
Proceedings of the BioNLP 2018 workshop, pages 118–128
Melbourne, Australia, July 19, 2018. c©2018 Association for Computational Linguistics

118

Phrase2VecGLM: Neural generalized language model–based
semantic tagging for complex query reformulation in medical IR

Manirupa Das†, Eric Fosler-Lussier†, Simon Lin‡, Soheil Moosavinasab‡,
David Chen‡, Steve Rust‡, Yungui Huang‡ & Rajiv Ramnath†

The Ohio State University† & Nationwide Children’s Hospital‡

{das.65, fosler.1, ramnath.6}@osu.edu
{Simon.Lin, SeyedSoheil.Moosavinasab, David.Chen3,
Steve.Rust, Yungui.Huang}@nationwidechildrens.org

Abstract

In fact-based information retrieval, state-
of-the-art performance is traditionally
achieved by knowledge graphs driven by
knowledge bases, as they can represent
facts about and capture relationships be-
tween entities very well. However, in
domains such as medical information re-
trieval, where addressing specific infor-
mation needs of complex queries may re-
quire understanding query intent by cap-
turing novel associations between poten-
tially latent concepts, these systems can
fall short. In this work, we develop
a novel, completely unsupervised, neural
language model–based ranking approach
for semantic tagging of documents, using
the document to be tagged as a query into
the model to retrieve candidate phrases
from top–ranked related documents, thus
associating every document with novel re-
lated concepts extracted from the text.
For this we extend the word embedding–
based generalized language model (GLM)
due to (Ganguly et al., 2015), to em-
ploy phrasal embeddings, and use the se-
mantic tags thus obtained for downstream
query expansion, both directly and in feed-
back loop settings. Our method, eval-
uated using the TREC 2016 clinical de-
cision support challenge dataset, shows
statistically significant improvement not
only over various baselines that use stan-
dard MeSH terms and UMLS concepts for
query expansion, but also over baselines
using human expert–assigned concept tags
for the queries, on top of a standard Okapi
BM25–based document retrieval system.

1 Introduction

Existing state-of-the-art information retrieval (IR)
systems such as knowledge graphs (Su et al., 2015;
Sun et al., 2015), or information extraction tech-
niques centered around entity relationships (Ritter
et al., 2013), that often rely on some form of weak
supervision from ontological or knowledgebase
(KB) sources, tend to perform quite reliably on
fact-based information retrieval and factoid ques-
tion answering tasks. However, such systems may
be limited in their ability to address the com-
plex information needs of specific types of queries
(Roberts et al., 2016; Diekema et al., 2003) in do-
mains such as clinical decision support (Luo et al.,
2008) or guided product search (Teo et al., 2016;
McAuley and Yang, 2016), due to: 1) complex and
subjective, or lengthy nature of the query contain-
ing multiple topics, 2) vocabulary mismatch be-
tween the query expression and knowledge repre-
sentations in the document collection, and 3) lack
of sufficiently complete knowledge bases of “re-
lated concepts”, covering all possible relations be-
tween candidate concepts that may exist in a col-
lection, essential for effectively addressing these
types of queries (Hendrickx et al., 2009).

We hypothesize, that similar to human ex-
perts who can determine the aboutness of an
unseen document by recalling meaningful con-
cepts gleaned from similar past experiences via
shared contexts, a completely unsupervised ma-
chine learning model could be trained to associate
documents within a large collection with meaning-
ful concepts discovered by fully leveraging shared
contexts within and between documents, thus sur-
facing “related” concepts specific to the current
context (Lin and Pantel, 2002; Halpin et al., 2007;
Xu et al., 2014; Kholghi et al., 2015a; Turney and
Pantel, 2010; Pantel et al., 2007; Bhagat and Hovy,
2013; Hendrickx et al., 2009). As a trivial exam-
ple, ordinarily unrelated concepts (noun phrases,
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in this work) such as “scarlet macaw” and “rac-
coon” occurring in separate documents d1 and d2
may become related by a novel context such as
“exotic pets” that may occur as terms in a query
or as a phrase in a document dp which could be
related to both d1 and d2. If by some means,
documents d1 and d2 were semantically tagged
with the phrase “exotic pets” via dp, those docu-
ments would surface in the event of such a query
(Hendrickx et al., 2009; Bhagat and Ravichandran,
2008). This could thus help to better close the vo-
cabulary gap between potential user queries and
the documents. To our knowledge, ours is the
first work that employs word and phrase-level em-
beddings for local context analysis in a pseudo-
relevance feedback setting (Xu and Croft, 2000),
using a language model-based document ranking
framework, to semantically tag documents with
appropriate concepts for use in downstream re-
trieval tasks (Kholghi et al., 2015a; De Vine et al.,
2014; Sordoni et al., 2014; Zhang et al., 2016;
Zuccon et al., 2015; Tuarob et al., 2013).

The main contributions of our work, are as fol-
lows: 1) We present a novel use for a neural lan-
guage modeling approach that leverages shared
context between documents within a collection
via phrase-based embeddings (1, 2, and 3-grams),
finding the right trade-off between the local con-
text around each term versus its global context
within the collection, incorporating a local context
analysis-based pseudo-relevance feedback mech-
anism(Xu and Croft, 2000) for concept extrac-
tion. 2) Our method is fully unsupervised, i.e.
it includes no outside sources of knowledge in
the training, leveraging instead the shared contexts
within the document collection itself, via word and
phrasal embeddings, mimicking a human that po-
tentially reads through the documents in the col-
lection and uses the seen information to make rele-
vant concept tag judgments on unseen documents.
3) Our method presents a black-box approach for
tagging any corpus of documents with meaningful
concepts, treating it as a closed system. Thus the
concept associations can be pre-computed offline
or periodically, as new documents are added to
the collection and can reside outside of the docu-
ment retrieval system, allowing for it to be plugged
into any such system, or for the underlying re-
trieval system to be changed. It is also in contrast
to previous approaches to document categoriza-
tion for retrieval, such as those based on cluster-

ing, e.g. clustering by committee (Lin and Pantel,
2002) or semantic class induction as in (Lin and
Pantel, 2001b), LDA-based topic modeling (Blei
et al., 2003; Griffiths and Steyvers, 2004; Tuarob
et al., 2013) and supervised or active learning ap-
proaches (Kholghi et al., 2015a) for concept ex-
traction in information retrieval.

2 Background and Motivation

The problem of vocabulary mismatch in informa-
tion retrieval where semantic overlap may exist
while there is no lexical overlap, can be greatly
alleviated by the use of query expansion (QE)
techniques; whereby a query is reformulated to
improve retrieval performance and obtain addi-
tional relevant documents by expanding the origi-
nal query with additional relevant terms, and re-
weighting the terms in the expanded query (Xu
and Croft, 2000; Rivas et al., 2014). This can also
be done by learning semantic classes or related
candidate concepts in the text and subsequently
tagging documents or content with these seman-
tic concept tags, that could then serve as a means
for either query-document keyword matching, or
for query expansion, to facilitate downstream re-
trieval or question answering tasks (Lin and Pan-
tel, 2002; Xu and Croft, 2000; Lin and Pantel,
2001b; Xu et al., 2014; Bhagat and Ravichandran,
2008; Li et al., 2011; Tuarob et al., 2013; Halpin
et al., 2007; Lin and Pantel, 2001a; McAuley and
Yang, 2016). This is exactly the approach we
adopt in order to achieve query expansion in an au-
tomated, fully unsupervised fashion, using a neu-
ral language model for local relevance feedback
(Xu and Croft, 2000).

A major problem of approaches like LSA
(Deerwester et al., 1990) and LDA–based topic
modeling (Blei et al., 2003; Griffiths and Steyvers,
2004) is that they only consider word co-
occurrences at the level of documents to model
term associations, which may not always be re-
liable. Furthermore, these are parameterized ap-
proaches, where the number of topics K is fixed;
and the final topics learnt are available as bags of
words or n-grams from which topic labels must
yet be inferred by an expert. In contrast, word and
phrasal embeddings take into account local co-
occurrence information of terms in the top ranked
documents retrieved in response to a query (cor-
responding to the relevance feedback step in IR).
This leads to a better modeling of query ver-
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sus document term dependencies (Ganguly et al.,
2015; Xu and Croft, 2000) lending itself to direct
unsupervised extraction of meaningful terms re-
lated to a document, and eventually to the query.

Automatic query expansion techniques can be
further categorized as either global or local. While
global techniques rely on analysis of a whole
collection to discover word relationships, local
techniques emphasize analysis of the top-ranked
documents retrieved for a query (Xu and Croft,
2000; Manning et al., 2009). Global methods in-
clude: (a) query expansion/reformulation with a
thesaurus or ontology, e.g. WordNet, UMLS (b)
query expansion via automatic thesaurus genera-
tion, and (c) techniques like spelling correction
(Manning et al., 2009). Local methods adjust a
query relative to the documents that initially ap-
pear to match the query, which is the basic idea
behind our language modeling approach to seman-
tic tagging. Basic local methods comprise: (a) rel-
evance feedback, (b) pseudo-relevance feedback,
(or blind relevance feedback), and (c) (global) in-
direct relevance feedback (Manning et al., 2009).
Pseudo-relevance feedback automates the man-
ual part of relevance feedback, so that the user
gets improved retrieval performance without an
extended interaction.

Here, we find an initial set of most relevant doc-
uments, then assuming that the top k ranked doc-
uments are relevant, relevance feedback is done
as before under this assumption. Our proposed
method tries to exactly mimic the human user be-
havior via pseudo-relevance feedback to semanti-
cally pre-tag documents that can later aid down-
stream novel retrieval for direct querying or re-
fined querying. Thus, in our work we combine this
local feedback approach with our neural language
model, Phrase2VecGLM, as the query mechanism.
Using a pseudo-document representation of top-
K TFIDF terms for the document as a query into
the GLM, we make novel use of Phrase2VecGLM,
to semantically tag documents with phrases rep-
resentative of latent concepts within those docu-
ments. This makes the collection more readily
searchable by use of these tags for query expan-
sion in downstream IR, particularly helpful in our
specific use case of medical information retrieval
(Luo et al., 2008; Kholghi et al., 2015b; De Vine
et al., 2014; Halpin et al., 2007; Li et al., 2011;
Zhang et al., 2016). Additionally, our method
treats all queries in our dataset as unseen at test

time, on which our actual results and gains are re-
ported.

3 Dataset and Task

The TREC Clinical Decision Support (CDS) task
track investigates techniques to evaluate biomed-
ical literature retrieval systems for providing an-
swers to generic clinical questions about patient
cases (Roberts et al., 2016), with a goal toward
making relevant biomedical information more dis-
coverable for clinicians. For the 2016 TREC CDS
challenge, actual electronic health records (EHR)
of patients, in the form of case reports, typically
describing a challenging medical case, as shown
in Figure 1 are used. A case report is, for our
purposes a complex query having a specific infor-
mation need. There are 30 queries in the chal-
lenge dataset, corresponding to such case reports,
divided into 3 topic types, at 3 levels of granularity
Note, Description and Summary text.

The target document collection is the Open
Access Subset of PubMed Central (PMC), con-
taining 1.25 million articles consisting of title,
keywords, abstract and body sections. In our
work, we develop our query expansion method as
a blackbox system using only a subset of 100K
documents of the entire collection for which hu-
man judgments are made available by TREC. This
allows us to derive “inferred measures” for Nor-
malized Discounted Cumulative Gain (NDCG)
and Precision at 10 (P@10) scores for our eval-
uation (Voorhees, 2014). However, we evaluate
our method on the entire collection of 1.25 mil-
lion PMC articles on a separate search engine
setup using an ElasticSearch (Gormley and Tong,
2015) instance, that indexes this entire set of ar-
ticles on all available fields. Our unsupervised
document tagging method as outlined in Section
4 employs only the abstract field of the 100K
PMC articles, for developing the Phrase2VecGLM
language model–based document ranking subse-
quently used in query expansion.

4 Methodology

In our work, a concept is defined as a “candidate
term” or “noun phrase” scored by a chosen metric
e.g. top-K TFIDF, for downstream use in our algo-
rithm (see Section 4.1 & Algorithm 1). They are
used in both, training, as building blocks for unsu-
pervised model creation by first learning a phrasal
embedding space on the document collection and
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Figure 1: Sample query from the TREC 2016 challenge dataset, representing a clinical note with patient
history, at Note, Description and Summary granularity levels.

subsequent construction of the GLM (Section 4.2),
and at inference, for semantically concept–tagging
documents. At the time of evaluation, concepts re-
fer to either query terms representing a query doc-
ument (Yang et al., 2009), or concept tags for tar-
get documents. Thus our concepts, predominantly
noun phrases, vary from a single unigram term to
consisting of up to three terms as employed by our
phrase-embedding based language model (Section
4.1). Word embedding techniques use the infor-
mation around the local context of each word to
derive the embeddings. We therefore hypothesize
that using these embeddings within a language
model (LM) could help to derive terms or con-
cepts that may be closely associated with a given
document (Ganguly et al., 2015). Then further ex-
tending the model to use embeddings of candidate
noun phrases, we could leverage such shared con-
texts for query expansion, despite no lexical over-
lap between the query and a given document. This
could potentially help both: 1) the global context
analysis for IR leading to better downstream re-
trieval performance from direct query expansion,
and, 2) the local context analysis from top-ranked
documents aiding query refinement for complex
query reformulation within a relevance feedback
loop (Su et al., 2015; Xu and Croft, 2000).

Thus, using our phrasal embedding based gen-
eral language model, Phrase2VecGLM, described
in Section 4.2 we generate top-ranked document
sets for each document in the collection, treating
each document as a query. We subsequently se-
lect concepts to tag query documents with, from
the top-ranked documents sets for each query. We
apply our language model-based concept discov-
ery to query expansion (QE) both directly on the
challenge dataset queries, as well as via relevance

feedback, using the concept tags for the top-ranked
documents as QE terms. We evaluate the ex-
panded queries on a separate ElasticSearch–based
search engine setup, showing improvement in both
methods of query expansion (Gormley and Tong,
2015; Chen et al., 2016).

4.1 Pre-processing corpus for Phrasal GLM
We first pre-process the documents in our col-
lection by lower-casing the text, removing most
punctuation, like commas, periods, ampersands
etc. keeping however, the hyphens, in order to
retain hyphenated unigrams, also keeping semi-
colons and colons for context. We use regular ex-
pressions to retain periods that occur within a dec-
imal value replacing these with the string decimal
that then gets its own vector representation.

Since we implement both unigram and phrasal
embedding–based GLMs, we process the same
document collection accordingly, for each. For the
unigram model, our tokens are single or hyphen-
ated words in the corpus. For the phrasal model,
we do an additional step of iterating through
each document in the corpus, extracting the noun
phrases in each using the textblob (Loria, 2014)
toolkit. This at times gave phrases of up to a length
of six, so we only admit ones of size up to three
which may include some hyphenated words, to
avoid tiny frequency counts. We then plug these
extracted phrases back into the documents to ob-
tain a “phrase-based corpus” for training, that has
both unigrams and variable-length phrases upto 3-
grams, with no tokens repeated for the n-gram pro-
cessed corpus.

We then pre-compute various document and
collection level statistics such as raw counts, term
frequencies (phrase frequencies for phrasal cor-
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pus), IDF and TF-IDF (Sparck Jones, 1972) for
the terms and phrases. Following this, we proceed
to generate various embedding models (Mikolov
et al., 2013) for both our unigram and phrasal
corpora having different length vector represen-
tations and context windows using the gensim
(Řehůřek and Sojka, 2010) package, using the pro-
cessed text. In particular we generate word em-
beddings trained with the skip-gram model with
negative sampling (Mikolov et al., 2013) with vec-
tor length settings of 50 with a context window of
4, and also length 100 with a context window of
5. We also train with the CBOW learning model
with negative sampling (Mikolov et al., 2013) for
generating embeddings of length 200 with a con-
text window of 7. But we report all of our re-
sults on experiments run off the models having an
embedding length of 50. Our method is outlined
in detail, in the pseudocode shown in Algorithm
1, and assumes that the document and collection
statistics as well as the embedding models are al-
ready computed and available. We now describe
how the processed corpus and the collection and
document-level statistics are employed as building
blocks to construct our phrasal embedding-based
generalized language model, Phrase2VecGLM.

4.2 Phrasal Embedding-based GLM

Standard Jelinek–Mercer smoothing–based lan-
guage models used for query–document match-
ing can lead to poor probability estimation when
query terms do not appear in the document due
to a key independence assumption in these mod-
els, wherein query terms are sampled indepen-
dently from either the document or the collection
(Zhai and Lafferty, 2004). Thus given our goal
of alleviating vocabulary mismatch to reformulate
complex queries, we find that the word-embedding
based generalized language model due to Ganguly
et al. (2015), that models term dependencies us-
ing vector embeddings of terms, lends itself ex-
actly for this purpose as it relaxes this indepen-
dence assumption to incorporate term similarities
via vector embeddings. This leads to better prob-
ability estimations in the event of semantic over-
lap between query terms and documents while no
lexical overlap by proposing a generative process
in which a “noisy channel” may transform a term
t sampled from a document d or the collection
C, with probabilities α and β respectively, into a

query term q′. Thus, by this model we have:∏
q′∈q

P (q′|d) =
∏
q′∈q

[λP (q′|d)

+ α
∑
t∈d

P̂sim doc(q
′, t|d)

+ β
∑
t∈d

P̂sim Coll(q
′, t|d)

+ (1− λ− α− β)P (q′|C)]

(1)

Here P (q′|d) and P (q′|C) are the same as direct
term sampling without transformation, from ei-
ther the document d or collection C, by a regular
Jeliner-Mercer smoothing-based LM as in Equa-
tion (2), when t = q′:

P (d|q) =
∏
q′∈q

λ.P̂ (q′|d) + (1− λ).P̂ (q′|C)

=
∏
q′∈q

λ
tf(q′, d)

|d|
+ (1− λ). cf(q

′)

|C|

(2)

However, when t 6= q′ we may sample the term
t either from document d or collection C where
the term t is transformed to q′. When t is sampled
from d, since the probability of selecting a query
term q′, given the sampled term t, is proportional
to the similarity of q′ with t, where sim(q′, t) is
the cosine similarity between the vector represen-
tations of q′ and t, and

∑
(d) is the sum of the

similarity values between all term pairs occurring
in document d, the document term transformation
probability can be estimated as:

P̂sim doc(q
′, t|d) = sim(q′, t)∑

(d)
.
tf(t, d)

|d|
(3)

Similarly when t is sampled from C, where for
the normalization constant, instead of considering
all (q′, t) pairs in C, we restrict to a small neigh-
bourhood of say 3 terms around the query term q′,
i.e. Nq′ , to reduce the effect of noisy terms, then
the collection term transformation probability can
be estimated as:

P̂sim Coll(q
′, t|d) = sim(q′, t)∑

Nq′
.
cf(t)

|C|
(4)

Equation 1 combines all these term transforma-
tion events by denoting the probability of observ-
ing a query term q′ without transformation (stan-
dard LM) as λ, that of document sampling–based
transformation as α and the probability of collec-
tion sampling–based transformation as β.
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Thus, per Equations (2) and (1), deriving the
posterior probabilities P (d|q) for ranking docu-
ments with respect to a query involves maximizing
the conditional log likelihood of the query terms in
a query q given the document d, as shown:

P (d|q) = −
∑
q′∈q

[log(P (q′|d))] (5)

We use their original word (uni-gram)
embedding–based model as a baseline in our
work. Our model, Phrase2VecGLM, further
augments the original model using variable length
noun-phrases in the vocabulary prior to learning
the embedding space for the GLM. While the
model by Ganguly et al, is designed as an IR
matching function, we extend this model in our
work to incorporate embeddings of candidate
noun phrases from the collection, and re-purpose
the model to be used as a pseudo-relevance feed-
back function to select new query expansion terms
(Xu and Croft, 2000). Thus, working with the
hypothesis that concepts in the form of “candidate
noun-phrases” provide more support for meaning,
we update the vocabulary to include noun-phrases
of up to a length of three, extracted from the text.
The vocabulary terms now consist of phrases,
introducing more contextually meaningful terms
into the set used in term similarity calculations
(Equation 3). This improves concept matching,
giving additional coverage toward final query
term expansion via LM–based document ranking.

5 Algorithm

Our algorithm (Algorithm 1) works by intrinsi-
cally using the Phrase2VecGLM model (Section
4.2) for query expansion, to discover concepts
that are similar in the shared local contexts that
they occur in, within documents ranked as top-
K relevant to a query document, and using one
of two options for specified threshold criteria to
tag the document, as described below. Thus our
algorithm consists of two main parts: 1) A doc-
ument scoring and ranking module applying di-
rectly the phrasal embeddings–based general lan-
guage model described in sections 4.2, 5.1 & al-
gorithm 1, and, 2) A concept selection module
to tag the query document with, coming from
the set of top ranked matching documents to a
query document from step 1. There are a cou-
ple of different variations implemented for the
concept selection scheme: (i) Selecting the top

TF-IDF term from each of the top-K matching
documents as the set of diverse concepts, repre-
sentative of the query document, and (ii) Select-
ing the top-similar concept terms matching each
of the representative query document terms, us-
ing word2vec/Phrase2Vec similarities on the top-
ranked set of documents (Mikolov et al., 2013).
The code for the corpus pre-processing, model
building and inference (semantically tagging doc-
uments) is made available online 1 and the dataset
is available publicly 2.

5.1 Implementation Details

In the pseudocode given by Algorithm 1,
< docStats > represents a set of tuples con-
taining various pre-computed document level
frequency and similarity statistics, having el-
ements like docTermsFreqsRawCounts,
docTermsTFIDFs,
docTermPairSimilaritySums.
< collStats > represents a similar
set for collection level frequency and
similarity measures with elements like
collTermsFreqRawCountsIDFs and
collTermPairSimilaritySums. The procedure
also assumes available, the precomputed hashtable
dqTerms, holding the top TF-IDF terms for each
document d, used for querying into the GLM. We
have excluded the implementation details for the
methods selectConceptsEmbeddingsModel,
selectConceptsTFIDF and also the GLM
method (which essentially computes Equations
(1) and (5) for the query document to be tagged
with concepts.

6 Experimental Setup

We run two different sets of experiments: (1)
Direct query expansion of the 30 queries in the
TREC dataset, using UMLS concepts (Manual,
2008) for our augmented baselines, and, (2) Feed-
back loop–based query expansion where we use
the concept tags for a subset of the top returned
articles for the Summary Text–based queries ran
against an ElasticSearch index, as query expan-
sion terms, (here MeSH terms-based QE (Adams
and Bedrick, 2014) is an augmented baseline), and
evaluate both types of runs against our Elastic-
Search (ES) index setup described in Section 6.2.

1https://github.com/manirupa/Phrase2VecGLM
2http://www.trec-cds.org/2016.html#documents
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Algorithm 1 Document Ranking and Concept Selection by Phrase2VecGLM
Initialize hashtables rankedListBestMatchedDocs, word2vecConcepts, TFIDFConcepts; .
These hold ranked document matches and selected concept tags for documents d ∈ C;

1: procedure GENERATEDOCUMENTRANKINGSCONCEPTS(queryDocs, vectorEmbeddingsModel,<
docStats >,< collStats >, lambda, alpha, beta, query length,K)

2: for d ∈ queryDocs do
3: rankedListBestMatchedDocs[d] = Phrase2VecGLM(dqTerms[d], query length, lambda, alpha, beta,
4: < docStats >,< collStats >)
5: word2vecConcepts[d] =
6: selectConceptsEmbeddingsModel(dqTerms[d], < docStats >
7: rankedListBestMatchedDocs[d], vectorEmbeddingsModel,K)
8: TFIDFConcepts[d] =
9: selectConceptsTFIDF(dqTerms[d], < docStats >,

10: rankedListBestMatchedDocs[d],K)
11: end for
12: end procedure

For direct query expansion we take all gran-
ularity levels of query topics described in Sec-
tion 3, i.e. Summary, Description and Notes text,
and feed these into our GLMs obtaining the top-
K ranked documents for each query and drawing
our query expansion concept tags from this set ac-
cording to the algorithm described in Section 5.
For our augmented query baselines, we use UMLS
terms within the above query texts generated from
the UMLS Java Metamap API that is quite effec-
tive in finding optimal phrase boundaries (Boden-
reider, 2004; Chen et al., 2016).

For the relevance feedback–based query expan-
sion, we take the top 10-15 documents returned
by our ES index setup for each of the Summary
Text queries and use the concept tags assigned
to each of these top returned documents by our
unigram and phrasal GLMs as the concept tags
for query expansion for the original query. We
then re-run these expanded queries through the ES
search engine to record the retrieval performance.
The MeSH terms used for the augmented baseline
for the feedback loop case, are directly available
for a majority of the PMC articles from the TREC
dataset itself. Section 4.1 outlines the details of
how the dataset was processed to generate the vo-
cabulary and various elements of the GLM.

6.1 Human–Judged Query Annotation
Additionally, to evaluate our feedback loop
method against a human judgments–based base-
line, we use Expert Term annotations for the query
topics available from a 2016 submission to TREC
CDS, where 3 physicians were invited to partic-

ipate in a manual query expansion experiment.
Each physician was assigned 10 out of the 30
query topics from the 2016 challenge. Based on
the clinical note, each physician provided a list
of 2 to 4 key-phrases. The key-phrases did not
have to be part of the note, but could be derived
from the physician’s knowledge after reading the
note (Chen et al., 2016). The search keywords for
the query topics thus manually provided by these
domain experts, were used to retrieve correspond-
ing matching PMC article IDs from the PubMed
domain. The expert then spot-checked the top–
ranked articles to see if these were mostly relevant.
If so, they finalized the keywords assigned. Oth-
erwise, they kept fine-tuning the keywords, until
they got a desired set of results, simulating exactly
the adaptive decision support (relevance feedback
loop) in IR. We also develop an interpolated model
with a coefficient γ that interpolates between the
unigram and phrasal models, which gets perfor-
mance comparable to the phrasal model, but does
not outperform the other models by itself, hence
we do not report those results here. Because the
challenge data provides relevance judgments only
on a subset of documents (which Phrase2VeGLM
is trained on), we report our results using the in-
ferred measures (Voorhees, 2014), for “normal-
ized discounted cumulative gain” (NDCG) and
“Precision at 10” (P@10). Although the TREC
CDS 2016 query set is categorized into three topic
types for Diagnosis, Tests and Treatment, we do
not divide our evaluation runs into three corre-
sponding sets, evaluating our method's perfor-
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mance on the entire TREC query data set instead.

6.2 Evaluation on ElasticSearch (BM25)
For the search engine–based evaluation of our
proposed method, we replicated an ElasticSearch
(ES) instance setup with similar settings used in
a 2016 challenge submission (Chen et al., 2016).
Among the different algorithms available, BM25
(with parameters k1=3 and b=0.75) was selected
as the ranking algorithm in our setup due to
slightly better performance observed than others,
with a logical OR querying model implemented,
and the minimum percentage match criterion in
ES, for search queries, set at 15% of the keywords
matched for a document. Since our GLM outlined
in Section 4.2 uses the abstract field of the arti-
cle for query expansion, we boosted the abstract
field 4 times and the title field 2 times in our ES
search index setup.

6.3 Results and Discussion
Table 1 outlines our results obtained with the vari-
ous experimental runs described in Section 6. The
hyper–parameters for our best performing mod-
els were empirically determined and set to be at
(λ, α, β) = (0.2, 0.3, 0.2) for the word embedding–
based GLM and (λ, α, β) = (0.2, 0.4, 0.2) for
the phrasal embedding–based GLM, similar to
those reported by Ganguly et al., (2015). All
models were evaluated for statistical significance
against the respective baselines using a two-sided
Wilcoxon signed rank test, for p << 0.01, indi-
cated by bold face value, if found to be significant.

As seen from the results, our unigram and
phrasal GLM–based methods for query expansion
appear quite promising for both direct query ex-
pansion and feedback loop based decision support.
For both methods, our trivial baseline is the BM25
algorithm of ElasticSearch itself, that uses only the
Summary text from the clinical note as the query,
with no expanded set of terms.

We summarize our key findings as follows:
We run two additional baselines for generation
of QE terms: (i) a vanilla language model us-
ing standard Jelinek-Mercer smoothing, equiva-
lent to Phrase2VecGLM with settings (λ, α, β) =
(0.5, 0.0, 0.0) such that the embedding space is not
used to derive term similarities, and (ii) the stan-
dard Phrase2vec embedding space model itself
(De Vine et al., 2014) prior to deriving the GLM.
Both these baselines actually perform worse than
the trivial BM25 baseline for QE on the Summary

text, in both direct and relevance feedback set-
tings.

For direct query expansion, UMLS concepts
found within the Summary, Description and Notes
text of the query itself, were used as augmented
baselines. Of these, the Notes UMLS–based ex-
pansion worked rather poorly (we attribute this to
extra noise concepts in the lengthy Notes text).
Though Description text–based UMLS terms did
worse than our vanilla Summary text baseline, the
Description UMLS terms run through the unigram
GLM to get expanded terms did significantly bet-
ter than Description UMLS terms indicating that
our method helps improve term expansion. For
direct query expansion, the biggest gain against
the baseline was observed for the Summary text
UMLS terms run through the unigram GLM to
get expanded terms, with a P@10 value of 0.2817.
The phrasal model did comparably to the unigram
model, however did not beat it, for the direct set-
ting of query expansion.

For the feedback loop based query expansion
method, we had two separate human judgment–
based baselines, one using the MeSH terms avail-
able from PMC for the top 15 documents returned
in a first round of querying the ES index with Sum-
mary text, and the other based on the expert an-
notations of the 30 query topics as described in
Section 6. The MeSH terms baseline got a P@10
of 0.2294, even less than our vanilla Summary
Text baseline with no expanded terms, while our
Expert Terms baseline beat this baseline signifi-
cantly. One reason for the lower performance of
the MeSH terms model, we believe, is lack of
MeSH term coverage for all the documents cho-
sen. Our unigram GLM–based expanded terms
from the top–15 documents returned by Summary
Text beat the Expert Terms baseline quite sig-
nificantly with P@10 of 0.2792. This was out-
performed by the phrasal GLM–based expanded
terms model with P@10 of 0.2872.

Finally our combined model using the uni-
gram + phrasal GLM terms from the top–15 off
of the Summary text, beat our vanilla baseline,
and was outperformed by our very best combined
terms model which generated unigram + phrasal
GLM–based terms for the top–15 documents for
each query, off of the Summary + Summary
UMLS concepts, getting a P@10 of 0.3091. As
an example to illustrate, a set of concept tags
learned by our unigramGLM model may look like:
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Metric

Query Expansion Method Query Text NDCG ** P@10 **

Direct setting:

BM25+Standard LM (Jelinek-Mercer sm.) QE Terms (baseline) Summary 0.0475 0.1172
BM25+Phrase2Vec (without GLM) QE Terms (baseline) Summary 0.0932 0.2267
BM25+DescUMLS QE Terms (augmented baseline) Summary 0.1070 0.2299
BM25+DescUMLS+unigramGLM QE Terms (model) Summary 0.1010 0.2414
BM25+None (baseline) Summary 0.1060 0.2489
BM25+SumUMLS QE Terms (augmented baseline) Summary 0.1466 0.2644
BM25+SumUMLS+unigramGLM QE Terms (model) Summary 0.1387 0.2817

Feedback Loop setting:

BM25+Standard LM (Jelinek-Mercer sm.) QE Terms (baseline) Summary 0.0265 0.0867
BM25+Phrase2Vec (without GLM) QE Terms (baseline) Summary 0.0662 0.1318
BM25+MeSH QE Terms (baseline) Summary 0.0970 0.2294
BM25+None (baseline) Summary 0.1060 0.2489
BM25+Human Expert QE Terms (augmented baseline) Summary 0.1029 0.2511
BM25+unigramGLM QE Terms (model) Summary 0.1173 0.2792 *
BM25+Phrase2VecGLM QE Terms (model) Summary 0.1159 0.2872 *

Feedback Loop Combined Models

BM25+unigramGLM Terms+Phrase2VeclGLM Terms (baseline) Summary 0.1057 0.2756
BM25+SumUMLS+unigramGLM Terms+Phrase2VecGLM Summary 0.1206 0.3091 *
QE Terms (model)

Table 1: Results for IR after Query Expansion (QE) by different methods using unigram and phrasal
GLM–generated QE terms, in direct and feedback loop settings. Bold face values indicate statistical
significance at p<< 0.01 over the previous result or baseline. Single asterisks indicate our best perform-
ing models. Double asterisks indicate inferred measures (Voorhees, 2014). Numbers are from evaluation
of ranking results based on document relevance judgments available for all 30 queries in the dataset.

<'query doc':(4315343, ['dementia', 'cognitive',
'bp']), 'concept tags': ['alzheimers', 'diabetes',
'behavioral'] >, and for the phrasalGLM model
we may have: <'query doc':(3088738, ['albenda-
zole', 'eosinophilic ascites', 'parasitic infection']),
'concept tags': ['corticosteroid therapy', 'case hy-
perinfection', 'strongyloides stercoralis'] >.

7 Conclusions and Future Work

In this work, we demonstrate that our proposed
method of semantic tagging for query expansion,
via word and phrasal GLM–based document rank-
ing for pseudo-relevance feedback, can prove an
effective means to serve complex, specific infor-
mation needs such as clinical queries in medi-
cal information retrieval that require adaptive de-
cision support, performing better in some cases
than even human expert–provided query expan-

sion terms. This is especially helpful to solve the
problem of lack of keyword coverage for all docu-
ments in any collection, e.g. MeSH terms for PMC
articles. In future we hope to leverage end-to-
end recurrent neural architectures such as LSTMs,
possibly with attention mechanisms (Rocktäschel
et al., 2015; Bahdanau et al., 2014) to improve our
current method of semantic tagging for complex
querying in medical IR.
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