution, learned directly from data, is more
likely to reflect the true relevance of potential an-
swer phrases.

Recently, Meng et al. (2017) proposed a gen-
erative model for key phrase prediction with an

encoder-decoder framework that is able both to
generate words from a vocabulary and point to
words from the document. Their model achieved
state-of-the-art results on multiple keyword-
extraction datasets. This model shares certain sim-
ilarities with our key phrase extractor, i.e., using a
single neural model to learn the probabilities that
words are key phrases. Since their focus was on a
hybrid abstractive-extractive task in contrast to the
purely extractive task in this work, a direct com-
parison between works is difficult.

Yang et al. (2017) used rule-based methods to
extract potential answers from unlabeled text, and
then generated questions given documents and ex-
tracted answers using a pre-trained question gener-
ation model. The model-generated questions were
then combined with human-generated questions
for training question answering models. Experi-
ments showed that question answering models can
benefit from the augmented data provided by their
approach.

2.2 Question Generation

Automatic question generation systems are of-
ten used to alleviate (or eliminate) the burden of
human generation of questions to assess reading
comprehension (Mitkov and Ha, 2003; Kunichika
et al., 2004). Various NLP techniques have been
adopted in these systems to improve generation
quality, including parsing (Heilman and Smith,
2010a; Mitkov and Ha, 2003), semantic role la-
beling (Lindberg et al., 2013), and the use of lex-
icographic resources like WordNet (Miller, 1995;
Mitkov and Ha, 2003). However, the majority
of the proposed methods resort to simple, rule-
based techniques such as template-based slot fill-
ing (Lindberg et al., 2013; Chali and Golestanirad,
2016; Labutov et al., 2015) or syntactic transfor-
mation heuristics (Agarwal and Mannem, 2011;
Ali et al., 2010) (e.g., subject-auxiliary inversion,
(Heilman and Smith, 2010a)). These techniques
generally do not capture the diversity of human
generated questions.

To address this limitation, end-to-end-trainable
neural models have recently been proposed for
question generation in both vision (Mostafazadeh
et al., 2016) and language. For the latter, Du
et al. (2017) used a sequence-to-sequence model
with an attention mechanism derived from the en-
coder states. Yuan et al. (2017) proposed a sim-
ilar architecture but further improved model per-
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formance with policy gradient techniques. Wang
et al. (2017) proposed a generative model that
learns jointly to generate questions or answers
from documents.

3 Model Description

3.1 Notations

Several components introduced in the following
sections share the same model architecture for en-
coding text sequences. The common notations are
explained in this section.

Unless otherwise specified, w refers to word to-
kens, e to word embeddings and h to the annota-
tion vectors (also commonly referred to as hidden
states) produced by an RNN. Superscripts specify
the source of a word, e.g., d for documents, p for
key phrases, a for (gold) answers, and q for ques-
tions. Subscripts index the position inside a se-
quence. For example, edi is the embedding vector
for the i-th token in the document.

A sequence of words are often encoded into an-
notation vectors (denoted h) by applying a bidi-
rectional LSTM encoder to the corresponding se-
quence of word embeddings. For example, hq

j =
LSTM(eqj ,h

q
j−1) is the annotation vector for the

j-th word in a question.

3.2 Key Phrase Extraction

In this section, we describe a simple baseline as
well as two proposed neural models for extracting
key phrases (answers) from documents.

3.2.1 Entity Tagging Baseline
As our first baseline, we use spaCy1 to predict
all entities in a document as relevant key phrases
(call this model ENT). This is motivated by the
fact that entities constitute the largest proportion
(over 50%) of answers in the SQuAD dataset
(Rajpurkar et al., 2016). Entities includes dates
(September 1967), numeric entities (3, five), peo-
ple (William Smith), locations (the British Isles),
and other named concepts (Buddhism).

3.2.2 Neural Entity Selection
The baseline model above naı̈vely selects all en-
tities as candidate answers. One pitfall is that
it exhibits high recall at the expense of precision
(Table 1), since not all entities lead to interesting
questions. We first attempt to address this with a
neural entity selection model (NES) that selects a

1https://spacy.io/docs/usage/entity-recognition

subset of entities from a list of candidates provided
by our ENT baseline. Our neural model takes
as input a document (i.e., a sequence of words),
D = (wd

1 , . . . , w
d
nd

), and a list of ne entities as a
sequence of (start, end) locations within the doc-
ument, E = ((estart1 , eend1 ), . . . , (estartne

, eendne
)).

The model is then trained on the binary classifica-
tion task of predicting whether an entity overlaps
with any of the human-provided answers.

Specifically, we maximize
∑ne

i log(P (ei|D)).
We parameterize P (ei|D) using a three-layer mul-
tilayer perceptron (MLP) that takes as input the
concatenation of three vectors 〈hd

nd
;hd

avg;hei〉.
Here, hd

avg and hd
nd

are the average and the fi-
nal state of the document annotation vectors, re-
spectively, and hei is the average of the annota-
tion vectors corresponding to the i-th entity (i.e.,
hd
estarti

, . . . ,hd
eend
i

).

During inference, we select the top k entities
with highest likelihood under our model. We use
k = 6 in our experiments as determined by hyper-
parameter search.

3.2.3 Pointer Networks

While a significant fraction of answers in QA
datasets like SQuAD are entities, entities alone
may be insufficient for detecting different aspects
of a document. Many documents are entity-less,
and entity taggers may fail to recognize some
entities. To this end, we build a neural model
that is trained from scratch to extract all human-
selected answer phrases in a particular document.
We parameterize this model as a pointer network
(Vinyals et al., 2015) trained to point sequentially
to the start and end locations of all labeled an-
swers in a document. An autoregressive decoder
LSTM augmented with an attention mechanism is
then trained to point (attend) to all of the start and
end locations of answers from left to right, condi-
tioned on the annotation vectors (extracted in the
same fashion as in the NES model), via an atten-
tion mechanism. We add a special termination to-
ken to the document and train the decoder to attend
to it once it has generated all key phrases. This en-
ables the model to extract variable numbers of key
phrases depending on the input document. This
is in contrast to the work of Meng et al. (2017),
where a fixed number of key phrases is generated
per document.

A pointer network is an extension of sequence-
to-sequence models (Sutskever et al., 2014),
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where the target sequence consists of positions
in the source sequence. An autoregressive de-
coder RNN is trained to attend to these po-
sitions in the input conditioned on an encod-
ing of the input produced by an encoder RNN.
We denote the decoder’s annotation vectors as
(hp

1,h
p
2, . . . ,h

p
2na−1,h

p
2na

), where na is the num-
ber of answer key phrases, hp

1 and hp
2 corre-

spond to the start and end annotation vectors for
the first answer key phrase, and so on. We
parameterize P (wd

i = start|hp
1 . . .h

p
j ,h

d) and
P (wd

i = end|hp
1 . . .h

p
j ,h

d) using the general at-
tention mechanism (Luong et al., 2015) between
the decoder and encoder annotation vectors,

P (wd
i |hp

1 . . .h
p
j ,h

d
· ) = softmax(W1h

p
j · hd

· ),

where W1 is a learned parameter matrix. The in-
puts at each step of the decoder are words from
the document that correspond to the start and end
locations pointed to by the decoder.

During inference, we employ a decoding strat-
egy that greedily picks the best location from the
softmax vector at every step, then post process re-
sults to remove duplicate key phrases. Since the
output sequence is relatively short, we observed
similar performances when using greedy decoding
and beam search.

We also experimented with a BIO tagging
model using an LSTM-CRF (Lample et al., 2016)
but were unable to make the model predict any-
thing except “O” for every token.

3.3 Question Generation
The question generation model adopts a sequence-
to-sequence framework (Sutskever et al., 2014)
with an attention mechanism (Bahdanau et al.,
2014) and a pointer-softmax decoder (Gulcehre
et al., 2016). We make use of the pointer-softmax
mechanism since it lets us take advantage of the
inherent nature of RC datasets re-using words in
the document when framing questions. Our setup
for this module is identical to (Yuan et al., 2017).
It takes a document wd

1:nd
and an answer wa

1:na
as

input, and outputs a question ŵq
1:nq

.

An input wordw{d,a}i is represented by concate-
nating its word embedding ei with character-level
embedding echi

. Each character in the alphabet
receives an embedding vector, and echi

is the final
state of a bi-LSTM running over the embedding
vectors corresponding to the character sequence of
the word.

To leverage the extractive nature of answers in
SQuAD, we encode an answer using the document
annotation vectors at the answer-word positions.
Specifically, if an answer phrase wa

1:n occupies the
document span wd

a1:an , we first encode the corre-
sponding document annotation vectors with a con-
dition aggregation BiLSTM into h′1:n. The con-
catenation of the final state h′n with the answer
annotation vector ha

n as the answer representation.
The RNN decoder employs a pointer-softmax

module (Gulcehre et al., 2016). At each step of
the generation process, the decoder decides adap-
tively whether to (a) generate from the decoder
vocabulary or (b) point to a word in the source
sequence (the document) and copy over. The
pointer-softmax decoder thus has two components
— a pointer attention mechanism and a generative
decoder.

The subsequent mathematical notation deviates
from the previous notation slightly, we use (t) as
the superscript. In the pointing decoder, recur-
rence is implemented with two cascading LSTM
cells c1 and c2:

s
(t)
1 = c1(y

(t−1), s(t−1)2 ) (1)

s
(t)
2 = c2(v

(t), s
(t)
1 ), (2)

where s(t)1 and s(t)2 are the recurrent states, y(t−1)

is the embedding of decoder output from the pre-
vious time step, and v(t) is the context vector,
which is the sum of the document annotations hd

i

weighted by the document attention α(t)
i (Equation

(3)):

v(t) =

n∑

i=1

α
(t)
i h

d
i .

At each time step t, the pointing decoder com-
putes a distribution α(t) over the document word
positions (i.e., a document attention, Bahdanau
et al. 2014). Each element is defined as:

α
(t)
i = f(hd

i ,h
a, s1

(t−1)), (3)

where f is a two-layer MLP with tanh and softmax
activation, respectively.

The generative decoder, on the other hand, de-
fines a distribution over a prescribed decoder vo-
cabulary with a two-layer MLP g:

o(t) = g(y(t−1), s(t)2 ,v(t),ha).
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Table 1: Model evaluation on key phrase extrac-
tion

Validation Test
Models F1MS Prec. Rec. F1MS Prec. Rec.

SQuAD

H&S - - - 0.292 0.252 0.403
ENT 0.308 0.249 0.523 0.347 0.295 0.547
NES 0.334 0.335 0.354 0.362 0.375 0.380

PtrNet 0.352 0.387 0.337 0.404 0.448 0.387

NewsQA

ENT 0.187 0.127 0.491 0.183 0.125 0.479
PtrNet 0.452 0.480 0.444 0.435 0.467 0.427

Pointer-softmax is implemented by interpolating
the generative and the pointing distributions:

P (ŵt) ∼ s(t)α(t) + (1− s(t))o(t),

where s(t) is a switch scalar computed at each time
step by a three-layer MLP h:

s(t) = h(s
(t)
2 ,v(t),α(t),o(t)).

The first two layers of h use tanh activation with
highway connections, and the final layer uses sig-
moid activation.2

4 Experiments and Results

4.1 Datasets
We conduct our experiments on the SQuAD (Ra-
jpurkar et al., 2016) and NewsQA (Trischler et al.,
2016) datasets. These are machine comprehension
corpora consisting of over 100k crowd-sourced
question-answer pairs. SQuAD contains 536 para-
graphs from Wikipedia while NewsQA was cre-
ated on 12,744 news articles. Simple prepro-
cessing is performed, including lower-casing and
word tokenization using NLTK. Since the test split
of SQuAD is hidden from the public, we use
5,158 question-answer pairs (self-contained in 23
Wikipedia articles) from the training set for devel-
opment, and use the official development data to
report test results.

4.2 Implementation Details
We train all models by stochastic gradient descent,
with a minibatch size of 32, using the ADAM op-
timizer.

2We also attach the entropy of the softmax distributions
to the input of the final layer, postulating that this guides the
switching mechanism by indicating the confidence of point-
ing vs generating. We observed an improvement in question
quality with this modification.

4.2.1 Key Phrase Extraction
Key phrase extraction models use pretrained, 300-
dimensional word embeddings generated using a
word2vec extension (Ling et al., 2015) and the En-
glish Gigaword 5 corpus. We used bidirectional
LSTMs of 256 dimensions (128 forward and back-
ward) to encode the document and an LSTM of
256 dimensions as our decoder in the pointer net-
work. A dropout rate of 0.5 was used at the output
of every layer in the network.

4.2.2 Question Generation
The question decoder uses a vocabulary of the
2000 most frequent words in the training data
(questions only). This limited vocabulary is possi-
ble because the question generator may copy over
out-of-vocabulary words from the document with
its Pointer-Softmax mechanism. The decoder em-
bedding matrix is initialized with 300-dimensional
GloVe vectors (Pennington et al., 2014), and di-
mensionality of the character representations is 32.
The number of hidden units is 384 for both the en-
coder and decoder RNN cells. Dropout is applied
at a rate of 0.3 to all embedding layers as well as
between the hidden states in the encoder/decoder
RNNs across time steps.

4.3 Quantitative Evaluation of Key Phrase
Extraction

Since each key phrase is itself a multi-word unit,
we believe that a naı̈ve, word-level F1 that con-
siders an entire key phrase as a single unit is not
well suited to this evaluation. We therefore pro-
pose an extension of the SQuAD F1 metric (for
a single answer span) to multiple spans within a
document, which we call the multi-span F1 score.

This metric is calculated as follows. Given the
predicted phrase êi and a gold phrase ej , we first
construct a pairwise, token-level F1 score matrix
of elements fi,j between the two phrases êi and
ej . Max-pooling along the gold-label axis essen-
tially assesses the precision of each prediction,
with partial matches accounted for by the pair-
wise F1 (identical to evaluation of a single an-
swer in SQuAD) in the cells: pi = maxj(fi,j).
Analogously, the recall for label ej can be com-
puted by max-pooling along the prediction axis:
rj = maxi(fi,j). We define the multi-span F1
score using the mean precision p̄ = avg(pi) and
recall r̄ = avg(rj):

F1MS =
2p̄ · r̄

(p̄+ r̄)
.
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Table 2: Qualitative examples of detected key phrases and generated questions.
Doc. inflammation is one of the first responses of the immune system to infection . the symptoms of inflammation are redness ,

swelling , heat , and pain , which are caused by increased blood flow into tissue . inflammation is produced by eicosanoids
and cytokines , which are released by injured or infected cells . eicosanoids include prostaglandins that produce fever and the
dilation of blood vessels associated with inflammation , and leukotrienes that attract certain white blood cells ( leukocytes )
. . .

Q-A

H&S
by eicosanoids and cytokines — who is inflammation produced
by ?

of the first responses of the immune system to infection —
what is inflammation one of ?

Q-A

PtrNet
leukotrienes — what can attract certain white blood cells ? eicosanoids and cytokines — what are bacteria produced by ?

Q-A

Gold SQuAD
inflamation — what is one of the first responses the immune
system has to infection ?

eicosanoids and cytokines — what compounds are released by
injured or infected cells , triggering inflammation ?

Doc. research shows that student motivation and attitudes towards school are closely linked to student-teacher relationships .
enthusiastic teachers are particularly good at creating beneficial relations with their students . their ability to create effective
learning environments that foster student achievement depends on the kind of relationship they build with their students .
useful teacher-to-student interactions are crucial in linking academic success with personal achievement . here , personal
success is a student ’s internal goal of improving himself , whereas academic success includes the goals he receives from his
superior . a teacher must guide his student in aligning his personal goals with his academic goals . students who receive this
positive influence show stronger self-confidenche and greater personal and academic success than those without these teacher
interactions .

Q-A

H&S
research — what shows that student motivation and attitudes
towards school are closely linked to student-teacher relation-
ships ?

useful teacher-to-student interactions — what are crucial in
linking academic success with personal achievement ?

to student-teacher relationships — what does research show
that student motivation and attitudes towards school are closely
linked to ?

that student motivation and attitudes towards school are
closely linked to student-teacher relationships — what does re-
search show to ?

Q-A

PtrNet
student-teacher relationships — what are the student motiva-
tion and attitudes towards school closely linked to ?

enthusiastic teachers — who are particularly good at creating
beneficial relations with their students ?

teacher-to-student interactions — what is crucial in linking
academic success with personal achievement ?

a teacher — who must guide his student in aligning his personal
goals ?

Q-A

Gold SQuAD
student-teacher relationships — ’what is student motivation
about school linked to ?

beneficial — what type of relationships do enthusiastic teachers
cause ?

aligning his personal goals with his academic goals . — what
should a teacher guide a student in ?

student motivation and attitudes towards school — what is
strongly linked to good student-teacher relationships ?

Doc. the yuan dynasty was the first time that non-native chinese people ruled all of china . in the historiography of mongolia , it is
generally considered to be the continuation of the mongol empire . mongols are widely known to worship the eternal heaven
. . .

Q-A

H&S
the first time — what was the yuan dynasty that non-native chi-
nese people ruled all of china ?

the yuan dynasty — what was the first time that non-native chi-
nese people ruled all of china ?

Q-A

PtrNet
the mongol empire — the yuan dynasty is considered to be the
continuation of what ?

worship the eternal heaven — what are mongols widely known
to do in historiography of mongolia ?

Q-A

Gold SQuAD
non-native chinese people — the yuan was the first time all of
china was ruled by whom ?

the eternal heaven — what did mongols worship ?

Doc. on july 31 , 1995 , the walt disney company announced an agreement to merge with capital cities/abc for $ 19 billion . . . . . in
1998 , abc premiered the aaron sorkin-created sitcom sports night , centering on the travails of the staff of a sportscenter-style
sports news program ; despite earning critical praise and multiple emmy awards , the series was cancelled in 2000 after two
seasons .

Q-A

H&S
an agreement to merge with capital cities/abc for $19 billion
— what did the walt disney company announce on july 31 , 1995
?

the walt disney company — what announced an agreement to
merge with capital cities/abc for $19 billion on july 31 , 1995 ?

Q-A

PtrNet
2000 — in what year was the aaron sorkin-created sitcom sports
night cancelled ?

walt disney company — who announced an agreement to merge
with capital cities/abc for $ 19 billion ?

Q-A

Gold SQuAD
july 31 , 1995 — when was the disney and abc merger first an-
nounced ?

sports night — what aaron sorkin created show did abc debut
in 1998 ?

Note that existing evaluations (e.g., that of
Meng et al. (2017)) can be seen as the above com-
putation performed on the matrix of exact match
scores between predicted and gold key phrases.
By using token-level F1 scores between phrase
pairs, we allow fuzzy matches.

Our evaluation of key phrase extraction systems
by this metric is presented in Table 1. We com-
pare answer phrases extracted by the method of
Heilman and Smith (2010a) (henceforth refered to
as H&S),3 our baseline entity tagger, the neural

3http://www.cs.cmu.edu/ ark/mheilman/questions/
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entity selection module, and the pointer network.
As expected, the entity tagging baseline achieves
the best recall, likely by over-generating candidate
answers. The NES model, on the other hand, ex-
hibits much better precision and consequently out-
performs the entity tagging baseline significantly
in F1. This trend persists when comparing the
NES model and the pointer network. The H&S
model exhibits high recall but lacks precision, sim-
ilar to the baseline entity tagger. This is not sur-
prising since that model is not trained on SQuAD’s
answer-phrase distribution.

4.4 Qualitative Evaluation of Key Phrase
Extraction

Qualitatively, we observe that the entity-based
models have a strong bias for numeric types,
which often fail to capture interesting informa-
tion in a document. We also notice that entity-
based systems tend to select the central topical en-
tity as answer, which does not match the distri-
bution of answers typically selected by humans.
For example, given a Wikipedia article on Kenya
stating that agriculture is the second largest con-
tributor to kenya ’s gross domestic product (gdp),
entity-based systems propose kenya as an answer
phrase. This leads to the (low-quality) question
what country is nigeria’s second largest contribu-
tor to? 4 Given the same document, the pointer
model picked agriculture as the answer and asked
what is the second largest contributor to kenya ’s
gross domestic product ?

4.5 Quantitative Evaluation of QA pairs
We can quantitatively evaluate our question gen-
eration module by conditioning it on gold answers
from the SQuAD development set. We can then
use standard automatic evaluation metrics for gen-
erative models of text such as BLEU. Our ques-
tion generation model evaluated in such a manner
yields 10.4 BLEU4.

However, there can exist a many possible ways
to formulate a question given the same answer.
BLEU thus becomes a less desirable metric by
penalizing any generation that does not closely
match (lexically) the reference question. To ad-
dress this issue, we propose to evaluate a generated
question by employing a pre-trained QA model.
Specifically, suppose question q̂ is generated from

4Since the answer word kenya cannot appear in the gen-
erated question, the decoder produced a similar word nigeria
instead.

document d and answer a, and the pre-trained QA
model outputs answer â given the input d and q̂. If
the QA model is assumed to be able to answer the
gold question q with the gold answer a, then the
F1 score between a and â may serve as a proxy
to the semantic equivalence between q and q̂ —
regardless of the amount of word/n-gram overlap
between q and q̂.

Quantitatively, a match-LSTM model (Wang
and Jiang, 2016) pre-trained on gold squad ques-
tion/answer pairs achieves an F1 score of 72.4%
on our generated questions in comparison to
73.8% on the SQuAD dev set.

In addition to the automatic evaluation metrics,
we also undertook a human evaluation of gener-
ated questions and answers.

4.6 Qualitative Evaluation of QA pairs

We present several answer-extraction and
question-generation examples in Table 2. Each
example contains a document and three corre-
sponding QA pairs, generated respectively by
H&S, by our two-stage framework, and by the
original SQuAD crowdworkers.

We now discuss the relative qualities of QA
pairs from each synthetic method.

H&S Key phrases selected by the H&S model
are structurally distinct from the PtrNet and
human-generated answers. For example, they may
start with prepositions, such as of, by, and to, or
consist of very long phrases like that student mo-
tivation and attitudes towards school are closely
linked to student-teacher relationships. As seen
in Figure 1, these key phrases may also contain
vague phrases such as “this theory”, “some stud-
ies”, “a person”, etc., which renders them less nat-
ural for question generation. The H&S question
generator appears to produce a few ungrammati-
cal sentences, e.g., the first time – what was the
yuan dynasty that non-native chinese people ruled
all of china ?

Our system Since our key phrase extractor was
trained on SQuAD, the selected key phrases more
closely resemble gold SQuAD answers. How-
ever, sometimes the generated questions do not
target the extracted answers, eg, eicosanoids and
cytokines — what are bacteria produced by ? (first
document in Table 2). Interestingly, our model is
sometimes able to resolve coreferent entities. For
instance, to generate the mongol empire -— the
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Figure 1: A comparison of key phrase extraction methods. Red phrases are extracted by the pointer
network, violet by H&S, green by the baseline, brown correspond to squad gold answers and cyan indi-
cates an overlap between the pointer model and squad gold questions. The last paragraph is an exception
where lyndon b. johnson and april 20 are extracted by H&S as well as the baseline model.

yuan dynasty is considered to be the continuation
of what ? the model must resolve the pronoun it
to yuan dynasty in it is generally considered to be
the continuation of the mongol empire (third doc-
ument in Table 2).

4.7 Human Evaluation Studies

We carried out human evaluations on the question
generation module in isolation as well as in con-
junction with the key phrase extraction module.

Evaluating the ability of the Question Gener-
ation Module to transfer to new settings We
asked crowdworkers part of an internal evaluation
system to evaluate two different aspects of ques-
tions generated by our module - fluency and cor-
rectness. Our system was provided Internet arti-
cles and candidate answers selected from an inter-
nal search engine thereby evaluating the model’s
ability to generalize from simple RC datasets to
the real world. For fluency evaluations, they were
asked whether the generated questions sounded
natural (ignoring semantics) with scores of 0/1/2
corresponding to ”No”, ”Somewhat” and ”Yes”.
17.5% were labeled 0, 22.7% were labeled 1 and
59.8% were labeled 2. For correctness evalua-
tions, annotators were asked if the given answer
was the correct answer for the given question.
64.4% of questions were labeled incorrect, leav-

ing 35.6% labeled as correct. This particular eval-
uation differs slightly from others with regard to
the module used (it was trained a combination
of SQuAD + NewsQA + TriviaQA (Joshi et al.,
2017)). Also the documents and answers used pro-
vided via an internal tool. 1,302 annotations were
collected.

Comparison to human generated questions
We present annotators with documents from
SQuAD’s official development set and two sets of
question-answer pairs, one from our model (ma-
chine generated) and the other from SQuAD (hu-
man generated). Annotators are then asked to
identify which question-answer pair is machine
generated. The order in which the pairs appear is
randomized across examples. Annotators are free
to use any criterion to make a distinction, such as
poor grammar, the answer phrase not correctly an-
swering the generated question, unnatural answer
phrases, etc.

We presented 14 annotators with a total of 740
documents, each with 2 corresponding QA pairs.
Annotators identified the machine generated pairs
77.8% of the time with a standard deviation of
8.34%.

Implict comparison to H&S To compare our
system to existing methods (H&S), we orchestrate
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an implict comparison grounded in human gener-
ated QA pairs from SQuAD. We present human
annotators with a document and two QA pairs –
one that comes from the true development set and
the other from either our system or H&S, at ran-
dom. Annotators are not told that there are two
different models generating QA pairs. As above,
annotators are asked to identify which QA pair is
human generated and which is synthetic.

We presented a single annotator with 100 doc-
uments, each with two QA pairs. For 45 docu-
ments, the synthetic QA pair came from from our
model; for the remaining 55, the synthetic pair
was from H&S. The annotator distinguished cor-
rectly between our system’s output and the human-
generated pair in 30 cases (66.7%), and did so in
45 cases (81.8%) for H&S. This experiment sug-
gests that our system’s generated QA pairs are less
distinguishable from human QA pairs.

Comparison to H&S In a more direct evalua-
tion, we present annotators with documents from
the SQuAD development set along with one QA
pair generated by the H&S model and one gener-
ated by ours. We then ask annotators which QA
pair they prefer.

We presented the same single annotator with
200 such examples. In 107 cases (53.5%), the an-
notator preferred the pair generated by our model.
This suggests that, without human generated QA
pairs for comparison, the annotator considers the
two models’ outputs to be roughly equal in qual-
ity.

5 Conclusion

We propose a two-stage framework to tackle the
problem of question generation from documents.
First, we use a question answering corpus to train
a neural model to estimate the distribution of key
phrases that are likely to be picked by humans to
ask questions about. We present two neural mod-
els, one that ranks entities proposed by an entity
tagging system, and another that points to key-
phrase start and end boundaries with a pointer net-
work. When compared to an entity tagging base-
line, the proposed models exhibit significantly bet-
ter results.

We adopt a sequence-to-sequence model to gen-
erate questions conditioned on the key phrases se-
lected in the framework’s first stage. Our question
generator is inspired by an attention-based trans-
lation model, and uses the pointer-softmax mech-

anism to dynamically switch between copying a
word from the document and generating a word
from a vocabulary. Qualitative examples show
that the generated questions exhibit both syntac-
tic fluency and semantic relevance to the condi-
tioning documents and answers, and appear use-
ful for assessing reading comprehension in educa-
tional settings. In future work we will investigate
fine-tuning the two-stage framework end to end.
Another interesting direction is to explore abstrac-
tive key-phrase extraction.
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Abstract

The task of Question Answering has
gained prominence in the past few decades
for testing the ability of machines to un-
derstand natural language. Large datasets
for Machine Reading have led to the de-
velopment of neural models that cater to
deeper language understanding compared
to information retrieval tasks. Different
components in these neural architectures
are intended to tackle different challenges.
As a first step towards achieving gen-
eralization across multiple domains, we
attempt to understand and compare the
peculiarities of existing end-to-end neu-
ral models on the Stanford Question An-
swering Dataset (SQuAD) by performing
quantitative as well as qualitative analysis
of the results attained by each of them. We
observed that prediction errors reflect cer-
tain model-specific biases, which we fur-
ther discuss in this paper.

1 Introduction

Machine Reading is a task in which a model reads
a piece of text and attempts to formally represent it
or performs a downstream task like Question An-
swering (QA). Neural approaches to the latter have
gained a lot of prominence especially owing to the
recent spur in developing and publicly releasing
large datasets on Machine Reading and Compre-
hension (MRC). These datasets are created from
different underlying sources such as web resources
in MS MARCO (Nguyen et al., 2016); trivia
and web in QUASAR-S and QUASAR-T (Dhin-
gra et al., 2017), SearchQA (Dunn et al., 2017),
TriviaQA (Joshi et al., 2017); news articles in
CNN/Daily Mail (Chen et al.), NewsQA (Trischler
et al., 2016) and stories in NarrativeQA (Kočiskỳ

et al., 2017). Another common source is large un-
structured text documents from Wikipedia such as
in SQuAD (Rajpurkar et al., 2016), WikiReading
(Hewlett et al., 2016) and WikiHop (Welbl et al.,
2017). These different sources implicitly affect the
nature and properties of questions and answers in
these datasets. Based on the dataset, certain neural
models capitalize on these biases while others are
unable to. The ability to generalize across differ-
ent sources and domains is a desirable character-
istic for any machine reading system. Evaluating
and analyzing systems on QA tasks can lead to in-
sights for advancements in machine reading and
natural language understanding, and Peñas et al.
(2011) have also previously worked on this.

One of the first large MRC datasets (over 100k
QA pairs) is the Stanford Question Answering
Dataset (SQuAD) (Rajpurkar et al., 2016). For
its collection, different sets of crowd-workers for-
mulated questions and answers using passages ob-
tained from ∼500 Wikipedia articles. The answer
to each question is a span in the given passage, and
many effective neural QA models have been devel-
oped for this dataset. Our main focus in this work
is to perform comparative subjective and empirical
analysis of errors in answer predictions by four top
performing models on the SQuAD leaderboard1.

We focused on Bi-Directional Attention Flow
(BiDAF) (Seo et al., 2016), Gated Self-Matching
Networks (R-Net) (Wang et al., 2017), Docu-
ment Reader (DrQA) (Chen et al., 2017), Multi-
Paragraph Reading Comprehension (DocQA)
(Clark and Gardner, 2017), and the Logistic Re-
gression baseline model (Rajpurkar et al., 2016)
We mainly choose these models since they have
comparable high performance on the evaluation
metrics and it is easy to replicate their results due
to availability of open source implementations.

1https://rajpurkar.github.io/
SQuAD-explorer/

89



While we limit ourselves to in-domain analysis of
the performance of these models on SQuAD in
this paper, similar principles can be used to ex-
tend this work to study biases of combinations of
different models on different datasets and thereby
understand the generalization capabilities of these
neural architectures.

The organization of the paper is as follows. Sec-
tion 2 gives a comprehensive overview of the mod-
els that are compared in further sections. Section 3
describes the different experiments we conducted,
and discusses our observations. In Section 4, we
summarize our main conclusions from this work
and describe our vision for the future.

2 Relevant Neural Models

We present a brief overview of the models which
we considered for our analysis in this section.

Bi-Directional Attention Flow (BiDAF): This
model, proposed by Seo et al. (2016), is a hi-
erarchical multi-stage end-to-end neural network
which takes inputs of different granularity (char-
acter, word and phrase) to obtain a query-aware
context representation using memory-less context-
to-query (C2Q) and query-to-context (Q2C) atten-
tion. This representation can then be used for dif-
ferent final tasks. Many versions of this model
(with different types of input features) exist on
the SQuAD leaderboard, but the basic architec-
ture2 (which we use for our experiments in this pa-
per) contains character, word and phrase embed-
ding layers, followed by an attention flow layer, a
modeling layer and an output layer.

Gated Self-Matching Networks (R-Net): This
model, proposed by Wang et al. (2017), is a multi-
layer end-to-end neural network whose novelty
lies in the use of a gated attention mechanism so
as to give different levels of importance to differ-
ent passage parts. It also uses self-matching at-
tention for the context to aggregate evidence from
the entire passage to refine the query-aware con-
text representation obtained. The architecture con-
tains character and word embedding layers, fol-
lowed by question-passage encoding and match-
ing layers, a passage self-matching layer and an
output layer. The implementation we used3 had
some minor changes for increased efficiency.

2
https://allenai.github.io/bi-att-flow/

3
https://github.com/HKUST-KnowComp/R-Net

Document Reader (DrQA): This model, pro-
posed by Chen et al. (2017), focuses on answering
open-domain factoid questions using Wikipedia,
but also performs well on SQuAD (skipping the
document retrieval stage). Its implementation4

has paragraph and question encoding layers, and
an output layer. The paragraph encoding is
computed by representing each context as a se-
quence of feature vectors derived from tokens:
word embedding, exact match with question word,
POS/NER/TF and aligned question embedding,
and passing these as inputs to a recurrent neural
network. The question encoding is obtained by us-
ing word embeddings as inputs to a recurrent neu-
ral network.

Multi-Paragraph Reading Comprehension
(DocQA): This model, proposed by Clark and
Gardner (2017), aims to answer questions based
on entire documents (multiple paras) rather than
specific paragraphs, but also gives good results
for SQuAD (considering the given paragraph as
the document). The implementation5 contains
input, embedding (character and word-level),
pre-processing (shared bidirectional GRU be-
tween question and passage), attention (similar
to BiDAF), self-attention (residual) and output
(bidirectional GRU and linear scoring) layers.

Logistic Regression (LR): This model was pro-
posed as a baseline in the SQuAD dataset paper
(Rajpurkar et al., 2016) and uses features based on
n-gram frequencies, lengths, part-of-speech tags,
constituency and dependency parse trees of ques-
tions and passages as inputs to a logistic regression
classifier6 to predict whether each constituent span
is an answer or not.

3 Experiments and Discussion

We trained the aforementioned end-to-end neu-
ral models and compare their performance on the
SQuAD development set which contains 10,570
question-answer pairs based on Wikipedia articles.

3.1 Quantitative Analysis

To perform a systematic comparison of errors
across different models, we investigate the predic-
tions based on the following criteria.

4
https://github.com/facebookresearch/DrQA

5
https://github.com/allenai/document-qa

6
https://worksheets.codalab.org/worksheets/

0xd53d03a48ef64b329c16b9baf0f99b0c/
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3.1.1 Span-Level Performance
The span-level performance is measured typically
by Exact Match (EM) and F1 metrics which are
reported with respect to the ground truth answer
spans. These results are summarized in Table 1.
The DocQA model gives the best overall perfor-
mance which aligns well with our expectation, ow-
ing to the usage of and improvements in the prior
mechanisms introduced in BiDAF and R-Net.

Model BiDAF R-Net DrQA DocQA LR
EM (%) 67.67 70.12 66.00 71.60 40.14
F1 (%) 77.31 78.94 76.28 80.78 50.98
Correct Sentence (%) 91.05 92.37 92.40 93.77 83.30

Table 1: Span and Sentence Level Performance

3.1.2 Sentence-Level Performance
To investigate trends at different granularities, we
also measure sentence retrieval performance. The
context given for each question-answer pair is
split into sentences using the NLTK sentence to-
kenizer7, and the sentence-level accuracy of each
of the models is computed (Table 1). Since the
default sentence tokenizer for English in NLTK is
pre-trained on Penn Treebank data which contains
formal language (news articles), we expect it to
perform reasonably well on Wikipedia articles too.
We observe that all the models have high sentence-
level accuracy, with DocQA outperforming the
other models with respect to this metric as well.
Interestingly, DrQA performs better on sentence
retrieval accuracy than both BiDAF and R-Net, but
has a worse span-level exact match score, which
is probably because of the rich feature vector rep-
resentation of the passage due to the model’s fo-
cus on open domain QA (and hence retrieval).
But, none of these neural models have near-perfect
ability to identify the correct sentence, and ∼90%
accuracy indicates that even if we have a perfect
answer selection method, this is the best EM score
we can achieve. However, incorrect span identifi-
cation contributes more to errors in prediction for
all the models, as seen from the disparity between
the sentence-level accuracies and the final span-
level exact match score values.

3.1.3 Passage Length Distribution
We analyze the impact of passage length on er-
rors, since this can be an important factor in deter-
mining the difficulty of understanding the passage.
As seen in Figure 1, DocQA performs the best on

7
http://www.nltk.org/api/nltk.tokenize.html

shorter passages, while R-Net and BiDAF are ob-
served to be better for longer passages. However,
there are no systematic error patterns and overall
error rates, surprisingly, are not much higher for
longer passages. This means that predictions on
long passages are almost as good as on short (pre-
sumably easier to understand) passages.

3.1.4 Question Length Distribution
We also do a similar error analysis for questions of
different lengths. Since there are very few ques-
tions which have length greater than 30, the es-
timate for range 30-34 is not very reliable. In
Figure 2, we observe that the error rate first de-
creases and then increases for BiDAF, DrQA and
DocQA. A plausible explanation for this is that
shorter questions contain insufficient information
in order to be able to select the correct answer span
and can hence be confusing, but it also becomes
difficult for end-to-end neural models to learn a
good representation when the question becomes
longer and syntactically more complicated. How-
ever, R-Net has an irregular trend with respect to
question length, which is difficult to explain.

3.1.5 Answer Length Distribution
For answers of varying lengths, the error rates are
shown in Figure 3. Again, estimates for answers
with length >16 are not very reliable since data
is sparse for high answer lengths. Here, we ob-
serve an increasing trend initially and then a slight
decrease (bell shape). This conforms to the hy-
pothesis that shorter answers are easier to predict
than longer answers, but only up to a certain an-
swer length (observed to be around 7 for most
models). The slightly better performance for very
long answers is likely due to such answers having
a higher chance of being (almost) entire sentences
with simpler questions being asked about them.

3.1.6 Error Overlap
In Table 2, we analyze the number of erroneous
predictions which overlap for different pairs of
models, i.e., which belong to the intersection of
the sets of incorrect answers generated by models
in each (row, column) pair. Thus, the values in
the table represent a symmetric matrix with diago-
nal elements indicating the number of errors which
each model commits. This analysis can be use-
ful while determining suitable models for creating
meta ensembles since a low incorrect answer over-
lap indicates that the combined predictive power
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Figure 1: Percentage of total QA pairs for each range of passage lengths which have incorrect predictions
by different models

Figure 2: Percentage of total QA pairs for each range of question lengths which have incorrect predictions
by different models

of the pair of models under consideration is high.
We observe that most overlap values are in the

range 20-25% indicating that an ensemble might
give considerably better performance than individ-
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Figure 3: Percentage of total QA pairs for each answer length which have incorrect predictions by
different models

ual models. DocQA paired with other models gen-
erates low values, as expected, but the least value
is observed for the DocQA-DrQA pair probably
because they both use very different feature rep-
resentations and architectures, and hence generate
diverse outputs. Note that DrQA is not the second
best performing model (among the ones we ana-
lyzed) when considered independently, but might
add more value to an ensemble because of the ob-
served answer overlap trends.

Model BiDAF R-Net DrQA DocQA LR
BiDAF 32.33 21.97 22.56 21.22 26.58
R-Net 21.97 29.88 22.06 21.35 24.99
DrQA 22.56 22.06 34.00 20.95 27.49
DocQA 21.22 21.35 20.95 28.40 23.59

LR 26.58 24.99 27.49 23.59 59.86

Table 2: Incorrect Answer Overlap (%)

One way in which this analysis can help in explor-
ing ensemble-based methods is that instead of try-
ing all possible combinations of models, we can
adopt a greedy approach based on the incorrect an-
swer overlap metric to decide which model to add
to the ensemble (and only if it leads to a statisti-
cally significant difference in this overlap). After
determining an approximately optimal set of mod-
els which such an ensemble should be composed

of, each of these models can be trained indepen-
dently followed by multi-label classification (to
select one of the generated answers) using tech-
niques like logistic regression, a feed-forward neu-
ral network or a recurrent or convolutional neural
network with input features based on the question,
the passage and their token overlap. The entire
network can also be trained end-to-end.

Also, all 5 models combined have an error over-
lap of 13.68%, i.e., if we had a mechanism to
perfectly choose between these models, we would
get an Exact Match score of 86.32%. This indi-
cates that future work based on ensembling differ-
ent neural models can give promising results and
is worth exploring.

An example of a passage-question-answer that
all of the models get wrong is:
Passage: The University of Warsaw was estab-
lished in 1816, when the partitions of Poland
separated Warsaw from the oldest and most
influential Polish academic center, in Krakow.
Warsaw University of Technology is the second
academic school of technology in the country,
and one of the largest in East-Central Europe,
employing 2,000 professors. Other institutions
for higher education include the Medical Uni-
versity of Warsaw, the largest medical school
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in Poland and one of the most prestigious, the
National Defence University, highest military
academic institution in Poland, the Fryderyk
Chopin University of Music the oldest and largest
music school in Poland, and one of the largest in
Europe, the Warsaw School of Economics, the
oldest and most renowned economic university
in the country, and the Warsaw University of
Life Sciences the largest agricultural university
founded in 1818.
Question: What is one of the largest music
schools in Europe?
Answer: Fryderyk Chopin University of Music

This passage-question-answer is difficult for auto-
matic processing because there several entities of
the same type (school / university) in the passage,
and the question is a paraphrase of one segment
of a very long, syntactically complicated sentence
which contains the information required to be able
to infer the correct answer. This presents an inter-
esting challenge, and such qualitative observations
can be used to formulate a general technique for
effectively testing machine reading systems.

3.2 Qualitative Analysis

For qualitative error analysis, we sample 100
incorrect predictions (based on EM) from each
model and try to find common error categories.
Broadly, the errors observed were either because
of incorrect answer span boundaries or inability to
infer the meaning of the question / passage. Exam-
ples of each error type are shown in Table 3, and
these are further described below.

3.2.1 Boundary-Based Errors

Incorrect answer boundary (longer): This er-
ror category includes those cases where the pre-
dicted span is longer than the ground truth answer,
but contains the answer.

Incorrect answer boundary (shorter): This er-
ror category includes those cases where the pre-
dicted span is shorter than the ground truth answer,
and is a substring of the answer.

Soft Correct: This error category includes those
cases where the prediction is actually correct, but
due to inclusion / exclusion of certain question
terms (such as units) along with the answer, it is
deemed incorrect.

3.2.2 Inference-Based Errors
Multi-Sentence: This error category includes
those cases where inference is required to be per-
formed across 2 or more sentences in the given
passage to be able to arrive at the answer, which
leads to an incorrect prediction based on only 1
passage sentence.

Paraphrase: This error category includes those
cases where the question paraphrases certain parts
of the sentence that it is asking about which makes
lexical pattern matching difficult and leads to er-
rors in prediction.

Same Entity Type Confusion / Unit Confusion:
This error category includes those cases where the
question is about an entity type which is present
multiple times in the passage and the model re-
turns a different entity than the ground truth entity
but of the same type.

Requires World Knowledge: This error cate-
gory includes questions which can not be an-
swered using the given passage alone and require
external knowledge to solve, leading to incorrect
predictions.

Missing Inference: This category includes
inference-related errors which don’t belong to any
of the other categories mentioned above.

3.2.3 Observations
In this section, we record the main observations
from our qualitative error analysis and analyze po-
tential reasons for the error trends observed. Fig-
ure 4 shows the different types of errors in predic-
tions by various models.

We observe that BiDAF makes many boundary-
based errors which indicates that a better output
layer (since this is responsible for span identifica-
tion – although errors might have percolated from
previous layers, most of these are cases where
the model almost got the correct answer but not
exactly) or some post-processing of the answer
might help improve performance. Paraphrases
also contribute to almost 15% of errors observed
which indicates that the question and the relevant
parts of the context are not effectively matched in
these cases.

We observe that R-Net makes fewer boundary
errors, perhaps because self-attention enables it
to accumulate evidence and return better answer
spans, although this leads to more errors of the
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Error Type Passage Question Predicted Answer
Incorrect
answer
boundary
(longer)

... survey of 4,745 North American Lutherans aged 15-65
found that, compared to the other minority groups under con-
sideration, Lutherans were the least prejudiced toward Jews.
Nevertheless, Professor Richard (Dick) Geary, ...

What did a survey of North
American Lutherans find that
Lutherans felt about Jews
compared to other minority
groups?

15-65 found that, com-
pared to the other mi-
nority groups under
consideration, Luther-
ans were the least prej-
udiced toward Jews

Incorrect
answer
boundary
(shorter)

... In the United States, in order for a prescription for a con-
trolled substance to be valid, it must be issued for a legiti-
mate medical purpose by a licensed practitioner acting in the
course of legitimate doctor-patient relationship. The filling ...

What conditions must be met
to prescribe a controlled sub-
stance?

issued for a legitimate
medical purpose

Soft Correct ... for that time. The vBNS installed one of the first ever
production OC-48c (2.5 Gbit/s) IP links in February 1999
and went on to upgrade the entire backbone ...

What did the network install in
1999?

OC-48c (2.5 Gbit/s) IP
links

Multi-
Sentence

... User Datagram Protocol (UDP) is an example of a data-
gram protocol. In the virtual call system ... model. The X.25
protocol suite uses this network type.

X.25 uses what type network
type?

protocol suite

Paraphrase ... rather than consumers. There is no known case of any
U.S. citizens buying Canadian drugs for personal use with a
prescription, who has ever been charged by authorities.

Has there ever been any-
one charged with importing
drugs from Canada for per-
sonal medicinal use?

has ever been charged
by authorities

Same Entity
Type / Unit
Confusion

... after the 1973 oil crisis, Honda, Toyota and Nissan, af-
fected by the 1981 voluntary export restraints, opened US as-
sembly plants and established their luxury divisions (Acura,
Lexus and Infiniti, respectively) to distinguish themselves
from their mass-market brands.

Name a luxury division of
Toyota.

Acura, Lexus and In-
finiti

Requires
World
Knowledge

... disobedience in opposition to the decisions of non-
governmental agencies such as trade unions, banks, and pri-
vate universities can be justified if ...

What public entity of learning
is often target of civil disobe-
dience?

governmental

Missing In-
ference

... Killer T cells are a sub-group of T cells that kill cells
that are infected with viruses (and other pathogens), or are
otherwise damaged or dysfunctional. As with B cells ...

What kind of T cells kill
cells that are infected with
pathogens?

sub-group

Table 3: Examples of error types observed in the qualitative analysis - blue indicates ground truth

Figure 4: Distribution of errors by various models across different categories using manual inspection

‘shorter’ answer type than ‘longer’. Also, miss-
ing inference contributes to almost 20% of the ob-
served errors (not including multiple sentences or
paraphrases).

Paraphrasing is the most frequent error category
observed for DrQA, which makes sense if we con-

sider the features used to represent each passage,
such as exact match with a question word, which
depend on lexical overlap between the question
and passage.

We observe that DocQA makes many boundary
errors too, again making more mistakes by pre-
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dicting shorter answers than expected in most of
the observed cases. A better root cause analysis
can be performed by visualizing outputs from dif-
ferent layers and evaluating these, and we leave
this in-depth investigation to future work. Also,
the high number of Soft Correct outputs across all
models points to some deficiencies in the SQuAD
annotations, which might limit the reliability of
the performance evaluation metrics.

Although these state-of-the-art deep learning
models for machine reading are supposed to have
inference capabilities, our error analysis above
points to their limitations. These insights can
be useful for developing benchmarks and datasets
which enable realistic evaluation of systems which
aim to ‘solve’ the RC task. In Wadhwa et al.
(2018), we take a first step in this direction by
proposing a method focused on questions involv-
ing referential inference, a setting to which these
models fail to generalize well.

4 Conclusion and Future Work

In this work, we analyze - both quantitatively and
qualitatively - results generated by 4 end-to-end
neural models on the Stanford Question Answer-
ing Dataset. We observe interesting trends in the
analysis, with some error patterns which are con-
sistent across different models and some others
which are specific to each model due to their dif-
ferent input features and architectures. This is im-
portant to be able to interpret and gain an intu-
ition for the effective functions that different com-
ponents in a neural model architecture perform
versus their intended functions, and also to un-
derstand model-specific biases. Eventually, this
can enable us to come up with new models in-
cluding specific components which tackle these er-
rors. Alternatively, the overlap analysis demon-
strates that learning ensembles of different neural
models to combine their individual strengths and
quirks might be an interesting direction to explore
to achieve better performance.

Even though the scope of this paper is restricted
to SQuAD, similar analysis can be done for any
datasets / models / features, to gain a better under-
standing and enable a better assessment of state-
of-the-art in neural machine reading. To this end,
we also performed some preliminary experiments
on TriviaQA so as to analyze the difference be-
tween the properties of the two datasets, but were
unable to replicate the published results owing to

pre-processing / hyperparameters. We will con-
tinue to work on this since the ability of a model
to generalize and to be able to learn from a par-
ticular domain and transfer some knowledge to a
different domain is a very exciting research area.

We also believe that such analysis can help cu-
rate datasets which are better indicators of the ac-
tual natural language ‘reading’ and ‘comprehend-
ing’ capabilities of models rather than falling prey
to shallow pattern matching. One way to achieve
this is by building new challenges that are specif-
ically designed to put pressure on the identified
weaknesses of neural models. Thus, we can move
towards the development of datasets and models
which truly push the envelope of the challenging
machine reading task.
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Abstract

Current evaluation metrics to question an-
swering based machine reading compre-
hension (MRC) systems generally focus
on the lexical overlap between candidate
and reference answers, such as ROUGE
and BLEU. However, bias may appear
when these metrics are used for specific
question types, especially questions in-
quiring yes-no opinions and entity lists.
In this paper, we make adaptations on the
metrics to better correlate n-gram overlap
with the human judgment for answers to
these two question types. Statistical anal-
ysis proves the effectiveness of our ap-
proach. Our adaptations may provide pos-
itive guidance for the development of real-
scene MRC systems.

1 Introduction

The goal of current MRC tasks is to develop agents
which are able to comprehend passages automati-
cally and answer open-domain questions correctly.
With the release of several large-scale datasets like
SQuAD (Rajpurkar et al., 2016), MS-MARCO
(Nguyen et al., 2016) and DuReader (He et al.,
2017), many MRC models have been proposed in
previous works (Wang and Jiang, 2016; Seo et al.,
2016; Wang et al., 2017). Although MRC model
architectures have been intensively studied, the
evaluation metrics for them are rarely discussed.
For early cloze-style and multiple choice datasets
(Richardson et al., 2013; Hermann et al., 2015),
this may not be problematic. However, consider-
ing the trend that the model is required to generate
answers and question type is becoming more vari-
able and closer to real cases, we believe the design

*This work was done while the first author was doing in-
ternship at Baidu Inc.

of evaluation metric is indeed an issue to be fo-
cused on.

Currently, the criterion for comparing generated
and gold answers is mostly based on lexical over-
lap. For example, SQuAD uses exact-match ra-
tio and word-level F1-score, while MS-MARCO
and DuReader employ ROUGE-L (Lin, 2004) and
BLEU (Papineni et al., 2002) which measure n-
gram consistency or longest common sequence
(LCS) length. For some question types, we no-
tice these metrics may not correlate with seman-
tic correspondence well in some cases. In this
paper, we mainly tackle the issue of yes-no and
entity questions. For yes-no questions, overlap-
based metrics may ignore the yes-or-no opinion
which is more crucial in determining agreement
between answers. Answers with contrary opinions
may have high lexical overlap, such as “The radi-
ation of wireless routers has an impact on peo-
ple” and “The radiation of wireless routers has
no impact on people”. Similarly, for entity ques-
tions, we think the agreement should be more re-
flected by the correctness of entity listing. An-
swers which lack or mispredict entities should be
in distinction from correct answers, but the mis-
takes actually affect little in BLEU and ROUGE,
especially when the entity is a number. These two
question types are quite common in MRC datasets
and real scenario. As is shown in He et al. (2017),
36.2% queries in DuReader and 47.5% in Baidu
real search data are classified into these two cate-
gories. For the reasons above, developing an au-
tomatic evaluation system which takes considera-
tion of the inherent characteristics of these ques-
tion types is of great necessity.

In previous work, Dang et al. (2007) employed
type-specific metrics for evaluating candidate an-
swers in TREC 2007 QA track. Setting the accu-
racy of yes-no opinion type and F1-score of en-
tity list as extra metrics may solve the problem
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to some extent. However, from the perspective of
simplicity and scalability to growing question type
category, we hope to design a unified and end-to-
end evaluation metric which is calculated automat-
ically. We propose some adaptations for ROUGE
and BLEU which provide them awareness to yes-
no opinion and entity agreement. Compared with
original metrics, our modified ROUGE and BLEU
achieve higher correlation to human judgment on
DuReader samples in both type-specific and over-
all analysis. Our work is a preliminary exploration
of better automatic evaluation systems for MRC
model in the real application.

In the remainder of this paper, related work is
discussed in section 2. Then we give details about
our adaptation on ROUGE and BLEU in section 3.
Statistical analysis is given in section 4. In section
5, we conclude the paper.

2 Related Work

MRC Task Recent years have witnessed grow-
ing research interest in machine reading compre-
hension. Annotation of large-scale datasets is a
strong driving force for the recent progress of
MRC systems. The paradigm of such datasets
ranges from cloze test (Hermann et al., 2015; Hill
et al., 2015), multiple choice (Lai et al., 2017),
span extraction (Rajpurkar et al., 2016) and an-
swer generation (Nguyen et al., 2016; He et al.,
2017). The last paradigm with multi-passages and
manually annotated answers for each question is
more close to real application. Based on these
resources, end-to-end neural MRC model archi-
tectures are implemented, including match-LSTM
(Wang and Jiang, 2016), BiDAF (Seo et al., 2016),
DCN (Xiong et al., 2016) and r-net (Wang et al.,
2017). With the objective of lexical overlap based
evaluation metrics, these models focus more on
text matching to references, which has bias to hu-
man demand. Instead, conceiving opinion and
entity-aware metrics will encourage future MRC
systems to look more into real application cases.

QA Evaluation Metrics In the past competi-
tions on question answering, various evaluation
metrics were proposed to make comparisons be-
tween participating systems. Early tasks includ-
ing TREC-8 and TREC-9 QA tracks (Voorhees
et al., 1999; Voorhees and Tice, 2000) only con-
sist of factoid questions. The ordered candidate
answers are evaluated manually to give binary cor-
rectness judgment and summarized by mean re-

ciprocal rank (MRR). With the addition of com-
plex non-factoid questions such as definition ques-
tions in TREC 2003 (Voorhees, 2003) and “other”
questions in TREC 2007 (Dang et al., 2007), man-
ual assessment becomes more difficult. “Nugget
pyramids” (Nenkova et al., 2007) are employed for
scoring, which prefer answers coveraging more
key points (nuggets). The nuggets are annotated
and weighted by human assessors, which is labor-
intensive. Breck et al. (2000) proposed to use
word recall against the stemmed gold answer as an
automatic evaluation metric. Following this idea,
metrics evaluating n-gram overlap and LCS length
between candidate and gold answers are designed
and become prevalent, among which BLEU (Pap-
ineni et al., 2002) and ROUGE (Dang et al., 2007)
are most widely-used. In general, BLEU focuses
more on n-gram precision and ROUGE is recall-
oriented. Later work has made adaptations on
these metrics from different perspectives (Baner-
jee and Lavie, 2005; Liu and Liu, 2008). In this
paper, our adaptations are aimed at increasing their
correlation to real human judgment on yes-no and
entity question answering, which are proved to be
practical.

3 Methodology

The brief idea of our adaptations is to add addi-
tional lexical overlap items which can reflect opin-
ion and entity agreement as the bonus. In the of-
ficial evaluation of MS-MARCO and DuReader,
ROUGE-L and BLEU are employed as metrics
at the same time, with the former as the primary
criterion for ranking participating systems. Their
modifications will be elaborated separately.

3.1 Adaptations on BLEU

For one question sample with single candidate and
several gold answers, Papineni et al. (2002) define
cumulative BLEU-n with uniform n-gram weight
as follows:

BLEUcum = BP ·
(

n∏

i=1

Pi

) 1
n

(1)

In the equation, Pi is the precision of i-gram in
the candidate answer

Pi =

∑
i–gram∈C

Countclip (i–gram)

∑
i–gram′∈C

Count (i–gram′)
(2)
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where C is i-gram set of the candidate answer,
Count(x) calculates the number of times that i-
gram x appear in candidate andCountclip(x) clips
Count(x) to the maximum times that x appears in
references.
BP stands for brevity penalty item, given refer-

ence length r and candidate length c

BP = emin (1− r
c
,0) (3)

For cases with mutiple reference answers, we
choose the reference length which is closest to c.

For yes-no questions, we add an additional term
into both the numerator and denominator of (2) to
measure yes-no opinion agreement

bonusyn = α
∑

i–gram∈C
Countclip–s (i–gram)

(4)
whereCountclip–s(x) clipsCount(x) to the max-
imum times that x appears in reference answers
sharing the same yes or no opinion with the candi-
date and α stands for bonus weight. If the partici-
pant correctly judges the opinion type, its adapted
BLEU score will increase due to the introduced
bonus. However, the BLEU score still never ex-
ceed 1.0.

Calculating bonusyn requires the opinion labels
of both candidate and gold answers. For refer-
ences, it does not consume much labor to annotate
opinion labels in the construction of datasets. We
notice that recent DuReader dataset already satis-
fies this requirement, with each yes-no reference
answer labeled “Yes”, “No” or “Depends”. For
candidate answers, we think it should be the trend
to encourage participating systems to provide ex-
plicit predicted opinion labels apart from the an-
swers. The following example gives a simple il-
lustration of how to compute Pi with consideration
of bonusyn.

Example 1 (Adapted P2 for yes-no answer)
Question: Is skipping rope an aerobic exercise?
Predicted answer: [Yes] Skipping rope is an aerobic exer-
cise.
Gold answer 1: [Yes] Skipping rope is a kind of aerobic ex-
ercise with low intensity.
Gold answer 2: [Depends] Skipping rope can be regarded as
an aerobic exercise only when skipping for a long time.
Number of predicted bigrams1: 6
Number of hit predicted bigrams: 4
Bigram count for bonus: 3 (hit gold answer 1)
Vanilla P2: 4 / 6 = 0.67
Adapted P2 (α = 1.0): (4 + 3) / (6 + 3) = 0.78

1Include period symbol and omit lemmatization.

Similarly, we add another term to the numerator
and denominator of (2) for bonusing correct entity
answers

bonusent = β
∑

i–gram∈C
Countclip–e (i–gram)

(5)
where the reference answers provide a gold en-
tity list and Countclip–e(x) clips Count(x) to the
maximum times that x appears in the entity strings
in the list. β stands for the weight of entity bonus.
As a result, the score of answer containing more
right entities will increase, as is shown in exam-
ple 2.

Example 2 (Adapted P2 for entity answer)
Question: How long did it take for Qin Dynasty to unify
China?
Predicted answer: Qin unified China in 221 BC after the war
against other kingdoms which lasted ten years.
Gold answer: Qin unified China in ten years, from 230 BC
to 221 BC.
Gold entity set: ten years, 230 BC, 221 BC
Number of predicted bigrams: 16
Number of hit predicted bigrams: 5
Vanilla P2: 5 / 16 = 0.31
Adapted P2 (β = 1.0): (5 + 2) / (16 + 2) = 0.39

To calculate BLEU score over entire dataset us-
ing (1), we follow the common approach to com-
pute overall Pi, which separately sums the numer-
ator and denominator of (2) with bonus terms over
all the samples and finally get them divided. The
r and c for BP are also the sum across whole
dataset.

3.2 Adaptations on ROUGE-L
As mentioned in Lin (2004), the principle of calcu-
lating ROUGE-L is to examine the precision and
recall between candidate and reference answers
considering longest common subsequences. For
single sample, ROUGE-L is computed as

ROUGE–L =

(
1 + γ2

)
RLCSPLCS

RLCS + γ2PLCS
(6)

RLCS is the ratio of LCS length to reference
answer length, namely recall

RLCS =
LCS (c, r)

|r| (7)

where c and r represent the candidate and refer-
ence answer.
PLCS is the ratio of LCS length to candidate

answer length, namely precision.

PLCS =
LCS (c, r)

|c| (8)
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For multiple gold answers, the maximumRLCS

and PLCS are selected to compute ROUGE-L.
Overall ROUGE-L on the dataset is defined as the
average ROUGE value of each sample.

Like our adaptations on BLEU, we integrate ad-
ditional bonus items into RLCS and PLCS . For
yes-no answers, if r and c have the same opinion
label, we add αLCS(r, c) to the numerator and
denominator of RLCS and PLCS . If participant
judges opinions and the judgement is correct, the
precision and recall will both increase, as is shown
in example 3.

Example 3 (Adapted ROUGE-L for yes-no answer)
Question: Is skipping rope an aerobic exercise?
Predicted answer: [Yes] Skipping rope is an aerobic exer-
cise.
Gold answer 1: [Yes] Skipping rope is a kind of aerobic ex-
ercise with low intensity.
Gold answer 2: [Depends] Skipping rope can be regarded as
an aerobic exercise only when skipping for a long time.
LCS length: 6
LCS length for bonus: 6 (LCS to gold answer 1)
Adapted PLCS (α = 1.0): (6 + 6) / (7 + 6) = 0.92
Adapted RLCS (α = 1.0): (6 + 6) / (12 + 6) = 0.67
Vanilla ROUGE-L2: 0.59
Adapted ROUGE-L: 0.78

For entity answers, the bonus attached to the nu-
merator and denominator of RLCS and PLCS is
given as β

∑
e∈entities length(e) ∗ I(e ⊆ c), indi-

cating the length sum of gold entities appearing in
candidate answer. An example is given below.

Example 4 (Adapted ROUGE-L for entity answer)
Question: How long did it take for Qin Dynasty to unify
China?
Predicted answer: Qin unified China in 221 BC after the war
against other kingdoms which lasted ten years.
Gold answer: Qin unified China in ten years, from 230 BC
to 221 BC.
Gold entity set: ten years, 230 BC, 221 BC
LCS length: 7
Entity length sum for bonus: 4
Adapted PLCS (α = 1.0): (7 + 4) / (17 + 4) = 0.52
Adapted RLCS (α = 1.0): (7 + 4) / (14 + 4) = 0.61
Vanilla ROUGE-L: 0.45
Adapted ROUGE-L: 0.56

With the help of bonus items, our adapted met-
rics give more preference to correct yes-no and
entity answers. For the yes-no question in exam-
ple 1 & 3, a trivial extracted answer may occur as
“exercise with low intensity” which does not con-
tain yes-no opinion. The adapted ROUGE-L can
better distinguish it from the correct one we give.
With α set to 1.0, the right answer can achieve
0.28 higher point over the trivial one. When using

2For simplicity, in this section we compute harmonic av-
erage to get ROUGE-L.

vanilla ROUGE-L, the advantage narrows to only
0.09. For the entity question in example 2 & 4,
we consider a shorter candidate answer “Qin uni-
fied China in 221 BC after the war against other
kingdoms”. This answer lacks key information
and should be assigned a lower score. However,
this answer is preferred under vanilla ROUGE-L
compared with the longer candidate in example 4
(0.53 vs 0.45). This problem will be rectified if the
adapted ROUGE-L is employed with β > 2.6.

4 Statistical Analysis

To demonstrate the effectiveness of our adapta-
tions, we measure the correlation of our metrics
with human judgment quantitatively in compari-
son with original ROUGE-L and BLEU. 500 ques-
tions are sampled from DuReader, which cover
yes-no, entity and description question types. We
collect predicted answers to these questions from
the submissions of 5 different MRC systems in
MRC2018 Challenge3. Generated opinion labels
are attached with yes-no candidate answers, which
is the common case in DuReader evaluation. The
human judgment of these candidate answers is ob-
tained by assigning 2 annotators to give the 1-
5 score on each candidate. The overall human
judgment score is defined as the average of scores
across the questions. The correlation is analysed
on both single question type and all the types.
Meanwhile, the performances of these metrics
are compared on both single question and overall
score levels. The details of statistical analysis are
given below.

4.1 Human Judgment
The samples we select include 201 yes-no, 201
entity and 98 description questions, with a total
of 2500 candidate answers. The criterion of man-
ual scoring is mainly based on whether the answer
satisfies the demand of question, the coverage of
key-points and answer conciseness. In detail, an-
notators give 1-5 scores according to the following
guideline:

• 5-score: perfectly answer the question with
little redundant information
• 4-score: sufficiently answer the question

with unvital missing or some redundancy
• 3-score: the answer is a little insufficient,

such as only giving opinion without support-
ing context in yes-no answer

3http://mrc2018.cipsc.org.cn/

101



• 2-score: vital missing or error exists
• 1-score: totally irrelevant

We follow the notion of Dang et al. (2007),
which emphasizes the coverage of vital key-point
in the answer. Annotators are asked to treat yes-
or-no opinion and important supporting informa-
tion for yes-no questions and gold entities for en-
tity questions as nuggets and put more weight on
them for scoring.

To ensure the quality and credibility of the hu-
man judgment, we measure the argeement be-
tween the 2 annotators. Table 1 shows the Pearson
correlation coefficients for each question type and
on overall.

Yes-No Entity Description Overall
PCC4 0.878 0.906 0.870 0.891

Table 1: Pearson correlation coefficients (PCC)
between annotators.

We can see the annotators achieve high agree-
ment on candidate judgment, which indicates the
practicability of our scoring criterion and the reli-
ability of the human annotation.

4.2 Effectiveness of Adaptations

The correlation between automatic and manual
evaluation metrics is calculated on both single
question and overall score levels. On single ques-
tion level, each candidate answer is taken as a
sample to be scored by the two metrics and score
pairs are collected across all the samples to com-
pute PCC. On the overall level, predicted answers
to 30 sampled questions for an MRC system are
scored together and the resulting automatic and
human overall score pairs are utilized for the cal-
culation of PCCs. The sampling is performed 100
times and 5 systems are sampled the same ques-
tions each time. Hence each overall level PCC is
computed on 500 samples.

In practice, we use cumulative BLEU-4 as the
implementation of BLEU, which follows the offi-
cial benchmark of DuReader. For ROUGE-L, γ
is set to 1.2 since we think the precision and re-
call are both of importance. The mean score given
by 2 annotators are used to represent human judg-
ment. For our adapted metrics, we set the weight
of yes-no bonus α to 2.0 and that of entity bonus
β to 1.0.

4All the PCCs are significant in t-test with p-value< 0.05.

On single question level, the pearson correla-
tion coefficients between automatic metrics and
human judgment are given in Table 2. The adapted
ROUGE-L achieves best performance on correla-
tion to human judgment, both on single yes-no or
entity question type and on overall.

Yes-No Entity Overall
Adapted ROUGE-L 0.540 0.620 0.570

ROUGE-L 0.493 0.491 0.504
Adapted BLEU-4 0.478 0.469 0.481

BLEU-4 0.459 0.397 0.450

Table 2: PCCs between various automatic metrics
and human judgment for different question types
on single question level.

Our adaptations bring substantial gain on PCCs
for both ROUGE-L and BLEU-4 on single ques-
tion level. To check the significance of these re-
sults, we follow the paired bootstrap resampling
test mentioned in Koehn (2004). For a pair of
metrics, samples are bootstrapped 100 times and
in each time the PCCs are recomputed and com-
pared. For both ROUGE-L and BLEU-4, the
paired test between original and adapted versions
are performed on yes-no, entity and overall sets.
In all the 6 tests, the adapted metric shows signifi-
cant better performance than the original one.

We also calculate PCCs between automatic and
human metrics on overall score level. The results
are shown in Table 3. Similar to single question
level, adapted ROUGE-L still gains the highest
correlation to human overall judgment. In this
task, we notice that ROUGE is much more effec-
tive than BLEU, which may reflect the importance
of recall in MRC evaluation. For the compari-
son between adapted and vanilla metrics, adapted
ROUGE-L performs better than vanilla version on
every question type. However, our adapted BLEU-
4 only works better on evaluating entity answers,
which is different from the result on single ques-
tion level. We think it may be due to the peculiar
way BLEU employs to get overall score for mul-
tiple questions, which was discussed as the “de-
composability” problem of BLEU in Chiang et al.
(2008). This issue will be explored in our future
work.

4.3 Impacts of Bonus Weights

We further inspect the impact of bonus weights
on metric performance. In Figure 1, the value
of yes-no bonus weight α is changed with entity
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Yes-No Entity Overall
Adapted ROUGE-L 0.702 0.884 0.792

ROUGE-L 0.664 0.839 0.760
Adapted BLEU-4 0.536 0.686 0.646

BLEU-4 0.571 0.668 0.681

Table 3: PCCs between various automatic metrics
and human judgment for different question types
on overall score level.
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Figure 1: The PCC on yes-no answers w.r.t the
variation of α.

bonus weight β fixed to 1.0. The single-question
level PCCs of adapted BLEU-4 and ROUGE-L
on yes-no answers are plotted w.r.t the variation
of α. We can see that the introduction of yes-
no bonus brings positive effect for BLEU and
ROUGE. Meanwhile, the PCCs of these metrics
increase with α monotonically.

Similarly, Figure 2 shows the single-question
level PCCs of adapted BLEU-4 and ROUGE-L on
entity answers w.r.t the variation of β, in which α
is set to 2.0. The effect of entity bonus is also pos-
itive and increases with β monotonically. In future
work, we will further look into the issue of select-
ing proper bonus weights.

5 Conclusion

For question answering MRC tasks, automatic
evaluation metrics are commonly based on mea-
suring lexical overlap, such as BLEU and
ROUGE. However, in some cases, we notice that
these automatic evaluation metrics may be biased
from human judgment, especially for yes-no and
entity questions. We think it may mislead the de-
velopment of real scene MRC systems.

In this paper, we propose some adaptations to
ROUGE and BLEU metrics for better evaluat-
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Figure 2: The PCC on entity answers w.r.t the vari-
ation of β.

ing yes-no and entity answers. Two bonus terms
are introduced into the computation of original
metrics. These terms are also based on lexical
overlap. The statistical analysis shows that our
adaptations achieve higher correlation to human
judgment compared with original ROUGE-L and
BLEU, proving the effectiveness of our methodol-
ogy. In the future, our work will cover more ques-
tion types and more MRC datasets. We hope our
exploration can bring more research attention to
the design of MRC evaluation metrics.
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