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Introduction

With great scientific breakthrough comes solid engineering and open communities. The Natural
Language Processing (NLP) community has benefited greatly from the open culture in sharing
knowledge, data, and software. The primary objective of this workshop is to further the sharing of
insights on the engineering and community aspects of creating, developing, and maintaining NLP open
source software (OSS) which we seldom talk about in scientific publications. Our secondary goal is to
promote synergies between different open source projects and encourage cross-software collaborations
and comparisons.

We refer to Natural Language Processing OSS as an umbrella term that not only covers traditional
syntactic, semantic, phonetic, and pragmatic applications; we extend the definition to include task-
specific applications (e.g., machine translation, information retrieval, question-answering systems),
low-level string processing that contains valid linguistic information (e.g. Unicode creation for
new languages, language-based character set definitions) and machine learning/artificial intelligence
frameworks with functionalities focusing on text applications.

There are many workshops focusing open language resource/annotation creation and curation (e.g.
BUCC, GWN, LAW, LOD, WAC). Moreover, we have the flagship LREC conference dedicated to
linguistic resources. However, the engineering aspects of NLP OSS is overlooked and under-discussed
within the community. There are open source conferences and venues (such as FOSDEM, OSCON, Open
Source Summit) where discussions range from operating system kernels to air traffic control hardware
but the representation of NLP related presentations is limited. In the Machine Learning (ML) field,
the Journal of Machine Learning Research - Machine Learning Open Source Software (JMLR-MLOSS)
is a forum for discussions and dissemination of ML OSS topics. We envision that the Workshop for
NLP-OSS becomes a similar avenue for NLP OSS discussions.

To our best knowledge, this is the first workshop proposal in the recent years that focuses more on the
building aspect of NLP and less on scientific novelty or state-of-art development. A decade ago, there
was the SETQA-NLP (Software Engineering, Testing, and Quality Assurance for Natural Language
Processing) workshop that raised awareness of the need for good software engineering practices in NLP.
In the earlier days of NLP, linguistic software was often monolithic and the learning curve to install, use,
and extend the tools was steep and frustrating. More often than not, NLP OSS developers/users interact
in siloed communities within the ecologies of their respective projects. In addition to engineering aspects
of NLP software, the open source movement has brought a community aspect that we often overlook in
building impactful NLP technologies.

An example of precious OSS knowledge comes from SpaCy developer Montani (2017), who shared her
thoughts and challenges of maintaining commercial NLP OSS, such as handling open issues on the issue
tracker, model release and packaging strategy and monetizing NLP OSS for sustainability.1

Řehůřek (2017) shared another example of insightful discussion on bridging the gap between the gap
between academia and industry through creating open source and student incubation programs. Řehůřek
discussed the need to look beyond the publish-or-perish culture to avoid the brittle “mummy effect” in
SOTA research code/techniques.2

We hope that the NLP-OSS workshop becomes the intellectual forum to collate various open source
knowledge beyond the scientific contribution, announce new software/features, promote the open source
culture and best practices that go beyond the conferences.

1https://ines.io/blog/spacy-commercial-open-source-nlp
2https://rare-technologies.com/mummy-effect-bridging-gap-between-academia-industry/
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Open-Source Software’s Responsibility to Science

Joel Nothman
University of Sydney

Abstract

Open-source software makes sophisticated
technologies available to a wide audi-
ence. Arguably, most people applying
language processing and machine learn-
ing techniques rely on popular open source
tools targeted at these applications. Users
may themselves be incapable of imple-
menting the underlying algorithms. Users
may or may not have extensive training to
critically conduct experiments with these
tools.
As maintainers of popular scientific soft-
ware, we should be aware of our user base,
and consider the ways in which our soft-
ware design and documentation can lead
or mislead users with respect to scien-
tific best practices. In this talk, I will
present some examples of these risks, pri-
marily drawn from my experience devel-
oping Scikit-learn. For example: How can
we help users avoid data leakage in cross-
validation? How can we help users report
precisely which algorithm or metric was
used in an experiment?
Volunteer OSS maintainers have limited
ability to see and manage these risks, and
need the scientific community’s assistance
to get things right in design, implementa-
tion and documentation.

Biography

Joel Nothman began contributing to the
Scientific Python ecosystem of open-
source software as a research student at
the University of Sydney in 2008. He has
since made substantial contributions to the
NLTK, Scipy, Pandas and IPython pack-
ages among others, but presently puts most
of his open-source energies into maintain-
ing Scikit-learn, a popular machine learn-
ing toolkit. Joel works as a data science
research engineer at the University of Syd-
ney, who fund some of his open-source de-
velopment efforts. He completed his PhD
on event reference there in 2014, and has
been teaching their Natural Language Pro-
cessing unit since 2016.
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Stanford CoreNLP: 15 Years of Developing
Academic Open Source Software

Christopher Manning
Stanford University

Abstract

My students and I at the Stanford NLP
Group started releasing academic open
source NLP software relatively early, in
2002. Over the years, the status and pop-
ularity of particular tools, and, since 2010,
of the integrated Stanford CoreNLP offer-
ing has continually grown. It is not only
used as a reliable tool — and easy mark to
beat — in academic NLP, but it is widely
used across government, non-profits, star-
tups, and large companies. In this talk, I
give my reflections on building academic
open source software: what is required,
what is important, and what is not so im-
portant; what we did right and what we
did wrong; how a software project can be
maintained long-term in such a context,
how it adds to and detracts from doing
academic research, narrowly defined; and
how the world has changed and what the
prospects are for the future.

Biography

Prof. Christopher Manning is the Thomas
M. Siebel Professor in Machine Learning
at Stanford University, in the Departments
of Computer Science and Linguistics. He
works on software that can intelligently
process, understand, and generate human
language material. He is a leader in ap-
plying Deep Learning to Natural Language
Processing, with well-known research on
the GloVe model of word vectors, Tree Re-
cursive Neural Networks, sentiment anal-
ysis, neural network dependency parsing,
neural machine translation, and deep lan-
guage understanding. His computational
linguistics work also covers probabilistic
models of language, natural language in-
ference and multilingual language process-
ing, including being a principal developer
of Stanford Dependencies and Universal
Dependencies. Manning has coauthored
leading textbooks on statistical approaches
to Natural Language Processing (Manning
and Schütze 1999) and information re-
trieval (Manning, Raghavan, and Schütze,
2008), as well as linguistic monographs on
ergativity and complex predicates. Man-
ning is an ACM Fellow, a AAAI Fellow,
an ACL Fellow, and Past President of the
ACL. Research of his has won ACL, Col-
ing, EMNLP, and CHI Best Paper Awards.
He has a B.A. (Hons) from The Australian
National University, a Ph.D. from Stanford
in 1994, and he held faculty positions at
Carnegie Mellon University and the Uni-
versity of Sydney before returning to Stan-
ford. He is a member of the Stanford
NLP group and manages development of
the Stanford CoreNLP software.
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Reflections on Running spaCy:
Commercial Open-source NLP

Matthew Honnibal and Ines Montani
Explosion AI

Abstract

In this talk, I’ll share some lessons we’ve
learned from running spaCy, the fastest-
growing library for Natural Language Pro-
cessing in Python, and provide our per-
spective on how to make commercial open-
source work for both users and develop-
ers. Every open-source project must strike
a balance between the responsibilities and
control of the maintainers, and the respon-
sibilities and control of the users. Un-
derstanding and communicating the moti-
vations for publishing software under an
open-source license can put less pres-
sure on maintainers, and help users select
projects appropriate for their requirements.

Biography

Ines Montani is the lead developer of
Prodigy, and a core contributor to spaCy.
Although a full-stack developer, Ines has
particular expertise in front-end devel-
opment, having started building websites
when she was 11. Before founding Explo-
sion AI, she was a freelance developer and
strategist, using her four years executive
experience in ad sales and digital market-
ing.

Matthew Honnibal began his research ca-
reer as a linguist, completing his PhD in
2009 on lexicalised parsing with Combina-
tory Categorial Grammar, before working
on incremental speech parsing. These days
he is best known as a software engineer,
for his work on the spaCy NLP library. He
grew up in Sydney, lives in Berlin, and still
misses CCG.
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AllenNLP: A Deep Semantic Natural Language Processing Platform

Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi,
Nelson F. Liu, Matthew Peters, Michael Schmitz, Luke Zettlemoyer

Allen Institute for Artificial Intelligence

Abstract

Modern natural language processing
(NLP) research requires writing code.
Ideally this code would provide a pre-
cise definition of the approach, easy
repeatability of results, and a basis for
extending the research. However, many
research codebases bury high-level pa-
rameters under implementation details,
are challenging to run and debug, and are
difficult enough to extend that they are
more likely to be rewritten. This paper
describes AllenNLP, a library for applying
deep learning methods to NLP research,
which addresses these issues with easy-
to-use command-line tools, declarative
configuration-driven experiments, and
modular NLP abstractions. AllenNLP
has already increased the rate of research
experimentation and the sharing of NLP
components at the Allen Institute for
Artificial Intelligence, and we are working
to have the same impact across the field.

1 Introduction

Neural network models are now the state-of-the-
art for a wide range of tasks such as text classifi-
cation (Howard and Ruder, 2018), machine trans-
lation (Vaswani et al., 2017), semantic role label-
ing (Zhou and Xu, 2015; He et al., 2017), corefer-
ence resolution (Lee et al., 2017a), and semantic
parsing (Krishnamurthy et al., 2017). However it
can be surprisingly difficult to tune new models
or replicate existing results. State-of-the-art deep
learning models often take over a week to train
on modern GPUs and are sensitive to initialization
and hyperparameter settings. Furthermore, ref-
erence implementations often re-implement NLP
components from scratch and make it difficult to

reproduce results, creating a barrier to entry for
research on many problems.

AllenNLP, a platform for research on deep
learning methods in natural language processing,
is designed to address these problems and to sig-
nificantly lower barriers to high quality NLP re-
search by

• implementing useful NLP abstractions that
make it easy to write higher-level model code
for a broad range of NLP tasks, swap out
components, and re-use implementations,

• handling common NLP deep learning prob-
lems, such as masking and padding, and
keeping these low-level details separate from
the high-level model and experiment defini-
tions,

• defining experiments using declarative con-
figuration files, which provide a high-level
summary of a model and its training, and
make it easy to change the deep learning ar-
chitecture and tune hyper-parameters, and

• sharing models through live demos, making
complex NLP accessible and debug-able.

The AllenNLP website1 provides tutorials, API
documentation, pretrained models, and source
code2. The AllenNLP platform has a permissive
Apache 2.0 license and is easy to download and
install via pip, a Docker image, or cloning the
GitHub repository. It includes reference imple-
mentations for recent state-of-the-art models (see
Section 3) that can be easily run (to make pre-
dictions on arbitrary new inputs) and retrained
with different parameters or on new data. These
pretrained models have interactive online demos3

1http://allennlp.org/
2http://github.com/allenai/allennlp
3http://demo.allennlp.org/
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with visualizations to help interpret model deci-
sions and make predictions accessible to others.
The reference implementations provide examples
of the framework functionality (Section 2) and
also serve as baselines for future research.

AllenNLP is an ongoing open-source effort
maintained by several full-time engineers and re-
searchers at the Allen Institute for Artificial Intel-
ligence, as well as interns from top PhD programs
and contributors from the broader NLP commu-
nity. It is used widespread internally for research
on common sense, logical reasoning, and state-
of-the-art NLP components such as: constituency
parsers, semantic parsing, and word representa-
tions. AllenNLP is gaining traction externally and
we want to invest to make it the standard for ad-
vancing NLP research using PyTorch.

2 Library Design

AllenNLP is a platform designed specifically for
deep learning and NLP research. AllenNLP is
built on PyTorch (Paszke et al., 2017), which pro-
vides many attractive features for NLP research.
PyTorch supports dynamic networks, has a clean
“Pythonic” syntax, and is easy to use.

The AllenNLP library provides (1) a flexible
data API that handles intelligent batching and
padding, (2) high-level abstractions for common
operations in working with text, and (3) a modular
and extensible experiment framework that makes
doing good science easy.

AllenNLP maintains a high test coverage of
over 90%4 to ensure its components and models
are working as intended. Library features are built
with testability in mind so new components can
maintain a similar test coverage.

2.1 Text Data Processing

AllenNLP’s data processing API is built around
the notion of Fields. Each Field represents a
single input array to a model. Fields are grouped
together in Instances that represent the exam-
ples for training or prediction.

The Field API is flexible and easy to extend,
allowing for a unified data API for tasks as di-
verse as tagging, semantic role labeling, question
answering, and textual entailment. To represent
the SQuAD dataset (Rajpurkar et al., 2016), for
example, which has a question and a passage as
inputs and a span from the passage as output, each

4https://codecov.io/gh/allenai/allennlp

training Instance comprises a TextField for
the question, a TextField for the passage, and
a SpanField representing the start and end po-
sitions of the answer in the passage.

The user need only read data into a set of
Instance objects with the desired fields, and the
library can automatically sort them into batches
with similar sequence lengths, pad all sequences
in each batch to the same length, and randomly
shuffle the batches for input to a model.

2.2 NLP-Focused Abstractions

AllenNLP provides a high-level API for building
models, with abstractions designed specifically for
NLP research. By design, the code for a model
actually specifies a class of related models. The
researcher can then experiment with various ar-
chitectures within this class by simply changing
a configuration file, without having to change any
code.

The library has many abstractions that encap-
sulate common decision points in NLP models.
Key examples are: (1) how text is represented as
vectors, (2) how vector sequences are modified to
produce new vector sequences, (3) how vector se-
quences are merged into a single vector.
TokenEmbedder: This abstraction takes in-

put arrays generated by e.g. a TextField and
returns a sequence of vector embeddings. Through
the use of polymorphism and AllenNLP’s exper-
iment framework (see Section 2.3), researchers
can easily switch between a wide variety of pos-
sible word representations. Simply by changing
a configuration file, an experimenter can choose
between pre-trained word embeddings, word em-
beddings concatenated with a character-level CNN
encoding, or even pre-trained model token-in-
context embeddings (Peters et al., 2017), which
allows for easy controlled experimentation.
Seq2SeqEncoder: A common operation in

deep NLP models is to take a sequence of word
vectors and pass them through a recurrent net-
work to encode contextual information, produc-
ing a new sequence of vectors as output. There
is a large number of ways to do this, includ-
ing LSTMs (Hochreiter and Schmidhuber, 1997),
GRUs (Cho et al., 2014), intra-sentence atten-
tion (Cheng et al., 2016), recurrent additive net-
works (Lee et al., 2017b), and many more. Al-
lenNLP’s Seq2SeqEncoder abstracts away the
decision of which particular encoder to use, allow-

2



ing the user to build an encoder-agnostic model
and specify the encoder via configuration. In this
way, a researcher can easily explore new recur-
rent architectures; for example, they can replace
the LSTMs in any model that uses this abstrac-
tion with any other encoder, measuring the impact
across a wide range of models and tasks.
Seq2VecEncoder: Another common op-

eration in NLP models is to merge a sequence
of vectors into a single vector, using either a
recurrent network with some kind of averaging
or pooling, or using a convolutional network.
This operation is encapsulated in AllenNLP by a
Seq2VecEncoder. This abstraction again al-
lows the model code to only describe a class of
similar models, with particular instantiations of
that model class being determined by a configu-
ration file.
SpanExtractor: A recent trend in NLP is

to build models that operate on spans of text, in-
stead of on tokens. State-of-the-art models for
coreference resolution (Lee et al., 2017a), con-
stituency parsing (Stern et al., 2017), and se-
mantic role labeling (He et al., 2017) all op-
erate in this way. Support for building this
kind of model is built into AllenNLP, including
a SpanExtractor abstraction that determines
how span vectors get computed from sequences of
token vectors.

2.3 Experimental Framework
The primary design goal of AllenNLP is to make
it easy to do good science with controlled exper-
iments. Because of the abstractions described in
Section 2.2, large parts of the model architecture
and training-related hyper-parameters can be con-
figured outside of model code. This makes it easy
to clearly specify the important decisions that de-
fine a new model in configuration, and frees the
researcher from needing to code all of the imple-
mentation details from scratch.

This architecture design is accomplished in Al-
lenNLP using a HOCON5 configuration file that
specifies, e.g., which text representations and en-
coders to use in an experiment. The mapping from
strings in the configuration file to instantiated ob-
jects in code is done through the use of a registry,
which allows users of the library to add new im-
plementations of any of the provided abstractions,

5We use it as JSON with comments. See
https://github.com/lightbend/config/blob/master/HOCON.md
for the full spec.

or even to create their own new abstractions.
While some entries in the configuration file are

optional, many are required and if unspecified
AllenNLP will raise a ConfigurationError when
reading the configuration. Additionally, when a
configuration file is loaded, AllenNLP logs the
configuration values, providing a record of both
specified and default parameters for your model.

3 Reference Models

AllenNLP includes reference implementations
of widely used language understanding models.
These models demonstrate how to use the frame-
work functionality presented in Section 2. They
also have verified performance levels that closely
match the original results, and can serve as com-
parison baselines for future research.

AllenNLP includes reference implementations
for several tasks, including:

• Semantic Role Labeling (SRL) models re-
cover the latent predicate argument structure
of a sentence (Palmer et al., 2005). SRL
builds representations that answer basic ques-
tions about sentence meaning; for example,
“who” did “what” to “whom.” The Al-
lenNLP SRL model is a re-implementation
of a deep BiLSTM model (He et al., 2017).
The implemented model closely matches the
published model which was state of the art
in 2017, achieving a F1 of 78.9% on En-
glish Ontonotes 5.0 dataset using the CoNLL
2011/12 shared task format.

• Machine Comprehension (MC) systems
take an evidence text and a question as input,
and predict a span within the evidence that
answers the question. AllenNLP includes a
reference implementation of the BiDAF MC
model (Seo et al., 2017) which was state of
the art for the SQuAD benchmark (Rajpurkar
et al., 2016) in early 2017.

• Textual Entailment (TE) models take a pair
of sentences and predict whether the facts
in the first necessarily imply the facts in the
second. The AllenNLP TE model is a re-
implementation of the decomposable atten-
tion model (Parikh et al., 2016), a widely
used TE baseline that was state-of-the-art on
the SNLI dataset (Bowman et al., 2015) in
late 2016. The AllenNLP TE model achieves

3



an accuracy of 86.4% on the SNLI 1.0 test
dataset, a 2% improvement on most publicly
available implementations and a similar score
as the original paper. Rather than pre-trained
Glove vectors, this model uses ELMo embed-
dings (Peters et al., 2018), which are com-
pletely character based and account for the
2% improvement.

• A Constituency Parser breaks a text into
sub-phrases, or constituents. Non-terminals
in the tree are types of phrases and the ter-
minals are the words in the sentence. The
AllenNLP constituency parser is an imple-
mentation of a minimal neural model for
constituency parsing based on an indepen-
dent scoring of labels and spans (Stern
et al., 2017). This model uses ELMo embed-
dings (Peters et al., 2018), which are com-
pletely character based and improves single
model performance from 92.6 F1 to 94.11 F1
on the Penn Tree bank, a 20% relative error
reduction.

AllenNLP also includes a token embedder that
uses pre-trained ELMo (Peters et al., 2018) repre-
sentations. ELMo is a deep contextualized word
representation that models both complex charac-
teristics of word use (e.g., syntax and semantics)
and how these uses vary across linguistic contexts
(in order to model polysemy). ELMo embeddings
significantly improve the state of the art across a
broad range of challenging NLP problems, includ-
ing question answering, textual entailment, and
sentiment analysis.

Additional models are currently under devel-
opment and are regularly released, including se-
mantic parsing (Krishnamurthy et al., 2017) and
multi-paragraph reading comprehension (Clark
and Gardner, 2017). We expect the num-
ber of tasks and reference implementations to
grow steadily over time. The most up-to-
date list of reference models is maintained at
http://allennlp.org/models.

4 Related Work

Many existing NLP pipelines, such as Stanford
CoreNLP (Manning et al., 2014) and spaCy6, fo-
cus on predicting linguistic structures rather than
modeling NLP architectures. While AllenNLP
supports making predictions using pre-trained

6https://spacy.io/

models, its core focus is on enabling novel re-
search. This emphasis on configuring parameters,
training, and evaluating is similar to Weka (Witten
and Frank, 1999) or Scikit-learn (Pedregosa et al.,
2011), but AllenNLP focuses on cutting-edge re-
search in deep learning and is designed around
declarative configuration of model architectures in
addition to model parameters.

Most existing deep-learning toolkits are de-
signed for general machine learning (Bergstra
et al., 2010; Yu et al., 2014; Chen et al., 2015;
Abadi et al., 2016; Neubig et al., 2017), and can
require significant effort to develop research in-
frastructure for particular model classes. Some,
such as Keras (Chollet et al., 2015), do aim to
make it easy to build deep learning models. Simi-
lar to how AllenNLP is an abstraction layer on top
of PyTorch, Keras provides high-level abstractions
on top of static graph frameworks such as Tensor-
Flow. While Keras’ abstractions and functionality
are useful for general machine learning, they are
somewhat lacking for NLP, where input data types
can be very complex and dynamic graph frame-
works are more often necessary.

Finally, AllenNLP is related to toolkits for deep
learning research in dialog (Miller et al., 2017) and
machine translation (Klein et al., 2017). Those
toolkits support learning general functions that
map strings (e.g. foreign language text or user
utterances) to strings (e.g. English text or sys-
tem responses). AllenNLP, in contrast, is a more
general library for building models for any kind
of NLP task, including text classification, con-
stituency parsing, textual entailment, question an-
swering, and more.

5 Conclusion

The design of AllenNLP allows researchers to fo-
cus on the high-level summary of their models
rather than the details, and to do careful, repro-
ducible research. Internally at the Allen Insti-
tute for Artificial Intelligence the library is widely
adopted and has improved the quality of our re-
search code, spread knowledge about deep learn-
ing, and made it easier to share discoveries be-
tween teams. AllenNLP is gaining traction exter-
nally and is growing an open-source community
of contributors 7. The AllenNLP team is com-

7See GitHub stars and issues
on https://github.com/allenai/allennlp
and mentions from publications at
https://www.semanticscholar.org/search?q=allennlp.
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mitted to continuing work on this library in or-
der to enable better research practices throughout
the NLP community and to build a community of
researchers who maintain a collection of the best
models in natural language processing.
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Abstract

Open-source software (OSS) packages
for natural language processing often in-
clude stop word lists. Users may apply
them without awareness of their surprising
omissions (e.g. hasn’t but not hadn’t) and
inclusions (e.g. computer), or their incom-
patibility with particular tokenizers. Mo-
tivated by issues raised about the Scikit-
learn stop list, we investigate variation
among and consistency within 52 popular
English-language stop lists, and propose
strategies for mitigating these issues.

1 Introduction

Open-source software (OSS) resources tend to be-
come de-facto standards by virtue of their avail-
ability and popular use. Resources include tok-
enization rules and stop word lists, whose precise
definitions are essential for reproducible and in-
terpretable models. These resources can be se-
lected somewhat arbitrarily by OSS contributors,
such that their popularity within the community
may not be a reflection of their quality, universal-
ity or suitability for a particular task. Users may
then be surprised by behaviors such as the word
computer being eliminated from their text analy-
sis due to its inclusion in a popular stop list.

This paper brings to the community’s attention
some issues recently identified in the Scikit-learn
stop list. Despite is popular use, the current Scikit-
learn maintainers cannot justify the use of this par-
ticular list, and are unaware of how it was con-
structed. This spurs us to investigate variation
among and consistency within popular English-
language stop lists provided in several popular lan-
guage processing, retrieval and machine learning
libraries. We then make recommendations for im-
proving stop list provision in OSS.

2 Background

Stop words are presumed to be not informative as
to the meaning of documents, and hence are de-
fined by being unusually frequent, or by not being
“content words”. Saif et al. (2014) lists several
methods for constructing a stop word list, includ-
ing: manual construction; words with high docu-
ment frequency or total term frequency in a corpus;
or by comparing term frequency statistics from a
sample of documents with those in a larger col-
lection.1 In practice, Manning et al. (2008) in-
dicate that statistical approaches tend not to be
used alone, but are combined with manual filter-
ing. This paper notes ways in which statistical
construction of stop lists may have introduced re-
grettable errors.

Stop lists have been generated for other lan-
guages, such as Chinese (Zou et al., 2006),
Thai (Daowadung and Chen, 2012) and
Farsi (Sadeghi and Vegas, 2014), using uses
similar frequency threshold approaches, are
susceptible to the same issues discussed here.

Most prior work focuses on assessing or im-
proving the effectiveness of stop word lists, such
as Schofield et al.’s (2017) recent critique of stop
lists in topic modeling. Our work instead exam-
ines what is available and widely used.

3 Case Study: Scikit-learn

Having become aware of issues with the Scikit-
learn (Pedregosa et al., 2011) stop list,2 we be-
gin by studying it. Scikit-learn provides out-of-
the-box feature extraction tools which convert a
collection of text documents to a matrix of token
counts, optionally removing n-grams containing

1They also investigate using supervised feature selection
techniques, but the supervised learning context is inapplica-
ble here.

2As at version 0.19.1
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given stop words. Being a popular library for ma-
chine learning, many of its users take a naive ap-
proach to language processing, and are unlikely to
take a nuanced approach to stop word removal.

History While users are able to provide their
own stop list, Scikit-learn provides an English-
language list since July 2010. The list was initially
disabled by default since the contributing author
claimed that it did not improve accuracy for text
classification (see commit 41b0562). In Novem-
ber 2010, another contributor argued to enable the
list by default, saying that stop word removal is a
reasonable default behavior (commit 41128af).
The developers disabled the list by default again
in March 2012 (commit a510d17).

The list was copied from the Glasgow Informa-
tion Retrieval Group,3 but it was unattributed until
January 2012 (commit d4c4c6f). The list was
altered in 2011 to remove the content word com-
puter (commit cdf7df9), and in 2015 to correct
the word fify to fifty (commit 3e4ebac).

This history gives a sense of how a stop word
list may be selected and provided without great
awareness of its content: its provenance was ini-
tially disregarded; and some words were eventu-
ally deemed inappropriate.

Critique Currently, the list in Scikit-learn has
several issues. Firstly, the list is incompatible
with the tokenizer provided along with it. It in-
cludes words discarded by the default tokenizer,
i.e., words less than 2 chars (e.g. i), and some
abbreviated forms which will be split by the tok-
enizer (e.g. hasnt). What’s more, it excludes encl-
itics generated by the tokenizer (e.g. ve of we’ve).
In April 2017, a maintainer proposed to add ve to
the list.4 Contributors argued this would break re-
producibility across software versions, and the is-
sue remains unresolved.

Secondly, there are some controversial words in
the list, such as system and cry. These words are
considered to be informative and are seldom in-
cluded in other stop lists. In March 2018, a user
requested the removal of system and has gained
approval from the community.5

Another issue is that the list has some surpris-

3http://ir.dcs.gla.ac.uk/resources/
linguistic_utils/stop_words

4https://github.com/scikit-learn/
scikit-learn/issues/8687

5https://github.com/scikit-learn/
scikit-learn/issues/10735
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Figure 1: Family tree of popular stop word lists.

ing omissions. Compared to extensions of the
Glasgow IR list from Stone et al. (2010) used by
spaCy (Honnibal and Montani, 2017) and gen-
sim (Řehůřek and Sojka, 2010), the list in Scikit-
learn includes modal has, but lacks does; includes
intensifier very but excludes really; and includes
light verb get but excludes make.

The Glasgow IR list appears to have been con-
structed from corpus statistics, although typo-
graphic errors like fify suggest manual editing.
However, we have not found any documentation
about how the Glasgow IR list was constructed.
Hence we know little about how to generate com-
parable lists for other languages or domains.

In the remainder of this paper, we consider how
similar issues apply to other open-source stop lists.

4 Datasets

We conduct our experiments on Igor Brigadir’s
collection of English-language stop word lists.6

We exclude 1 empty list, 2 lists which contain n-
grams (n > 1) and 1 list which is intended to aug-
ment other lists (i.e. LEMUR’s forumstop). Fi-
nally, we get 52 lists extracted from various search
engines, libraries, and articles. The size of the lists
varies (see the right part of Figure 2), from 24
words in the EBSCOhost medical databases list,
to 988 words in the ATIRE search engine list.

5 Stop List Families

Through digging into project history, we construct
a family tree of some popular stop lists (Figure 1)
to show how popular OSS packages adopt or adapt
existing lists. Solid lines in the figure correspond
to inclusion without major modification, while
dashed lines correspond to a more loose adapta-
tion. For instance, the Glasgow IR list used by
Scikit-learn was extended with 18 more words by

6https://github.com/igorbrigadir/
stopwords/tree/21fb2ef
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Stone et al. (2010), and this list was adopted by
OSS packages gensim and spaCy in turn.

A more data driven approach identifies similar-
ities among stop lists by clustering them with the
Jaccard distance metric (JD(A,B) := 1− |A∩B|

|A∪B|
where A and B are sets of stop words). In
Figure 2, we have plotted the same data with a
heatmap of word inclusion in order of descending
document frequency in the NYT section of Giga-
word 5.0 (Parker et al., 2011). Here we take the
maximum frequency under three tokenizers from
Lucene, Scikit-learn and spaCy. Each of them
has different approaches to enclitics (e.g. hasn’t is
treated as hasn’t in Lucene; hasn in Scikit-learn
and has n’t in spaCy).

Looking at the heatmap, we see that stop words
are largely concentrated around high document
frequency. Some high frequency words are ab-
sent from many stop lists because most stop lists
assume particular tokenization strategies (See Sec-
tion 6.2). However, beyond the extremely frequent
words, even the shortest lists vary widely in which
words they then include. Some stop lists include
many relatively low-frequency words. This is
most noticeable for large lists like TERRIER and
ATIRE-Puurula. TERRIER goes to pains to in-
clude synthesized inflectional variants, even con-
cerninger, and archaic forms, like couldst.

Through the clusermap, we find some lists with
very high within-cluster similarity (JD < 0.2):
Ranks.nl old Google list and MySQL/InnoDB list;
PostgreSQL list and NLTK list; Weka list, MAL-
LET list, MySQL-MyISAM list, SMART list and
ROUGE list; Glasgow IR list, Scikit-learn list and
spaCy/Gensim list. Beyond these simple clusters,
some lists appear to have surprisingly high over-
lap (usually asymmetric): Stanford CoreNLP list
appears to be an extension of Snowball’s original
list; ATIRE-Puurula appears to be an extension of
the Ranks.nl Large list.

6 Common Issues for Stop Word Lists

In section 3, we find several issues in the stop word
list from Scikit-learn. In this section, we explore
how these problems manifest in other lists.

6.1 Controversial Words

We consider words which appear in less than 10%
of lists to be controversial.7 After excluding words

7Some false negatives will result from the shared origins
of lists detailed in the previous section, but we find very simi-

which do not begin with English characters, we get
2066 distinct stop words in the 52 lists. Among
these words, 1396 (67.6%) words only appear in
less than 10% of lists, and 807 (39.1%) words only
appear in 1 list (see the bars at the top of Figure 2),
indicating that controversial words cover a large
proportion. On the contrary, only 64 (3.1%) words
are accepted by more than 80% lists. Among the
52 lists, 45 have controversial words.

We further investigate the document frequency
of these controversial words using Google Books
Ngrams (Michel et al., 2011). Figure 3 shows the
document frequency distribution. Note: We scale
document frequency of controversial words by the
max document frequency among all the words.
Although peaked on rare words, some words are
frequent (e.g. general, great, time), indicating that
the problem is not trivial.

6.2 Tokenization and Stop Lists

Popular software libraries apply different tok-
enization rules, particularly with respect to word-
internal punctuation. By comparing how different
stop lists handle the word doesn’t in Figure 4, we
see several approaches: most lists stop doesn’t. A
few stop doesn or doesnt, but none stop both of
these. Two stop doesn’t as well as doesnt, which
may help them be robust to different choices of
tokenizer, or may be designed to handle informal
text where apostrophes may be elided.

However, we find tools providing lists that are
inconsistent with their tokenizers. While most lists
stop not, Penn Treebank-style tokenizers – pro-
vided by CoreNLP, spaCy, NLTK and other NLP-
oriented packages – also generate the token n’t.
Of our dataset, n’t is only stopped by CoreNLP.8

Weka and Scikit-learn both have default tokeniz-
ers which delimit tokens at punctuation including
’, yet neither stops words like doesn.

We find similar results when repeating this anal-
ysis on other negated models (e.g. hasn’t, haven’t,
wouldn’t), showing that stop lists are often tuned
to particular tokenizers, albeit not always the
default tokenizer provided by the corresponding
package. More generally, we have not found any
OSS package which documents how tokenization
relates to the choice of stop list.

lar results if we remove near-duplicate lists (Jaccard distance
< 0.2) from our experiments.

8We are aware that spaCy, in commit f708d74, recently
amended its list to improve consistency with its tokenizer,
adding n’t among other Penn Treebank contraction tokens.
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Figure 2: Word inclusion in clustered English stop word lists. Words are ordered by descending docu-
ment frequency. The dendrogram on the left indicates minimum Jaccard distance between stop list pairs
when merged. The bars on the right show the number of words in each list, and the bars on the top
indicate the number of lists each word is found in.

Figure 3: Document frequency distribution of con-
troversial words

6.3 Incompleteness

Stop lists generated exclusively from corpus statis-
tics are bound to omit some inflectional forms
of an included word, as well as related lexemes,
such as less frequent members of a functional syn-
tactic class. In particular, stop word list con-
struction prefers frequency criteria over contex-
tual indicators of a word’s function, despite Har-
ris’s (1954) well-established theory that similar
words (e.g. function words, light verbs, negated
modals) should appear in similar contexts.

To continue the example of negated modals, we
find inconsistencies in the inclusion of have and its
variants, summarized in Figure 5. Weka includes
has, but omits its negated forms, despite including
not. Conversely, Okapi includes doesnt, but omits

10



Figure 4: Number of stop lists that include variants
of doesn’t and their combinations.

Figure 5: Number of stop lists that include variants
of have and their combinations.

does. Several lists include has, hasnt, have and
had, but omits havent and hadnt. Several lists that
include has and have forms omit had forms. These
inclusions and omissions seem arbitrary.

Some negated modals like shan’t and mustn’t
are absent more often than other modals (e.g.
doesn’t, hasn’t), which may be an unsurprising ar-
tifact of their frequency, or may be an ostensive
omission because they are more marked.

TERRIER list (Ounis et al., 2005) appears to
have generated inflectional variants, to the extent
of including concerninger. This generally seems
an advisable path towards improved consistency.

7 Improving Stop List Provision in OSS

Based on the analysis above, we propose strategies
for better provision of stop lists in OSS:

Documentation Stop lists should be docu-
mented with their assumptions about tokenization
and other limitations (e.g. genre). Documentation
should also include information on provenance
and how the list was built.

Dynamic Adaptation Stop lists can be adapted
dynamically to match the NLP pipeline. For ex-
ample, stop lists can be adjusted according to the
tokenizer chosen by the user (e.g. through apply-
ing the tokenizer to the stop list); a word which is
an inflectional variant of a stop word could also be
removed

Quality Control The community should de-
velop tools for identifying controversial terms in
stop lists (e.g. words that are frequent in one
corpus but infrequent in another), and to assist
in assessing or mitigating incompleteness issues.
For instance, future work could evaluate whether
the nearest neighborhood of stop words in vector
space can be used to identify incompleteness.

Tools for Automatic Generation A major limi-
tation of published stop lists is their inapplicability
to new domains and languages. We thus advocate
language independent tools to assist in generating
new lists, which could incorporate the quality con-
trol tools above.

8 Conclusion

Stop word lists are a simple but useful tool for
managing noise, with ubiquitous support in natu-
ral language processing software. We have found
that popular stop lists, which users often apply
blindly, may suffer from surprising omissions and
inclusions, or their incompatibility with particular
tokenizers. Many of these issues may derive from
generating stop lists using corpus statistics. We
hence recommend better documentation, dynami-
cally adapting stop lists during preprocessing, as
well as creating tools for stop list quality control
and automatically generating stop lists.
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Abstract

We introduce Texar, an open-source
toolkit aiming to support the broad set of
text generation tasks. Different from many
existing toolkits that are specialized for
specific applications (e.g., neural machine
translation), Texar is designed to be highly
flexible and versatile. This is achieved by
abstracting the common patterns under-
lying the diverse tasks and methodolo-
gies, creating a library of highly reusable
modules and functionalities, and enabling
arbitrary model architectures and vari-
ous algorithmic paradigms. The features
make Texar particularly suitable for tech-
nique sharing and generalization across
different text generation applications. The
toolkit emphasizes heavily on extensibil-
ity and modularized system design, so that
components can be freely plugged in or
swapped out. We conduct extensive exper-
iments and case studies to demonstrate the
use and advantage of the toolkit.

1 Introduction

Text generation spans a broad set of natural lan-
guage processing tasks that aim at generating nat-
ural language from input data or machine rep-
resentations. Such tasks include machine transla-
tion (Bahdanau et al., 2014; Brown et al., 1990),
dialog systems (Williams and Young, 2007; Ser-
ban et al., 2016), text summarization (Hovy and
Lin, 1998; See et al., 2017), article writing (Wise-
man et al., 2017), text paraphrasing and manipula-
tion (Madnani and Dorr, 2010; Hu et al., 2017a),
image captioning (Vinyals et al., 2015b; Karpa-
thy and Fei-Fei, 2015), and more. Recent years
have seen rapid progress of this active area in both
academia and industry, especially with the adop-

tion of modern deep learning approaches in many
of the tasks. On the other hand, considerable re-
search efforts are still needed to improve relevant
techniques and enable real-world practical appli-
cations.

The variety of text generation tasks share many
common properties and goals, e.g., to generate
well-formed, grammatical and readable text, and
to realize in the generation the desired information
inferred from inputs. To this end, a few key mod-
els and algorithms are increasingly widely-used to
empower the different applications, such as neural
encoder-decoders (Sutskever et al., 2014), atten-
tions (Bahdanau et al., 2014; Luong et al., 2015b),
memory networks (Sukhbaatar et al., 2015), adver-
sarial methods (Goodfellow et al., 2014; Hu et al.,
2017b; Lamb et al., 2016), reinforcement learn-
ing (Ranzato et al., 2015; Bahdanau et al., 2016),
as well as some optimization techniques, data pre-
processing and result post-processing procedures,
evaluations, etc.

It is therefore highly desirable to have an open-
source platform that unifies the development of the
diverse yet closely-related applications, backed
with clean and consistent implementations of the
core algorithms. Such a unified platform enables
reuse of common components and functionali-
ties, standardizes design, implementation, and ex-
perimentation, fosters reproducible research, and
importantly, encourages technique sharing among
different text generation tasks, so that an algorith-
mic advance originally developed for a specific
task can quickly be evaluated and potentially gen-
eralized to many other tasks.

Though a few remarkable open-source toolkits
have been developed, they have been largely de-
signed for one or few specific tasks, especially
neural machine translation (Britz et al., 2017;
Klein et al., 2017; Neubig et al., 2018) and dialog
related algorithms (Miller et al., 2017). This pa-
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per introduces Texar, a general-purpose text gen-
eration toolkit that aims to support most of the
popular applications in the field, by providing re-
searchers and practitioners a unified and flexible
framework for building their models. Texar is built
upon TensorFlow1, a popular deep learning plat-
form. Texar emphasizes on three key properties,
namely, versatility, modularity, and extensibility.

• Versatility: Texar contains a wide range
of features and functionalities for 1) arbi-
trary model architectures as a combination
of encoders, decoders, discriminators, mem-
ories, and many other modules; and 2) dif-
ferent modeling and learning paradigms such
as sequence-to-sequence, probabilistic mod-
els, adversarial methods, and reinforcement
learning. Based on these, both workhorse and
cutting-edge solutions to the broad spectrum
of text generation tasks are either already in-
cluded or can be easily constructed.

• Modularity: Texar is designed to be highly
modularized, by decoupling solutions to di-
verse tasks into a set of highly reusable mod-
ules. Users can construct their model at a high
conceptual level just like assembling LEGO
bricks. It is convenient to plug in or swap out
modules, configure rich options of each mod-
ule, or even switch between distinct model-
ing paradigms. For example, switching be-
tween maximum likelihood learning and re-
inforcement learning involves only minimal
code changes. Modularity makes Texar use-
ful for fast prototyping, parameter tuning,
and model experimentation.

• Extensibility: The toolkit provides interfaces
of multiple functionality levels, ranging from
simple Python-like configuration files to full
library APIs. Users of different needs and ex-
pertise are free to choose different interfaces
for appropriate programmability and internal
accessibility. The library APIs are fully com-
patible with the native TensorFlow interfaces,
which allows a seamless integration of user-
customized modules, and enables the toolkit
to take advantage of the vibrant open-source
community by easily importing any external
components as needed.

1https://www.tensorflow.org

Furthermore, Texar puts much emphasis on
well-structured high-quality code of uniform de-
sign patterns and consistent styles, along with
clean documentations and rich tutorial examples.

In the following, we provide details of the
toolkit structure and design. To demonstrate the
use of the toolkit and its advantages, we perform
extensive experiments and cases studies, including
generalizing the state-of-the-art machine transla-
tion model to multiple text generation tasks, in-
vestigating different algorithms for language mod-
eling, and implementing composite neural archi-
tectures beyond conventional encoder-decoder for
text style transfer. All are easily realized with the
versatile toolkit.

Texar is under Apache license 2.0, and will
be released very soon. Please check out http:
//www.cs.cmu.edu/˜zhitingh for the re-
lease progress.

2 Structure and Design

In this section, we first provide an overview of the
toolkit on its design principles and overall struc-
tures. We then present the detailed structure of
Texar with running examples to demonstrate the
key properties of the toolkit (sec 2.2-2.4).

Figure 1 shows the stack of main modules and
functionalities in Texar. Building upon the lower
level deep learning platform (TensorFlow), Texar
provides a comprehensive set of building blocks
for model construction, training, evaluation, and
prediction. Texar is designed with the goals of ver-
satility, modularity, and extensibility in mind. In
the following, we first present the design princi-
ples that lead to the goals (sec 2.1), and describe
the detailed structure of Texar with running exam-
ples to demonstrate the properties of the toolkit
(sec 2.2-2.4).

2.1 The Design of Texar
The broad variation of the many text generation
tasks and the fast-growing new models and algo-
rithms have posed unique challenges to design-
ing a versatile toolkit. We tackle the challenges
through proper decomposition of the whole exper-
imentation pipeline, extensive sets of modules to
assemble freely, and user interfaces of varying ab-
stract levels.

Pipeline Decomposition We begin with a high-
level decomposition of model construction and
learning pipeline. A deep neural model is typically
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Figure 1: The stack of main modules and functionalities in Texar.
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Figure 2: Example various model architectures in recent text generation literatures. E denotes encoder,
D denotes decoder, C denotes classifier (i.e., binary discriminator). (a) The canonical encoder-decoder,
sometimes with attentions A (Sutskever et al., 2014; Bahdanau et al., 2014; Luong et al., 2015b; Vaswani
et al., 2017), or copy mechanisms (Gu et al., 2016; Vinyals et al., 2015a; Gulcehre et al., 2016); (b)
Variational encoder-decoder (Bowman et al., 2015; Yang et al., 2017); (c) Encoder-decoder augmented
with external memory (Sukhbaatar et al., 2015; Bordes et al., 2016); (d) Adversarial model using a binary
discriminator C, with or without reinforcement learning (Liang et al., 2017; Zhang et al., 2017; Yu et al.,
2017); (e) Multi-task learning with multiple encoders and/or decoders (Luong et al., 2015a; Firat et al.,
2016); (f) Augmenting with cyclic loss (Hu et al., 2017a; Goyal et al., 2017); (g) Learning to align with
adversary, either on samples y or hidden states (Lamb et al., 2016; Lample et al., 2017; Shen et al., 2017).

learned with the following abstract procedure:

maxθ L(fθ, D) (1)

where (1) fθ is the model that defines the model
architecture and the intrinsic inference procedure;
(2) D is the data; (3) L is the losses to optimize;
and (4) max denotes the optimization and learn-
ing procedure. Note that the above can have mul-
tiple losses imposed on different parts of compo-
nents and parameters (e.g., generative adversarial
networks (Goodfellow et al., 2014)). Texar is de-
signed to properly decouple the four elements, and
allow free combinations of them through uniform
interfaces. Such design has underlay the strong
modularity of the toolkit.

In particular, the decomposition of model ar-
chitecture and inference (i.e., fθ) from losses

and learning has greatly improved the clean-
ness of the code structure and the opportuni-
ties for reuse. For example, a sequence decoder
can focus solely on performing different decod-
ing (inference) schemes, such as decoding with
ground truths, and greedy, stochastic, or beam-
search decoding, etc. Different learning algo-
rithms then use different schemes as a subrou-
tine in the learning procedure—for example, max-
imum likelihood learning uses decoding with
ground truths (Mikolov et al., 2010), a policy gra-
dient algorithm can use stochastic decoding (Ran-
zato et al., 2015), and an adversarial learning
can use either the stochastic decoding for policy
gradient-based updates (Yu et al., 2017) or the
Gumbel-softmax reparameterized decoding (Jang
et al., 2016) for direct gradient back-propagation.
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Figure 3: The catalog of a subset of modules for model construction and learning. Other modules, such as
memory network modules, and those for evaluation and prediction, are omitted due to space limitations.
More new modules are continuously added to the library.

With unified abstractions, the decoder and the
learning algorithms need not know the implemen-
tation details of each other. This also enables con-
venient switch between different learning algo-
rithms for the same model, by simply changing
the inference scheme and connecting to the new
learning module, without adapting the model ar-
chitecture (see sec 2.3 for the example).

Modules Readily to Assemble The fast evolu-
tion of modeling and learning methodologies in
the research field has led to sophisticated models
that go beyond the canonical (attentive) sequence-
to-sequence alike paradigms and introduce many
new composite architectures. Figure 2 summarizes
several model architectures recently used in the lit-
erature for different tasks. To versatilely support
all these diverse approaches, we break down the
complex models and extract a set of frequently-
used modules (e.g., encoders, decoders,
classifiers, etc). Figure 3 shows the catelog
of a subset of modules. Crucially, Texar allows
free concatenation between these modules in or-
der to assemble arbitrary model architectures.
Such concatenation can be done by directly in-
terfacing two modules, or through an interme-
diate connector module that provides gen-
eral, highly-usable functionalities of shape trans-
formation, reparameterization (e.g., (Kingma and
Welling, 2013; Jang et al., 2016)), sampling, and
others.

User Interfaces It is critical for the toolkit to be
flexible enough to allow construction of the sim-
ple or advanced models, while at the same time
providing proper abstractions to relieve users from
overly concerning about low-level implementa-
tions. To this end, Texar provides two types of user
interfaces with different abstract levels: 1) Python-
style configuration files that instantiate pre-defined
model templates, and 2) a set of intuitive library
APIs called in Python code. The former is simple,
clean, straightforwardly understandable for non-
expert users, and is widely adopted by other toolk-
its (Britz et al., 2017; Neubig et al., 2018; Klein
et al., 2017), while the latter allows maximal flexi-
bility, full access to internal states, and essentially
unlimited customizability. Examples are provided
in the following section.

2.2 Assemble Arbitrary Model Architectures

Figure 4 shows an example of specifying an atten-
tive sequence-to-sequence model through either
the YAML configuration file (left panel), or sim-
ple Python code (right panel), respectively.

• The configuration file passes hyperparame-
ters to the model template which instantiates
the model for subsequent training and eval-
uation (which are also configured through
YAML). Text highlighted in blue in the fig-
ure specifies the names of modules to use.
Module hyperparameters follow the module

16



   
 

1 # Read data 
2 dataset = PairedTextData(data_hparams) 
3 data = DataIterator(dataset).get_next() 
4  
5 # Encode 
6 embedder = WordEmbedder(dataset.vocab_size, emb_dim) 
7 encoder = UnidirectionalRNNEncoder(hparams=cell_hparams) 
8 enc_outputs, _ = encoder( 
9   embedder(data['source_text_ids']), data['source_length']) 

10  
11 # Decode 
12 decoder = AttentionRNNDecoder( 
13   memory=enc_outputs, attn_type='LuongAttention', hparams=cell_hparams) 
14 outputs, length, _ = decoder( 
15   embedder(data['target_text_ids']), data['target_length']-1, mode='greedy_train') 
16  
17 # Loss 
18 loss = sequence_sparse_softmax_cross_entropy( 
19   labels=data['target_text_ids'][:,1:], logits=outputs.logits, seq_length=length) 

1 source_embedder: WordEmbedder 
2   dim: 300 
3 encoder: UnidirectionalRNNEncoder 
4   rnn_cell: 
5     type: BasicLSTMCell 
6       num_units: 300 
7     num_layers: 1 
8     dropout: 
9       output_dropout: 0.5 

10       variational_recurrent: True 
11 target_embedder: WordEmbedder 
12   dim: 300 
13 decoder: AttentionRNNDecoder 
14   rnn_cell: 
15     type: BasicLSTMCell 
16       num_units: 300 
17     num_layers: 1 
18   attention: 
19     type: LuongAttention 
20 connector: ZeroConnector 

 

Figure 4: Two ways of specifying an attentive sequence-to-sequence model. Left: Snippet of an example
YAML configuration file of the sequence-to-sequence model template. Only those hyperparameters that
the user concerns are specified explicitly in the particular file, while the remaining many hyperparameters
can be omitted and will take default values. Right: Python code assembling the sequence-to-sequence
model, using the Texar library APIs. Modules are created as Python objects, and then can be called as
functions to perform the main logic (e.g., decoding) of the module. (Other code such as optimization is
omitted.)

names as children in the configuration hier-
archy. Note that most of the hyperparameters
have sensible default values, and users only
have to specify a small subset of them. Hy-
perparameters taking default values can be
omitted in the configuration file.

• The library APIs offer high-level function
calls. Users are enabled to efficiently build
desired pipelines at a high conceptual level,
without worrying too much about the low-
level implementations. Power users are also
given the option to access the full internal
states for native programming and low-level
manipulations.

2.3 Plug-in and Swap-out Modules

Texar builds a shared abstraction of the broad
set of text generation tasks, and creates highly
reusable modules. It is thus very convenient to
switch between different application contexts, or
change from one modeling paradigm to another,
by simply plugging in/swapping out a single or
few modules, or even merely changing a configu-
ration parameter, while keeping other parts of the
modeling and training pipeline agnostic.

Figure 5 illustrates an example of switching
between three major learning paradigms of an
RNN decoder, i.e., maximum-likelihood based su-
pervised learning, adversarial learning, and rein-
forcement learning, using the library APIs. Local
modification of only few lines of code is enough
to achieve such change. In particular, the same
decoder is called with different decoding modes
(e.g., greed train and greedy infer), and
discriminator or reinforcement learning agent is
added when needed, with simple API calls.

The convenient module replacement can be
valuable for fast exploration of different algo-
rithms for a specific task, or quick experimentation
of an algorithm’s generalization on different tasks.

2.4 Customize with Extensible Interfaces

With the aim of supporting the rapidly advancing
research area of text generation, Texar emphasizes
heavily on extensibility, and allows easy addition
of customized or external modules through various
interfaces, without editing the Texar codebase.

With the YAML configuration file, users can di-
rectly insert their own modules by providing the
Python importing path to the module. For exam-
ple, to use a externally implemented RNN cell in
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labels=data['target_text_ids'][:,1:], logits=outputs.logits, seq_length=length)

helper = GumbelSoftmaxTrainingHelper(
start_tokens=[BOS]*batch_size, end_token=EOS, embedding=embedder)

outputs, _, _ = decoder(helper=helper)

discriminator = Conv1DClassifier(conv_hparams)
soft_embedder = SoftWordEmbedder(embedder.value) # Share embedding 

G_loss, D_loss = binary_adversarial_losses(
embedder(data[‘target_text_ids’]),

soft_embedder(softmax(outputs.logits)),discriminator)

agent = PolicyGradientAgent(
policy=decoder,
policy_kwargs={‘start_tokens’: [BOS]*batch_size, ‘end_token’: EOS,

‘embedding’: embedder, ‘mode’: ‘greedy_infer’})

for i in range(STEPS):
samples = agent.get_samples()
rewards = BLEU(samples, data_batch[‘target_text_ids’])
agent.perceive(samples, rewards)

(a)	Maximum	likelihood	learning

(b)	Adversarial	learning
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Figure 5: Switching between the different learning paradigms of a decoder involves only modification of
Line.14-19 in the right panel of Figure 4. In particular, the same decoder is called with different decoding
modes (schemes), and the discriminator or reinforcement learning agent is added when needed, with
simple API calls. Left: The module structure of each of the paradigms; Right: The respective code. For
the adversarial learning in (b), the continuous Gumbel-softmax approximation (Jang et al., 2016) (with
GumbelSoftmaxTrainingHelper) to the generated sample is used to enable gradient propagation
from the discriminator to the decoder.

the sequence-to-sequence model encoder, one can
simply change Lines.5-6 in the left panel of Fig-
ure 4 to the following:

 
 
 
 
 
      

 
1  
2  
3  
4  
5 type: path.to.MyCell 
6       num_units: 300 
7       some_new_arg: 123 
8       … 

 
 as long as the MyCell class is accessible by

Python, and its interface is compatible to other
parts of the model.

Incorporating customized modules with Texar
library APIs is even more flexible and straightfor-
ward. As the library APIs are designed to be co-
herent with the native TensorFlow programming
interfaces, any externally-defined modules can be
seamlessly combined with Texar components to

build arbitrary complex models and pipelines.

3 Experiments

We perform extensive experiments to demonstrate
the use and advantage of Texar. In particular, we
conduct case studies on technique sharing that is
uniquely supported by our toolkit: (1) We deploy
the state-of-the-art machine translation model on
other tasks to study its generality, and obtain im-
proved performance over previous methods; (2)
We apply various model paradigms on the task of
language modeling to compare the different meth-
ods. Besides, to further demonstrate the versatil-
ity of Texar, we show a case study on the newly-
emerging task of text style transfer, which typi-
cally involves composite neural architectures be-
yond the conventional encoder-decoder.
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Task: VAE language modeling

Dataset Metrics VAE-LSTM VAE-Transformer

Yahoo (Yang et al., 2017) Test PPL 68.31 61.26
Test NLL 337.36 328.67

PTB (Bowman et al., 2015) Test PPL 105.27 102.46
Test NLL 102.06 101.46

Table 1: Comparison of Transformer decoder and LSTM RNN decoder on VAE language model-
ing (Bowman et al., 2015). Test set perplexity (PPL) and sentence-level negative log likelihood (NLL)
are evaluated (The lower the better).

3.1 One Technique on Many Tasks:
Transformer

Transformer (Vaswani et al., 2017) is a recently
developed model that achieves state-of-the-art per-
formance on machine translation. Different from
the widely-used attentive sequence-to-sequence
models (Bahdanau et al., 2014), Transformer in-
troduces a new self-attention technique in which
each generated token attends to all previously gen-
erated tokens. It would be interesting to see how
the technique generalizes to other text generation
tasks beyond machine translation. We deploy the
self-attention Transformer decoder on two tasks,
namely, variational autoencoder (VAE) based lan-
guage modeling (Bowman et al., 2015) and con-
versation generation (Serban et al., 2016).

The first task is to use the VAE model (Kingma
and Welling, 2013) for language modeling. LSTM
RNN has been widely-used in VAE for decoding
sentences. We follow the experimental setting in
previous work (Bowman et al., 2015; Yang et al.,
2017), and test two models, one with the LSTM
RNN decoder, and the other with the Transformer
decoder. All other configurations (including the
encoders) are the same in the two models. Chang-
ing the decoder in the whole experiment pipeline
is easily achieved on Texar, thanks to the modu-
larized design. Both the LSTM decoder and the
Transformer decoder have around 6.3M free pa-
rameters to learn. Table 1 shows the results. We
see that the VAE with Transformer decoder con-
sistently improves over the VAE with conventional
LSTM decoder.

The second task is to generate response
given a conversation history. We use the popu-
lar hierarchical recurrent encoder-decoder model
(HRED) (Serban et al., 2016) as the base model,
which treats a conversation as a transduction task.
The conversation history is seen as the source se-
quence and is modeled with a hierarchical en-

Task: Conversation generation

Metrics HERD-GRU HERD-Tnsfmr

BLEU-3 prec 0.281 0.289
BLEU-3 recall 0.256 0.273

BLEU-4 prec 0.228 0.232
BLEU-4 recall 0.205 0.214

Table 2: Comparison of Transformer decoder and
GRU RNN decoder on conversation generation
within the HERD model (Bowman et al., 2015).
The Switchboard data (Zhao et al., 2017) is used.

coder. Each utterance in the dialog history is
first encoded with a first-level RNN. The result-
ing hidden states of the sequence of utterance
are then encoded with a second-level RNN. We
follow the experimental setting in (Zhao et al.,
2017). In particular, the first-level RNN is set
to be bidirectional and the second-level is uni-
directional. Such configuration is easily imple-
mented by setting the hyperparameters of the
Texar HierarchicalRNNEncoder. Similar to
the above task, we compare two models, one with
an GRU RNN decoder as in the original work, and
the other with an Transformer decoder. Table 2
shows the results. Again, we see that the Trans-
former model generalizes well to the conversation
generation setting, and consistently outperforms
the GRU RNN counterpart.

3.2 One Task with Many Techniques:
Language Modeling

We next showcase how Texar can support inves-
tigation of diverse techniques on a single task.
This can be valuable for research community to
standardize experimental configurations and fos-
ter fair, reproducible comparisons. As as case
study, we choose the standard language modeling
task (Zaremba et al., 2014). Note that this is differ-
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Models Test PPL

LSTM RNN with MLE (Zaremba et al., 2014) 74.23
LSTM RNN with seqGAN (Yu et al., 2017) 74.12
Memory Network LM (Sukhbaatar et al., 2015) 94.82

Table 3: Comparison of the three models on
the task of language modeling, using the PTB
dataset (Zaremba et al., 2014).

Models Accuracy BLEU

Shen et al. (2017) 79.5 12.4

Shen et al. (2017) on Texar 82.5 13.0
Hu et al. (2017a) on Texar 88.6 38.0

Table 4: Text style transfer on the Yelp data (Shen
et al., 2017). The first row is the original open-
source implementation by the author (Shen et al.,
2017). The subsequent two rows are Texar imple-
mentations of the two work.

ent from the VAE language modeling task above,
due to different data partition strategies conven-
tionally adopted in respective research lines.

We compare three models as shown in Table 3.
The LSTM RNN trained with the maximum like-
lihood estimation (MLE) (Zaremba et al., 2014)
is the most widely used model for language mod-
eling, due to its simplicity and prominent perfor-
mance. We use the exact same architecture as gen-
erator and setup a (seq)GAN (Yu et al., 2017) sys-
tem to train the language model with adversarial
learning. (The generator is pre-trained with MLE.)
From Table 3 we see that adversarial learning does
not improve the perplexity. This is partly because
of the high variance of the policy gradient in seq-
GAN learning. Besides, test set perplexity is not
a perfect metric for evaluating language model-
ing, though it is the most widely-used metrics in
the field. We further evaluate a memory network-
based language model (Sukhbaatar et al., 2015)
which has the same number of free parameters
(11M) with the LSTM RNN model. The test set
perplexity is significantly higher than the LSTM
RNNs, which is not unreasonable because LSTM
RNN models are well studied for language mod-
eling and a number of optimal modeling and opti-
mization choices are already known.

3.3 Text Style Transfer

To further demonstrate the versatility of Texar for
composing complicated model architectures, we
next choose the the newly emerging task of text
style transfer (Hu et al., 2017a; Shen et al., 2017).

The task aims to manipulate the text of an input
sentence to change from one style to another (e.g.,
from positive sentiment to negative), given only
non-parallel training data of each style. The crite-
ria is that the resulting sentence accurately entails
the target style, while preserving the content and
other properties well.

We use Texar to implement the models from
both (Hu et al., 2017a) and (Shen et al., 2017),
whose model architectures fall in the category
(f) and (g) in Figure 2, respectively. Experimen-
tal settings mostly follow those in (Shen et al.,
2017). Following previous setting, we use a pre-
trained sentiment classifier to evaluate the trans-
ferred style accuracy. For evaluating how well the
generated sentence preserves the original content,
we measure the BLEU score between the gen-
erated sentence and the respective original one
(The higher the better). Note that we do not mean
to perform exhaustive evaluations of the meth-
ods, but instead aim to demonstrate the flexibil-
ity of the toolkit for implementing different com-
posite model architectures beyond conventional
encoder-decoder. Table 4 shows the results. Our
re-implementation of (Shen et al., 2017) recovers
and slightly surpasses the original results, while
the implementation of (Hu et al., 2017a) provides
the best performance in terms of the two metrics.

4 Related Work

Text generation is a broad research area with rapid
advancement. Figure 2 summarizes some popu-
lar and emerging models used in the diverse con-
texts of the field. There are some existing toolk-
its that focus on tasks of neural machine trans-
lation and alike, such as Google Seq2seq (Britz
et al., 2017) and Tensor2Tensor (Vaswani et al.,
2018) on TensorFlow, OpenNMT (Klein et al.,
2017) on (Py)Torch, XNMT (Neubig et al., 2018)
on DyNet, and Nematus (Sennrich et al., 2017)
on Theano, and MarianNMT (Junczys-Dowmunt
et al., 2018) on C++. ParlAI (Miller et al., 2017)
is a software platform specialized for dialog re-
search. Differing from these task-specific toolk-
its, Texar aims to cover as many text generation
tasks as possible. The goal of versatility poses
unique challenges to the design. We combat the
challenges through proper pipeline decomposi-
tion, ready-to-assemble modules, and user inter-
faces of varying abstract levels.

There are also libraries for general NLP appli-
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cations (AllenAI; Pytorch; DMLC). With the fo-
cus on text generation, we provide a more com-
prehensive and readily-usable modules and func-
tionalities to relevant tasks, enable users to ef-
ficiently build their pipelines at a high concep-
tual level without worrying too much on low-level
details. Some platforms exist for specific types
of algorithms, such as OpenAI Gym (Brockman
et al., 2016), DeepMind Control Suite (Tassa et al.,
2018), and ELF (Tian et al., 2017) for reinforce-
ment learning in game environments. Texar has
drawn inspirations from these toolkits when de-
signing relevant specific algorithm supports.

5 Conclusion and Future Work

This paper has introduced Texar, a text generation
toolkit that is designed to be versatile to support
the broad set of applications and algorithms, to
be modularized to enable easy replacement of any
components, and to be extensible to allow seam-
less integration of any external modules. Features
and functionalities will continue be added to the
toolkit, including distributed model training, ser-
vice deployment, more model building blocks, and
more applications related to text generation or be-
yond. We invite researchers and practitioners to
join and enrich the toolkit, and in the end help push
forward the text generation research and applica-
tions together.
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Abstract

The Association of Computational Lin-
guistic’s Anthology is the open source
archive, and the main source for computa-
tional linguistics and natural language pro-
cessing’s scientific literature. The ACL
Anthology is currently maintained exclu-
sively by community volunteers and has
to be available and up-to-date at all times.
We first discuss the current, open source
approach used to achieve this, and then
discuss how the planned use of Docker im-
ages will improve the Anthology’s long-
term stability. This change will make it
easier for researchers to utilize Anthology
data for experimentation. We believe the
ACL community can directly benefit from
the extension-friendly architecture of the
Anthology. We end by issuing an open
challenge of reviewer matching we en-
courage the community to rally towards.

1 Introduction

The ACL Anthology1 is a service offered by
the Association for Computational Linguistics
(ACL) allowing open access to the proceedings of
all ACL sponsored conferences and journal arti-
cles. As a community goodwill gesture, it also
hosts third-party computational linguistics litera-
ture from sister organizations and their national
venues. It offers both text and faceted search
of the indexed papers, author-specific pages, and
can incorporate third-party metadata and services
that can be embedded within pages (Bysani and
Kan, 2012). As of this paper, it hosts over

1https://aclanthology.info/

43,000 computational linguistics and natural lan-
guage processing papers, along with their meta-
data. Over 4,500 daily requests are served by the
Anthology. The code for the Anthology is avail-
able at https://github.com/acl-org/
acl-anthology under the Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 In-
ternational License2. Slightly different from the
Anthology source code, ACL also licenses its pa-
pers with a more liberal license, supporting Cre-
ative Commons Attribution 4.0 International Li-
cense3, supporting liberal re-use of papers pub-
lished with the ACL.

The maintenance of the code and the website
is handled through volunteer efforts coordinated
by the Anthology editor. Running a key service
for the computational linguistics community that
needs to be continuously available and updated
frequently is one of the main issues in adminis-
tering the Anthology.

We discuss this issue along with the challenges
of running a large scale project on a volunteer ba-
sis and its resulting technical debt. As we look
towards the future, previous research has shown
that it can also be used as a data source to charac-
terize the work and workings of the ACL commu-
nity (Bird et al., 2008; Vogel and Jurafsky, 2012;
Anderson et al., 2012). Extensions to the Anthol-
ogy that build on this information could make the
Anthology an even more valuable resource for the
community. We will discuss two possibl eexten-
sions – anonymous pre-prints and support for find-
ing relevant submission reviewers by linking au-

2https://creativecommons.org/licenses/
by-nc-sa/3.0/

3https://creativecommons.org/licenses/
by/4.0/
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thors in the Anthology with their research interests
and community connections. Beyond being useful
in itself, work on such challenges has the potential
to motivate the ACL community to further support
the Anthology.

2 Current State of the Anthology

The ACL Anthology was proposed as a project
to the ACL Executive by Steven Bird at the 2001
ACL conference and first launched in 2002, with a
second version developed in 2012, commissioned
by the ACL committee. Steven Bird also served as
the first editor of the anthology from 2002 to 2007,
a post which Min-Yen Kan took over in 2008 and
continues to fill as of today. The Anthology pro-
vides access to papers in Portable Document For-
mat (PDF) as well as the associated metadata in
multiple formats (e.g., BIBTEX and Endnote). For
recent papers, authors can also opt include data,
notes and open-source software, and may provide
Digital Object Identifiers (DOIs) for permalinking
the citations within their papers.

The technology behind the current version is de-
tailed in Table 1. As a community project, daily
administration and development is handled by vol-
unteers. However, to tackle larger problems with
the Anthology which require a more focused ef-
fort, the ACL committee has solicited paid assis-
tance. Hosting and bandwidth for the Anthology
has historically been provided by universities free
of charge. It was hosted at the National Univer-
sity of Singapore until the spring of 2017, when it
was migrated to its current home at Saarland Uni-
versity. In the future, hosting duties are planned
to fall under the umbrella of the ACL itself, unify-
ing all services under https://www.aclweb.
org/portal/.

Framework Ruby on Rails
Search engine Solr

Database PostgreSQL
Web server (Prod./Test) Nginx / Jetty

Operating System Debian GNU-Linux

Table 1: Tech stack for the ACL Anthology.

The most important task is the importing, in-
dexing and provisioning of newly accepted papers
from recent conference proceedings and journal
issues. The original Anthology defined an XML
format for simple bibliographic metadata, which
has been extended to support the more recent fea-

tures of associated software, posters, videos and
datasets that accompany the scholarly publica-
tions. Providing the XML for new materials is an
semi-automated process that is largely integrated
with the various mechanisms for managing ACL
conference submissions and printed proceedings.
It is straightforward for ACL events that utilize
the licensed START conference management soft-
ware4, as an established software pipeline builds
upon the artefacts used for creation of the final
publications themselves. After the accepted pa-
pers are finalized, START produces an archive file
of camera-ready PDF files and author-provided
metadata such as the title, author list, and abstract
for each paper. These files are processed by a set
of scripts in START maintained by ACL publi-
cation chairs in order to assign page numbers to
papers, and to produce a PDF proceedings vol-
ume for each conference complete with a table
of contents, author index, and other front mat-
ter. These scripts also produce bibliographic in-
formation that are programmatically transformed
into the ACL Anthology’s XML format. The An-
thology is then updated with the author-provided
PDFs and the XML metadata. For importing jour-
nal articles and venues not using the START sub-
mission system, additional manual work is nec-
essary to construct the Anthology XML. Sanity
checks and some manual curation is also necessary
to deal with issues such as character encodings and
accents in names, multipart family names, and so
on. This pipeline has reached a point of high effi-
ciency, but may need to be adapted if the ACL ever
considers it necessary to integrate with a different
service for conference organization.

3 Running the Anthology as a
Community Project

Since the Anthology is not tied to a specific re-
search project or institution, contributors that work
on Anthology-related system administration and
development tasks have been recruited in response
to calls for volunteers at the main ACL confer-
ences. In contrast, new features have been devel-
oped by researchers using the ACL Anthology as a
resource in their own work, unconnected with the
daily operation of the Anthology. Such research
deliverables include, for example, the creation of
a corpus of research papers (Bird et al., 2008), an
author citation network (Radev et al., 2013) or a

4https://www.softconf.com/
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faceted search engine (Schäfer et al., 2012; Buite-
laar et al., 2014). These factors, in combination
with the multiple, changing responsibilities and
shifting research interests of community members,
mean that new volunteers join and leave the An-
thology team in unpredictable and sporadic pat-
terns. Preserving knowledge about the Anthol-
ogy’s operational workflow is thus one of the most
important challenges for the Anthology.

The Anthology editor has played a key role en-
suring the continuity of the entire project. This
position has so far always been filled for multiple
years, longer than the normal time frame for an
ACL officer. The role has been critical in ensur-
ing a smooth transition between volunteers, at the
cost of a long term with a heavy workload and a
potential single point of failure. In order to tackle
both issues, there is currently a concerted effort to
improve the documentation of all tasks related to
maintaining the Anthology.

As the ACL community and its publishing
needs continue to grow, the ACL Executive is
considering commercial support for publishing.
While this may be suitable for help with daily
operations, we strongly advocate the continuation
and promotion of a closely-knit volunteer group
for development. Passing the responsibilities for
the Anthology to a commercial devoid who has no
intrinsic interest in the Anthology’s scientific con-
tents may end up poorly.

4 Future Proofing the Anthology

All code, documentation, bug reports, and fea-
ture requests are hosted at https://github.
com/acl-org/acl-anthology, along with
instructions detailing the steps required to set up
an instance of the Anthology and keep it updated
with proceedings for new conferences. These in-
structions have been verified and updated using
test builds. We began with the initial documen-
tation provided by experienced contributors to the
project and the original developer. New volun-
teers were then asked to set up and update a new
instance of the Anthology on a new server while
communicating with more experienced contribu-
tors. The documentation was expanded and up-
dated based on the problems and questions en-
countered during this process. The resulting doc-
umentation will likely reduce the learning curve
for new volunteers and will make their recruitment
easier. It will also make it easier to migrate the An-

thology to new servers when the hosting arrange-
ment changes or to create mirrors. The latter is an
important future task for the Anthology in order
to ensure that alternatives are available if the main
Anthology server experiences any downtime.

The current implementation of the Anthology
has been extended over the years with minor im-
provements to functionality and bug fixes. The
core code has remained mostly intact from its orig-
inal version and has proved to be robust and reli-
able. However, fearing the introduction of bugs
and instability (Spolsky, 2000), the maintainers
chose to keep the software working in its current
state for as long as the technology would allow it,
and focus their resources instead on features that
would help the community with their research and
publication efforts.

This choice is not without its drawbacks. One
key problem is the deprecation of dependencies
with time. For example, Ruby 2.0 is no longer
available in Debian repositories, and SSL support
no longer compiles against it by default. These
problems can be seen as indicators that delaying
upgrades might not be feasible for much longer.
Where possible, deprecated libraries are replaced
with newer versions. This is the case for the
database, web server, and the Java interpreter, all
of which have been replaced with little extra effort.
When a new version of a library breaks backwards
compatibility, the software is either upgraded or
frozen in its current version. Ruby (frozen at
2.0.0-p353 via RVM) and Solr are both ex-
amples of the latter, with detailed documented in-
structions to replicate the software environment.

In addition to the production Anthology site, a
second version is kept on low-cost cloud servers
for testing purposes. This copy has proven useful
for testing step-by-step instructions, since rolling
back the server to a clean state requires neither
authorization nor downtime. It is also used as a
staging area, and to do trial imports of new pro-
ceedings and for volunteer training.

Security is another major concern: older depen-
dencies increase exposure to unpatched bugs. The
Anthology currently does not collect or store per-
sonal data, rendering the consequences of a data
breach modest. A compromised server, however,
presents not only a risk for the maintainers (ser-
vice downtime, unauthorized applications) but for
the community at large, due to the large number
of researchers who could be exposed to malicious
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scripts. While the former puts the goodwill of the
hosting institution at risk, the latter would affect a
large portion of the ACL community.

To tackle issues with outdated software, the An-
thology volunteer group is working on making
the entire Anthology available via a Docker im-
age (Matthias and Kane, 2015). Docker provides
a virtualized environment (also known as a con-
tainer) in which software can be run but where,
unlike a virtual machine, the underlying operat-
ing system resources can be used directly. Con-
tainers are typically stateless, allowing system ad-
ministrators to add and restart services with min-
imum friction. Hosting a mirror of the Anthol-
ogy with Docker containers abstracts away the rel-
atively complex server setup and makes it eas-
ier to tackle dependency problems independently
from future mirror deployments. As a result, host-
ing institutions can apply their own internal se-
curity policies, and the community can benefit
from the added robustness via a larger network of
mirrors. Development versions of this image are
already available at https://github.com/
acl-org/anthology-docker. When an in-
stance of this Docker container is started, it first
downloads all the data necessary to run the An-
thology, inclusive of the metadata and source pub-
lications (PDF files) for all proceedings hosted
within the Anthology. The resulting Anthology
instance is a peer of the production site, but com-
pletely independent. This makes it possible for
member institutions and even interested individual
members to easily provide a mirror or experiment
with the data in the Anthology.

Freezing software versions has proven useful to
keep stability under control, improve documenta-
tion practices, and implement long-requested fea-
tures like search engine indexing. This does not
preclude a full software upgrade from being part
of our development roadmap. With better test cov-
erage and expanded consistency checks in place,
we expect the first successful upgrade tests to be
within our reach in the near future.

Docker containers and temporary servers also
show great promise for researchers. An iso-
lated, easy-to-replicate software environment re-
duces friction in transferring tools between re-
searchers usually caused by incompatible soft-
ware, simplifies the replication of experiments,
and limits the data loss due to software bugs. A
container-like approach specifying complete envi-

ronments can also help in distributing code and
general research within the community (e.g., Co-
daLab5 as used in SemEval competitions). In the
future, best practices within the community may
encourage researchers to program and experiment
within Docker images to aid reproducibility.

The Anthology is currently stable and supports
its current, intended use. However, to ensure that
the ACL Anthology continues fulfilling its key
roles, we call on the members of the ACL to help
with both its operational and development goals:

• hosting mirrors of the Anthology and devel-
oping policy for mirror management;

• adding and indexing new publications to the
Anthology;

• maintaining and updating the code underly-
ing the Anthology;

• extending the capabilities of the Anthology to
help tackle new challenges facing the ACL.

5 Challenges for the Anthology

Maintaining community buy-in for the Anthology
is necessary to ensure its future. This is best
assured by extending the Anthology with useful
capabilities that align with research efforts. This is
crucially enabled by the liberal licensing scheme
that the ACL employs for the publications to
empower end users. Research on the history and
structure of the NLP community based on this
data has already been undertaken (Anderson et al.,
2012; Vogel and Jurafsky, 2012).

Anonymous Pre-prints. A current challenge
needing attention is the result of the increasing
popularity of pre-prints and their role in promot-
ing scientific progress. However, such pre-print
systems are not anonymous, interfering with the
well-documented gains that author-blinded publi-
cations help in combating bias. Through member-
ship polls and subcommitee study, the ACL execu-
tive has adopted a recent set of guidelines uphold-
ing the value of double-blinded submissions (ACL
Executive Committee, 2017).

One solution would be the use of anonymous
pre-prints as an option for authors. Currently two
ways of implementing this have been discussed:
as a collaboration with an existing pre-print ser-
vice such as arXiv6 or through hosting pre-prints

5https://worksheets.codalab.org/
6https://arxiv.org/
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directly within the Anthology. While the latter
option would be a challenge to the Anthology –
requiring increased resources both for monitor-
ing the submissions and for scaling the system
architecture to a larger and less controlled inflow
of papers – but could result in better community
control of the process, and a greater awareness
and feeling of co-ownership of the Anthology and
its data among ACL members.

Reviewer Matching. One key problem with
scientific conference and journal organization is
in finding suitable reviewers for the peer review
process, which is also a key problem for ACL.7

We believe that we can leverage the ACL An-
thology data to support conference organizers in
the assignment of potential peer reviewers. There
has been a substantial growth in the number of
submissions to the main ACL conferences in re-
cent years (Barzilay, 2017), and the ACL has
been active in supporting automated approaches to
solve the problem (Stent and Ji, 2018) such as the
Toronto Paper Matching System (TPMS) (Char-
lin and Zemel, 2013). However, data for judging
the fit between a reviewer and submitted papers
are available in the Anthology; i.e., a reviewer’s
interests and expertise as encoded in their previ-
ous publications. Mining and representing such
information directly from the Anthology, where
data about potential reviewers is already available,
makes it unnecessary to upload papers to an ex-
ternal platform, mitigating current low response
rates. Measuring overlap between reviewer inter-
ests and a submitted paper, based on the reviewer’s
previous publications, is a problem that the NLP
community is ideally suited to solve. Furthermore,
the information generated by such a tool could
serve conference chairs and journal editors when
considering how much weight to assign to a re-
view from specific reviewers. The data required
for building such a tool would be both the text and
metadata from every submitted paper. While some
metadata is already accessible within the Anthol-
ogy, clean textual content of papers would need
to be harvested from the source PDF files, which
currently has been partially achieved. (Bird et al.,
2008) suggests that the text can generally be ex-
tracted using standard tools, with additional pro-
cessing only necessary for a small fraction of the

7As intimated through internal discussions with the ACL
executive committee.

data. We are aware that clean textual data from
the Anthology archives is current on-going interest
being investigated by a number of NLP/CL teams
within the community.

If such a solution were to be implemented, it
would be in the interest of the entire community
to have the Anthology maintainers integrate it
directly into the Anthology, with support from the
original implementers. This has been a problem in
the past, where attempts to extend the capabilities
of the Anthology with more detailed search and
annotation (Schäfer et al., 2011, 2012) were spun
off as independent systems to start with and have
still not become part of the Anthology service.

We note that these two challenges are synergis-
tically solved. Solving the first challenge will pro-
vide the submissions’ source text within the An-
thology framework and promote better coupling
for the second challenge of reviewer matching.

6 Conclusion

The ACL Anthology is a key resource for re-
searchers in the NLP community. We have de-
scribed the software engineering and maintenance
work that goes on behind-the-scenes in order for
the Anthology to serve its purpose. This includes
ingestion of new papers, maintenance of the An-
thology codebase, and the social aspects of recruit-
ing volunteers for this work. The task of training
future volunteers and ensuring Anthology uptime
is likely to become easier due to improved docu-
mentation and simplified server set-up. However,
recruitment of new volunteers continues to be an
issue.

We invite all community members to download
the Anthology images for experimentation, not
only for the challenge of automated reviewer as-
signment, but also for other use cases based on
their own research interests. We hope that open
challenges and the tasks associated with extend-
ing the usefulness of the Anthology will moti-
vate more community members to take interest
and become and familiar with its inner workings.
We extend an open invitation to anyone interested
in the Anthology to get in touch with the mem-
bers of the team. Our current needs are focused
on system administration, software development,
database management, and Docker integration, but
any kind of experience is welcome.
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Abstract

UKB is an open source collection of
programs for performing, among other
tasks, knowledge-based Word Sense Dis-
ambiguation (WSD). Since it was released
in 2009 it has been often used out-of-the-
box in sub-optimal settings. We show that
nine years later it is the state-of-the-art on
knowledge-based WSD. This case shows
the pitfalls of releasing open source NLP
software without optimal default settings
and precise reproducibility instructions.

1 Introduction

The release of open-source Natural Language Pro-
cessing (NLP) software has been key to make the
field progress, as it facilitates other researchers to
build upon previous results and software easily.
It also allows easier reproducibility, allowing for
sound scientific progress. Unfortunately, in some
cases, it can also allow competing systems to run
the open-source software out-of-the-box with sub-
optimal parameters, specially in fields where there
is no standard benchmark and new benchmarks (or
new versions of older benchmarks) are created.

Once a paper reports sub-optimal results for a
NLP software, newer papers can start to routinely
quote the low results from the previous study.
Finding a fix to this situation is not easy. The au-
thors of the software can contact the authors of the
more recent papers, but it is usually too late for up-
dating the paper. Alternatively, the authors of the
NLP software can try to publish a new paper with
updated results, but there is usually no venue for
such a paper, and, even if published, it might not
be noticed in the field.

In this paper we want to report such a case in
Word Sense Disambiguation (WSD), where the
original software (UKB) was released with sub-

optimal default parameters. Although the accom-
panying papers did contain the necessary informa-
tion to obtain state-of-the-art results, the software
did not contain step-by-step instructions, or end-
to-end scripts for optimal performance. This case
is special, in that we realized that the software is
able to attain state-of-the-art results also in newer
datasets, using the same settings as in the papers.

The take-away message for open-source NLP
software authors is that they should not rely on
other researchers reading the papers with care,
and that it is extremely important to include, with
the software release, precise instructions and op-
timal default parameters, or better still, end-to-
end scripts that download all resources, perform
any necessary pre-processing and reproduce the
results.

The first section presents UKB and WSD, fol-
lowed by the settings and parameters. Next we
present the results and comparison to the state-of-
the-art. Section 5 reports some additional results,
and finally, we draw the conclusions.

2 WSD and UKB

Word Sense Disambiguation (WSD) is the prob-
lem of assigning the correct sense of a word in a
context (Agirre and Edmonds, 2007). Tradition-
ally, supervised approaches have attained the best
results in the area, but they are expensive to build
because of the need of large amounts of manually
annotated examples. Alternatively, knowledge
based approaches rely on lexical resources such
as WordNet, which are nowadays widely avail-
able in many languages (Bond and Paik, 2012)1.
In particular, graph-based approaches represent
the knowledge base as a graph, and apply several
well-known graph analysis algorithms to perform
WSD.

1http://compling.hss.ntu.edu.sg/omw/
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UKB is a collection of programs which was
first released for performing graph-based Word
Sense Disambiguation using a pre-existing knowl-
edge base such as WordNet, and attained state-of-
the-art results among knowledge-based systems
when evaluated on standard benchmarks (Agirre
and Soroa, 2009; Agirre et al., 2014). In ad-
dition, UKB has been extended to perform dis-
ambiguation of medical entities (Agirre et al.,
2010), named-entities (Erbs et al., 2012; Agirre
et al., 2015), word similarity (Agirre et al.,
2009) and to create knowledge-based word em-
beddings (Goikoetxea et al., 2015). All programs
are open source2,3 and are accompanied by the
resources and instructions necessary to reproduce
the results. The software is quite popular, with 60
stars and 26 forks in github, as well as more than
eight thousand direct downloads from the website
since 2011. The software is coded in C++ and re-
leased under the GPL v3.0 license.

When UKB was released, the papers speci-
fied the optimal parameters for WSD (Agirre and
Soroa, 2009; Agirre et al., 2014), as well as other
key issues like the underlying knowledge-base
version, specific set of relations to be used, and
method to pre-process the input text. At the time,
we assumed that future researchers would use the
optimal parameters and settings specified in the
papers, and that they would contact the authors if
in doubt. The default parameters of the software
were not optimal, and the other issues were left
under the users responsibility.

The assumption failed, and several papers re-
ported low results in some new datasets (including
updated versions of older datasets), as we will see
in the following sections.

3 UKB parameters and setting for WSD

When using UKB for WSD, the main parameters
and settings can be classified in five main cate-
gories. For each of those we mention the best op-
tions and the associated UKB parameter when rel-
evant (in italics), as taken from (Agirre and Soroa,
2009; Agirre et al., 2014):

• Pre-processing of input text. When running
UKB for WSD, one needs to define which
window of words is to be used as context to
initialize the random walks. One option is to
take just the sentence, but given that in some

2http://ixa2.si.ehu.eus/ukb
3https://github.com/asoroa/ukb

cases the sentences are very short, better re-
sults are obtained when considering previous
and following sentences. The procedure in
the original paper repeated the extension pro-
cedure until the total length of the context is
at least 20 words4.

• Knowledge base relations. When performing
WSD for English, UKB uses WordNet (Fell-
baum, 1998) as a knowledge base. Word-
Net comes in various versions, and usually
UKB performs best when using the same ver-
sion the dataset was annotated with. Be-
sides regular WordNet relations, gloss rela-
tions (relations between synsets appearing in
the glosses) have been shown to be always
helpful.

• Graph algorithm. UKB implements different
graph-based algorithms and variants to per-
form WSD. These are the main ones:
ppr w2w: apply personalized PageRank for
each target word, that is, perform a random
walk in the graph personalized on the word
context. It yields the best results overall, at
the cost of being more time consuming that
the rest.
ppr: same as above, but apply personalized
PageRank to each sentence only once, disam-
biguating all content words in the sentence in
one go. It is thus faster that the previous ap-
proach, but obtains worse results.
dfs: unlike the two previous algorithms,
which consider the WordNet graph as a
whole, this algorithm first creates a subgraph
for each context, following the method first
presented in Navigli and Lapata (2010), and
then runs the PageRank algorithm over the
subgraph. This option represents a compro-
mise between ppr w2w and ppr, as it faster
than than the former while better than the lat-
ter.

• The PageRank algorithm has two parameters
which were set as follows: number of itera-
tions of power method (prank iter) 30, and
damping factor (prank damping) 0.85.

• Use of sense frequencies (dict weight). Sense
frequencies are a valuable piece of informa-

4The number 20 was initial arbitrarily set in the experi-
ments of (Agirre and Soroa, 2009) somewhat arbitrarily, and
never changed afterwards.
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All S2 S3 S07 S13 S15
UKB (this work) 67.3 68.8 66.1 53.0 68.8 70.3
UKB (elsewhere)†‡ 57.5 60.6 54.1 42.0 59.0 61.2
Chaplot and Sakajhutdinov (2018) ‡ 66.9 69.0 66.9 55.6 65.3 69.6
Babelfy (Moro et al., 2014)† 65.5 67.0 63.5 51.6 66.4 70.3
MFS 65.2 66.8 66.2 55.2 63.0 67.8
Basile et al. (2014)† 63.7 63.0 63.7 56.7 66.2 64.6
Banerjee and Pedersen (2003)† 48.7 50.6 44.5 32.0 53.6 51.0

Table 1: F1 results for knowledge-based systems on the (Raganato et al., 2017a) dataset. Top rows show
conflicting results for UKB. † for results reported in (Raganato et al., 2017a), ‡ for results reported in
(Chaplot and Sakajhutdinov, 2018). Best results in bold. S2 stands for Senseval-2, S3 for Senseval-3,
S07 for Semeval-2007, S13 for Semeval-2013 and S15 for Semeval-2015.

All S2 S3 S07 S13 S15
Yuan et al. (2016) 71.5 73.8 71.8 63.5 69.5 72.6
Raganato et al. (2017b) 69.9 72.0 69.1 64.8 66.9 71.5
Iacobacci et al. (2016)† 69.7 73.3 69.6 61.1 66.7 70.4
Melamud et al. (2016)† 69.4 72.3 68.2 61.5 67.2 71.7
IMS (Zhong and Ng, 2010)† 68.8 72.8 69.2 60.0 65.0 69.3

Table 2: F1 results for supervised systems on the (Raganato et al., 2017a) dataset. † for results reported
in (Raganato et al., 2017a). Best results in bold. Note that (Raganato et al., 2017b) used S07 for
development.

tion that describe the frequencies of the as-
sociations between a word and its possible
senses. The frequencies are often derived
from manually sense annotated corpora, such
as Semcor (Miller et al., 1993). We use
the sense frequency accompanying Wordnet,
which, according to the documentation, ”rep-
resents the decimal number of times the sense
is tagged in various semantic concordance
texts”. The frequencies are smoothed adding
one to all counts (dict weight smooth). The
sense frequency is used when initializing
context words, and is also used to produce the
final sense weights as a linear combination
of sense frequencies and graph-based sense
probabilities. The use of sense frequencies
with UKB was introduced in (Agirre et al.,
2014).

4 Comparison to the state-of-the-art

We evaluate UKB on the recent evaluation dataset
described in (Raganato et al., 2017a). This
dataset comprises five standard English all-words
datasets, standardized into a unified format with
gold keys in WordNet version 3.0 (some of the
original datasets used older versions of WordNet).

The dataset contains 7, 253 instances of 2, 659 dif-
ferent content words (nouns, verbs, adjectives and
adverbs). The average ambiguity of the words in
the dataset is of 5.9 senses per word. We report F1,
the harmonic mean between precision and recall,
as computed by the evaluation code accompanying
the dataset.

The two top rows in Table 1 show conflicting re-
sults for UKB. The first row corresponds to UKB
ran with the settings described above. The second
row was first reported in (Raganato et al., 2017a).
As the results show, that paper reports a subop-
timal use of UKB. In more recent work, Chaplot
and Sakajhutdinov (2018) take up that result and
report it in their paper as well. The difference is
of nearly 10 absolute F1 points overall.5 This de-
crease could be caused by the fact that Raganato
et al. (2017a) did not use sense frequencies.

In addition to UKB, the table also reports the
best performing knowledge-based systems on this
dataset. Raganato et al. (2017a) run several well-
known algorithms when presenting their datasets.
We also report (Chaplot and Sakajhutdinov, 2018),

5Note that the UKB results for S2, S3 and S07 (62.6,
63.0 and 48.6 respectively) are different from those in (Agirre
et al., 2014), which is to be expected, as the new datasets have
been converted to WordNet 3.0 (we confirmed experimentally
that this is the sole difference between the two experiments).
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All S2 S3 S07 S13 S15
Single context sentence

ppr w2w 66.9 69.0 65.7 53.9 67.1 69.9
dfs ppr 65.2 67.5 65.6 53.6 62.7 68.2
ppr 65.5 67.5 66.5 54.7 63.3 67.4
ppr w2wnf 60.2 63.7 55.1 42.2 63.5 63.8
pprnf 57.1 60.5 53.8 41.3 58.0 61.4
dfsnf 58.7 63.3 52.8 40.4 61.6 62.5

One or more context sentences (#words ≥ 20)
ppr w2w 67.3 68.8 66.1 53.0 68.8 70.3
ppr 65.6 67.5 66.4 54.1 64.0 67.8
dfs 65.7 67.9 65.9 54.5 64.2 68.1
ppr w2wnf 60.4 64.2 54.8 40.0 64.5 64.5
pprnf 58.6 61.3 54.9 42.2 60.9 62.9
dfsnf 59.1 62.7 54.4 39.3 62.8 62.2

Table 3: Additional results on other settings of UKB. nf subscript stands for “no sense frequency”. Top
rows use a single sentence as context, while the bottom rows correspond to extended context (cf. Sect.
3). Best results in bold.

the latest work on this area, as well as the most fre-
quent sense as given by WordNet counts (see Sec-
tion 3). The table shows that UKB yields the best
overall result. Note that Banerjee and Pedersen
(2003) do not use sense frequency information.

For completeness, Table 2 reports the results
of supervised systems on the same dataset, taken
from the two works that use the dataset (Yuan
et al., 2016; Raganato et al., 2017b). As expected,
supervised systems outperform knowledge-based
systems, by a small margin in some of the cases.

5 Additional results

In addition to the results of UKB using the setting
in (Agirre and Soroa, 2009; Agirre et al., 2014) as
specified in Section 3, we checked whether some
reasonable settings would obtain better results. Ta-
ble 3 shows the results when applying the three
algorithms described in Section 3, both with and
without sense frequencies, as well as using a single
sentence for context or extended context. The ta-
ble shows that the key factor is the use of sense fre-
quencies, and systems that do not use them (those
with a nf subscript) suffer a loss between 7 and 8
percentage points in F1. This would explain part
of the decrease in performance reported in (Ra-
ganato et al., 2017a), as they explicitly mention
that they did not activate the use of sense frequen-
cies in UKB.

The table also shows that extending the context
is mildly effective. Regarding the algorithm, the

table confirms that the best method is ppr w2w,
followed by the subgraph approach (dfs) and ppr.

6 Conclusions

This paper presents a case where an open-source
NLP software was used with suboptimal parame-
ters by third parties. UKB was released with sub-
optimal default parameters, and although the ac-
companying papers did describe the necessary set-
tings for good results on WSD, bad results were
not prevented. The results using the settings de-
scribed in the paper on newly released datasets
show that UKB is the best among knowledge-
based WSD algorithms.

The take-away message for open-source NLP
software authors is that they should not rely on
other researchers reading the papers with care,
and that it is extremely important to include, with
the software release, precise instructions and op-
timal default parameters, or better still, end-to-
end scripts that download all resources, perform
any necessary pre-processing and reproduce the
results. UKB now includes in version 3.1 such
end-to-end scripts and the appropriate default pa-
rameters.
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Abstract

We introduce Baseline: a library for
reproducible deep learning research and
fast model development for NLP. The li-
brary provides easily extensible abstrac-
tions and implementations for data load-
ing, model development, training and ex-
port of deep learning architectures. It
also provides implementations for simple,
high-performance, deep learning models
for various NLP tasks, against which
newly developed models can be compared.
Deep learning experiments are hard to re-
produce, Baseline provides functionalities
to track them. The goal is to allow a re-
searcher to focus on model development,
delegating the repetitive tasks to the li-
brary.

1 Introduction

Deep Neural Network models (DNNs) now dom-
inate the NLP literature. However, the immense
progress comes with some issues. Often the re-
search is not reproducible. Sometimes the code
is not open source. Other times, available imple-
mentations fail to match the reported performance.
When training DNNs, even simple baselines can
take a lot of time and resources to reach peak per-
formance (Melis et al., 2017). Additionally, a sim-
ple, canonical way to evaluate new models is lack-
ing. Institutional pressures exist to show large rel-
ative gains in papers (Armstrong et al., 2009). As a
result, new models are often compared with weak
baselines.

When software is provided, it is common for
authors to provide the source code as a stand-
alone application. These projects include data pro-
cessing, data cleaning, model training, and eval-
uation code, yielding an error-prone and time-
consuming development process. A complete li-
brary should be used to automate the mundane

portions of development, allowing a researcher to
focus on model improvements. Also, it should be
easy to compare the results of a new model across
various hyper-parameter configurations and strong
baselines.

To solve these problems, we have developed
Baseline1. It has three components.

Core: An object-oriented Python library for
rapid development of deep learning algorithms.
Core provides extensible base classes for com-
mon components in a deep learning architecture
(data loading, model development, training, eval-
uation, and export) in TensorFlow and PyTorch,
with experimental support for DyNet. In addi-
tion, it provides strong, deep learning baselines for
four fundamental NLP tasks – Classification, Se-
quence Tagging, Sequence-to-Sequence Encoder-
Decoders and Language Modeling. Many NLP
problems can be seen as variants of these tasks.
For example, Part of Speech (POS) Tagging,
Named Entity Recognition (NER) and Slot-filling
are all Sequence Tagging tasks, Neural Machine
Translation (NMT) is typically modeled as an
Encoder-Decoder task. An end-user can easily im-
plement a new model and delegate the rest to the
library.

MEAD: A library built on Core for fast Model-
ing, Experimentation And Development. MEAD
contains driver programs to run experiments from
JSON or YAML configuration files to completely
control the reader, trainer, model, and hyper-
parameters.

XPCTL: A command-line interface to track ex-
perimental results and provide access to a global
leaderboard. After running an experiment through
MEAD, the results and the logs are committed to a
database. Several commands are provided to show
the best experimental results under various con-
straints.

The workflow for developing a deep learning
1https://github.com/dpressel/baseline
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model using Baseline is simple: 1. Map the prob-
lem to one of the existing tasks using a <task,
dataset> tuple, eg., NER on CoNLL 2003 dataset
is a <tagger task, conll> 2. Use the existing im-
plementations in Core or extend the base model
class to create a new architecture; 3. Define a con-
figuration file in MEAD and run an experiment.
4. Use XPCTL to compare the result with the
previous experiments, commit the results to the
leaderboard database and the model files to a per-
sistent storage if desired.

Additionally, the base models provided by the
library can be exported from saved checkpoints di-
rectly into TensorFlow Serving2 for deployment in
a production environment. the framework can be
run within a Docker container to reduce the instal-
lation complexity and to isolate experiment con-
figurations and variants. It is open-sourced, ac-
tively maintained by a team of core developers and
accepts public contributions. While some compo-
nents from the library can be used for generic ma-
chine learning and computer vision tasks, the pri-
mary focus of Baseline is NLP: currently the data
loaders, models and evaluation codes are provided
for NLP tasks only.

2 Related Work

Baseline is not a general toolkit for deep learning
(Bergstra et al., 2011; Abadi et al., 2016; Chen
et al., 2015; Neubig et al., 2017a; Paszke et al.,
2017). Rather, it builds on TensorFlow (Abadi
et al., 2016), PyTorch (Paszke et al., 2017) and
DyNet (Neubig et al., 2017b). Any model used
in Baseline will be written in one of the sup-
ported, underlying frameworks. Popular NLP li-
braries such as Stanford CoreNLP (Manning et al.,
2014) or nltk (Loper and Bird, 2002) provide ab-
stractions and implementations for different algo-
rithms in a complete NLP architecture: from ba-
sic (tokenization) to advanced (semantic parsing)
tasks. Baseline serves a complimentary purpose:
the models developed here can be used in these
architectures.

To the best of our knowledge, two other soft-
ware efforts have similar goals: AllenNLP (Gard-
ner et al., 2017) and CodaLab 3. AllenNLP is most
similar to our work: like Baseline, it provides data
and method APIs for common NLP problems and
a modular and extensible experimentation frame-

2https://www.tensorflow.org/serving/
3http://codalab.org/

work. The key abstractions of AllenNLP are fo-
cused on data representation and conversion. This
makes the model development easy for semantic
understanding tasks. In Baseline, the key abstrac-
tion is an NLP “task”, making it very generic.
Both Baseline and AllenNLP allow running ex-
periments from JSON configuration files, but Al-
lenNLP currently does not provide utilities to store
these configurations or results in a database in
order to “track” an experiment (section 4). Al-
lenNLP is built on PyTorch, where Baseline sup-
ports PyTorch, TensorFlow and DyNet and has a
flexible design to support other frameworks over
time. The development of Baseline initially be-
gan in early 2016, prior to the development of Al-
lenNLP, and the libraries have been developed in
parallel. The idea of reproducible experimentation
for machine learning was introduced by CodaLab,
but it does not provide abstractions and baseline
implementations specific to deep learning or NLP,
nor does it provide an extensible architecture with
reusable components for building and exploring
new deep learning models.

3 Baseline: Core

The top-level module provides base classes for
data loading and evaluation. The data loader reads
common file formats for classification, CONLL-
formatted IOB files for sequence tagging, TSV
and standard parallel corpora files for Neural Ma-
chine Translation and text files for language mod-
eling. The data is masked and padded as nec-
essary. It is also shuffled, sorted and batched
such that data vectors in each batch have sim-
ilar lengths. For sequence tagging problems,
the loader supports multiple user-defined features.
Also, the reader supports common formats for pre-
trained embeddings. The library also supports
common data cleaning procedures.

The top-level module provides model base
classes for the four tasks mentioned previously.
The lower-level modules provide at least one im-
plementation for each task in both TensorFlow and
PyTorch. For most tasks, DyNet implementations
are also available. The library provides methods
to calculate standard evaluation metrics including
precision, recall, F1, average loss, and perplex-
ity. It also provides high-level utility support for
common architecture layers and paradigms such
as attention, highway and skip connections. The
default trainer supports multiple optimizers, early
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stopping, and various learning rate schedules.

Model architecture development is a common
use-case for a researcher. The library is de-
signed to make this process extremely easy. In
Baseline, a new model is known as an ad-
don, which is a dynamically loaded module
containing user-defined code. The addon code
should be written as a python file in the for-
mat <task-name> <model-name>.py and
should be available to the python interpreter
(the location should be in the system PYTHON-
PATH variable). The model should be written
in one of the supported deep learning frame-
works. If the task is not one of the exist-
ing ones, the mead.Task class has to be ex-
tended. The methods create model() and
load model() have to be overridden and ex-
posed as shown in listing 1. To run the code, the
model-name has to be passed as an argument to
the trainer program. The default trainer and data
loaders can be overriden in a similar way.

The following sections describe the tasks and
the implemented algorithms.

Classification: For Classification, the input is
typically a sequence of words. These words are
represented with word embeddings, a composition
of character embeddings, or both. Sentences are
represented as a combination of word representa-
tions using pooling or the final output of an RNN.
A final linear layer and softmax is used for classi-
fication (Kim, 2014; Collobert et al., 2011). Base-
line currently supports these models and an MLP
built on pre-trained word embeddings with max-
over-time pooling or mean-pooling (Neural Bag of
Words) (Kalchbrenner et al., 2014).

Sequence Tagging: For Sequence Tagging, in-
put words are represented similarly to the method
used for Classification. State-of-the-art tagging is
typically performed using bi-directional LSTMs
(BLSTMs) with a Conditional Random Field
(CRF) layer on top to promote global coher-
ence (Lample et al., 2016; Ma and Hovy, 2016;
Peters et al., 2017). Two common variants of
this architecture differ primarily in the treatment
of character-composition, either using a convo-
lutional (Dos Santos and Zadrozny, 2014) or
BLSTM layer (Ling et al., 2015). The convolu-
tional composition approach is simpler and faster,
yet achieves performances similar to the BLSTM
(Reimers and Gurevych, 2017). Baseline imple-
ments this model and makes the CRF layer op-

tional. It improves this model using multiple
parallel convolutional filters and residual connec-
tions. It also supports multiple features such as
gazetteer information.

Encoder-Decoders: Encoder-Decoder frame-
works are used for Machine Translation, Image
Captioning, Automatic Speech Recognition, and
many other applications. Sequence-to-Sequence
models are Encoder-Decoder architectures with an
input sequence and an output sequence, which typ-
ically differ in length. We implement the most
common version of this architecture for NLP: a
stack of recurrent layers for the encoder and the
decoder. We support multiple types of RNNs, in-
cluding GRUs and LSTMs, as well as bidirectional
encoders, multiple mechanisms of bridging the in-
put encoder to the output decoder, and the most
common types of global attention. We also pro-
vide a beam-search decoder for testing the model
on standard tasks such as NMT.

Language Modeling: Language Modeling
with RNNs operate at the word level or at the
character level. Most baseline implementations
use word-based models following (Zaremba et al.,
2014) but character-compositional models (Kim
et al., 2016; Józefowicz et al., 2016) may signif-
icantly reduce the number of parameters. Baseline
has implementations for both word-based models
and character-compositional models, closely fol-
lowing the model architecture of Kim et al. (2016).

3.1 Dataset and Results

Table 3.1 summarizes the TensorFlow implemen-
tation results. The PyTorch results are equiva-
lent. Detailed results and hyper-parameter config-
urations are maintained in the library codebase.

For Classification, we use three public datasets:
2-class Stanford Sentiment Treebank (SST2)
(Socher et al., 2013), TREC QA (Voorhees and
Tice, 2000), and DBpedia (Auer et al., 2007).
The Sequence Tagger has been tested on several
problems including NER (CoNLL 2003 (Sang and
Meulder, 2003), wnut17 (Derczynski et al., 2017)
datasets), POS Tagging (Twitter dataset (Gimpel
et al., 2011): TwPOS) and Slot Filling (ATIS
dataset (Dahl et al., 1994)). The CRF layer is
critical for NER but not necessary for ATIS and
the Twitter POS corpus. For Language Model-
ing, our model improves on Zaremba et al. (2014)
using pre-trained word embeddings. The state-of-
the-art for Language Modeling has changed sig-
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def create_model(embeddings, labels, **kwargs):
return MyModel.create(embeddings, labels, **kwargs)

def load_model(modelname, **kwargs):
return MyModel.load(modelname, **kwargs)

Listing 1: Methods to override and expose in a user-defined model

nificantly since our implementation and we antic-
ipate releasing a new baseline model in the future
(Yang et al., 2017). Our Encoder-Decoder model
is tested on English-Vietnamese Translation Task
on TED tst2013 corpus (Cettolo et al., 2015) and
achieves strong results.

Apart from these base models, we provide im-
plementations of more advanced models that can
demonstrate the software architecture and pro-
vide a stepping stone for researchers developing
their own models. Some of these implementations
show better results than the existing state of the
art. For example, using pre-trained ELMo embed-
dings from TensorFlow Hub (Peters et al., 2018),
our tagger has 42.19% F1 for the wnut17 dataset,
which is better than the last reported highest score
(41.86%) on the dataset (Derczynski et al., 2017).
The repository 4 is updated continually with the
list of available implementations.

4 MEAD and XPCTL

DNNs are heavily dependent on hyper-parameter
tuning, yet many papers do not report the ex-
act hyper-parameters. This often leads to non-
reproducible research. To solve this problem,
we have developed MEAD and XPCTL to track
hyper-parameters, model architecture, and results
of a deep learning experiment.

MEAD: MEAD provides a driver program that
runs experiments from a configuration file (in
JSON/YAML format). We define a problem as a
<task, dataset> tuple. For any task, the config-
uration file should contain 1. The dataset name,
2. Embedding type, 3. Reader type, 4. Model
type, 5. Model hyper-parameters (number of lay-
ers, convolution filter size), 6. Training parame-
ters (number of epochs, optimizers, optimizer spe-
cific parameters, patience for early stopping), 7.
Pre-processing information. Reasonable default
values are provided where possible. Thus, the
whole experiment including hyper-parameters is
uniquely identified by the sha1 hash of the con-

4https://github.com/dpressel/baseline/
tree/master/python/addons

figuration file. An experiment produces compre-
hensive logs including step-wise loss on the train-
ing data and task-specific metrics on the develop-
ment and test sets. The reporting hooks support
popular visualization frameworks including Ten-
sorboard logging and Visdom. The model is per-
sisted after each epoch, or, when early-stopping is
enabled, whenever the model improves on the tar-
get development metric. The persisted model can
be used to restart the training process or perform
inference.

XPCTL: XPCTL (experiment control) can be
used to track and compare the results with the
previous ones by providing a command line in-
terface to a database. The current implementa-
tion supports common databases including Mon-
goDB, PostgreSQL and SQLite. The existing base
classes can be extended to support other databases
if needed. The configuration file, logs, and results
can be stored in the database through a command.
XPCTL also helps to maintain a leaderboard for
these tasks. The results for a problem (<task,
dataset>) can be sorted by any evaluation metric,
filtered for particular users and limited by a num-
ber. Configuration files can be downloaded and
the model files can be stored in a persistent stor-
age location using the same utility.

The current implementation delegates the
database creation and maintenance to the user. In
future, we plan to maintain a global database ac-
cessible to all users. The user can also have her
own local database, and push to the global leader-
board as needed. XPCTL will provide command
line utilities for this purpose.

5 Exporting Models

DNNs can be deployed within a model serving
framework such as TensorFlow Serving, a high-
performance and highly scalable deployment ar-
chitecture. All of the baseline implementations
have exporters, though some customization may
be required for user-defined models, for which
we provide interfaces. The exporter transforms
the model to include pre-processing and service-
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Problem Dataset Algorithm Metric Score

Tagging

ConLL 2003 CNN-BLSTM-CRF

F1

90.88
wnut17 CNN-BLSTM-CRF 39.19
TwPOS CNN-BLSTM 88.91
ATIS CNN-BLSTM 96.74

Classification

SST2
CNN

accuracy

87.9
LSTM 87.1

TREC-QA
CNN 93.2

LSTM 91.8

DBpedia
CNN 99.05

LSTM 98.95
Language Modelling PTB RNN perplexity 77.22

Encoder-Decoder TED tst2013 Seq2Seq BLEU 25.21

Table 1: Results for TensorFlow implementations in Baseline

consumable output.

6 Conclusion and Future Work

We have presented Baseline, a library for repro-
ducible experimentation and fast development of
DNN models in NLP. Our goal is to help automate
the frustrating parts of the process of model de-
velopment and deployment to allow researchers to
focus on innovation. The library is currently used
in a production environment for various problems,
attesting to the fact that it is suitable for a complete
research-to-deployment pipeline. Currently, the li-
brary has implementations for many strong base-
line models which we will continue to update and
improve as the state-of-the-art changes. Future
versions of the software will attempt to improve
the development process further by assisting with
automatic parameter tuning and model selection,
support for more deep learning frameworks, im-
proved visualization, and a simpler cross-platform
deployment mechanism.
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Gábor Melis, Chris Dyer, and Phil Blunsom. 2017. On
the state of the art of evaluation in neural language
models. CoRR, abs/1707.05589.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017a. Dynet:
The dynamic neural network toolkit. CoRR,
abs/1701.03980.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal

39



Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017b. Dynet:
The dynamic neural network toolkit. CoRR,
abs/1701.03980.

Adam Paszke, Sam Gross, and Adam Lerer. 2017. Au-
tomatic differentiation in pytorch.

Matthew E. Peters, Waleed Ammar, Chandra Bhaga-
vatula, and Russell Power. 2017. Semi-supervised
sequence tagging with bidirectional language mod-
els. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics, ACL
2017, Vancouver, Canada, July 30 - August 4, Vol-
ume 1: Long Papers, pages 1756–1765.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Nils Reimers and Iryna Gurevych. 2017. Reporting
score distributions makes a difference: Performance
study of lstm-networks for sequence tagging. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
338–348. Association for Computational Linguis-
tics.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning, CoNLL 2003, Held in cooper-
ation with HLT-NAACL 2003, Edmonton, Canada,
May 31 - June 1, 2003, pages 142–147.

Richard Socher, A. V. Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Conference on Empirical Methods in Nat-
ural Language Processing.

Ellen M. Voorhees and Dawn M. Tice. 2000. Building
a question answering test collection. In SIGIR 2000:
Proceedings of the 23rd Annual International ACM
SIGIR Conference on Research and Development
in Information Retrieval, July 24-28, 2000, Athens,
Greece, pages 200–207.

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and
William W. Cohen. 2017. Breaking the softmax bot-
tleneck: A high-rank RNN language model. CoRR,
abs/1711.03953.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
CoRR, abs/1409.2329.

40



Proceedings of Workshop for NLP Open Source Software, pages 41–46
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

OpenSeq2Seq: Extensible Toolkit for Distributed and Mixed
Precision Training of Sequence-to-Sequence Models

Oleksii Kuchaiev, Boris Ginsburg, Igor Gitman,
Vitaly Lavrukhin, Carl Case, Paulius Micikevicius

NVIDIA
Santa Clara, CA

{okuchaiev,bginsburg,igitman}@nvidia.com
{vlavrukhin,carlc,pauliusm}@nvidia.com

Abstract

We present OpenSeq2Seq – an open-
source toolkit for training sequence-to-
sequence models. The main goal of our
toolkit is to allow researchers to most
effectively explore different sequence-to-
sequence architectures. The efficiency is
achieved by fully supporting distributed
and mixed-precision training.

OpenSeq2Seq provides building blocks
for training encoder-decoder models for
neural machine translation and automatic
speech recognition. We plan to extend it
with other modalities in the future.

1 Introduction

Sequence-to-Sequence models built around the
encoder-decoder paradigm (Sutskever et al., 2014)
have been successfully used for natural language
processing (NLP) (Vaswani et al., 2017), image-
captioning (Xu et al., 2015), and automatic speech
recognition (ASR) (Chan et al., 2015; Battenberg
et al., 2017). However, implementing a sequence-
to-sequence model in a general purpose deep
learning framework such as TensorFlow (Abadi
et al., 2016), CNTK (Yu et al., 2014) or PyTorch
(Paszke et al., 2017) can be challenging, espe-
cially with support for distributed training. Sev-
eral open-source toolkits have been proposed in
recent years in an attempt to tackle this challenge.
Among the most popular ones are: OpenNMT
(Klein et al., 2017), Seq2Seq (Britz et al., 2017),
NMT (Luong et al., 2017), and Tensor2Tensor
(Vaswani et al., 2017). These toolkits make it
much easier to reproduce most current state-of-
the-art results and train your own models on new
datasets. OpenSeq2Seq is inspired by these ap-
proaches with an additional focus on distributed
and mixed-precision training.

In particular, OpenSeq2Seq adds support for
mixed precision training as described in (Micike-
vicius et al., 2017). It uses the IEEE float16
data format to reduce memory requirements and
speed up training on modern deep learning hard-
ware such as NVIDIA’s Volta GPUs. Furthermore,
OpenSeq2Seq supports multi-GPU and multi-
node distributed training.

OpenSeq2Seq is built using TensorFlow and
is available at: https://github.com/
NVIDIA/OpenSeq2Seq.

2 Design

The main design goals of OpenSeq2Seq are ex-
tensibility and modularity. It provides several
core abstract classes which users can inherit from
when adding new models: DataLayer, Model,
Encoder, Decoder and Loss. The Model
class implements distributed and mixed precision
training support. For distributed training we sup-
port two modes, both following data-parallel ap-
proaches with synchronous updates: (1) multi-
tower mode in which a separate TensorFlow graph
is built on every GPU and (2) Horovod-based
mode (Sergeev and Del Balso, 2018) which allows
both multi-node as well as multi-GPU executions.

At a high level, the Encoder is a model block
which consumes data and produces a represen-
tation; while the Decoder is a model block
which consumes a representation and produces
data and/or output. While we do not strictly en-
force this, we assume that any encoder can be
combined with any decoder, thus improving flexi-
bility and simplicity of experimentation. Note that
it is possible to have a model consisting of only
an encoder, only a decoder, or having more than
one encoder and/or decoder. Currently, we pro-
vide the DataLayer, Encoder, Decoder and Loss
class implementations for neural machine trans-
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lation (NMT) and automatic speech recognition
(ASR) tasks.

2.1 API

OpenSeq2Seq provides a top-level run.py script
which takes a flexible Python configuration file
specifying the model and execution mode (train,
eval, train eval or infer). The configuration file
allows user to specify parts of the model (i.e.
data layer, encoder, decoder and loss) and their
configuration parameters. Since the configuration
file is written in Python, it is possible to pro-
vide actual Python classes as parameters. This
maximizes flexibility by enabling users to define
their own implementations for various compo-
nents (e.g. encoders-decoders or even a custom
learning rate decay schedules) without modifying
the toolkit source code.

3 Mixed Precision support

OpenSeq2Seq fully supports training with mixed
precision using float16 data types to utilize the
newest GPUs. When using float16 to train large
state-of-the art models, it is sometimes necessary
to apply certain algorithmic techniques and keep
some outputs in float32 (hence, mixed precision)
to achieve best results. For mixed precision train-
ing we follow an algorithmic recipe from (Micike-
vicius et al., 2017). At a high level it can be sum-
marized as follows:

1. Maintain float32 master copy of weights
for weights update while using the float16
weights for forward and back propagation

2. Apply loss scaling while computing gra-
dients to prevent underflow during back-
propagation

It is worth mentioning that both (1)-(2) are not al-
ways necessary. However, this method has proven
to be robust across a variety of large set of com-
plex models (Micikevicius et al., 2017).

Note that while having two copies of weights in-
crease the memory consumption for weights, the
total memory requirements for mixed precision
is often decreased because activations, activation
gradients, and other intermediate tensors can now
be kept in float16. This is especially beneficial for
models with a high degree of parameter sharing,
such as recurrent models.

3.1 Mixed Precision Optimizer

Our implementation is different from the previous
approach1: instead of a custom variable getter, we
introduce a wrapper around standard TensorFlow
optimizers. The model is created with float16 data
type, so all variables and gradients are in float16
by default (except for the layers which are explic-
itly redefined as float32; for example data layers or
operations on CPU). The wrapper then automati-
cally converts float16 gradients to float32 and sub-
mits them to TensorFlow’s optimizer, which up-
dates the master copy of weights in float32. Up-
dated float32 weights are converted back to float16
weigths, which are used by the model in the next
forward-backward iteration. Figure 1 illustrates
the MixedPrecisionOptimizerWrapper
architecture.

3.2 Mixed Precision Regularizer

Training in mixed precision may need special care
for regularization. Consider, for example, weight
decay regularization when weights decay term
2λ∗w is added to the gradients with respect to the
loss ∂L

∂w . Given that the weights are commonly ini-
tialized with small values, multiplying them with
weight decay coefficient λ which is usually on the
order of

[
10−5, 10−3

]
can result in numerical un-

derflow.
To overcome this problem we use the fol-

lowing approach. First, all regularizers should
be defined during variable creation (a regular-
izer parameter in the tf.get variable func-
tion or tf.layers objects). Second, the
regularizer function should be wrapped with
mp regularizer wrapper function which
does two things. First, it adds variable with the
user-provided regularization function to the Ten-
sorFlow collection. Second, it disables the un-
derlying regularization function for float16 copy.
The created collection will later be retrieved by
MixedPrecisionOptimizerWrapper and
the corresponding functions will be applied to the
float32 copy of the weights ensuring that their
gradients always stay in full precision. Since
this regularization is not in the loss computa-
tion graph, we explicitly call tf.gradients
and add the result to the gradients passed in the
compute gradients in the optimizer.

1http://docs.nvidia.com/deeplearning/
sdk/mixed-precision-training/. Accessed:
2018-04-06.
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Figure 1: ”Mixed precision” optimizer wrapper around any TensorFlow optimizer

3.3 Automatic Loss Scaling

The mixed precision training approach suggests
that the user set a fixed loss scale hyper-parameter
to adjust the dynamic range of backpropagation to
match the dynamic range of float16 (Micikevicius
et al., 2017). OpenSeq2Seq implements an auto-
matic loss scaling so the user does not have to se-
lect the loss-scale value manually. The optimizer
inspects the parameter gradients at each iteration
and uses their values to select the loss scale for the
next iteration.

4 Machine Translation and Automatic
Speech Recognition

NMT and ASE are two modalities which currently
have full implementation in OpenSeq2Seq.

4.1 NMT experiments

Neural Machine Translation (NMT) is naturally
expressed in terms of encoder-decoder paradigm
(Bahdanau et al., 2014; Wu et al., 2016; Vaswani
et al., 2017). OpenSeq2Seq provides several en-
coder and decoder implementations for this task
- RNN and non-RNN based ones with various
types of attention. It has all the necessary blocks
for GNMT-like (Wu et al., 2016) and Transformer
(Vaswani et al., 2017) models. Also, these blocks
can be easily mixed together.

For example, if the user wants to train GNMT-
like (Wu et al., 2016) model he/she needs
to construct a configuration file which uses
GNMTLikeEncoderWithEmbedding as the
encoder, and RNNDecoderWithAttention
as the decoder for training and
BeamSearchRNNDecoderWithAttention
for inference. The precision mode (float32,
float16 or mixed) as well as the number of GPUs
and other parameters are also specified in the
configuration file.

For training using mixed precision we do not

Model Iteration Score
GNMT-like float32 340K 23.21 BLEU
GNMT-like mixed 340K 23.63 BLEU
Transformer float32 220K 25.2 BLEU
Transformer mixed 220K 25.4 BLEU
DS2-like float32 110K 4.59% WER
DS2-like mixed 110K 4.47% WER

Table 1: Evaluation scores after training using
float32 and mixed precision. We used 2, 4 and
8 GPUs to train Transformer, GNMT and Deep-
Speech2 models. All configs are available on
OpenSeq2Seq’s GitHub.

change network topology or any of the hyper pa-
rameters. Figure 2 (A) demonstrates that training
loss curves for GNMT-like model using float32
and mixed precision track each other very closely
during training (the same is true for Transformer
training). In our experiments, we used WMT
2016 English→German data set obtained by com-
bining the Europarlv7, News Commentary v10,
and Common Crawl corpora and resulting in
roughly 4.5 million sentence pairs. Table 1 com-
pares BLEU scores after training with float32 and
mixed precision. These scores are computed using
multi-bleu.perl2 script from Moses against new-
stest2013.tok.de file.

In our experiments, for Transformer and
GNMT-like model, total GPU memory consump-
tion is reduced to about 55% of what it was
while using float32. We also observe performance
boosts (around x1.8 for GNMT) which can vary
depending on the batch size. The general rule of
thumb is that bigger batch size yields better per-
formance.

2https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl
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Figure 2: Training loss curves for: (A) GNMT-like model, and (B) DeepSpeech2-like model using
float32 and mixed precision. For both models, float32 and mixed precision training very closely match
each other.

4.2 ASR experiments

Many recent Automated Speech Recognition
(ASR) models are built using explicit encoder-
decoder topology (Battenberg et al., 2017; Prab-
havalkar et al., 2017; Chiu et al., 2017). How-
ever, even for models without explicit encoder-
decoder topology, it is easy to re-formulate them
as such in our toolkit. For example, let’s con-
sider an encoder-decoder implementation of Deep
Speech 2 (DS2) model (Amodei et al., 2016)
in OpenSeq2Seq. DS2 consists of three convo-
lutional layers, several bidirectional or unidirec-
tional recurrent layers (with LSTMs or GRUs),
an optional row convolutional layer, and a fully
connected layer followed by a hidden layer which
produces logits for the Connectionist Temporal
Classification (CTC) loss (Graves et al., 2006).
Logits represent a probability distribution over
alphabet characters at each timestep. A beam
search CTC decoder with language model re-
scorer is usually employed for producing the out-
put characters sequence during inference. While
DS2 doesn’t contain explicit encoder and decoder
(in seq2seq sense), we can split the model in
the following fashion: convolutional, recurrent
and fully connected layers are encapsulated in
the DeepSpeech2Encoder, and logits’ hidden
layer together with the CTC decoder are encapsu-
lated in the FullyConnectedCTCDecoder.
The reason behind this split point is simple: it al-
lows the encoder to output a custom-sized repre-
sentation and it encourages encoder and decoder
re-use. For example, the CTC decoder can be re-
placed with any decoder from text-to-text models.

In our experiments, we trained DeepSpeech2-
like model on a “clean” and “other” subsets of Lib-

riSpeech training dataset (Panayotov et al., 2015).
Table 1 shows final Word Error Rates (WER)3

on LibriSpeech “dev-clean” subset, obtained after
training using float32 and mixed precision. Sim-
ilarly to GNMT experiments, we did not change
any of the hyper parameters when training in
mixed precision. During training in mixed pre-
cision, we observed a total memory reduction to
around 57% compared to float32 mode. Figure 2
(B) demonstrates that mixed precision has no ef-
fect on convergence behaviour.

5 Conclusion and future plans

Modern deep learning hardware is moving to-
wards training with low precision. NVIDIA’s
Volta-based GPUs offer significant performance
boost and reduced memory footprint while train-
ing using Tensor Cores (e.g. using float16)4.
OpenSeq2Seq natively supports training using
mixed precision and allows NLP and ASR re-
searchers to increase their productivity. In our
experiments, we see total memory reductions to
55%–57% of float32 mode for GNMT, Trans-
former and DeepSpeech2 models.

OpenSeq2Seq aims to offer a rich library of
commonly used encoders and decoders. We plan
to extend it with other modalities such as text-to-
speech and image-to-text. Finally, we are working
on providing more encoder and decoder choices
for already supported tasks such as machine trans-
lation and speech recognition.

3With beam width = 2048 and language model pro-
vided by Mozilla: https://github.com/mozilla/
DeepSpeech/tree/master/data/lm

4http://images.nvidia.com/
content/volta-architecture/pdf/
volta-architecture-whitepaper.pdf
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Abstract

The open-source SUMMA Platform is a
highly scalable distributed architecture for
monitoring a large number of media broad-
casts in parallel, with a lag behind actual
broadcast time of at most a few minutes.
It assembles numerous state-of-the-art
NLP technologies into a fully automated
media ingestion pipeline that can record
live broadcasts, detect and transcribe spo-
ken content, translate from several lan-
guages (original text or transcribed speech)
into English,1 recognize Named Entities,
detect topics, cluster and summarize doc-
uments across language barriers, and ex-
tract and store factual claims in these news
items.
This paper describes the intended use cases
and discusses the system design decisions
that allowed us to integrate state-of-the-
art NLP modules into an effective workflow
with comparatively little effort.

1 Introduction
SUMMA (“Scalable Understanding of Multilin-
gual Media”) is an EU-funded collaborative effort
to combine state-of-the-art NLP components into
a functioning, scalable media content processing
pipeline to support large news organizations in
their daily work. The project consortium com-
prises seven acadamic / research partners — the
University of Edinburgh, the Lativan Information
Agency (LETA), Idiap Research Institute, Prib-
eram Labs, Qatar Computing Research Institute,
University College London, and Sheffield Univer-
sity —, and BBC Monitoring and Deutsche Welle
as use case partners.
In this paper, we first describe the use cases that

the platform addresses, and then the design deci-
1 The choice of English as the lingua franca within

the Platform is due to the working language of our
use case partners; the highly modular design of the
Platform allows the easy integration of custom trans-
lation engines, if required.

sions that allowed us to integrate existing state-
of-the art NLP technologies into a highly scalable,
coherent platform with comparatively little inte-
gration effort.

2 Use Cases
Three use cases drive the development of the
SUMMA Platform.

2.1 External Media Monitoring
BBC Monitoring is a business unit within the
British Broadcasting Corporation (BBC). In con-
tinuous operation since 1939, it provides media
monitoring, analysis, and translations of foreign
news content to the BBC’s news rooms, the British
Government, and other subscribers to its services.
Each of its ca. 300 monitoring journalists usually
keeps track up to 4 live sources in parallel (typically
TV channels received via satellite), plus a number
of other sources of information such as social media
feeds. Assuming work distributed around the clock
in three shifts,2 BBC Monitoring thus currently
has, on average, the capacity to actively monitor
about 400 live broadcasts at any given time — just
over a quarter of the ca. 1,500 TV stations that it
has access to, not to mention other sources such as
radio broadcasts and streams on the internet. NLP
technologies such as automatic speech recognition
(ASR), machine translation (MT), and named en-
tity (NE) tagging can alleviate the human media
monitors from mundane monitoring tasks and let
them focus on media digestion and analysis.

2.2 Internal Monitoring
Deutsche Welle is an international broadcaster op-
erating world-wide in 30 different languages. Re-
gional news rooms produce and broadcast content
independently; journalistic and programming deci-
sions are not made by a central authority within
Deutsche Welle. Therefore, it is difficult for the
overall organisation to maintain an accurate and
up-to-date overview of what is being broadcast,
and what stories have been covered.
2 The actual distribution of staff allocation over the

course of the day may differ.
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Figure 1: The SUMMA Platform Workflow

The Platform’s cross-lingual story clustering and
summarization module with the corresponding on-
line visualization tool addresses this need. It pro-
vides an aggregate view of recent captured broad-
casts, with easy access to individual broadcast seg-
ments in each cluster.

2.3 Data Journalism
The third use case is the use of the Platform’s
database of news coverage for investigations involv-
ing large amounts of news reports, for example, ex-
ploring how certain persons or issues are portrayed
in the media over time.

3 System Overview
Figure 1 shows the overall system architecture.
The SUMMA Platform consists of three major
parts: a data ingestion pipeline built mostly upon
existing state-of-the-art NLP technology; a web-
based user front-end specifically developed with
the intended use cases in mind; and a database
at the center that is continuously updated by the
data ingestion pipeline and accessed by end users
through the web-based GUI, or through a REST
API by downstream applications.
The user interfaces and the database structure

were custom developments for the SUMMA Plat-
form. The grapical user interfaces are based on
input from potential users and wireframe designs
provided by the use case partners. They are im-
plemented in the Aurelia JavaScript Client Frame-
work3. For NLP processing, we mostly build on
and integrate existing NLP technology. We de-
scribe key components below.
3 aurelia.io

3.1 Languages Covered
The goal of the project to offer NLP capabilities for
English, German, Arabic, Russian, Spanish, Lat-
vian, Farsi, Portuguese, and Ukrainian. We cur-
rently cover the former 6; the latter 3 are work in
progress.
Due to the large number of individual compo-

nents (number of languages covered times NLP
technologies), it is not possible to go into details
about training data used and individual compo-
nent performance here. Such details are covered
in the SUMMA project deliverables D3.1 (Garner
et al., 2017), D4.1 (Obamuyide et al., 2017), and
D5.1 (Mendes et al., 2017), which are available
from the project’s web site.4 We include applica-
ble deliverable numbers in parentheses below, so
that the inclined reader can follow up on details.

3.2 Live Stream Recorder and Chunker
The recorder and chunker monitors one or more
live streams via their respective URLs. Broad-
cast signals received via satellite are converted into
transport streams suitable for streaming via the
internet and provided via a web interface. This
happens outside of the platform since it requires
special hardware. The access point is a live stream
provided as an .m3u8 playlist via a web interface
that is polled regularly by the respective data feed
module.
All data received by the Recorder-and-Chunker

is recorded to disk und chunked into 5-minutes seg-
ments for further processing. Within the Plat-
form infrastructure, the Recorder-and-Chunker
also serves as the internal video server for recorded

4 www.summa-project.eu/deliverables
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transitory material, i.e., material not obtained
from persistent sources.
Once downloaded and chunked, a document stub

with the internal video URL is entered into the
data base, which then notifies the task scheduler
about the new arrival, which in turn schedules the
item for downstream processing.
Video and audio files that are not transitory but

provided by the original sources in more persistent
forms (i.e., served from a permanent location), are
currently not recorded5 but retrieved from the orig-
inal source when needed.

3.3 Other Data Feeds
Text-based data is retrieved by data feed modules
that poll the providing source at regular intervals
for new data. The data is downloaded and entered
into the database, which then again notifies the
task scheduler, which in turn schedules the new
arrivals for downstream processing.
In addition to a generic RSS feed monitor, we

use custom data monitors that are tailored to spe-
cific data sources, e.g. the specific APIs that
broadcaster-specific news apps use for updates.
The main task of these specialized modules is to
map between data fields of the source API’s spe-
cific response (typically in JSON6 format), and the
data fields used within the Platform.

3.4 Automatic Speech Recognition (D3.1)
The ASR modules within the Platform are built on
top of CloudASR (Klejch et al., 2015); the underly-
ing speech recognition models are trained with the
Kaldi toolkit (Povey et al., 2011). Punctuation is
added using a neural MT engine that was trained
to translate from un-punctuated text to punctua-
tion. The training data for the punctuation module
is created by stripping punctuation from an exist-
ing corpus of news texts. The MT engine used
for punctuation insertion uses the same software
components as the MT engines used for language
translation.

3.5 Machine Translation (D3.1)
The machine translation engines for language
translation currently use the Marian7 decoder
(Junczys-Dowmunt et al., 2016) for translation
with neural MT models trained with the Nematus
toolkit (Sennrich et al., 2017). We have recently
switched to the Marian toolkit for training.

3.6 Topic Classification (D3.1)
The topic classifier uses a hierarchical attention
model for document classification (Yang et al.,
5 On a marginal note, recording a single live stream

produces, depending on video resolution, up to 25
GiB of data per day.

6 https://www.json.org
7 www.github.com/marian-nmt

2016) trained on nearly 600K manually annotated
documents in 8 languages.

3.7 Storyline Clustering (D3.1) and
Cluster Summarization (D5.1)

Incoming stories are clustered into storylines with
Aggarwal and Yu’s (2006) online clustering algo-
rithm. The resulting storylines are summarized
with the extractive summarization algorithm by
Almeida and Martins (2013).

3.8 Named Entity Recognition and
Linking (D4.1)

For Named Entity Recognition, we use TurboEn-
tityRecognizer, a component within TurboParser8
(Martins et al., 2009). Recognized entities and re-
lations between them (or propositions about them)
about them are linked to a knowledge base of
facts using techniques developed by Paikens et al.
(2016).

3.9 Databases
The Platform currently relies on two databases.
The central database in the NLP processing
pipeline is an instance of RethinkDB9, a document-
oriented database that allows clients to subscribe
to a continuous stream of notifications about
changes in the database. This allows clients (e.g.
the task scheduler) to be notified about the lastest
incoming items as they are added to the database,
without the need to poll the database periodically.
Each document consists of several fields, such as
the URL of the original news item, a transcript for
audio sources, or the original text, a translation
into English if applicable, entities such as persons,
organisations or locations mentioned in the news
items, etc.
For interaction with web-based user interfaces,

we are using a PostgreSQL10 database, which is
periodically updated with the latest arrivals from
the data ingestion pipeline. This second database
was not part of the original design; it was added
out of performance concerns, as we noticed at some
point that RethinkDB’s responsiveness tended to
deteriorate over time as the number of items in the
database grew. Ultimately, this turned out to be
an error in the set-up of our RethinkDB instance:
certain crucial fields weren’t indexed, so that Re-
thinkDB resorted to a linear search for certain op-
erations. The current split between two databases
is not ideal; however, it is operational and elimi-
nating it is not a high priority on the current de-
velopment agenda.

8 https://github.com/andre-martins/TurboParser
9 www.rethinkdb.com
10 www.postgresql.org
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4 Platform Design and
Implementation

As is obvious from the description above, the Plat-
form utilizes numerous existing technologies. In
designing and implementing the Platform, we had
two main objectives:

1. Minimize the effort necessary to integrate the
various existing technologies.

2. Keep individual NLP components as indepen-
dent as possible, so that they can be re-used
for other purposes as well.

In order to meet these objectives, we designed the
processing pipeline as a federation of microservices
that communicate with each other via REST APIs
and/or a message queue.
For rapid prototyping, we defined REST APIs

for each NLP module within the OpenAPI Specifi-
cation Framework11. The suite of Swagger tools12
associated with OpenAPI allowed us to specify
REST APIs quickly and generate boilerplate code
for the back-end server of each microservice. This
reduced integration efforts to implementing a few
back-end functions for each RESTful server — in
whatever programming language the contributing
partner felt most comfortable with.
In the Platform prototype, we used separate pro-

cesses that act as dedicated intermediaries between
the message queue13 and each individual NLP com-
ponent. As the Platform matures, we gradually
moving to implementing RabbitMQ interfaces di-
rectly with the NLP processors, to eliminate the
intermediaries and reduce the overall complexity
of the system.
One of the great advantages of using a message

queue is that it makes scaling and load balancing
easy. If we need more throughput, we add more
workers (possibly on different machines) that talk
to the same message queues. Each type of task has
two queues: one for open requests, the other one for
completed requests. Each worker loops over wait-
ing for a message to appear in the queue, popping it
of it, acknowledging it upon successful completion
(so that it can be marked as done), and pushing
the response onto the respective queue. Workers
need not be aware of the overall architecture of
the system; only the overall task scheduler has to
be aware of the actual work flow.
Maintaining the RESTful APIs is nevertheless

worthwhile: it allows individual components to be
deployed easily as a service outside of the Plat-
form’s context and workflow.

11 www.openapis.org; formerly Swagger
12 www.swagger.io
13 RabbitMQ (https://www.rabbitmq.com/) works

well for us.

The overall NLP processing workflow is designed
as an icremental annotation process: each ser-
vice augments incoming media items with addi-
tional information: automatic speech recognition
(ASR) services add transcriptions, machine trans-
lation (MT) engines add translations, and so forth.
Each component of the Platform runs indepen-

dently in a Docker14 application container. Similar
to conventional virtual machines (VMs), Docker
containers isolate applications from the host sys-
tem by running them in a separate environment
(“container”), so that each application can use its
own set of libraries, ports, etc. However, unlike
conventional VMs, which emulate a complete ma-
chine including device and memory management,
the Docker engine allows containers to share the
host’s kernel and resources, greatly reducing the
virtualisation / containerization overhead. For
small-scale single-host deployment (up to ten live
streams on a 32-core server), we use Docker Com-
pose;15 for multi-host scaling, Docker Swarm16.
Another great advantage of the Docker platform

is that many third-party components that we rely
on (message queue, data bases) are available as
pre-compiled Docker containers, so that their de-
ployment within the Platform is trivial. No de-
pendencies to manage, no compilation from scratch
required, no conflicts with the OS on the host ma-
chine.
Our approach to the design of the Platform has

several advantages over tigher integration within a
single development framework in which contribut-
ing partners would be required to provide software
libraries for one or more specific programming lan-
guages.
First, in line with our first design objective, it

minimizes the integration overhead.
Second, it is agnostic to implementational

choices and software dependencies of individual
components. Each contributing partner can con-
tinue to work within their preferred development
environment.17
Third, it provides for easy scalability of the sys-

tem, as the Platform can be easily distributed over
multiple hosts. With the message queue approach,
multiple workers providing identical services can
share the processing load.
Fourth, modules can be updated without having

to re-build the entire system. Even live continu-
ous upgrades and server migration can be accom-
plished easily by starting up a new instance of a
specific service and then shutting down the obso-

14 www.docker.com
15 https://docs.docker.com/compose/
16 https://docs.docker.com/engine/swarm
17 In the case of Windows-based software, however, li-

censing issues have to be considered for deployment
in container environments such as Docker.
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lete one.
Fifth, meeting our second design objective, the

strong modularization of the Platform allows for
easy re-use of components. The back-end server for
each component can easily be integrated into other
applications (albeit potentially requiring augmen-
tations to the API).

5 Conclusion

We have reported on our experiences in imple-
menting a high-performance, highly scalable natu-
ral language processing pipeline from existing im-
plementations of state-of-the art as an assembly of
containerized micro-services. We found that this
approach greatly facilitated technology integration
and collaboration, as it eliminated many points
of potential friction, such as having to agree on
a joint software development framework, adapting
libraries, and dealing with software dependencies.
Using the Docker platform, we are able to deploy
and scale the Platform quickly.

Availability

The Platform infrastructure and most of its com-
ponents are scheduled to be released as open-source
software by the end of August 2018 and will be
available through the project web site at

www.summa-project.eu.
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Abstract

A major aim of open-source NLP is
to quickly and accurately reproduce
the results of new work, in a manner
that the community can easily use and
modify. While most papers publish
enough detail for replication, it still
may be difficult to achieve good re-
sults in practice. This paper is an ex-
periment. In it, I consider a worked
exercise with the goal of implement-
ing the results of the recent paper.
The replication exercise aims at sim-
ple code structure that follows closely
with the original work, while achiev-
ing an efficient usable system. An im-
plicit premise of this exercise is to en-
courage researchers to consider this
method for new results.

1 Introduction

Replication of published results remains a
challenging issue in open-source NLP. When
a new paper is published with major im-
provements, it is common for many mem-
bers of the community to independently re-
produce the numbers experimentally, which
is often a struggle. Practically this makes it
difficult to improve scores, but also impor-
tantly it is a pedagogical issue if students can-
not reproduce results from scientific publica-
tions.

The recent turn towards deep learning has
exerbated this issue. New models require
extensive hyperparameter tuning and long
training times. Small mistakes can cause ma-
jor issues. Fortunately though, new toolsets
have made it possible to write simpler more
mathematically declarative code.

In this experimental paper, I propose an ex-
ercise in open-source NLP. The goal is to tran-
scribe a recent paper into a simple and under-
standable form. The document itself is pre-
sented as an annotated paper. That is the
main document (in different font) is an ex-
cerpt of the recent paper “Attention is All You
Need” (Vaswani et al., 2017). I add annota-
tion in the form of italicized comments and
include code in PyTorch directly in the paper
itself.

Note this document itself is presented as a
blog post 1 and is completely executable as a
notebook. In the spirit of reproducibility this
work itself is distilled from the same source
with images inline.

1Presented at http://nlp.seas.harvard.
edu/2018/04/03/attention.html with source
code at https://github.com/harvardnlp/
annotated-transformer
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2 Background

The goal of reducing sequential computa-
tion also forms the foundation of the Extended
Neural GPU, ByteNet and ConvS2S, all of
which use convolutional neural networks as
basic building block, computing hidden rep-
resentations in parallel for all input and out-
put positions. In these models, the number
of operations required to relate signals from
two arbitrary input or output positions grows
in the distance between positions, linearly
for ConvS2S and logarithmically for ByteNet.
This makes it more difficult to learn depen-
dencies between distant positions. In the
Transformer this is reduced to a constant
number of operations, albeit at the cost of
reduced effective resolution due to averag-
ing attention-weighted positions, an effect we
counteract with Multi-Head Attention.

Self-attention, sometimes called intra-
attention is an attention mechanism relating
different positions of a single sequence in or-
der to compute a representation of the se-
quence. Self-attention has been used suc-
cessfully in a variety of tasks including read-
ing comprehension, abstractive summariza-
tion, textual entailment and learning task-
independent sentence representations. End-
to-end memory networks are based on a re-
current attention mechanism instead of se-
quencealigned recurrence and have been
shown to perform well on simple-language
question answering and language modeling
tasks.

To the best of our knowledge, however, the
Transformer is the first transduction model re-
lying entirely on self-attention to compute rep-
resentations of its input and output without
using sequence aligned RNNs or convolution.

3 Model Architecture

Most competitive neural sequence trans-
duction models have an encoder-decoder
structure (Bahdanau et al., 2014). Here, the
encoder maps an input sequence of symbol
representations (x1, ..., xn) to a sequence of
continuous representations z = (z1, ..., zn).
Given z, the decoder then generates an out-
put sequence (y1, ..., ym) of symbols one el-
ement at a time. At each step the model

is auto-regressive (Graves, 2013), consum-
ing the previously generated symbols as ad-
ditional input when generating the next.

class EncoderDecoder(nn.Module):
"""
A standard Encoder-Decoder architecture.
Base for this and many other models.
"""
def __init__(self, encoder, decoder, src_embed,

tgt_embed, generator):
super(EncoderDecoder, self).__init__()
self.encoder = encoder
self.decoder = decoder
self.src_embed = src_embed
self.tgt_embed = tgt_embed
self.generator = generator

def forward(self, src, tgt, src_mask, tgt_mask):
"Take in and process masked src and target sequences."
return self.decode(self.encode(src, src_mask),

src_mask,
tgt, tgt_mask)

def encode(self, src, src_mask):
return self.encoder(self.src_embed(src), src_mask)

def decode(self, memory, src_mask, tgt, tgt_mask):
return self.decoder(self.tgt_embed(tgt), memory,

src_mask, tgt_mask)

class Generator(nn.Module):
"Define standard linear + softmax generation step."
def __init__(self, d_model, vocab):

super(Generator, self).__init__()
self.proj = nn.Linear(d_model, vocab)

def forward(self, x):
return F.log_softmax(self.proj(x), dim=-1)

The Transformer follows this overall archi-
tecture using stacked self-attention and point-
wise, fully connected layers for both the en-
coder and decoder, shown in the left and right
halves of Figure 1, respectively.
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3.1 Encoder and Decoder Stacks

3.1.1 Encoder

The encoder is composed of a stack of N = 6
identical layers.

def clones(module, N):
"Produce N identical layers."
return nn.ModuleList([copy.deepcopy(module)

for _ in range(N)])

class Encoder(nn.Module):
"Core encoder is a stack of N layers"
def __init__(self, layer, N):

super(Encoder, self).__init__()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.size)

def forward(self, x, mask):
"Pass the input/mask through each layer in turn."
for layer in self.layers:

x = layer(x, mask)
return self.norm(x)

We employ a residual connection (He et al.,
2016) around each of the two sub-layers, fol-
lowed by layer normalization (Ba et al., 2016).

class LayerNorm(nn.Module):
"Construct a layernorm module (See citation for details)."
def __init__(self, features, eps=1e-6):

super(LayerNorm, self).__init__()
self.a_2 = nn.Parameter(torch.ones(features))
self.b_2 = nn.Parameter(torch.zeros(features))
self.eps = eps

def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return (self.a_2 * (x - mean) /

(std + self.eps) + self.b_2)

That is, the output of each sub-layer
is LayerNorm(x + Sublayer(x)), where
Sublayer(x) is the function implemented
by the sub-layer itself. We apply dropout
(Srivastava et al., 2014) to the output of each
sub-layer, before it is added to the sub-layer
input and normalized.

To facilitate these residual connections, all
sub-layers in the model, as well as the em-
bedding layers, produce outputs of dimension
dmodel = 512.

class SublayerConnection(nn.Module):
"""
A layer norm followed by a residual connection.
Note norm is not applied to residual x.
"""
def __init__(self, size, dropout):

super(SublayerConnection, self).__init__()
self.norm = LayerNorm(size)
self.dropout = nn.Dropout(dropout)

def forward(self, x, sublayer):
"Apply residual connection to sublayer fn."
return x + self.dropout(sublayer(self.norm(x)))

Each layer has two sub-layers. The first is a
multi-head self-attention mechanism, and the
second is a simple, position-wise fully con-
nected feed-forward network.

class EncoderLayer(nn.Module):
"Encoder calls self-attn and feed forward."
def __init__(self, size, self_attn,

feed_forward, dropout):
super(EncoderLayer, self).__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
sublayer = SublayerConnection(size, dropout)
self.sublayer = clones(sublayer, 2)
self.size = size

def forward(self, x, mask):
"Follow Figure 1 (left) for connections."
x = self.sublayer[0](x, lambda x:

self.self_attn(x, x, x, mask))
return self.sublayer[1](x, self.feed_forward)

3.1.2 Decoder

The decoder is also composed of a stack of
N = 6 identical layers.

class Decoder(nn.Module):
"Generic N layer decoder with masking."
def __init__(self, layer, N):

super(Decoder, self).__init__()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.size)

def forward(self, x, memory, src_mask, tgt_mask):
for layer in self.layers:

x = layer(x, memory, src_mask, tgt_mask)
return self.norm(x)

In addition to the two sub-layers in each
encoder layer, the decoder inserts a third
sub-layer, which performs multi-head atten-
tion over the output of the encoder stack.
Similar to the encoder, we employ residual
connections around each of the sub-layers,
followed by layer normalization.

class DecoderLayer(nn.Module):
"Decoder calls self-attn, src-attn, and feed forward."
def __init__(self, size, self_attn,

src_attn, feed_forward, dropout):
super(DecoderLayer, self).__init__()
self.self_attn = self_attn
self.src_attn = src_attn
self.feed_forward = feed_forward
sublayer = SublayerConnection(size, dropout)
self.sublayer = clones(sublayer, 3)
self.size = size

def forward(self, x, memory, s_mask, t_mask):
"Follow Figure 1 (right) for connections."
m = memory
x = self.sublayer[0](x, lambda x:

self.self_attn(x, x, x, t_mask))
x = self.sublayer[1](x, lambda x:

self.src_attn(x, m, m, s_mask))
return self.sublayer[2](x, self.feed_forward)

We also modify the self-attention sub-layer
in the decoder stack to prevent positions
from attending to subsequent positions. This
masking, combined with fact that the output
embeddings are offset by one position, en-
sures that the predictions for position i can
depend only on the known outputs at posi-
tions less than i.

def subsequent_mask(size):
"Mask out subsequent positions."
attn_shape = (1, size, size)
subsequent_mask = np.triu(np.ones(attn_shape), k=1)
return torch.from_numpy(

subsequent_mask.astype('uint8')) == 0
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3.1.3 Attention
An attention function can be described as
mapping a query and a set of key-value pairs
to an output, where the query, keys, values,
and output are all vectors. The output is com-
puted as a weighted sum of the values, where
the weight assigned to each value is com-
puted by a compatibility function of the query
with the corresponding key.

We call our particular attention "Scaled
Dot-Product Attention". The input consists of
queries and keys of dimension dk, and values
of dimension dv. We compute the dot prod-
ucts of the query with all keys, divide each by√

dk, and apply a softmax function to obtain
the weights on the values.

In practice, we compute the attention func-
tion on a set of queries simultaneously,
packed together into a matrix Q. The keys
and values are also packed together into ma-
trices K and V. We compute the matrix of
outputs as:

Attention(Q, K, V) = softmax(
QKT
√

dk
)V

def attention(query, key, value, mask=None, dropout=None):
"Compute 'Scaled Dot Product Attention'"
d_k = query.size(-1)
key_t = key.transpose(-2, -1)
scores = torch.matmul(query, key_t) / math.sqrt(d_k)
if mask is not None:

scores = scores.masked_fill(mask == 0, -1e9)
p_attn = F.softmax(scores, dim=-1)
if dropout is not None:

p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn

The two most commonly used attention
functions are additive attention (Bahdanau
et al., 2014), and dot-product (multiplicative)
attention. Dot-product attention is identical to
our algorithm, except for the scaling factor of

1√
dk

. Additive attention computes the com-
patibility function using a feed-forward net-
work with a single hidden layer. While the

two are similar in theoretical complexity, dot-
product attention is much faster and more
space-efficient in practice, since it can be im-
plemented using highly optimized matrix mul-
tiplication code.

While for small values of dk the two mech-
anisms perform similarly, additive attention
outperforms dot product attention without
scaling for larger values of dk (Britz et al.,
2017). We suspect that for large values of
dk, the dot products grow large in magni-
tude, pushing the softmax function into re-
gions where it has extremely small gradients
(To illustrate why the dot products get large,
assume that the components of q and k are
independent random variables with mean 0
and variance 1. Then their dot product, q · k =

∑dk
i=1 qiki, has mean 0 and variance dk.). To

counteract this effect, we scale the dot prod-
ucts by 1√

dk
.

Multi-head attention allows the model to
jointly attend to information from different
representation subspaces at different posi-
tions. With a single attention head, averaging
inhibits this.

MultiHead(Q, K, V) = Concat(head1, ..., headh)WO

where headi = Attention(QWQ
i , KWK

i , VWV
i )

Where the projections are parameter ma-
trices WQ

i ∈ Rdmodel×dk , WK
i ∈ Rdmodel×dk ,

WV
i ∈ Rdmodel×dv and WO ∈ Rhdv×dmodel . In

this work we employ h = 8 parallel attention
layers, or heads. For each of these we use
dk = dv = dmodel/h = 64. Due to the reduced
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dimension of each head, the total computa-
tional cost is similar to that of single-head at-
tention with full dimensionality.

class MultiHeadedAttention(nn.Module):
def __init__(self, h, d_model, dropout=0.1):

"Take in model size and number of heads."
super(MultiHeadedAttention, self).__init__()
assert d_model % h == 0
# We assume d_v always equals d_k
self.d_k = d_model // h
self.h = h
self.linears = clones(nn.Linear(d_model, d_model), 4)
self.attn = None
self.dropout = nn.Dropout(p=dropout)

def forward(self, query, key, value, mask=None):
"Implements Figure 2"
if mask is not None:

# Same mask applied to all h heads.
mask = mask.unsqueeze(1)

nb = query.size(0)

# 1) Do all the linear projections in batch from d_model => h x d_k
query, key, value = [

l(x).view(nb, -1, self.h, self.d_k).transpose(1, 2)
for l, x in zip(self.linears, (query, key, value))]

# 2) Apply attention on all the projected vectors in batch.
x, self.attn = attention(query, key, value, mask=mask,

dropout=self.dropout)

# 3) "Concat" using a view and apply a final linear.
x = x.transpose(1, 2).contiguous().view(

nb, -1, self.h * self.d_k)
return self.linears[-1](x)

3.2 Position-wise Feed-Forward Networks

In addition to attention sub-layers, each of
the layers in our encoder and decoder con-
tains a fully connected feed-forward network,
which is applied to each position separately
and identically. This consists of two linear
transformations with a ReLU activation in be-
tween.

FFN(x) = max(0, xW1 + b1)W2 + b2

While the linear transformations are the same
across different positions, they use different
parameters from layer to layer. Another way
of describing this is as two convolutions with
kernel size 1. The dimensionality of input and
output is dmodel = 512, and the inner-layer has
dimensionality d f f = 2048.

class PositionwiseFeedForward(nn.Module):
"Implements FFN equation."
def __init__(self, d_model, d_ff, dropout=0.1):

super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)

def forward(self, x):
return self.w_2(self.dropout(F.relu(self.w_1(x))))

3.3 Embeddings and Softmax

Similarly to other sequence transduction
models, we use learned embeddings to con-
vert the input tokens and output tokens to
vectors of dimension dmodel. We also use

the usual learned linear transformation and
softmax function to convert the decoder out-
put to predicted next-token probabilities. In
our model, we share the same weight ma-
trix between the two embedding layers and
the pre-softmax linear transformation, similar
to (Press and Wolf, 2016). In the embedding
layers, we multiply those weights by

√
dmodel.

class Embeddings(nn.Module):
def __init__(self, d_model, vocab):

super(Embeddings, self).__init__()
self.lut = nn.Embedding(vocab, d_model)
self.d_model = d_model

def forward(self, x):
return self.lut(x) * math.sqrt(self.d_model)

3.4 Positional Encoding

Since our model contains no recurrence and
no convolution, in order for the model to make
use of the order of the sequence, we must in-
ject some information about the relative or ab-
solute position of the tokens in the sequence.
To this end, we add "positional encodings" to
the input embeddings at the bottoms of the
encoder and decoder stacks. The positional
encodings have the same dimension dmodel
as the embeddings, so that the two can be
summed. There are many choices of posi-
tional encodings, learned and fixed (Gehring
et al., 2017).

In this work, we use sine and cosine func-
tions of different frequencies:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)

where pos is the position and i is the dimen-
sion. That is, each dimension of the posi-
tional encoding corresponds to a sinusoid.
The wavelengths form a geometric progres-
sion from 2π to 10000 · 2π. We chose this
function because we hypothesized it would
allow the model to easily learn to attend by
relative positions, since for any fixed offset k,
PEpos+k can be represented as a linear func-
tion of PEpos.

In addition, we apply dropout to the sums of
the embeddings and the positional encodings
in both the encoder and decoder stacks. For
the base model, we use a rate of Pdrop = 0.1.
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class PositionalEncoding(nn.Module):
"Implement the PE function."
def __init__(self, d_model, dropout, max_len=5000):

super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)

# Compute the positional encodings once in log space.
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) *

-(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)

def forward(self, x):
x = x + Variable(self.pe[:, :x.size(1)],

requires_grad=False)
return self.dropout(x)

plt.figure(figsize=(15, 5))
pe = PositionalEncoding(20, 0)
y = pe.forward(Variable(torch.zeros(1, 100, 20)))
plt.plot(np.arange(100), y[0, :, 4:8].data.numpy())
plt.legend(["dim %d" % p for p in [4, 5, 6, 7]])
None

We also experimented with using learned
positional embeddings (Gehring et al., 2017)
instead, and found that the two versions pro-
duced nearly identical results. We chose
the sinusoidal version because it may al-
low the model to extrapolate to sequence
lengths longer than the ones encountered
during training.

def make_model(src_vocab, tgt_vocab, N=6,
d_model=512, d_ff=2048, h=8, dropout=0.1):

"Helper: Construct a model from hyperparameters."
c = copy.deepcopy
attn = MultiHeadedAttention(h, d_model)
ff = PositionwiseFeedForward(d_model, d_ff, dropout)
position = PositionalEncoding(d_model, dropout)
d = d_model
model = EncoderDecoder(

Encoder(EncoderLayer(d, c(attn), c(ff), dropout), N),
Decoder(DecoderLayer(d, c(attn), c(attn),

c(ff), dropout), N),
nn.Sequential(Embeddings(d, src_vocab), c(position)),
nn.Sequential(Embeddings(d, tgt_vocab), c(position)),
Generator(d_model, tgt_vocab))

# This was important from their code.
# Initialize parameters with Glorot / fan_avg.
for p in model.parameters():

if p.dim() > 1:
nn.init.xavier_uniform(p)

return model

4 Training

This section describes the training regime for
our models.

4.1 Batches and Masking
class Batch:

"Batch of data with mask for training."
def __init__(self, src, trg=None, pad=0):

self.src = src
self.src_mask = (src != pad).unsqueeze(-2)
if trg is not None:

self.trg = trg[:, :-1]
self.trg_y = trg[:, 1:]
self.trg_mask = self.make_std_mask(self.trg, pad)
self.ntokens = (self.trg_y != pad).data.sum()

@staticmethod
def make_std_mask(tgt, pad):

"Create a mask to hide padding and future words."
tgt_mask = (tgt != pad).unsqueeze(-2)
tgt_mask = tgt_mask & Variable(

subsequent_mask(tgt.size(-1))
.type_as(tgt_mask.data))

return tgt_mask

4.2 Training Loop
def run_epoch(data_iter, model, loss_compute):

"Standard Training and Logging Function"
start = time.time()
total_tokens = 0
total_loss = 0
tokens = 0
for i, batch in enumerate(data_iter):

out = model.forward(batch.src, batch.trg,
batch.src_mask, batch.trg_mask)

loss = loss_compute(out, batch.trg_y, batch.ntokens)
total_loss += loss
total_tokens += batch.ntokens
tokens += batch.ntokens
if i % 50 == 1:

elapsed = time.time() - start
print("Epoch Step: %d Loss: %f Tokens / Sec: %f" %

(i, loss / batch.ntokens, tokens / elapsed))
start = time.time()
tokens = 0

return total_loss / total_tokens

4.3 Training Data and Batching

We trained on the standard WMT 2014
English-German dataset consisting of about
4.5 million sentence pairs. Sentences were
encoded using byte-pair encoding, which has
a shared source-target vocabulary of about
37000 tokens. For English-French, we used
the significantly larger WMT 2014 English-
French dataset consisting of 36M sentences
and split tokens into a 32000 word-piece vo-
cabulary.

Sentence pairs were batched together by
approximate sequence length. Each training
batch contained a set of sentence pairs con-
taining approximately 25000 source tokens
and 25000 target tokens.

global max_src_in_batch, max_tgt_in_batch
def batch_size_fn(new, count, sofar):

"Calculate total number of tokens + padding."
global max_src_in_batch, max_tgt_in_batch
if count == 1:

max_src_in_batch = 0
max_tgt_in_batch = 0

max_src_in_batch = max(max_src_in_batch,
len(new.src))

max_tgt_in_batch = max(max_tgt_in_batch,
len(new.trg) + 2)

src_elements = count * max_src_in_batch
tgt_elements = count * max_tgt_in_batch
return max(src_elements, tgt_elements)

4.4 Hardware and Schedule

We trained our models on one machine with 8
NVIDIA P100 GPUs. For our base models us-
ing the hyperparameters described through-
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out the paper, each training step took about
0.4 seconds. We trained the base models for
a total of 100,000 steps or 12 hours. For our
big models, step time was 1.0 seconds. The
big models were trained for 300,000 steps
(3.5 days).

4.5 Optimizer

We used the Adam optimizer (Kingma and
Ba, 2014) with β1 = 0.9, β2 = 0.98 and
ε = 10−9. We varied the learning rate over
the course of training, according to the for-
mula:

lrate = d−0.5
model·

min(step_num−0.5, step_num ·warmup_steps−1.5)

This corresponds to increasing the learning
rate linearly for the first warmup_steps train-
ing steps, and decreasing it thereafter propor-
tionally to the inverse square root of the step
number. We used warmup_steps = 4000.

class NoamOpt:
"Optim wrapper that implements rate."
def __init__(self, model_size, factor,

warmup, optimizer):
self.optimizer = optimizer
self._step = 0
self.warmup = warmup
self.factor = factor
self.model_size = model_size
self._rate = 0

def step(self):
"Update parameters and rate"
self._step += 1
rate = self.rate()
for p in self.optimizer.param_groups:

p['lr'] = rate
self._rate = rate
self.optimizer.step()

def rate(self, step=None):
"Implement `lrate` above"
if step is None:

step = self._step
return self.factor * (

self.model_size ** (-0.5) *
min(step ** (-0.5), step * self.warmup ** (-1.5)))

def get_std_opt(model):
return NoamOpt(model.src_embed[0].d_model, 2, 4000,

torch.optim.Adam(model.parameters(),
lr=0,
betas=(0.9, 0.98),
eps=1e-9))

# Three settings of the lrate hyperparameters.
opts = [NoamOpt(512, 1, 4000, None),

NoamOpt(512, 1, 8000, None),
NoamOpt(256, 1, 4000, None)]

plt.plot(np.arange(1, 20000), [[opt.rate(i) for opt in opts]
for i in range(1, 20000)])

plt.legend(["512:4000", "512:8000", "256:4000"])
None

4.6 Regularization

4.6.1 Label Smoothing

During training, we employed label smooth-
ing of value εls = 0.1 (Szegedy et al., 2015).
This hurts perplexity, as the model learns to
be more unsure, but improves accuracy and
BLEU score.

class LabelSmoothing(nn.Module):
"Implement label smoothing."
def __init__(self, size, padding_idx, smoothing=0.0):

super(LabelSmoothing, self).__init__()
self.criterion = nn.KLDivLoss(size_average=False)
self.padding_idx = padding_idx
self.confidence = 1.0 - smoothing
self.smoothing = smoothing
self.size = size
self.true_dist = None

def forward(self, x, target):
assert x.size(1) == self.size
true_dist = x.data.clone()
true_dist.fill_(self.smoothing / (self.size - 2))
true_dist.scatter_(1, target.data.unsqueeze(1),

self.confidence)
true_dist[:, self.padding_idx] = 0
mask = torch.nonzero(target.data == self.padding_idx)
if mask.dim() > 0:

true_dist.index_fill_(0, mask.squeeze(), 0.0)
self.true_dist = true_dist
return self.criterion(x,

Variable(true_dist,
requires_grad=False))

#Example of label smoothing.
crit = LabelSmoothing(5, 0, 0.4)
predict = torch.FloatTensor(

[[0, 0.2, 0.7, 0.1, 0],
[0, 0.2, 0.7, 0.1, 0],
[0, 0.2, 0.7, 0.1, 0]])

v = crit(Variable(predict.log()),
Variable(torch.LongTensor([2, 1, 0])))

# Show the target distributions expected by the system.
plt.imshow(crit.true_dist)
None
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crit = LabelSmoothing(5, 0, 0.1)
def loss(x):

d = x + 3 * 1
predict = torch.FloatTensor([[0, x / d, 1 / d,

1 / d, 1 / d]])
return crit(Variable(predict.log()),

Variable(torch.LongTensor([1]))).data[0]
plt.plot(np.arange(1, 100),

[loss(x) for x in range(1, 100)])
None

4.7 Loss Computation
class SimpleLossCompute:

"A simple loss compute and train function."
def __init__(self, generator,

criterion, opt=None):
self.generator = generator
self.criterion = criterion
self.opt = opt

def __call__(self, x, y, norm):
x = self.generator(x)
loss = self.criterion(

x.contiguous().view(-1, x.size(-1)),
y.contiguous().view(-1)) / norm

loss.backward()
if self.opt is not None:

self.opt.step()
self.opt.optimizer.zero_grad()

return loss.data[0] * norm

5 Decoding and Visualization

5.1 Greedy Decoding
def greedy_decode(model, src, src_mask,

max_len, start_sym):
memory = model.encode(src, src_mask)
ys = torch.ones(1, 1).fill_(start_sym).type_as(src.data)
for i in range(max_len - 1):

out = model.decode(memory, src_mask,
Variable(ys),
Variable(

subsequent_mask(ys.size(1))
.type_as(src.data)))

prob = model.generator(out[:, -1])
_, next_word = torch.max(prob, dim=1)
next_word = next_word.data[0]
ys = torch.cat([ys,

torch.ones(1, 1)
.type_as(src.data)
.fill_(next_word)],

dim=1)
return ys

model.eval()
sent = """@@@The @@@log @@@file @@@can @@@be @@@sent @@@secret ly

@@@with @@@email @@@or @@@FTP @@@to @@@a @@@specified
@@@receiver""".split()

src = torch.LongTensor([[SRC.stoi[w] for w in sent]])
src = Variable(src)
src_mask = (src != SRC.stoi["<blank>"]).unsqueeze(-2)
out = greedy_decode(model, src, src_mask,

max_len=60,
start_symbol=TGT.stoi["<s>"])

print("Translation:", end="\t")
trans = "<s> "
for i in range(1, out.size(1)):

sym = TGT.itos[out[0, i]]
if sym == "</s>":

break
trans += sym + " "

print(trans)

5.2 Attention Visualization
tgt_sent = trans.split()
def draw(data, x, y, ax):

seaborn.heatmap(data,
xticklabels=x, square=True,
yticklabels=y, vmin=0.0, vmax=1.0,
cbar=False, ax=ax)

for layer_num in range(1, 6, 2):
fig, axs = plt.subplots(1, 4, figsize=(20, 10))
print("Encoder Layer", layer_num + 1)
layer = model.encoder.layers[layer_num]
for h in range(4):

draw(layer.self_attn.attn[0, h].data,
sent, sent if h == 0 else [], ax=axs[h])

plt.show()

for layer_num in range(1, 6, 2):
fig, axs = plt.subplots(1, 4, figsize=(20, 10))
print("Decoder Self Layer", layer_num + 1)
layer = model.decoder.layers[layer_num]
for h in range(4):

draw(layer.self_attn.attn[0, h]
.data[:len(tgt_sent), :len(tgt_sent)],
tgt_sent, tgt_sent if h == 0 else [], ax=axs[h])

plt.show()
print("Decoder Src Layer", layer_num + 1)
fig, axs = plt.subplots(1, 4, figsize=(20, 10))
for h in range(4):

draw(layer.src_attn.attn[0, h].data[
:len(tgt_sent), :len(sent)],
sent, tgt_sent if h == 0 else [], ax=axs[h])

plt.show()

6 Conclusion

This paper presents a replication exercise of
the transformer network. Consult the full on-
line version for features such as multi-gpu
training, real experiments on full translation
problems, and pointers to other extensions
such as beam search, sub-word models, and
model averaging. The goal is to explore a lit-
erate programming experiment of interleav-
ing model replication with formal writing.
While not always possible, this modality can
be useful for transmitting ideas and encour-
aging faster open-source uptake. Addition-
ally this method can be an easy way to learn
about a model alongside its implementation.
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