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Abstract

Event and relation extraction are central
tasks in biomedical text mining. Where
relation extraction concerns the detection
of semantic connections between pairs of
entities, event extraction expands this con-
cept with the addition of trigger words,
multiple arguments and nested events, in
order to more accurately model the diver-
sity of natural language.

In this work we develop a convolutional
neural network that can be used for both
event and relation extraction. We use a lin-
ear representation of the input text, where
information is encoded with various vector
space embeddings. Most notably, we en-
code the parse graph into this linear space
using dependency path embeddings.

We integrate our neural network into the
open source Turku Event Extraction Sys-
tem (TEES) framework. Using this sys-
tem, our machine learning model can be
easily applied to a large set of corpora
from e.g. the BioNLP, DDI Extraction and
BioCreative shared tasks. We evaluate
our system on 12 different event, relation
and NER corpora, showing good general-
izability to many tasks and achieving im-
proved performance on several corpora.

1 Introduction

Detection of semantic relations is a central task in
biomedical text mining where information is re-
trieved from massive document sets, such as sci-
entific literature or patient records. This informa-
tion often consists of statements of interactions be-
tween named entities, such as signaling pathways
between proteins in cells, or the combinatorial ef-
fects of drugs administered to a patient. Relation

and event extraction are the primary methods for
retrieving such information.

Relations are usually described as typed, some-
times directed, pairwise links between defined
named entities. Automated relation extraction
aims to develop computational methods for their
detection.

Event extraction is a proposed alternative for
relation extraction. Events differ from relations
in that they can connect together more than two
entities, that they have an annotated trigger word
(usually a verb) and that events can act as argu-
ments of other events. In the GENIA corpus, a
sentence stating “The binding of proteins A and B
is regulated by protein C” would be annotated with
two nested events REGULATION(C, BIND(A, B)).
While events can capture the semantics of text
more accurately, their added complexity makes
their extraction a more complicated task.

Many methods have been developed for relation
extraction, with various kernel methods such as
the graph kernel being widely used (Mooney and
Bunescu, 2006; Giuliano et al., 2006; Airola et al.,
2008). For the more complex task of event extrac-
tion approaches such as pipeline systems (Björne,
2014; Miwa et al., 2010), semantic parsing (Mc-
Closky et al., 2011) and joint inference (Riedel and
McCallum, 2011) have been explored.

In recent years, the advent of deep learning has
resulted in advances in many fields, and relation
and event extraction are no exception. Consid-
erable performance increases have been gained
with methods such as convolutional (Zeng et al.,
2014) and recurrent neural networks (Miwa and
Bansal, 2016). Some proposed systems have re-
lied entirely on word embeddings (Quan et al.,
2016), while others have developed various net-
work architectures for utilizing parse graphs as an
additional source of information (Collobert et al.,
2011; Liu et al., 2015; Xu et al., 2015; Ma et al.,
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2015; Peng et al., 2017a).
In this work we present a new convolutional

neural network method for extraction of both
events and relations. We integrate our network
as a classification module into the Turku Event
Extraction System (Björne, 2014)1, allowing it to
be easily applied to corpora or texts stored in the
TEES XML format. Our neural network model is
characterized by a unified representation of input
examples that can be applied to detection of both
keywords as well as their relations.

2 Materials and Methods

2.1 Corpora
We develop and evaluate our method on a large
number of event and relation corpora (See Ta-
ble 1). These corpora originate from three
BioNLP Shared Tasks (Kim et al., 2009, 2011;
Nédellec et al., 2013), the two Drug–Drug In-
teraction (DDI) Extraction tasks (Segura-Bedmar
et al., 2011, 2013) and the recent BioCre-
ative VI Chemical–Protein relation extraction task
(Krallinger et al., 2017). The BioNLP corpora
cover various domains of molecular biology and
provide the most complex event annotations. The
DDI and BioCreative corpora use pairwise relation
annotations, and one of the DDI corpora defines
also a drug named entity recognition (NER) task.

All of these corpora are used in the TEES XML
format and are installed or generated with the
TEES system. The corpora are parsed with the
TEES preprocessing pipeline, which utilizes the
BLLIP parser (Charniak and Johnson, 2005) with
the McClosky biomodel (McClosky, 2010), fol-
lowed by conversion of the constituency parses
into dependency parses with the Stanford Tools
(de Marneffe et al., 2006). These tools generate
the deep parse graph which is used as the source
for our dependency path features.

2.2 TEES Overview
The TEES system is based around a graph rep-
resentation of events and relations. Named enti-
ties and event triggers are nodes, and relations and
event arguments are the edges that connect them.
An event is modelled as a trigger node and its
set of outgoing edges. For a detailed overview of
TEES we refer to Björne (2014).

TEES works as a pipeline method that models
relation and event extraction as four consecutive

1http://jbjorne.github.io/TEES/

classification tasks (See Figure 2). The first stage
is entity detection where each word token in a sen-
tence is classified as an entity or a negative, gen-
erating the nodes of the graph. This stage is used
in NER tasks as well as for event trigger word de-
tection. The second stage is edge detection where
relations and event arguments are predicted for all
valid pairs of named entity and trigger nodes. For
relation extraction tasks where entities are given
as known data this is the only stage used.

In the entity detection stage TEES predicts a
maximum of one entity per word token. However,
since events are n-ary relations, event nodes may
overlap. The unmerging stage duplicates event
nodes by classifying each candidate event as a real
event or not. Finally, modifier detection can be
used to detect event modality (such as speculation
or negation) on corpora where this is annotated.

2.3 Neural Network Overview

In TEES the four classification stages are imple-
mented as multiclass classification tasks using the
SVMmulticlass support vector machine (Tsochan-
taridis et al., 2005) and a rich set of features de-
rived mostly from the dependency parse graph.

We develop our convolutional neural network
method using the Keras (Chollet et al., 2015) pack-
age with the TensorFlow backend (Dean et al.,
2015). We extend the TEES system by replacing
the SVM-based classifier modules with our net-
work, using various vector space embeddings as
input features. Our neural network design follows
a common approach in NLP where the input se-
quence is processed by parallel convolutional lay-
ers (Kim, 2014; Zeng et al., 2014; Quan et al.,
2016).

We use the same basic network structure for
all four TEES classification stages (See Figure 1).
The input examples are modelled in the context
of a sentence window, centered around the candi-
date entity, relation or event. The sentence is mod-
elled as a linear sequence of word tokens. Each
word token is mapped to relevant vector space em-
beddings. These embeddings are concatenated to-
gether, resulting in an n-dimensional vector for
each word token.

This merged input sequence is processed by a
set of 1D convolutions with window sizes 1, 3,
5 and 7. Global max pooling is applied for each
convolutional layer and the resulting features are
merged together into the convolution output vec-

http://jbjorne.github.io/TEES/
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pad pad STAT3 phosphorylation may involve Vav and Rac-1 . pad

EWV 11 × 200 EPOS 11 × 8 Erel 11 × 8 Edist 11 × 8

Merge 11 × 224

Dropout 11 × 224

Conv1D1 11 × 512 Conv1D3 9 × 512 Conv1D5 7 × 512 Conv1D7 5 × 512

MaxPool 512 MaxPool 512 MaxPool 512 MaxPool 512

Merge 2048

Dropout 2048

Dense 400

Labels 10

Figure 1: We use the same network architecture
for all four classification tasks, with only the in-
put embeddings and the number of predicted la-
bels changing between tasks. This figure demon-
strates entity detection where the word “involve” is
being classified as belonging to one or more of 10
entity types. The input sentence is padded for the
fixed example length (11 in this case) and the word
tokens are mapped to corresponding embeddings,
in this example Word Vectors, POS tags, relative
positions and distances. The embedding vectors
are merged together before the convolutional lay-
ers, and the results of the convolution operations
are likewise merged before the dense layer, after
which the final layer shows the predicted labels.

tor. This output vector is fed into a dense layer of
200–800 neurons, which is connected to the final
classification layer where each label is represented
by one neuron. The classification layer uses sig-
moid activation, and the other layers use relu ac-
tivation. Classification is performed as multilabel
classification where each example may have 0–n
positive labels. We use the adam optimizer with
binary crossentropy and a learning rate of 0.001.

Dropout of 0.1–0.5 is applied at two stages in
the system to increase generalization. Weights are
learned for all input embeddings except for the
word vectors, where we use the original weights
as-is to ensure generalization to words outside the
task’s training corpus.

2.4 Input Embeddings

All of the features used by our system are repre-
sented as embeddings, sets of vectors where each
unique input item (such as a word string) maps to
its own n-dimensional vector. The type and num-
ber of embeddings we use varies by classification
task and is used to model the unique characteris-
tics of each task (See Figure 2). The pre-made
word vectors we use are 200-dimensional and the
rest of the embeddings (learnt from the input cor-
pus) are 8-dimensional.

Word Vectors are the most important of these
embeddings. We use word2vec (Mikolov et al.,
2013) vectors induced on a combination of the En-
glish Wikipedia and the millions of biomedical re-
search articles from PubMed and PubMed Central
by Pyysalo et al. (2013)2.

POS (Part-of-speech) tags generated by the
BLLIP parser are used to define the syntactic cat-
egories of the words.

Entity features are used in cases where such in-
formation is already available, as in relation ex-
traction where the pairs of entities are already
known, or in event extraction where named enti-
ties are predefined.

Distance features follow the approach proposed
by Zeng et al. (2014) where the relative distances
to tokens of interest are mapped to their own vec-
tors.

Relative Position features are used to mark
whether tokens are located (B)efore, (A)fter or in
the (M)iddle of the classified structure, or if they
form a part of it as entities, event triggers or argu-
ments. These features aim to model the context of
the example in a manner somewhat similar to the
shallow linguistic kernel of Giuliano et al. (2006).

Path Embeddings describe the shortest undi-
rected path from a token of interest to another to-
ken in the sentence. Multiple sets of vectors (0–
4), one for directed dependencies at each distance,
are used for the dependencies of the path. For
example, if paths of depth 4 are used, a short-
est path of three directed dependencies connecting
two tokens of interest could be modelled with four
embedding vectors e.g. ←dobj, nsubj→, nn→,
NULL. Our path embeddings are inspired by the
concept of distance embeddings used by Zeng
et al. (2014): Since it is possible to model linear
distances between tokens in the input sentence, it

2http://evexdb.org/pmresources/
vec-space-models/

http://evexdb.org/pmresources/vec-space-models/
http://evexdb.org/pmresources/vec-space-models/
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Figure 2: System stages. The TEES pipeline performs event extraction in four consecutive stages,
generating first 1. the nodes (entities) and 2. edges (relations) of the event graph, which is then “pulled
apart” in 3. unmerging, followed optionally by 4. modifier detection. The example being classified
is shown with a dotted line in each image, and other examples in the same sentence with light gray
dotted lines. We replace the four SVM classification stages in the TEES pipeline with convolutional
neural networks. In place of the rich feature representations we use a sentence model where word token
and dependency parse information is represented by embeddings. The Word Vector, POS and entities
features are straightforwardly produced from the information of each token. The distance and relative
position features model the position of the token in the sentence. The path features mark the dependencies
connecting each token to a token of interest (candidate entity or relation endpoint). The shortest path
features mark the set of dependencies forming the shortest path for a candidate relation. In the unmerging
stage candidate event arguments are also used as features.
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is also possible to model any other distance be-
tween these tokens, in our case paths in the depen-
dency parse.

Shortest Path Embeddings follow the ap-
proach of the n-gram features used in methods
such as the TEES SVM system. The shortest path
consists of the tokens and dependencies connect-
ing the two entities of a candidate relation. For
each token on the path we define two embeddings,
one for the incoming and one for the outgoing
dependency. For example, if the shortest path
would consist of three tokens and the two depen-
dencies connecting them, the shortest path embed-
ding vectors for the three tokens could be e.g. ([be-
gin],←nsubj), (←nsubj, dobj→), (dobj→, [end]).
Thus, our shortest path embeddings can be seen as
a more detailed extrapolation of the “on dep path
embeddings” of Fu et al. (2017).

Event Argument Embeddings are used only in
the unmerging stage where predicted entities and
edges are divided into separate events.

2.5 Parameter Optimization

When developing our system, we use the training
set for learning, and the development set for pa-
rameter validation. We use the early stopping ap-
proach where the network is trained until the vali-
dation loss no longer decreases. We train for up to
500 epochs, stopping once validation loss has no
longer decreased for 10 consecutive epochs.

Neural network models can be very sensitive
to the initial random weights. Despite the rela-
tively large training and validation sets, our model
exhibits performance differences of several per-
centage points with different random seeds. In
the current TensorFlow backend it is not possi-
ble to efficiently fix the random seed3, and in any
case this would be unhelpful, as the impact of any
given seed varies with the training data. Instead,
we compensate for the inherent randomness of the
network by training multiple models with random-
ized initializations and use as the final model the
one which achieved the best performance on the
validation set (measured using the micro-averaged
F-score).

In addition to the random seed and optimal
epoch, neural networks depend on a large number
of hyperparameters. We use the process of train-
ing multiple randomized models also for parame-

3https://github.com/keras-team/keras/
issues/2280

ter optimization. In addition to varying the random
seed, we pick a random combination of hyperpa-
rameters from the ranges to be optimized, so that
different models are randomized both in terms of
initialization and the parameters. We test sizes of
200, 400 and 800 for the final dense layer, filter
sizes of 128, 256 and 512 for the convolutional
layers and dropout values of 0.1, 0.2 and 0.5. In
addition, we experiment with path depths of 0–4
for the path embeddings.

Training a single model can still be prone to
overfitting if the validation set is too small. To
improve generalizability, we explore the use of
model ensembles. Instead of using the best ran-
domized model as the final one, we take n-best
models, ranked with micro-averaged F-score on
the validation set, and use their averaged predic-
tions. These ensemble predictions are calculated
for each label as the average of all the models’ pre-
dicted confidence scores.

With SVMs or random forests it is possible to
“refit” a classifier after parameter selection, by re-
training on the combined training and optimiza-
tion sets, and this approach is also used by the
TEES SVM classifiers. With the neural network,
we cannot retrain with the validation set, as there
would be no remaining data for detecting the op-
timal epoch. We approach also this issue using
model ensembles. As the final source of ran-
domization, we randomly redistribute the training
and validation set documents before training each
model. In this manner, the n-best models will to-
gether cover a larger part of the training data.

By training a large set of randomized mod-
els and using the n-best ones, we aim to address
the effect of random initialization, parameter op-
timization and coverage of training data using the
same process. However, with the size of the cor-
pora used, training even a single model is rela-
tively time consuming. In practice we are able to
train only around 20 models for each of the four
stages of the classification pipeline. Thorough pa-
rameter optimization comparable to the SVM sys-
tem is thus not computationally feasible with the
neural network, but good performance on varied
corpora indicates that the current approach is at
least adequate.

3 Results and Discussion

The results of applying our proposed system on
the various corpora are shown in Table 2. We com-

https://github.com/keras-team/keras/issues/2280
https://github.com/keras-team/keras/issues/2280
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Corpus Domain E I S
GE09 Molecular Biology 10 6 11380
GE11 Molecular Biology 10 6 14958
EPI11 Epigenetics and PTM:s 16 6 11772
ID11 Infectious Diseases 11 7 5118
REL11 Entity Relations 1 2 11351
DDI11 Drug–Drug Interactions - 1 5806
DDI13 9.1 Drug NER 4 - 9605
DDI13 9.2 Drug–Drug Interactions - 4 10239
GE13 Molecular Biology 15 6 8369
CG13 Cancer Genetics 42 9 5938
PC13 Pathway Curation 24 9 5040
CP17 Chemical–Protein Int. - 5 6249

Table 1: The corpora used in this work are listed
with their domain, number of event and entity
types (E), number of event argument and relation
types (I), and number of sentences (S).

pare our method with previous results from the
shared tasks for which these corpora were intro-
duced as well as with later research. In the next
sections we analyse our results for the different
corpus categories.

3.1 The BioNLP Event Extraction Tasks

The BioNLP Event Extraction tasks provide the
most complex corpora with often large sets of
event types and at times relatively small corpus
sizes. The GENIA corpora from 2009 and 2011
have been the subject of most event extraction re-
search. Our proposed method achieves F-scores
of 57.84 and 58.10 on GE09 and GE11, respec-
tively. Compared to the best reported results of
58.27 (Miwa et al., 2012) and 58.07 (Venugopal
et al., 2014), our method shows similar perfor-
mance on these corpora.

Our CNN reimplementation of TEES outper-
forms the original TEES SVM system on all the
BioNLP corpora. In addition, we achieve to the
best of our knowledge the highest reported perfor-
mance on the GE11, EPI11, REL11, CG13 and
PC13 BioNLP Shared Task corpora.

The annotations for the test sets of the BioNLP
Shared Task corpora are not provided, instead the
users upload their predictions to the task organiz-
ers’ servers for evaluation. While this method pro-
vides very good protection against overfitting and
data leaks, unfortunately many of these evaluation
servers are no longer working. Thus, we were able
to evaluate our system on only a subset of all ex-
isting BioNLP Shared Task corpora.

3.2 The Drug–Drug Interactions Tasks

There have been two instances of the Drug–Drug
Interactions Shared Task. The first one in 2011
concerned the detection of untyped relations for
adverse drug effects. Unlike the other corpora,
no official evaluator system or program exists for
this corpus so we use our own F-score calculation.
The lower performance compared to the original
TEES system warrants further examination, but in
any case the DDI11 corpus has been mostly super-
seded by the more detailed DDI13 corpora.

On the DDI13 corpora task 9.1, drug named en-
tity recognition, our CNN system performs better
than the original TEES entry, but neither of these
TEES versions can detect more than single-token
entities so they are not well suited for this task.
Nevertheless, this result demonstrates the poten-
tial applicability of our method also to NER tasks.

Of all the DDI corpora the DDI13 task 9.2 cor-
pus, typed relation extraction, has been the sub-
ject of much neural network based research in the
past few years. A large variety of methods have
been tested, and good results have been achieved
by highly varying network models, some of which
use no parsing or graph-like features, such as
the multichannel convolutional neural network of
Quan et al. (2016) which combines multiple sets
of word vectors and achieves an F-score of 70.21.
The highest result of 73.5 so far has been reported
by Lim et al. (2018) who used a binary tree-LSTM
model ensemble, with which our system achieves
minutely higher, in practice comparable perfor-
mance. Most recent DDI13 systems use corpus-
specific rules for filtering negative candidate re-
lations from the training data, which usually re-
sults in performance gains. As we aim to develop
a generic method easily applicable to any corpus
we did not implement these DDI filtering rules.

3.3 The CHEMPROT Task

Of all the evaluated corpora the CHEMPROT cor-
pus used in the BioCreative VI Chemical–Protein
relation extraction task is the most recent. Thus it
provides an interesting point of comparison with
current methods in relation extraction. All of our
models outperform the task winning system com-
bination of Peng et al. (2017b), with our mixed five
model ensemble achieving a 5 pp increase over the
shared task winning result. The CHEMPROT cor-
pus is relatively large compared to its low num-
ber of five relation types, possibly making learning
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Corpus P R F Team / System Method

GE09

58.48 46.73 51.95 * TEES (Björne et al., 2009) SVM
- - 55.96 6 x system ensemble (Kim et al., 2009) Metasystem
63.19 50.28 56.00 EventMine (Miwa et al., 2010) SVM
- - 57.4 M3+enju (Riedel and McCallum, 2011) Joint inference
65.19 52.67 58.27 EventMine+PR+FE (Miwa et al., 2012) SVM
63.08 53.96 58.16 BioMLN (Venugopal et al., 2014) MLN and SVM
64.94 48.08 55.25 Ours (single) CNN
67.58 48.02 56.15 Ours (5 x ensemble) CNN
69.87 49.34 57.84 Ours (mixed 5 x ensemble) CNN

GE11

57.65 49.56 53.30 † TEES (Björne and Salakoski, 2011) SVM
64.75 49.41 56.04 * FAUST (Riedel et al., 2011) Joint inference / parser
63.48 53.35 57.98 EventMine-CR (Miwa et al., 2012) SVM
63.61 53.42 58.07 BioMLN (Venugopal et al., 2014) MLN and SVM
66.46 48.96 56.38 Stacked Generalization (Majumder et al., 2016) SVM
64.86 50.53 56.80 Ours (single) CNN
68.76 49.97 57.87 Ours (5 x ensemble) CNN
69.45 49.94 58.10 Ours (mixed 5 x ensemble) CNN

EPI11

53.98 52.69 53.33 * TEES (Björne and Salakoski, 2011) SVM
54.42 54.28 54.35 EventMine multi-corpus (Miwa et al., 2013) SVM
65.97 45.79 54.06 Ours (single) CNN
65.40 48.84 55.92 Ours (5 x ensemble) CNN
64.93 50.00 56.50 Ours (mixed 5 x ensemble) CNN

ID11

48.62 37.85 42.57 † TEES (Björne and Salakoski, 2011) SVM
65.97 48.03 55.59 * FAUST (Riedel et al., 2011) Joint inference / parser
- - 55.6 M3+Stanford (Riedel and McCallum, 2011) Joint inference
61.33 58.96 60.12 EventMine EasyAdapt (Miwa et al., 2013) SVM
65.53 48.17 55.52 Ours (single) CNN
70.51 49.69 58.30 Ours (5 x ensemble) CNN
66.48 50.66 57.50 Ours (mixed 5 x ensemble) CNN

REL11

37.0 47.5 41.6 † VIB - UGhent (Van Landeghem et al., 2011) SVM
68.0 50.1 57.7 * TEES (Björne and Salakoski, 2011) SVM
70.87 59.56 64.72 Ours (single) CNN
76.30 48.09 58.99 Ours (5 x ensemble) CNN
73.65 61.17 66.83 Ours (mixed 5 x ensemble) CNN

DDI11

58.04 68.87 62.99 † TEES (Björne et al., 2011) SVM
60.54 71.92 65.74 * WBI (Thomas et al., 2011) kernels + CBR
69.83 55.49 61.84 Ours (single) CNN
69.78 57.21 62.88 Ours (5 x ensemble) CNN
77.57 49.93 60.75 Ours (mixed 5 x ensemble) CNN

DDI13 9.1

73.7 57.9 64.8 † TEES (Björne et al., 2013) SVM
73.4 69.8 71.5 * WBI-NER (Rocktäschel et al., 2013) CRF
72 63 67 Ours (single) CNN
71 63 67 Ours (5 x ensemble) CNN
73 63 68 Ours (mixed 5 x ensemble) CNN

DDI13 9.2

73.2 49.9 59.4 † TEES (Björne et al., 2013) SVM
64.6 65.6 65.1 * FBK-irst (Chowdhury and Lavelli, 2013) kernels
75.99 62.25 70.21 Multichannel CNN (Quan et al., 2016) CNN
73.4 69.6 71.48 Joint AB-LSTM Model (Sahu and Anand, 2017) LSTM
74.1 71.8 72.9 Hierarchical RNNs (Zhang et al., 2017) RNN
77.8 69.6 73.5 One-Stage Model Ensemble (Lim et al., 2018) RNN
75.80 70.38 72.99 PM-BLSTM (Zhou et al., 2018) LSTM
75.29 66.29 70.51 Ours (single) CNN
78.60 64.15 70.64 Ours (5 x ensemble) CNN
80.54 67.62 73.51 Ours (mixed 5 x ensemble) CNN

GE13

56.32 46.17 50.74 † TEES (Björne and Salakoski, 2013) SVM
58.03 45.44 50.97 * EVEX (Hakala et al., 2013) TEES + rerank
59.24 48.95 53.61 BioMLN (Venugopal et al., 2014) MLN and SVM
58.95 40.29 47.87 Ours (single) CNN
62.18 42.29 50.34 Ours (5 x ensemble) CNN
65.78 44.38 53.00 Ours (mixed 5 x ensemble) CNN

CG13

64.17 48.76 55.41 * TEES (Björne and Salakoski, 2013) SVM
55.82 48.83 52.09 † EventMine (Miwa and Ananiadou, 2013) SVM
60.45 51.34 55.52 Ours (single) CNN
63.92 51.00 56.74 Ours (5 x ensemble) CNN
66.55 50.77 57.60 Ours (mixed 5 x ensemble) CNN

PC13

55.78 47.15 51.10 † TEES (Björne and Salakoski, 2013) SVM
53.48 52.23 52.84 * EventMine (Miwa and Ananiadou, 2013) SVM
58.31 47.08 52.10 Ours (single) CNN
58.66 48.49 53.09 Ours (5 x ensemble) CNN
62.16 50.34 55.62 Ours (mixed 5 x ensemble) CNN

CP17

66.08 56.62 60.99 † TEES (Mehryary et al., 2017) SVM
56.10 67.84 61.41 † RSC (Corbett and Boyle, 2017) LSTM
72.66 57.35 64.10 * NCBI (Peng et al., 2017b) SVM, CNN, and RNN
71.40 61.86 66.28 Ours (single) CNN
74.38 60.44 66.69 Ours (5 x ensemble) CNN
75.13 65.07 69.74 Ours (mixed 5 x ensemble) CNN

Table 2: Results. Performance is shown in Precision, Recall and F-score, measured on the corpus test
set for related work and our TEES CNN method (single best model, 5 model ensemble, or mixed 5 model
ensemble with randomized train/validation set split). Shared task winning results are indicated with *
and shared task participant results with †. The highest F-score for each corpus is shown in bold. All of
our results except for DDI11 are evaluated using the official evaluation program or server of each task.
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Corpus 0 1 2 3 4
GE11 (n) 69.85 71.45 72.34 72.87 72.64
GE11 (e) 88.10 88.38 88.92 88.51 88.68
DDI13 (e) 59.46 59.23 58.22 56.50 54.37
CP17 (e) 54.55 55.46 56.51 56.98 56.25

Table 3: The effect of path embeddings. The im-
pact of using increasing depths of paths for em-
beddings is shown in terms of averaged F-score
on the development set for entity (n) and edge (e)
detection.

easier for our system.

3.4 Effect of Deep Parsing
Compared to neural networks which use either
only word vectors, or model parse structure at the
network level (e.g. graph-LSTMs), an interesting
aspect of our method is that it can function both
with and without parse information. By turning
dependency path features on and off we can evalu-
ate the impact of deep parsing on the system (See
Table 3).

The path embeddings have the most impact on
GE11 entity detection, where these paths link the
entity candidate token to each other token. In
GE11 event argument extraction the role of the
path context embeddings is diminished. Surpris-
ingly, on the DDI13 9.2 relation corpus path em-
beddings reduce performance, perhaps due to very
long sentences and very indirect relations between
the entity pairs. However, on another relation cor-
pus, the CHEMPROT corpus, the path embed-
dings again increase performance, perhaps indi-
cating that the CHEMPROT relation annotations
follow more closely sentence syntax.

3.5 Computational Requirements
Our system improves on performance compared to
the SVM-based TEES, but at the cost of increased
computational requirements. The neural network
effectively requires a specialized GPU for training
and even then training times can be an issue.

For example, training the original TEES system
on a four-core CPU for the GE09 task takes about
3 hours and classification of the test set with this
model can be done in four minutes. For compari-
son, our GE09 neural network with 20 models for
all four stages takes around nine hours to train on
a Tesla P100 GPU. However, test set classification
with a single model takes only about three min-
utes and using a five model ensemble about ten
minutes.

Thus, while training the proposed method is
much slower, classification can be performed rel-
atively quickly. While the hardware and time re-
quirements are much higher than with the SVM
system, our proposed system can for some corpora
achieve performance increases of even 10 pp. In
most applications such gains are likely worth the
increased computational requirements.

4 Conclusions

We have developed a convolutional neural net-
work system that together with different vector
space embeddings can be applied to diverse text
classification tasks. We replace the TEES sys-
tem’s event extraction pipeline components with
this network and demonstrate considerable perfor-
mance gains on a set of large event and relation
corpora, achieving state-of-the-art performance on
many of them and the best reported performance
on the GE11, EPI11, REL11, CG13, PC13, DDI13
9.2 and CP17 corpora.

To the best of our knowledge our system rep-
resents the first application of neural networks to
extraction of complex events from the BioNLP
GENIA corpora. Our system uses a unified lin-
ear sentence representation where graph analyses
such as dependency parses are fully included using
our dependency path embeddings, and we demon-
strate that these path embeddings can increase the
performance of the convolutional model. Unlike
systems where separate subnetworks are used to
model graph structures, our network receives all
of the information through the unified linear repre-
sentation, allowing the whole model to learn from
all the features.

The Turku Event Extraction System provides
a unified approach for utilizing a large number
of event and relation extraction corpora. As we
integrate our proposed convolutional neural net-
work method into the TEES system, it can be used
as easily as the original TEES system, with the
framework handling tasks such as preprocessing
and format conversions. Our Keras-based neural
network implementation can also be extended and
modified, allowing continued experimentation on
the wide set of corpora supported by TEES. We
publish our method and our trained neural network
models as part of the TEES open source project4.

4https://github.com/jbjorne/TEES/wiki/
TEES-CNN-BioNLP18

https://github.com/jbjorne/TEES/wiki/TEES-CNN-BioNLP18
https://github.com/jbjorne/TEES/wiki/TEES-CNN-BioNLP18
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