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Abstract

We present a machine learning pipeline
that identifies key sentences in abstracts
of oncological articles to aid evidence-
based medicine. This problem is charac-
terized by the lack of gold standard data-
sets, data imbalance and thematic differ-
ences between available silver standard
corpora. Additionally, available training
and target data differs with regard to their
domain (professional summaries vs. sen-
tences in abstracts). This makes super-
vised machine learning inapplicable. We
propose the use of two semi-supervised
machine learning approaches: To mit-
igate difficulties arising from heterogen-
eous data sources, overcome data imbal-
ance and create reliable training data we
propose using transductive learning from
positive and unlabelled data (PU Learn-
ing). For obtaining a realistic classifica-
tion model, we propose the use of abstracts
summarised in relevant sentences as un-
labelled examples through Self-Training.
The best model achieves 84% accuracy
and 0.84 F1 score on our dataset.

1 Introduction

The ever-growing amount of biomedical literat-
ure accessible online is a valuable source of in-
formation for clinical decisions. The PubMed
database (National Library of Medicine, 1946-
2018), for instance, lists approximately 30 million
articles’ abstracts. As a consequence, machine
learning (ML) based text mining (TM) is increas-
ingly employed to support evidence-based medi-
cine by finding, condensing and analysing relev-
ant information (Kim et al., 2011). Practitioners
in this field search for clinically relevant articles

and findings, and are typically not interested in the
bulk of search results which are devoted to basic
research. However, defining clinical relevance in a
given abstract is not a trivial task. On top, although
abstracts provide a very brief summary of their
corresponding articles’ content, practitioners de-
termine abstracts’ clinical relevance based on only
a few key sentences (McKnight and Srinivasan,
2003). To optimally support such users, it is thus
necessary to first retrieve only clinically relevant
articles and next to identify the sentences in those
articles which express their clinical relevance.

Any survival benefit of dMMR was lost in
N2 tumors. Mutations in BRAF(V600E)
(HR, 1.37; 95% CI, 1.08 to 1.70; P = .009)
or KRAS (HR, 1.44; 95% CI, 1.21 to 1.70;
P ¡ .001) were independently associated
with worse DFS. The observed MMR by tu-
mor site interaction was validated in an in-
dependent cohort of stage III colon cancers
(P(interaction) = .037).

Example 1: Snippet of highlighted clin-
ically relevant (or key; yellow background
color) and irrelevant (no background color)
sentences in a precision oncology setting.
Source document with PMID 24019539.

In this work, we present an ML pipeline to
identify key (clinically relevant) sentences, in a
precision oncology setting, in abstracts of oncolo-
gical articles to aid evidence-based medicine. This
setting is implied throughout the text when refer-
ring to clinical relevance or key (clinically relev-
ant) sentences. An example of relevant and ir-
relevant sentences is shown in Example 1. For
solving this problem no gold standard corpora
is available. Additionally, clinical relevance has

https://www.ncbi.nlm.nih.gov/pubmed/24019539
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only a vague definition and is a subjective meas-
ure. As manually labelling text is expensive, semi-
supervised learning offers the possibility to util-
ize related annotated corpora. We focus on Self-
Training (Wang et al., 2008), which mostly relies
on supervised classifiers trained on labelled data
and use of unlabelled examples to improve the de-
cision boundary. Several corpora can be used to
mitigate the issues arising from the lack of gold
standard data set and data imbalance. These cor-
pora implicitly define characteristics of key sen-
tences, but cannot be considered as gold standards.
In the following, we call them “silver standard”
corpora - collections of sentences close to the in-
tended semantic but with large amounts of noise.
Specifically, we employ Clinical Interpretations of
Variants in Cancer (CIViC) (Griffith et al., 2017)
for implicit notion of clinical relevance and posit-
ive data points, i.e. sentences or abstracts which
have clinical relevance. Unfortunately, negative
data points, i.e. sentences or abstracts which do
not have clinical relevance, are not present in this
data set. PubMed abstracts, referenced by CIViC,
are used as unlabelled data. Since we consider
all sentences in CIViC to be positive examples
and the corresponding abstracts are initially un-
labelled, additional data for negative examples is
required. We utilize the Hallmarks of Cancer
Corpus (HoC) (Baker et al., 2016) as an auxili-
ary source of noisy labelled data. To expand on
our set of labelled data points we propose trans-
ductive learning from positive and unlabelled data
(PU Learning) to identify noise within HoC, with
CIViC as a guide set for determining the relevance
of sentences from HoC. This gives us additional,
both positive and negative data points, used as an
initialization for Self-Training. The pipeline is
available at https://github.com/nachne/semisuper.

2 Related Work

Sentence classification is a special case of text cat-
egorisation. It has been used in a wide range of
fields, like sentiment analysis (Yu and Hatzivassi-
loglou, 2003; Go et al., 2009; Vosoughi et al.,
2015), rhetorical annotation, and automated sum-
marisation (Kupiec et al., 1995; Teufel and Moens,
2002). Between the two, feature engineering has
been reported as the major difference. For in-
stance, common stop words like “but”, “was”, and
“has” are often among the top features for sen-
tence classification, and verb tense is useful to

determine a sentence’s precise meaning (Agarwal
and Yu, 2009; Khoo et al., 2006). Additional fea-
tures beyond the pure language level have also
been proposed. For sentiment analysis, Yu and
Hatzivassiloglou (2003) use a dictionary of se-
mantically meaningful seed words to estimate the
likely positive or negative polarity of co-occurring
words, from which in turn a sentences’ polarity is
determined. Teufel and Moens (2002) focus on
identifying rhetorical roles of sentences for auto-
matic summarisation of scientific articles. They
use sentence length and location, the presence of
citations and of words included in headlines, la-
bels of preceding sentences, and predefined cue
words and formulaic expressions accompanying
Bag of Words (BOW).

Text represented as high dimensional BOW vec-
tors has been reported to be often linearly separ-
able, making Support Vector Machines (Joachims,
1998) (SVM) a popular choice for classifiers.
Conditional Random Fields (CRF) have been used
to predict sequences of labels rather than labelling
sentences one by one (Kim et al., 2011). In recent
years, Neural Networks (NN) and Deep Learn-
ing (DL) has increasingly been used, e.g. us-
ing Convolutional Neural Networks (CNN) (Kim,
2014; Rios and Kavuluru, 2015; Zhang et al.,
2016; Conneau et al., 2017). Other authors employ
various versions of Recurrent Neural Networks
(RNN): LSTM (Hassan and Mahmood, 2017), bi-
directional LSTM (Dernoncourt et al., 2017; Zhou
et al., 2016) or convolutional LSTM (Zhou et al.,
2015). The use of DL has also popularised the use
of pre-trained word embedding vectors. Habibi
et al. (2017) show that the use of word embed-
dings, in general, increases the quality of biomed-
ical named entity recognition pipelines.

Specific to the biomedical domain, sentence
classification has been used to determine the rhet-
orical role sentences play in an article or abstract.
Ruch et al. (2007) propose using the “Conclu-
sion” section of abstracts as examples for key sen-
tences. McKnight and Srinivasan (2003) have
classified sentences in abstracts of randomised
control trials as belonging to the categories “Intro-
duction”, “Methods”, “Results”, and “Discussion”
(IMRaD), using section headlines as soft labels for
training data in addition to a smaller hand annot-
ated corpus. They also report that adding sentence
location as a feature improved performance on the
“Introduction” and “Discussion” categories. Kim
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et al. (2011) used a CRF for sequential classifica-
tion, trained on the hand-annotated Population, In-
tervention, Background, Outcome, Study Design
of evidence-based medicine, or Other (PIBOSO)
corpus, with sentences annotated with one of the
aforementioned categories. Unfortunately, since
sentences in our primary source of positive data
are from a different context than the abstracts to be
classified, section headings, preceding sentences,
and location are not available for our task.

2.1 Semi-Supervised Learning

Semi-supervised learning has the potential to
match the performance of supervised learning
while requiring considerably less labelled data
(Wang et al., 2008; Thomas et al., 2012; Liu
et al., 2013). Soft labelling (e.g. aforementioned
heuristics for using section headlines as labels)
is sometimes subsumed under semi-supervised
learning as Distant Supervision (Go et al., 2009;
Vosoughi et al., 2015; Wallace et al., 2016). La-
bel Propagation (Zhu and Ghahramani, 2002) and
Label Spreading (Zhou et al., 2003) can be seen as
largely unsupervised classification, using labelled
data to initialise and control clustering. Likewise,
Nigam et al. (2011) propose Naive Bayes (NB)
based variants of the unsupervised Expectation-
Maximisation (EM) algorithm for utilising unla-
belled data in semi-supervised text classification.

2.1.1 PU Learning
PU Learning is a special case of semi-supervised
learning where examples in the unlabelled set U
are to be classified as positive (label 1) or neg-
ative (label 0), with only positive labelled data
P initially available. Therefore, the PU Learn-
ing problem can be approximated by learning
to discriminate P from U (Mordelet and Vert,
2014). For that, learning should favour false pos-
itive errors over false negatives, e.g. by using
class-specific weights for error penalisation. Ap-
proaches include one-class SVMs, which approx-
imate the support of the positive class and treat
negative examples as outliers; ranking methods,
which rank unlabelled examples by their decreas-
ing similarity to the mean positive example; and
two-step heuristics, which try to identify reliable
negative examples in the unlabelled data to ini-
tialise semi-supervised learning. We consider the
aforementioned heuristics useful for outlier detec-
tion to reduce noise in our auxiliary data, and
use variations of PU Learning algorithms in semi-

supervised learning, as our problem of finding
summary-like sentences without explicitly defined
negative sentences is closely related to PU Learn-
ing. An overview is available in (Liu et al., 2003).
Additional information can be found in (Elkan and
Noto, 2008; Plessis et al., 2014, 2015). An ex-
ample of the use of PU Learning, for spotting on-
line fake reviews, is available in (Li et al., 2014).

Without known negative examples, measuring
classification performance using accuracy or F1-
score in PU Learning is not possible. Lee and
Liu (2003) suggest an alternative score, called
PU-score, defined as Pr[f(X) = 1|Y =
1]2/Pr[f(X) = 1], for comparing PU Learning
classifiers that can be derived from positive and
unlabelled data alone. The authors show theoretic-
ally that maximising the PU-score is equivalent to
maximising the F1-score and can be used to com-
pare different models classifying the same data.
Nonetheless, it should be noted that this metric is
not bounded, making it viable only for comparing
classifiers trained and tested on the same data; it is
not an indicator for an individual classifier’s per-
formance.

2.1.2 Self-Training
Self-Training, used in this work, starts from an ini-
tial classifier trained on the labelled data. Previ-
ously unlabelled examples that were labelled with
high confidence are added to the training data.
This procedure repeats iteratively, retraining the
classifier until a terminating condition is met. NB
is a popular classifier for Self-Training because
the probabilities it produces provide a confidence
ranking, but any other algorithm may be used as
long as confidence scores can be derived (Wang
et al., 2008).

3 Methods

We present the data sources we use, the prepro-
cessing pipeline and describe in detail the experi-
ments performed with both PU Learning and Self-
Training.

3.1 Used Corpora
CIViC is a database of clinical evidence summar-
ies. Entries consist of evidence statements about
gene variants, such as their association with dis-
eases and the outcome of drug response trials. Ad-
ditional information includes the names of the re-
spective genes, variants, drugs, diseases, and a
variant summary. Each entry contains the PubMed
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ID of the respective publication the information is
taken from. Evidence statements are prototypes
of high-quality information in condensed form.
However, they are not themselves contained in the
abstracts they are based on, as they try to summar-
ize the entire article. At time of writing, CIViC
contains about 2,300 evidence statements consist-
ing of 6,600 sentences (5,300 without duplicates).
They make up our initial corpus of positive sen-
tences (P ).

PubMed abstracts referenced in CIViC. We ex-
tract about 12,700 sentences from 1,300 abstracts
referenced in CIViC, and use them as the unla-
belled corpus (U ). We use CIViC summaries and
the PubMed abstract corpus to estimate the ac-
ceptable range for the ratio of key sentences in
an abstract. We use the ratio of overall sentence
counts in the two corpora (CIViC summaries and
PubMed abstracts) as an upper bound of ≈ 0.4
(5,300/12,700). As a rough estimate for the lower
bound, based on an informed guess that half of the
sentences could be redundant, since one abstract
may correspond to multiple CIViC entries for dif-
ferent drug/variant combinations. This results in a
lower bound ≈ 0.2. Although this is a simplifying
assumption and disregards e.g. any differences in
information density in our data sources’ sentences,
it provides a rough guideline for the ratio of key
sentences in U a classifier should find.

Hallmarks of Cancer (HoC) describe common
traits of all forms of cancer. We use it as a silver
standard corpus consisting of about 13,000 sen-
tences from 1,580 PubMed abstracts. Sentences
not relevant to any of the hallmarks are left unla-
belled. We assume unlabelled sentences are less
likely to be clinically relevant than sentences with
one or more labels, aggregating them in the likely
negative set HoCn (about 8,900 sentences) and
the likely positive set HoCp (about 4,300 sen-
tences). In order to improve generalisation, as well
as to be able to validate our classifier, which re-
quires positive as well as negative labelled data,
we use HoC as auxiliary data. To utiliseHoCp and
HoCn as sources of realistic positive and negat-
ive sentences for training and test data, but avoid-
ing propagation of misclassification errors result-
ing from our simplifying assumption, they must be
filtered for noise (Section 3.3).

3.2 Text Preprocessing and Feature Selection

As features, we use word n-grams, character n-
grams, and sentence length, concatenating them to
form a mixed feature space. All tokens are con-
verted to lower-case. Biomedical scientific text
exhibits some particularities that have to be taken
into consideration during text preprocessing. To
normalise all text, before sentence splitting with
the PunktSentenceTokenizer of the Python Natural
Language Toolkit (NLTK) (Bird et al., 2009), we
use regular expressions: we substitute spaces for
full stops in common abbreviations followed by a
space and lower-case letter or digit (e.g. “ca. 5”
→ “ca 5”). As the pattern “patient no. V[123]”
is quite frequent in CIViC, we introduce a special
rule for not splitting it despite the upper-case. All
whitespace characters are replaced by spaces to
avoid splitting on newlines. Afterwards, to avoid
character encoding-related problems and to reduce
alphabet size, we normalize all text to ASCII be-
fore tokenization.

For word-level tokenization, we use NLTK’s
TreebankWordTokenizer and split the resulting
tokens at characters in {“-”, “/”, “.”, “,”, “—”, “¡”,
“¿”}. Sentences below a minimum character count
of 8 are denoted by a special “ empty sentence ”
token. To prepare word n-grams, we replace
tokens representing numbers or ordinals and their
spelled out versions by a special “ num ” token
and do the equivalent for e.g. ranges, inequal-
ities, percentages, measurement units, and years.
Tokens with suffixes common for drugs but not
found in common speech, such as “-inib”, are re-
placed by “ chemical ”, and sequences that start
with a letter, but contain digits, are replaced by
“ abbrev ” in the hope of catching identifiers of
biomedical entities. We evaluated the use of word
n-grams with n bounded from (1,1) (the bag-of-
words case) up to (1,4), thereby retaining inform-
ation about the order of words in a sentence.

We evaluated the use of character n-gram with
n in ranges from (2,3) to (2,6). To reduce alphabet
size and avoid overfitting, all sequences of non-
word characters except those in {“-”, “%”, “=”},
which may carry semantic information, are re-
placed by single spaces, and all digits are replaced
by 1.

In feature vectors, word and character n-grams
are weighted by their tf-idf score (Aizawa, 2003)
and sentence length is represented as inverse char-
acter count. Character n-grams proved to be more
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expressive than word n-grams, yielding better ac-
curacy scores when we tested each of them in
isolation. However, a combination of character
and word level n-grams and text length performed
best.

3.3 Noise reduction with PU Learning

Using PU Learning, we filterHoCn andHoCp for
sentences that are likely to be useful in our classi-
fication task. We explored several approaches to
PU Learning and subsequent noise reduction.

3.3.1 PU Learning
First, we explored several Two-Step techniques,
which (1) identify a set of reliable negative ex-
amples (RN ) from U and (2) train a classifier
on P and RN and retrain the classifier using the
predicted labels until a stopping criterion is met.
We present them next. i-EM is a variation of the
Expectation-Maximisation algorithm that relies on
a NB classifier, with predicted probabilities of la-
bels in range [0, 1]. s-EM is an extension to i-EM.
Initially, a subset S ⊂ P is added to U as spy doc-
uments. After training an initial classifier on P \S
vs. U ∪ S, the predicted probabilistic labels for
the known hidden positives in S are used to de-
termine a threshold t; all u ∈ U with probabilistic
labels p(yu) < t are moved to RN . In Step 2,
starting from a classifier trained to discriminate P
from RN , the EM algorithm is iterated as in i-EM
until it converges or the estimated classification er-
ror is deteriorating. Roc-SVM uses the Rocchio
algorithm for Step 1: Firstly, prototype vectors p̄
for P and ū for U are computed as a weighted dif-
ferences between the two sets’ respective average
examples. Using these vectors, RN is defined as
{u ∈ U : cos(u, ū) < cos(u, p̄)}, i.e. all unla-
belled sentences that are more similar to the pro-
totype of the unlabelled set than the positive sets.
Step 2 uses SVMs to expand RN . Initially, an
SVM is trained to discriminate P from RN . Af-
terwards, all u ∈ U \ RN with predicted label
0 are added to RN for iteratively retraining the
classifier as long as RN changes. This iteration
may go wrong and result in poor recall on the pos-
itive class; as a fallback strategy, if the classifier
at convergence misclassifies too large a portion of
P , the initial classifier is returned instead. CR-
SVM is a minor extension to Roc-SVM. P and
U are each ranked by decreasing cosine similarity
to the mean positive example; a probably negat-
ive set PN is built from the u ∈ U with a lower

score than a given ratio of least typical examples
in P . The negative prototype vector is then com-
puted using PN rather than U . Step 2 is the same
as in Roc-SVM. Additionally, we explored Biased
SVM, a soft-margin SVM that uses class-specific
weights for positive and negative errors. Weight
parameters are selected in a grid search manner
to find a combination that optimises the PU-score;
this effectively assumes U to contain only negli-
gible amounts of hidden positive examples.

3.3.2 Noise reduction
We experiment with two heuristics for noise re-
duction in HoC. For both of them, let clf(P,U)(x)
be the label for x predicted by classifier clf trained
on P and U . Appendix B (Figure 1) summarises
corpora used for this task.

Strict mode: Remove CIViC-like sentences,
i.e. likely hidden positives, from HoCn for the
reliable negative set HoC ′

n. Keep only CIViC-
like sentences in HoCp for a reliable positive set
HoC ′

p. This implies rather pessimistic assump-
tions about HoCp’s relevance, considering only
outliers as key sentences.

HoC′
n := HoCn \ {x ∈ HoCn : clf(CIV iC,HoCn)(x) = 1}

HoC′
p := {x ∈ HoCp : clf(CIV iC,HoCp)(x) = 1}

Tolerant mode: Remove CIViC-like sentences
from HoCn as before. But rather than requiring
sentences from HoCp to be CIViC-like, remove
those sentences from HoCp that are similar to re-
liable negative sentences, i.e. the purified HoC ′

n.
In doing so, HoCp is assumed to be largely relev-
ant, contaminated with non-key sentences.

HoC′
n := HoCn \ {x ∈ HoCn : clf(CIV iC,HoCn)(x) = 1}

HoC′
p := HoCp \ {x ∈ HoCp : clf(HoC′

n, HoCp)(x) = 1}

3.4 Semi-supervised learning with
Self-Training

In the following, let the labelled set be L :=
P ∪N , with positive labelled set P := CIV iC ∪
HoC ′

p and negative labelled set N := HoC ′
n. The

unlabelled set of original abstracts is denoted by
U . The purified sets HoC ′

p and HoC ′
n are ob-

tained using either of the above heuristics. Ap-
pendix B (Figure 2) summarises corpora used
for this task. We use: Standard Self-Training
(ST) with a confidence threshold. Having exper-
imented with different values, we use a threshold
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Reliable negatives: Strict mode: Tolerant mode:
P := CIV iC, P := CIV iC, P := HoC ′

n

U := HoCn U := HoCp U := HoCp

PU- pos. ratio PU- pos. ratio PU- pos. ratio
Method score in Utest score in Utest score in Utest

i-EM 2.06 0.11 1.61 0.06 0.94 0.36
s-EM 2.06 0.11 1.61 0.06 0.94 0.40
Roc-SVM 2.19 0.07 1.67 0.06 1.07 0.31
CR-SVM 2.19 0.08 1.67 0.06 1.04 0.57
Biased-SVM 2.28 0.03 1.70 0.05 1.13 0.31

Table 1: Removing noise fromHoCn andHoCp. Results for different PU Learning techniques, averaged
over 10 runs, on 20% reserved test sets Ptest ⊂ P and Utest ⊂ U . To generate HoC ′

n as required for
tolerant mode, Roc-SVM (highlighted in bold) was used in the previous step.

Algorithm 1 Self-Training
1: procedure SELF-TRAINING(training data L

with labels, unlabelled data U )
2: while U is not empty do
3: train classifier clf on L
4: predict labels for U with clf
5: move examples with most confidently

predicted labels from U to L
6: end while
7: return clf
8: end procedure

of 0.75 for classifiers producing class probabilit-
ies, and 0.5 for the absolute values of SVM’s de-
cision function; “Negative” Self-Training (NST):
Rather than using a confidence criterion, all unla-
belled examples classified as negative are added to
the training data for the next iteration. This is ana-
logous to the iterative SVM step of Roc-SVM, ex-
cept for the predefined rather than heuristically es-
timated initial negative set, and has shown to help
avoid an unrestricted propagation of positive la-
bels; A variant of the Expectation-Maximisation
(EM) algorithm as used in i-EM. Starting with
P and N as initial fixed-label examples, iter-
ate a NB classifier until convergence, using the
class probabilities predicted for U as labels for
the next training iteration; Label Propagation and
Label Spreading: These algorithms propagate la-
bels through high-density regions using a graph
representation of the data. Both are implemen-
ted in Scikit-learn with Radial Basis Function
(RBF) and k-Nearest-Neighbour (kNN) kernels
available. We were unable to obtain competitive
results with these techniques. In the Self-Training

algorithm (shown in Algorithm 1), we use Scikit-
learn’s implementations of SVM, NB, and Lo-
gistic Regression (LR) as underlying classifiers.

4 Results

Section 4.1 describes the effects of noise reduction
heuristics using PU Learning. The performances
of different semi-supervised approaches for train-
ing a classifier, with both strict and tolerant noise
reduction scenarios, are shown in Section 4.2.

4.1 PU Learning for Noisy Data

Table 1 summarises the PU-scores and ratio of ex-
amples in U classified as positive for different al-
gorithms for reducing noise in HoCn and HoCp

using the strict vs. tolerant heuristics.
Cleaning up HoCn removes some 2 to 7% of

examples, depending on the classifier. Additional
manual inspection of a subset of the sentences re-
moved confirms them as true negatives with re-
spect to key sentences.

Regarding HoCp, the strict heuristics keeps
only 5.5%, some 250 sentences, of positive ex-
amples. We suspect this is due to the different
thematic foci of HoC and the articles summar-
ised in CIV iC, as well as the summaries’ differ-
ent writing style. This leaves us with N := 8,300
sentences, P := 5,600 sentences and U := 12,700
sentences. As our experiments show, choosing this
very selective approach drastically improves the
nominal accuracy of subsequent steps; however,
it leaves a lack of real-world data in the positive
training set and harbours the risk of overfitting.

On the other hand, using the tolerant strategy,
roughly 25% of HoCp are removed due to be-
ing very similar to HoC ′

n. This results in a 50%
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Ptest : Ntest : U :
Method parameters acc p r F1 p r F1 pos. ratio
NST(SVM) C = 0.3 0.94 0.95 0.90 0.92 0.93 0.97 0.95 0.33
NST(LR) C = 6.0 0.89 0.99 0.75 0.84 0.86 0.99 0.92 0.13
NST(NB) α = 0.1 0.90 0.97 0.78 0.86 0.87 0.98 0.92 0.31
ST(SVM) C = 0.4 0.96 0.97 0.93 0.95 0.95 0.98 0.97 0.62
ST(LR) C = 4.0 0.96 0.96 0.94 0.95 0.96 0.98 0.97 0.62
ST(NB) α = 0.1 0.92 0.93 0.88 0.90 0.92 0.96 0.94 0.60
EM α = 0.1 0.91 0.92 0.85 0.88 0.91 0.95 0.93 0.62
Label Propagation RBF kernel 0.83 0.91 0.63 0.74 0.79 0.96 0.87 0.35
Label Propagation kNN kernel 0.69 0.96 0.22 0.36 0.66 0.99 0.79 0.03
Label Spreading RBF kernel 0.85 0.93 0.68 0.79 0.82 0.97 0.89 0.50
Label Spreading kNN kernel 0.79 0.92 0.54 0.68 0.76 0.96 0.85 0.32

Table 2: Performance of different semi-supervised approaches trained on P , N , and U after strict noise
filtering. ST = Self-Training. NST = “Negative” Self-Training. Results averaged over 10 runs with
randomised 20% validation sets from P and N ; min-df threshold = 0.002, 25% of most relevant features
selected with χ2.

Ptest : Ntest : U :
Method parameters acc p r F1 p r F1 pos. ratio
NST(SVM) C = 0.3 0.84 0.84 0.84 0.84 0.84 0.83 0.83 0.32
NST(LR) C = 6.0 0.81 0.88 0.72 0.79 0.76 0.90 0.82 0.17
NST(NB) α = 0.1 0.76 0.85 0.64 0.73 0.70 0.88 0.78 0.30
ST(SVM) C = 0.4 0.85 0.90 0.81 0.85 0.83 0.89 0.86 0.62
ST(LR) C = 6.0 0.86 0.87 0.85 0.85 0.84 0.86 0.85 0.66
ST(NB) α = 0.1 0.76 0.88 0.62 0.72 0.69 0.91 0.79 0.70
EM α = 0.1 0.74 0.88 0.58 0.70 0.68 0.91 0.78 0.70
Label Propagation RBF kernel 0.72 0.88 0.50 0.64 0.64 0.92 0.76 0.36
Label Propagation kNN kernel 0.58 0.90 0.20 0.32 0.54 0.98 0.70 0.02
Label Spreading RBF kernel 0.74 0.88 0.56 0.68 0.67 0.92 0.77 0.56
Label Spreading kNN kernel 0.68 0.91 0.43 0.58 0.62 0.96 0.77 0.34

Table 3: Performance of different semi-supervised approaches trained on P , N , and U after tolerant
noise filtering. Results averaged over 10 runs with randomised 20% validation sets from P and N ;
min-df threshold = 0.002, 25% of most relevant features selected with χ2. The model we consider most
suitable for identifying key sentences is highlighted in bold.

larger and less homogenous positive labelled set
compared to strict noise filtering, which we expect
to provide greater generality and robustness to our
classifier. This leaves us with N := 8,300 sen-
tences, P := 8,600 sentences and U := 12,700
sentences. This is enough to assume a noticeable
reduction of noise and easier distinction between
HoC ′

n and HoC ′
p, but it still contributes a con-

siderable amount of data to the positive set and
is not suspect to overfitting. Typical topics of
sentences removed as irrelevant include biochem-
ical research hypotheses and non-human study
subjects; however, as this heuristic is indirectly

defined, its decisions are not quite as clearly cor-
rect as those directly linked to CIViC.

Our results confirm Biased-SVM nominally
performs best among the PU Learning techniques
described above; this is simply because the PU-
score is maximised by minimising the amount of
positive examples found in U , which Biased-SVM
does by regarding U as negative and performing
supervised classification. However, we do not find
this to be useful for our purpose of noise detection,
or for finding hidden positive data in unlabelled
data in general. The EM-based techniques tend to
go the opposite direction and consider comparably
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large ratios of U as positive, were more sensitive
to distributions, and misclassified positive labelled
data. Roc-SVM, on the other hand, had stable per-
formance in our tests and scores close to those of
Biased-SVM, which is why we use this approach
to filter HoC for the subsequent steps. Our res-
ults also suggest the iterative second step is more
crucial than the exact heuristics for choosing a re-
liable negative set from the unknown data.

4.2 Semi-Supervised classification of key
sentences with Self-Training

We report accuracy (acc), precision (p), recall
(r), F1-score (F1) and the ratio of key sen-
tences found in U (pos.ratio) of different semi-
supervised learning methods for strict (Table 2)
and tolerant (Table 3) noise filtering scenarios.
We consider classification to have gone wrong if
the ratio of positive sentences in U significantly
deviates from the acceptable range [0.2, 0.4] (as
defined in Section 3.1). Additionally, results of su-
pervised ML pipeline on data sets generated after
noise filtering are available in Appendix A.

Our experiments show that strict noise filter-
ing leads to greatly improved classification accur-
acy; however, it may be fallacious to judge this
approach only by the scores it produces. Given
CIViC’s deviations from typical language in sci-
entific articles, the different thematic foci of CIViC
and HoC, and the negligible amount of realistic
positive sentences added in this scenario (Table
1), we suspect classifiers may overfit to superfi-
cial and incidental differences rather than learning
to generalise to correctly identify key sentences in
unseen abstracts. In order to avoid this, we discard
strict noise filtering.

On the other hand, tolerant filtering of HoCn

and HoCp still allows for reasonable classifica-
tion accuracy considering the data’s heterogen-
eity. We expect additional positive sentences to
provide improvements to generalisation that out-
weigh the lower nominal performance scores and
possible errors propagated due to remaining noise.
Although HoC’s notion of relevant sentences is
not identical to that implied by CIViC, our exper-
iments show that removing only the least suitable
sentences is enough to use HoC ′

p as meaningful
training data.

Standard Self-Training yields performance res-
ults very similar to supervised classification, ana-
logous to what can be observed in strict mode, but

a larger ratio of positive predictions forU . The lin-
ear classifiers SVM and Logistic Regression per-
form much better than NB, the latter modelling an
inaccurate probability distribution. In both strict
and tolerant mode, methods with an emphasis on
unsupervised clustering (EM, Label Propagation,
and Label Spreading) underperform, with a strong
bias towards the negative class. Label Propaga-
tion with k-Nearest-Neighbours kernel performs
particularly poorly, failing to find any positive ex-
amples in the unlabelled set. In contrast, NST
with base classifiers leads to positive ratios in U
close to our preliminary estimate, as well as ac-
ceptable classification accuracy. SVM performs
better than Logistic Regression and has balanced
precision and recall for both classes, appearing the
more robust choice.

5 Conclusion

We have developed a pipeline for identifying the
most informative key sentences in oncological ab-
stracts, judging sentences’ clinical relevance im-
plicitly by their similarity to clinical evidence
summaries in the CIViC database. To account
for deviations from typical content between pro-
fessional summaries and sentences appearing in
abstracts, we use the abstracts corresponding to
these summaries as unlabelled data in an semi-
supervised learning setting. An auxiliary silver
standard corpus is used for more realistic training
and validation data. To mitigate introducing er-
rors due to miscategorised examples in partitions
of the auxiliary data, we propose using PU Learn-
ing techniques in a noise detection preprocessing
step.

We evaluate different heuristics for semi-
supervised learning and measure their perform-
ance with heterogenous data. While methods with
an emphasis on unsupervised clustering perform
poorly, (which we attribute to the data violating
smoothness assumptions) Self-Training with lin-
ear classifiers proved robust to unfavourably dis-
tributed data, reaching performance scores similar
to those of supervised classifiers trained without
the unlabelled data. By adapting Self-Training
with SVMs to iteratively expand only the negat-
ive training set as in PU Learning, we were able
to restrict the amount of hidden positive examples
found in unlabelled data while maintaining good
accuracy scores. Our best model using this method
reaches 84% accuracy and 0.84 F1-score.
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As a byproduct of the proposed pipeline, we ob-
tain a silver standard corpus consisting of approx-
imately 12,700 sentences from our unlabelled set,
annotated with sentences’ estimated clinical relev-
ance, which may be useful for future classification
tasks. Our final pipeline can be used to help clini-
cians quickly assess which articles are relevant to
their work, e.g. by incorporating it into workflows
for the retrieval of cancer-related literature. As
such, it has been integrated in to Variant Inform-
ation Search Tool1 (VIST), a query-based docu-
ment retrieval system which ranks scientific ab-
stracts according to the clinical relevance of their
content given a (set of) variations and/or genes.

We encountered various difficulties resulting
from using a gold standard with atypical and
solely positive examples and the heterogeneity of
different training corpora. Although our problem
of finding key sentences is a standard PU Learn-
ing task, the methods described in the PU Learn-
ing literature cannot be used in a verifiable way on
real-world data without negative validation data.
Even for semi-supervised learning with positive
as well as negative labelled data, standard met-
rics alone are not enough to judge a classifier’s
adequacy, since the amount of noise in automat-
ically gathered training data is never completely
certain and the way unlabelled data is handled by a
classifier is not represented in performance scores.
By using heuristics for noise filtering and adapt-
ing self-training to incorporate unlabelled data in
a way suitable to our goal, we alleviate these diffi-
culties.
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sifiers trained on P and N after strict filtering.
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the more similar contents of CIViC and the corres-
ponding abstracts compared to HoC.

Table 5 shows the results of supervised classifi-
ers trained on only P andN after tolerant filtering.
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tering scenario, which can be explained by HoCp
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Ptest : Ntest : U :
Method parameters acc p r F1 p r F1 pos. ratio
SVM C = 3.0 0.96 0.97 0.94 0.95 0.96 0.98 0.97 0.63
LR C = 6.0 0.96 0.96 0.94 0.95 0.96 0.97 0.97 0.64
NB α = 0.1 0.94 0.95 0.91 0.93 0.94 0.97 0.95 0.61

Table 4: Supervised classifiers trained on P and N after strict noise filtering. Results averaged over 10
runs with randomised 20% reserved test sets; min-df threshold = 0.002, 25% of most relevant features
selected with χ2.

Ptest : Ntest : U :
Method parameters acc p r F1 p r F1 pos. ratio
SVM C = 3.0 0.86 0.88 0.84 0.86 0.84 0.88 0.86 0.63
LR C = 6.0 0.86 0.88 0.85 0.86 0.85 0.87 0.86 0.63
NB α = 0.1 0.79 0.89 0.67 0.77 0.72 0.91 0.81 0.70

Table 5: Supervised classifiers trained on P and N after tolerant noise filtering. Results averaged over
10 runs with randomised 20% validation sets; min-df threshold = 0.002, 25% of most relevant features
selected with χ2.

Figure 1: PU Learning for noise reduction - used corpora

Figure 2: Semi-supervised training with Self-Training - used corpora


