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Biomedical natural language processing in 2018:
Spotlight on Deep Learning

Dina Demner-Fushman, Kevin Bretonnel Cohen, Sophia Ananiadou, and Jun-ichi Tsujii

The number of community challenges, corpora and publicly available tools in the domain continues
to grow rapidly. The past year has seen several hackathons, a variety of shared tasks and growing
numbers of workshops dedicated to specific biomedical and clinical sublanguages and tasks. The
BioNLP meeting has now been ongoing for 17 years. BioNLP continues to stay the flagship and the
generalist in biomedical language processing, accepting noteworthy work independently of the tasks and
sublanguages studied. The quality of submissions continues to impress the program committee and the
organizers. BioNLP 2018 received 28 submissions, of which 13 were accepted for oral presentation
and 12 as poster presentations. This year, Deep Learning approaches are explored in the overwhelming
majority of the papers, with focus on interesting new models and in-depth exploration of the state-of-
the-art publicly available tools. As for the past several years, the themes in this year’s papers and posters
continue to focus equally on clinical text and biological language processing, as well as reveal growing
interest in consumer language processing. The morning session presents clinical text processing for
extraction of causes of death, risk factors identification and named entity recognition, among others. The
next session presents work on fundamental NLP problems, such as ontology alignment and key-phrase
extraction, whereas the afternoon session presents exceptionally strong work on complex text mining
tasks, such as event extraction and question answering.

The invited talk and the invited presentation reflect thus growing interest in automated support for
systematic reviews of the literature. In the invited talk, professor Paul Glasziou discusses progress and
challenges in automating systematic reviews. Paul Glasziou, FRACGP, PhD is Professor of Evidence-
Based Medicine at Bond University and a part-time General Practitioner. He was the Director of the
Centre for Evidence-Based Medicine in Oxford from 2003-2010. His key interests include identifying
and removing the barriers to using high quality research in everyday clinical practice. He is the author
of six books related to evidence based practice: Systematic Reviews in Health Care, Decision Making in
Health Care and Medicine: integrating evidence and values, An Evidence-Based Medicine Workbook,
Clinical Thinking: Evidence, Communication and Decision-making, Evidence-Based Medicine: How
to Practice and Teach EBM, and Evidence-Based Medical Monitoring: Principles and Practice. He has
authored over 160 peer-reviewed journal articles and his h-index is currently 43. He is the recipient of
an NHRMC Australia Fellowship which he commenced at Bond University in July, 2010.

The invited presentation follows suit by bringing to our attention a new corpus of about 5,000 abstracts
of randomized control trials annotated with granular information regarding the study populations,
interventions, comparators and outcomes.
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Abstract

Functioning is gaining recognition as an
important indicator of global health, but
remains under-studied in medical natural
language processing research. We present
the first analysis of automatically extract-
ing descriptions of patient mobility, using
a recently-developed dataset of free text
electronic health records. We frame the
task as a named entity recognition (NER)
problem, and investigate the applicabil-
ity of NER techniques to mobility extrac-
tion. As text corpora focused on patient
functioning are scarce, we explore domain
adaptation of word embeddings for use
in a recurrent neural network NER sys-
tem. We find that embeddings trained on
a small in-domain corpus perform nearly
as well as those learned from large out-of-
domain corpora, and that domain adapta-
tion techniques yield additional improve-
ments in both precision and recall. Our
analysis identifies several significant chal-
lenges in extracting descriptions of patient
mobility, including the length and com-
plexity of annotated entities and high lin-
guistic variability in mobility descriptions.

1 Introduction

Functioning has recently been recognized as a
leading world health indicator, joining morbid-
ity and mortality (Stucki and Bickenbach, 2017).
Functioning is defined in the International Clas-
sification of Functioning, Disability, and Health
(ICF; WHO 2001) as the interaction between
health conditions, body functions and structures,
activities and participation, and contextual fac-
tors. Understanding functioning is an important
element in assessing quality of life, and automatic

extraction of patient functioning would serve as
a useful tool for a variety of care decisions, in-
cluding rehabilitation and disability assessment
(Stucki et al., 2017). In healthcare data, natu-
ral language processing (NLP) techniques have
been successfully used for retrieving information
about health conditions, symptoms and procedures
from unstructured electronic health record (EHR)
text (Soysal et al., 2018; Savova et al., 2010).
As recognition of the importance of functioning
grows, there is a need to investigate the application
of NLP methods to other elements of functioning.

Recently, Thieu et al. (2017) introduced a
dataset of EHR documents annotated for descrip-
tions of patient mobility status, one area of activity
in the ICF. Automatically recognizing these de-
scriptions faces significant challenges, including
their length and syntactic complexity and a lack of
terminological resources to draw on. In this study,
we view this task through the lens of named en-
tity recognition (NER), as recent work has illus-
trated the potential of using recurrent neural net-
work (RNN) NER models to address similar issues
in biomedical NLP (Xia et al., 2017; Dernoncourt
et al., 2017b; Habibi et al., 2017).

An additional strength of RNN models is their
ability to leverage pretrained word embeddings,
which capture co-occurrence information about
words from large text corpora. Prior work has
shown that the best improvements come from em-
beddings trained on a corpus related to the target
domain (Pakhomov et al., 2016). However, free
text describing patient functioning is hard to come
by: for example, even the large MIMIC-III corpus
(Johnson et al., 2016) includes only a few hundred
documents from therapy disciplines among its two
million notes. While recent work suggests that us-
ing a training corpus from the target domain can
mitigate a lack of data (Diaz et al., 2016), even
a careful corpus selection may not produce suffi-
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cient data to train robust word representations.
In this paper, we explore the use of an RNN

model to recognize descriptions of patient mo-
bility. We analyze the impact of initializing the
model with word embeddings trained on a vari-
ety of corpora, ranging from large-scale out-of-
domain data to small, highly-targeted in-domain
documents. We further explore several domain
adaptation techniques for combining word-level
information from both of these data sources, in-
cluding a novel nonlinear embedding transforma-
tion method using a deep neural network.

We find that embeddings trained on a very
small set of therapy encounter notes nearly match
the mobility NER performance of representations
trained on millions of out-of-domain documents.
Domain adaptation of input word embeddings
often improves performance on this challenging
dataset, in both precision and recall. Finally,
we find that simpler adaptation methods such as
concatenation and preinitialization achieve high-
est overall performance, but that nonlinear map-
ping of embeddings yields the most consistent per-
formance across experiments. We achieve a best
performance of 69% exact match and over 83%
token-level match F-1 score on the mobility data,
and identify several trends in system errors that
suggest fruitful directions for further research on
recognizing descriptions of patient functioning.

2 Related work

The extraction of named entities in free text has
been one of the most important tasks in NLP and
information extraction (IE). As a result, this track
of research has matured over the last two decades,
especially in the newswire domain for high re-
source languages such as English. Many of the
successful existing NER systems use a combi-
nation of engineered features trained using con-
ditional random fields (CRF) model (McCallum
and Li, 2003; Finkel et al., 2005). NER systems
have also been widely studied in medical NLP,
using dictionary lookup methods (Savova et al.,
2010), support vector machine (SVM) classi-
fiers (Kazama et al., 2002), and sequential models
(Tsai et al., 2006; Settles, 2004). In recent years,
deep learning models have been used in NER
with successful results in many domains (Col-
lobert et al., 2011). Proposed neural network ar-
chitectures included hybrid convolutional neural
network (CNN) and bi-directional long-short term

Evaluation:

[Scoring: 1=totally dependent,
2=requires assistance,
3=requires appliances, 4=totally
independent]ScoreDefinition.

[Ambulation: 4]Mobility
Observations:
Pt is weight bearing: [she
ambulates independently w/o
use of assistive device]Mobility.
Limited to very brief
examination.

Figure 1: Synthetic document with examples of
ScoreDefinition (in blue) and Mobility (in orange).

memory (Bi-LSTM) as introduced by Chiu and
Nichols (2015). State-of-the-art NER models use
the architecture proposed by Lample et al. (2016),
a stacked bi-directional long-short term memory
(Bi-LSTM) for both character and word, with a
CRF layer on the top of the network. In the
biomedical domain, Habibi et al. (2017) used this
architecture for chemical and gene name recog-
nition. Liu et al. (2017) and Dernoncourt et al.
(2017a) adapted it for state-of-the-art note deiden-
tification. In terms of functioning, Kukafka et al.
(2006) and Skube et al. (2018) investigate the pres-
ence of functioning terminology in clinical data,
but do not evaluate it from an NER perspective.

3 Data

Thieu et al. (2017) presented a dataset of 250 de-
identified EHR documents collected from Physi-
cal Therapy (PT) encounters at the Clinical Center
of the National Institutes of Health (NIH). These
documents, obtained from the NIH Biomedi-
cal Translational Research Informatics System
(BTRIS; Cimino and Ayres 2010), were anno-
tated for several aspects of patient mobility, a sub-
domain of functioning-related activities defined
by the ICF; we therefore refer to this dataset as
BTRIS-Mobility. We focus on two types of con-
tiguous text spans: descriptions of mobility status,
which we call Mobility entities, and measurement
scales related to mobility activity, which we refer
to as ScoreDefinition entities.

Two major differences stand out in BTRIS-
Mobility as compared with standard NER data.
The entities, defined for this task as contiguous
text spans completely describing an aspect of mo-
bility, tend to be quite long: while prior NER
datasets such as the i2b2/VA 2010 shared task data
(Uzuner et al., 2012) include fairly short entities
(2.1 tokens on average for i2b2), Mobility entities

2



Entity Train Valid Test
Mobility 1,533 467 947
ScoreDefinition 82 24 48

Table 1: Named entity statistics for training, vali-
dation, and test splits of BTRIS-Mobility. Due to
the rarity of ScoreDefinition entities, we use a 2:1
split of training to test data, and hold out 10% of
training data as validation.

are an average of 10 tokens long, and ScoreDefini-
tion average 33.7 tokens. Also, both Mobility and
ScoreDefinition entities tend to be entire clauses
or sentences, in contrast with the constituent noun
phrases that are the meat of most NER. Figure 1
shows example Mobility and ScoreDefinition en-
tities in a short synthetic document. Despite these
challenges, Thieu et al. (2017) show high (> 0.9)
inter-annotator agreement on the text spans, sup-
porting use of the data for training and evaluation.

These characteristics align well with past suc-
cessful applications of recurrent neural models to
challenging NLP problems. For our evaluation on
this dataset, we randomly split BTRIS-Mobility at
document level into training, validation, and test
sets, as described in Table 1.

3.1 Text corpora
In order to learn input word embeddings for NER,
we use a variety of both in-domain and out-of-
domain corpora, defined in terms of whether the
corpus documents include descriptions of func-
tion. For in-domain data, with explicit references
to patient functioning, we use a corpus of 154,967
EHR documents shared with us (under an NIH
Clinical Center Office of Human Subjects deter-
mination) from the NIH BTRIS system.1 A large
proportion of these documents comes from the
Rehabilitation Medicine Department of the NIH
Clinical Center, including Physical Therapy (PT),
Occupational Therapy (OT), and other therapeu-
tic records; the remaining documents are sampled
from other departments of the Clinical Center.

Since BTRIS-Mobility is focused on PT docu-
ments, we also use a subset of this corpus con-
sisting of 17,952 PT and OT documents. Despite
this small size, the topical similarity of these doc-
uments makes them a very targeted in-domain cor-
pus. For clarity, we refer to the full corpus as

1There is no overlap between these documents and the
annotated data in BTRIS-Mobility (T. Thieu, personal com-
munication).

BTRIS, and the smaller subset as PT-OT.

3.1.1 Out-of-domain corpora
As the BTRIS corpus is considered a small train-
ing corpus for learning word embeddings, we also
use three larger out-of-domain corpora, which rep-
resent different degrees of difference from the in-
domain data. Our largest data source is pretrained
FastText embeddings from Wikipedia 2017, web
crawl data, and news documents.2

We also make use of two biomedical corpora for
comparison with existing work. PubMed abstracts
have been an extremely useful source of embed-
ding training in biomedical NLP (Chiu et al.,
2016); we use the text of approximately 14.7 mil-
lion abstracts taken from the 2016 PubMed base-
line as a high-resource biomedical corpus. In ad-
dition, we use two million free-text documents
released as part of the MIMIC-III critical care
database (Johnson et al., 2016). Though smaller
than PubMed, the MIMIC corpus is a large sample
of clinical text, which is often difficult to obtain
and shows significant linguistic differences with
biomedical literature (Friedman et al., 2002). As
MIMIC is clinical text, it is the closest compari-
son corpus to the BTRIS data; however, as MIMIC
focuses on ICU care, the information in it differs
significantly from in-domain BTRIS documents.

4 Methods

We adopt the architecture of Dernoncourt et al.
(2017a), due to its successful NER results on
CoNLL and i2b2 datasets. The architecture, as
depicted in Figure 2, is a stacked LSTM com-
posed of: i) character Bi-LSTM layer that gen-
erates character embeddings. We include this in
our experimentations due to its performance en-
hancement; ii) token Bi-LSTM layer using both
character and pre-trained word embeddings as in-
put; iii) CRF layer to enhance the performance
by taking into account the surrounding tags (Lam-
ple et al., 2016). We use the following values for
the network hyperparameters, as they yielded the
best performance on the validation set: i) hidden
state dimension of 25 for both character and token
layers. In contrast to more common token layer
sizes such as 100 or 200, we found the best val-
idation set performance for our task with 25 di-
mensions; ii) learning rate = 0.005; iii) patience
= 10; iv) optimization with stochastic gradient de-

2fasttext.cc/docs/en/english-vectors

3



x1,1 x1,	ℓ(1)

LSTM

LSTMLSTM

LSTM

VC

VT

…

…

VC

xn,1 xn,ℓ (n)

en

LSTM

LSTM

LSTMLSTM

LSTM

VC

VTx1

…

…

VC

e1

LSTM

LSTM

d1

a1

y1

LSTM

dn

an

yn

…

…

…

…

xn

Character layer

Token layer

CRF layer

Figure 2: Bi-LSTM-CRF network architecture

scent (SGD) which showed superior performance
to adaptive moment estimation (Adam) optimiza-
tion technique (Kingma and Ba, 2014).

4.1 Embedding training
We use two popular toolkits for learning word em-
beddings: word2vec3 (Mikolov et al., 2013) and
FastText4 (Bojanowski et al., 2017). We run both
toolkits using skip-gram with negative sampling
to train 300-dimensional embeddings, and use de-
fault settings for all other hyperparameters.5

4.2 Domain adaptation methods
We evaluate several different methods for adapting
out-of-domain embeddings to the BTRIS corpus.

Concatenation In addition to the original
embeddings, we concatenate out-of-domain and
BTRIS/PT-OT embeddings as a baseline, allowing
the model to learn a task-specific combination of
the two representations.

Preinitialization Recent work has found bene-
fits from retraining learned embeddings on a target
corpus (Yang et al., 2017). We pre-initialize both
word2vec and FastText toolkits with embeddings
learned on each of our three reference corpora,
and retrain on the BTRIS corpus using an ini-
tial learning rate of 0.1. Additionally, we use the
regularization-based domain adaptation approach
introduced by Yang et al. (2017) as another base-
line, due to its successful results in improving

3We use word2vec modified to support pre-initialization,
from github.com/drgriffis/word2vec-r.

4github.com/facebookresearch/fastText
5For PT-OT embeddings, due to the extremely small cor-

pus size, we use an initial learning rate of 0.05, keep all words
with minimum frequency 2, and train for 25 iterations.

NER performance. Their method aims to help the
model to differentiate between general and domain
specific terms, using a significance function φ of a
word w. φ is dependent on the definition of w’s
frequency, where in our implementation it is the
word frequency in the target corpora.

Linear transform However, these approaches
suffer from the same limitations as training BTRIS
embeddings directly: a restricted vocabulary and
minimal training data, both due to the size of the
corpus. We therefore also investigate two meth-
ods for learning a transformation from one set
of embeddings into the same space as another,
based on a reference dictionary. Given an out-of-
domain source embedding set and a target BTRIS
embedding set, we use all words in common be-
tween source and target as our training vocabu-
lary.6 We adapt this to the linear transformation
method successfully applied to bilingual embed-
dings by Artetxe et al. (2016), using this shared
vocabulary as the training dictionary.

Non-linear transform As all of our embed-
dings are in English, but from domains that do
not intuitively seem to have a linear relationship,
we also extend the method of Artetxe et al. to a
non-linear transformation. We randomly divide
the shared vocabulary into ten folds, and train a
feed-forward neural network using nine-tenths of
the data, minimizing mean squared error (MSE)
between the learned projection and the true em-
beddings. After each epoch, we calculate MSE on
the held-out set, and halt when this error stops de-
creasing. Finally, we average the learned projec-
tions from each fold to yield the final transforma-
tion function. Following Artetxe et al. (2016), we
apply this function to all source embeddings, al-
lowing us to maintain the original vocabulary size.

Our model is a fully-connected feed-forward
neural network, with the same hidden dimension
as our embeddings. We evaluate with both 1 and
5 hidden layers, and use either tanh or rectified
linear unit (ReLU) activation throughout. Model
structure is denoted in the result; for example, “5-
layer ReLU” refers to nonlinear mapping using a
5-layer network with ReLU activation. We train
with Adam optimization (Kingma and Ba, 2014)
and a minibatch size of 5.7

6We evaluated using subsets of 1k, 2k, or 10k shared
words most frequent in BTRIS, but the best downstream per-
formance was achieved using all pivot points.

7Source implementation available at
github.com/drgriffis/NeuralVecmap
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Corpus Size Toolkit
Mobility ScoreDefinition

Exact match Token match Exact match Token match
Pr Rec F1 Pr Rec F1 Pr Rec F1 Pr Rec F1

Random initialization 67.7 61.8 64.6 84.0 75.9 79.7 86.5 93.4 90.0 97.7 98.9 98.3
WikiNews 16B FT 67.0 64.0 65.4 83.0 80.0 81.5 83.3 93.4 88.2 96.8 99.3 98.0
PubMed 2.6B FT 68.7 65.9 67.2 82.0 84.5 83.2 93.6 91.7 92.6 98.1 97.8 97.9

w2v 64.9 64.7 64.8 77.4 87.7 82.2 90.0 93.8 91.8 97.8 99.6 98.7
MIMIC 497M FT 37.7 10.6 16.5 78.9 21.7 34.0 86.0 90.0 87.8 97.9 97.7 97.8

w2v 71.9 64.9 68.2 84.3 83.0 83.6 91.7 91.7 91.7 96.5 99.6 98.0
BTRIS 74.6M FT 66.8 63.8 65.3 80.6 83.4 82.0 90.2 95.8 92.9 95.9 99.0 97.4

w2v 69.7 63.7 66.7 86.0 79.2 82.4 88.2 93.8 90.9 96.7 99.9 98.3
PT-OT 4.2M FT 68.8 62.5 65.5 84.5 80.2 82.3 92.0 95.8 93.9 97.1 97.7 97.4

w2v 70.8 63.4 67.0 85.8 79.4 82.5 86.3 91.7 88.9 96.3 98.9 97.6

Table 2: Exact and token-level match results on BTRIS-Mobility, using randomly-initialized embeddings
as a baseline and unmodified word2vec (w2v) and FastText (FT) embeddings from different corpora. Size
is the number of tokens in the training corpus.

5 Results

We report exact match results, calculated using
CoNLL 2003 named entity recognition shared task
evaluation scoring (Tjong Kim Sang and De Meul-
der, 2003), which requires that all tokens of an en-
tity are correctly recognized. Additionally, given
the long span of Mobility and ScoreDefinition en-
tities (see Section 3), we evaluated partial match
performance using token-level results. For sim-
plicity, we report only performance on the test set;
however, validation set numbers consistently fol-
low the same trends observed in test data. We de-
note embeddings trained using FastText with the
subscript FT , and word2vec with w2v.

5.1 Embedding corpora

Exact and token-level match results for both Mo-
bility and ScoreDefinition entities are given for
embeddings from each corpus in Table 2. By and
large, the in-domain BTRIS and PT-OT embed-
dings yield higher precision than out-of-domain
embeddings, though this comes at the expense of
recall. word2vec embeddings consistently achieve
better NER performance than FastText embed-
dings from the clinical corpora, although this was
reversed with PubMed, suggesting that further re-
search is needed on the strengths of different em-
bedding methods in biomedical data. The un-
usually poor performance of MIMICFT embed-
dings persisted across multiple experiments with
two embedding samples, manifesting primarily in
making very few predictions (less than 30% as
many Mobility entities other embeddings yielded).

Most notably, despite a thousand-fold reduction
in training corpus size, we see that PT-OT embed-
dings match the performance of PubMed embed-

dings on Mobility mentions and achieve the best
overall performance on ScoreDefinition entities.
Together with the overall superior performance of
PT-OT embeddings even to the larger BTRIS cor-
pus, our findings support the value of using input
embeddings that are highly representative of the
target domain. Nonetheless, MIMIC embeddings
have both the best precision and overall perfor-
mance on Mobility data, despite the domain mis-
match of critical care versus therapeutic encoun-
ters. This indicates that there is a limit to the ben-
efits of in-domain data that can be outweighed by
sufficient data from a different but related domain.

Token-level results follow the same trends as
exact match, with clinical embeddings achiev-
ing highest precision, while PubMed embeddings
yield better recall. As many entity-level errors are
only off by a few tokens, token-level scores are
generally 15-20 absolute points higher than their
corresponding entity-level scores. At the token
level, it is clear that ScoreDefinition entities are ef-
fectively solved in this dataset, with all F1 scores
are above 97.4%. This is primarily due to the reg-
ularity of ScoreDefinition strings: they typically
consist of a sequence of single numbers followed
by explanatory strings, as shown in Figure 1.

5.2 Mapping methods

Table 3 takes a single representative source/target
pair and compares the different results obtained
on recognizing Mobility entities when the NER
model is initialized with embeddings learned us-
ing different domain adaptation methods. In this
case, as with several other source/target pairs we
evaluated, the concatenated embeddings give the
best overall performance, stemming largely from
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Target Source Concat Preinit Linear 5-layer tanh
Pr Rec F1 Pr Rec F1 Pr Rec F1 Pr Rec F1

BTRISFT

WikiNewsFT 72.2 65.3 68.6 55.0 59.2 57.0 65.1 61.9 63.5 69.3 64.2 66.7
PubMedFT 69.5 65.8 67.6 64.2 66.5 65.4 65.6 60 62.7 66.1 64.5 65.3
PubMedw2v 65.3 65.3 65.3 64.8 65.4 65.1 70.3 65.8 68 66.3 62.6 64.4
MIMICFT 35.0 10.4 16.0 37.8 15.5 22.0 63.7 62.9 63.3 70.3 61.3 65.5
MIMICw2v 67.4 67.6 67.5 68.5 64.6 66.5 66.8 60.3 63.4 69.2 64.3 66.7

PT-OTFT

WikiNewsFT 67.5 63.9 65.6 54.5 57.9 56.1 68.9 63.8 66.2 68.5 63.4 65.8
PubMedFT 62.8 65.1 63.9 61.3 50.2 55.2 62.6 62.6 62.6 68.3 60.1 63.9
MIMICw2v 64.1 66.1 65.1 59.9 61.8 60.8 57.9 54.1 55.9 67.3 63.2 65.1

Table 4: Exact match precision and recall for Mobility entities with word embeddings mapped from each
source to BTRISFT embeddings, using four selected domain adaptation methods. The best-performing
embeddings from each source corpus were also mapped to PT-OTFT embeddings. The best precision,
recall, and F1 achieved with each source/target pair is marked in bold.

Method Exact match Token match
Pr Rec F1 Pr Rec F1

WikiNewsFT 67.0 64.0 65.4 83.0 80.0 81.5
BTRISw2v 70.0 63.7 66.6 86.0 79.2 81.5
Concatenated 68.6 66.7 67.6 84.3 81.8 83.0
Preinitialized 66.8 64.5 65.6 78.4 86.4 82.2
Linear 72.5 58.9 65 79.1 83 81
1-layer ReLU 69.2 63.2 66.0 83.4 76.9 80.0
1-layer tanh 70.6 61.0 65.5 84.9 75.7 80.1
5-layer ReLU 67.3 61.9 64.5 83.5 76.6 79.9
5-layer tanh 67.9 62.1 64.9 82.1 77.0 79.4

Table 3: Comparison of mapping methods, using
WikiNewsFT as source and BTRISw2v as target.
Results are given for exact entity-level match and
token-level match for test set Mobility entities.

an increase in recall over the baselines. How-
ever, we see that the nonlinear mapping methods
tend to yield high precision: all settings improve
over WikiNews embeddings alone, and the 1-layer
tanh mapping beats the BTRIS embeddings as
well. Reflecting the earlier observed trends of in-
domain data, this is offset by a drop in recall, often
of several absolute percentage points.

These differences are fleshed out further in Ta-
ble 4, comparing four domain adaptation meth-
ods across several source/target pairs. Concate-
nation typically achieves the best overall perfor-
mance among the adaptation methods, but non-
linear mappings yield highest precision in 6 of
the 8 settings shown. Concatenation is also more
sensitive to noise in the source embeddings, as
shown with MIMICFT results, and preinitializa-
tion varies widely in its performance. By contrast,
linear and nonlinear mapping methods are less af-
fected by the choice of source embeddings, yield-
ing more consistent results than preinitialization or
concatenation for a given target corpus. Nonlinear
mappings exhibit this stability most clearly, pro-
ducing very similar results across all settings. The

Source Target Method Pr Rec F1
WikiNewsFT PT-OTw2v Preinit 72.1 66.1 69.0
WikiNewsFT BTRISw2v Linear 72.5 58.9 65
MIMICw2v BTRISFT Concat 67.4 67.6 67.5

Table 5: Best precision, recall, and F1 (exact) for
test set Mobility mentions, with the source/target
pair and domain adaptation method used.

regularization-based domain adaptation method of
Yang et al. (2017) consistently yielded similar
results to preinitialization: for example, an F1
score of 65% when PubMedw2v embeddings are
adapted to BTRIS, as compared to 65.4% using
pre-initialization with word2vec. We therefore
omit these results for brevity.

Comparing both Tables 3 and 4 to the perfor-
mance of unmodified embeddings shown in Ta-
ble 2, we see a surprising lack of overall per-
formance improvement or degradation. While
the different adaptation methods exhibit consistent
differences between one another, only 12 of the 32
F1 scores in Table 4 represent improvements over
the relevant unmapped baselines. Many adapta-
tion results achieve notable improvement in preci-
sion or recall individually, suggesting that differ-
ent methods may be more useful for downstream
applications where one metric is emphasized over
the other. However, several of our results indicate
failure to adapt, illustrating the difficulty of effec-
tively adapting embeddings for this task.

5.3 Source/target pairs

Table 5 highlights the source/target pairs that
achieved the best exact match precision, recall,
and F1 out of all the embeddings we evalu-
ated, both unmapped and mapped. Though each
source/target pair produced varying downstream
results among the domain adaptation methods, a
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couple of broad trends emerged from our analy-
sis. The largest performance gains over unmapped
baselines were found when adapting high-resource
WikiNews and PubMed embeddings to in-domain
representations; however, these pairings also had
the highest variability in results. The most consis-
tent gains in precision came from using MIMIC
embeddings as source, and these were mostly
achieved through the nonlinear mapping approach.

There was no clear trend in the domain-adapted
results as to whether word2vec or FastText em-
beddings led to the best downstream performance:
it varied between pairs and adaptation methods.
word2vec embeddings were generally more con-
sistent, but as seen in Tables 4 and 5, FastText em-
beddings often achieved the highest performance.

5.4 Error analysis
Several interesting trends emerge in the NER er-
rors produced in our experiments. Most generally,
punctuation is often falsely considered to bound
an entity. For example, the following string is part
of a continuous Mobility entity:8

supine in bed with elevated leg,
and was left sitting in bed

However, most trained models separated this at the
comma into two Mobility entities. Unsurprisingly,
given the length of Mobility entities, we find many
cases where most of the correct entity is tagged by
the model, but the first or last few words are left
off, as in

[he exhibits compensatory gait
patterns]Pred as a result]Gold

This behavior is illustrated in the large perfor-
mance difference between entity-level and token-
level evaluation discussed in Section 5.1.

We also see that descriptions of physical activity
without specific evaluative terminology are often
missed by the model. For example, working out

in the yard is a Mobility entity ignored by the
vast majority of our experiments, as is negotiate
six steps to enter the apartment.

5.4.1 Corpus effects
Within correctly predicted entities, we see some
indications of source corpus effect in the results.
Considering just the original, non-adapted em-
beddings as presented in Table 2, we note two
main differences between models trained on out-
of-domain vs in-domain embeddings. In-domain

8Several examples in this section have been edited for dei-
dentification purposes and brevity.

embeddings lead to much more conservative mod-
els: for example, PT-OTw2v only predicts 850
Mobility entities in test data, and BTRISw2v pre-
dicts 863; this is in contrast to 922 predictions
from MIMICw2v and 940 from PubMedw2v. This
carries through to mapped embeddings as well:
adding PT-OT embeddings into the mix decreases
the number of predictions across the board.

Several predictions exhibit some degree of do-
main sensitivity, as well. For example, “fatigue”
is present at the end of several Mobility men-
tions, and both PubMed and MIMIC embeddings
typically end these mentions early. PubMed em-
beddings also append more typical symptomatic
language onto otherwise correct Mobility entities,
such as no areas of pressure noted on skin

and numbness and tingling of arms. MIMIC
and the heterogeneous in-domain BTRIS corpus
append similar language, including and chronic

pain. WikiNews embeddings, by contrast, ap-
pear oversensitive to key words in many Mobility
mentions, tagging false positives such as my wife

(spouses are often referred to as a source of phys-
ical support) and stairs are within range.

5.4.2 Changes from domain adaptation
Domain-adapted embeddings fix some corpus-
based issues, but re-introduce others. Out-of-
domain corpora tend to chain together Mobility
entities separated by only one or two words, as in

[He ambulates w/o ad]Mobility, no
walker observed, [antalgic gait
pattern]Mobility

While source PubMed and WikiNews embeddings
often collapse these to a single mention, adapting
them to the target domain fixes many such cases.
However, some of the original corpus noise re-
mains: PT-OTw2v correctly ignored and chronic

pain after a Mobility mention, but MIMICw2v

mapped to PT-OTw2v re-introduces this error.
The most consistent improvement obtained

from domain adaptation was on Mobility en-
tities that are short noun phrases, e.g. gait

instability, and unsteady gait. Non-adapted
embeddings typically miss such phrases, but
mapped embeddings correctly find many of them,
including some that in-domain embeddings miss.

5.4.3 Adaptation method effects
The most striking difference we observe when
comparing different domain adaptation methods
is that preinitialization universally leads to longer
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Figure 3: Number of words in shared vocabulary with different nearest neighbors in source and domain-
adapted embeddings, using BTRISFT as target. Light hatched bars indicate the number of words whose
new nearest neighbor matches BTRISFT . The dashed line indicates shared vocabulary size.

Source set Source Target Preinit Concat Linear h1 tanh h5 tanh

PubMedFT

ambulating ambulating ambulating ambulating ambulating ambulating worsening
ambulate ambulate ambulate ambulate ambulate ambulate wearing
crutches ambulatory walker crutches crutches crutch complaints

WikiNewsFT

ambulating ambulating pos ambulating cardiopulmonary robotic respiratory
ambulate ambulate 76 ambulate neurosurgical overhead sclerotic

extubation ambulatory acuity ambulatory resuscitation ambulating acupuncture

Table 6: Top 3 nearest neighbors of ambulation in embeddings mapped to BTRISFT using different
adaptation methods. Source and Target are neighbors in the original source and BTRISFT embeddings.

Mobility entity predictions, by both mean and
variance of entity length. Though preinitialized
embeddings still perform well overall, many pre-
dictions include several extra tokens before or af-
ter the true entity, as in the following example:

(now that her leg is healed [she
is independent with wheelchair
transfer]Gold and using her
shower bench)Pred

Preinitialized embeddings also have a strong ten-
dency to collapse sequential Mobility entities.
Both of these trends are reflected in the lower
token-level precision numbers in Table 3.

Comparing nonlinear mapping methods, we
find that a 1-layer mapping with tanh activa-
tion consistently leads to fewer predicted Mobil-
ity entities than with ReLU (for example, 814
vs 859 with WikiNewsFT mapped to BTRISw2v,
917 vs 968 with MIMICw2v mapped to PT-
OTw2v). However, this difference disappears
when a 5-layer mapping is used. Despite
their consistent performance, nonlinear transfor-
mations seem to re-introduce a number of er-
rors related to more general mobility terminology.
For example, he is very active and runs 15

miles per week is correctly recognized by con-
catenated WikiNewsFT and BTRISw2v, but
missed by several of their nonlinear mappings.

6 Embedding analysis

To further evaluate the effects of different do-
main adaptation methods, we analyzed the nearest
neighbors by cosine similarity of each word before
and after domain adaptation. We only considered
the words present both in the dataset and in each of
our original sets of embeddings, yielding a vocab-
ulary of 6,201 words. We then took this vocabu-
lary and calculated nearest neighbors within it, us-
ing each set of out-of-domain original embeddings
and each of its domain-adapted transformations.

Figure 3 shows the number of words whose
nearest neighbors changed after adaptation, us-
ing BTRISFT as the target; all other targets dis-
play similar results. We see that in general,
the neighborhood structure of target embeddings
is well-preserved with concatenation, sometimes
preserved with preinitialization, and completely
disposed of with the nonlinear transformation. In-
terestingly, this reorganization of words to some-
thing different from both source and target does
not lead to the performance degradation we might
expect, as shown in Section 5.

We also qualitatively examined nearest neigh-
bors before and after adaptation. Table 6 shows
nearest neighbors of ambulation, a common Mo-
bility word, for two representative source/target
pairs. Preinitialization generally reflects the
neighborhood structure of the target embeddings,
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but can be noisy: in WikiNewsFT /BTRISFT ,
other words such as therapy and fatigue share am-
bulation’s less-than-intuitive neighbors.

Reflecting the changes seen in Figure 3, the
linear transformation preserves source neighbors
in the biomedical PubMed corpus, but yields a
neighborhood structure different from source or
target with highly out-of-domain WikiNews em-
beddings. Nonlinear transformations sometimes
yield sensible nearest neighbors, as in the single-
layer tanh mapping of PubMedFT to BTRISFT .
More often, however, the learned projection sig-
nificantly shuffles neighborhood structure, and ob-
served neighbors may bear only a distant simi-
larity to the query term. In several cases, large
swathes of the vocabulary are mapped to a single
tight region of the space, yielding the same nearest
neighbors for many disparate words. This occurs
more often when using a ReLU activation, but we
also observe it occasionally with tanh activation.

7 Conclusions

We have conducted an experimental analysis of
recognizing descriptions of patient mobility with
a recurrent neural network, and of the effects of
various domain adaptation methods on recognition
performance. We find that a state-of-the-art re-
current neural model is capable of capturing long,
complex descriptions of mobility, and of recogniz-
ing mobility measurement scales nearly perfectly.
Our experiments show that domain adaptation
methods often improve recognition performance
over both in- and out-of-domain baselines, though
such improvements are difficult to achieve con-
sistently. Simpler methods such as preinitializa-
tion and concatenation achieve better performance
gains, but are also susceptible to noise in source
embeddings; more complex methods yield more
consistent performance, but with practical down-
sides such as decreased recall and a non-intuitive
projection of the embedding space. Most strik-
ingly, we see that embeddings trained on a very
small corpus of highly relevant documents nearly
match the performance of embeddings trained on
extremely large out-of-domain corpora, adding to
the recent findings of Diaz et al. (2016).

To our knowledge, this is the first investigation
into automatically recognizing descriptions of pa-
tient functioning. Viewing this problem through
an NER lens provides a robust framework for
model design and evaluation, but is accompanied

by challenges such as effectively evaluating recog-
nition of long text spans and dealing with complex
syntactic structure and punctuation within relevant
mentions. It is our hope that these initial findings,
along with further research refining the appropri-
ate framework for representing and approaching
the recognition problem, will spur further research
into this complex and important domain.
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Abstract

We introduce a multi-task learning model
for cause-of-death classification of verbal
autopsy narratives that jointly learns to
output interpretable key phrases. Adding
these key phrases outperforms the baseline
model and topic modeling features.

1 Introduction

Verbal autopsies (VAs) are written records of the
events leading up to a person’s death, typically
in situations where there was no physical autopsy
and the cause of death (CoD) was not determined
by a physician. As per World Health Organiza-
tion recommendations, most VAs contain struc-
tured information from answers to a questionnaire,
and may also contain a free-text narrative that cap-
tures additional information, such as the time and
sequence of the subject’s symptoms and details of
their medical history (Nichols et al., 2018). VAs
are used in countries such as India to gain a better
idea of the most prevalent causes of death, which
are not accurately captured by only the small num-
ber of well-documented deaths that occur in health
facilities.

Typically, VAs are collected by non-medical
surveyors who record the information on a form
that is later reviewed by physicians who assign
the record an International Classification of Dis-
eases (ICD-10) code (World Health Organization,
2008). Automating some of this coding process
would reduce the time and costs of VA surveys.

Previous work has shown that machine learning
methods can be useful for medical text classifica-
tion. However, many models do not provide inter-
pretable explanations for their output, which are
crucial in health care.

Multi-task learning methods use a shared archi-
tecture to learn several classification tasks, which

has been shown to improve performance espe-
cially when the tasks are closely related. In this
work we aim to use a multi-task learning model
to classify VA narratives according to CoD and
simultaneously provide automatically determined
key phrases in order to increase the interpretability
of the model.

2 Related work

Several automated methods for coding VAs are
currently in use, including InterVA (Byass et al.,
2012), InSilicoVA (McCormick et al., 2016), and
the Tariff Method (Serina et al., 2015). However,
these methods are largely based on the structured
data (which varies depending on the particular VA
survey form used) and on physician-curated con-
ditional probabilities of symptoms and diseases,
which are time-consuming to collect. The perfor-
mance of these methods is typically less than .60
precision for 15 to 30 CoD categories (Desai et al.,
2014).

Miasnikof et al. (2015) used a naı̈ve Bayes clas-
sifier with structured data and achieved compara-
ble or better results than the expert-driven models.
Danso et al. (2013) used linguistic features to clas-
sify VA narratives of neonatal deaths into 16 CoD
categories with a support vector machine (SVM),
achieving .406 recall.

TextRank (Mihalcea and Tarau, 2004) is a pop-
ular method that uses document graphs to extract
key phrases. However, unsupervised models such
as TextRank can extract text only from the docu-
ment itself, in which the physician-generated key
phrases that we use in this work might or might
not be explicitly present. Latent Dirichlet Alloca-
tion (LDA) (Blei et al., 2003) is a topic modeling
framework that is often used for text classification.
We will compare our key phrase clusters to LDA
topics learned from the same narrative data.
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3 Data

Our dataset consists of 12,045 records of adult
deaths from the Million Death Study (MDS)
(Westly, 2013; Aleksandrowicz et al., 2014;
Gomes et al., 2017), which is a program to col-
lect and code VAs from India. In the MDS cod-
ing process, two physicians separately assign an
ICD-10 code to each record and disagreements are
resolved by a third physician if necessary. Because
there are hundreds of possible ICD-10 codes and
our dataset is fairly small, the codes are grouped
into 18 CoD categories, which are broader group-
ings of the WHO 2012 VA categories (World
Health Organization, 2012).

The narratives, written by non-medical survey-
ors, range from a couple of sentences to a few
paragraphs and describe the person’s medical his-
tory and symptoms before death. In addition to the
free-text narratives, the VA records from the MDS
also contain key phrases assigned by the coding
physicians. By highlighting important symptoms
and events, these phrases are meant to explain the
code assigned. They may be taken directly from
the narrative or written in by the physician.

We represent the narrative text and key phrases
with 100-dimensional word embeddings trained
with the word2vec CBOW algorithm1, which
learns vector space representations for words
based on their context (Mikolov et al., 2013).
The key phrase representation for clustering is the
average of the embeddings of each word in the
phrase. The narrative representation is a matrix
containing the embeddings for each word in order,
padded with zero vectors to a maximum length of
200 words.

Because the dataset is rather small for training
word2vec, we include Indian English text from the
International Corpus of English2 and 1.7M posts
from MedHelp3, an online medical advice forum
that contains informal health-related language.

The text of both the narratives and the key
phrases is lowercased, punctuation is removed,
and spelling is corrected using PyEnchant’s En-
glish dictionary (Kelly, 2015) and a 5-gram lan-
guage model for scoring candidate replacements,
using KenLM (Heafield et al., 2013). After pre-
processing we remove duplicate key phrases.

1We used a context window of 5, min count of 1 (due to
the small dataset), and no negative sampling.

2http://ice-corpora.net/ice/avail.htm
3http://www.medhelp.org

4 Model

The model used for both key phrase cluster pre-
diction and CoD classification is a neural network
that contains a gated recurrent unit layer (GRU)
(Cho et al., 2014) with 0.1 dropout followed by a
convolutional layer (CNN) with filters of size 1×d
through 5×d where d is the word embedding size
(100), followed by a max-pooling layer. The out-
put of the pooling layer is then used as input to
a dense softmax layer that outputs the classifica-
tion. The models are implemented in Python using
Keras (Chollet, 2015), with the Theano backend
(Theano Development Team, 2016).

For CoD classification, the prediction layer out-
puts the probabilities over the 18 CoD categories,
and we choose the one with the highest probabil-
ity. For key phrase prediction, it outputs the prob-
abilities over the key phrase clusters, and we take
each cluster as a label if it has a probability of
0.1 or higher (since there can be any number of
key phrases per record). A higher cutoff will re-
sult in slightly higher precision but lower recall.
The loss functions are categorical cross-entropy
for CoD classification and mean squared error for
key phrase cluster prediction.

The multi-task learning model consists of a
shared GRU/CNN model that generates a vector
representation that is then used by two parallel pre-
diction layers, one for the CoD category and one
for the key phrase clusters. The key phrase loss
function has a weight of 0.1 to emphasize the CoD
coding task. All three of these models use only the
narrative word embedding matrix as input.

5 Key phrase clustering

5.1 Unsupervised clustering

The key phrases from the training data are grouped
into 100 clusters using the k-means algorithm with
Euclidean distance from scikit-learn (Pedregosa
et al., 2011).

We need a sufficient number of clusters to
capture specific symptoms and event, but not so
many that we cannot predict them accurately. In
our case, we want to favor precision over recall
because we would rather generate fewer, more-
correct key phrases than more phrases that are less
accurate. We chose 100 clusters based on early
experiments to maximize precision and the num-
ber of clusters.
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Label Key phrases in cluster

cough cough, cough with sputum, cough with phlegm, had sputum cough, . . .
rigours fear, sudden chest pain one day and died in short while, h/o headache, epileptic, . . .
h/o chest pain sudden chest pain, occasional chest pain, sudden pain in middle of chest, . . .
breathing difficulty difficulty in eating, difficulty in urination, . . .

Table 1: Examples of key phrase clusters with generated labels (‘h/o’ means ‘history of’)

Model CoD classification Key phrase cluster prediction
Precision Recall F1 Precision Recall F1

Majority class .027 .163 .046 .292 .070 .105
Key phrase only - - - .498 .283 .317
CoD only .755 .746 .743 - - -
Multi-task .760 .753 .750 .481 .276 .310

Table 2: Weighted average scores from 10-fold cross-validation using the GRU/CNN model

CoD classification
Features Precision Recall F1

Majority class .027 .163 .046
Embeddings .757 .752 .747
Emb + LDA .726 .703 .699
Emb + key phrases .779 .778 .774

Table 3: Results using a CNN model with a paral-
lel feed-forward network (inputs are word embed-
dings and key phrases or LDA topics respectively)

5.2 Cluster prediction

For new, uncoded records, we will have only the
narrative and therefore will need to predict the key
phrase clusters. For evaluation, because the clus-
tering is unsupervised and we have no gold stan-
dard mapping of key phrases in the test data to
clusters, we assign each test key phrase to a cluster
using a k-nearest neighbor classifier (k = 5). We
treat these clusters as the “true” labels for the key
phrase prediction task.

5.3 Cluster interpretation

In order for these clusters to be useful to physi-
cians, we need a text label for each. We could
simply take the most frequent key phrase in each
cluster as the label, but many key phrases are vari-
ations of the the same idea, or have extra details
in them, so the most frequent phrase might not be
the most representative. Therefore, to get a text la-
bel that is representative of the cluster, we choose

the key phrase that is closest to the center of the
cluster in vector space.

However, there are some key phrases which are
much longer than average. Since the vector repre-
sentation of each phrase is the average of the word
embeddings, a phrase with many words is more
likely to be closer to the center. Also, we want
to favor shorter labels that are general enough to
describe the members of the cluster. Therefore
we introduce a length penalty: the score used for
selecting the label phrase is the distance of the
phrase embedding from the center of the cluster
multiplied by the number of words in the phrase.
This gives us cluster labels that are usually one or
two words.

Table 1 shows some of the generated cluster la-
bels and the associated key phrases.4

6 Results

Table 2 shows the results from 10-fold cross-
validation for key phrase cluster prediction and
CoD classification, using the multi-task learning
model, as well as separate models. The majority-
class baseline is the scores obtained by assigning
every record to the most frequent class in the train-
ing set (‘road traffic incidents’).

Some key phrase clusters are much larger and
more frequent than others, which can render them
unhelpful if too many different key phrases are
grouped together. For the key phrase majority

4All examples are from the first iteration of 10-fold cross-
validation, since different clusters are generated for each
training set.
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Record CoD category Physician-assigned key
phrases

Nearest-neighbor
clusters

Predicted
clusters

Ischemic heart disease

stroke patient, fever,
dizziness for days, severe
abdominal pain, diggings’s,
sudden pain abd.

oliguria, fever,
sometime, abdominal
pain, oliguria, diahorrea

pain abdomen,
fever

Chronic respiratory
infections

cough, wheezing,
breathlessness edema

cough, h/o cough,
breathlessness, h/o
edema

h/o cough,
breathlessness

Liver and alcohol

heavy alcohol intake, less
food, not having food at
regular interval, excess
consumption of alcohol

pesticide, pesticide,
oliguria, pesticide

died in5 mts.,
oliguria,
progressive

Table 4: Examples of predicted key phrase clusters and CoD categories from the test set. Nearest
neighbor clusters are the clusters from the training set that are closest to the embeddings of the physician
key phrases.

baseline, we assign the most frequent key phrase
cluster from the training set to each record in the
test set. Even though there are 100 possible clus-
ters and multiple clusters per record, we get .292
precision from the most frequent cluster alone.

We also use the predicted key phrase clusters as
features for CoD classification. We use the clus-
ters predicted by the ‘key phrase only’ model as
input to a CNN CoD classifier. The input to the
CNN layer is the matrix of word embeddings from
the narratives, as in the previous model, and key
phrase clusters are represented as a binary array
that is the input to a feed-forward layer of 100
nodes. The outputs of the CNN module and the
feed-forward module are concatenated and used
as input for the final softmax classification layer,
which outputs the CoD category.

Table 3 shows the results of this model, com-
pared to the same model architecture using 100
LDA topics as the second feature set. The
model using predicted key phrase features per-
forms much better than that using the LDA top-
ics. It also outperforms both the CNN model using
only the narrative embeddings (without the feed-
forward layer), and the majority class baseline.

7 Discussion

Table 4 shows some examples of the key phrase
clusters predicted by the multi-task model. As we
can see from the first two examples, many of the
predicted phrases capture the same type of infor-
mation as the physician-generated key phrases, al-
though not as thoroughly.

However, as seen in Table 1, the clustering
doesn’t always capture the type of similarity we’re
interested in, such as the ‘breathing difficulty’
cluster, which captures phrases containing ‘dif-
ficulty’, although these often represent different
symptoms. In Table 4 we see that the cluster rep-
resenting alcohol intake has been labeled as ‘pest-
icide’ (along with several other clusters), and the
predicted clusters for the third record do not con-
tain any useful information related to the CoD (al-
cohol consumption).

Despite the key phrase prediction accuracy be-
ing fairly low, adding these predicted clusters as
features for CoD classification improves both the
precision and recall of the model.

We suspect that topic modeling does not help
in this case because the distribution of words is
very similar between documents, since they all
deal with symptoms leading up to death. In addi-
tion, the key phrases are generated by physicians,
and can capture information that is not explicitly
present in the narrative.

8 Conclusion

We have demonstrated that learning key phrases
along with CoD categories can improve CoD clas-
sification accuracy for verbal autopsies. The text
representation of the key phrase clusters also adds
interpretability to the model. In future work, we
will aim to improve the cluster prediction accu-
racy, and we will investigate unsupervised meth-
ods of extracting important information from VA
narratives.
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Abstract

Automatic identification of heart disease
risk factors in clinical narratives can ex-
pedite disease progression modelling and
support clinical decisions. Existing prac-
tical solutions for cardiovascular risk de-
tection are mostly hybrid systems entailing
the integration of knowledge-driven and
data-driven methods, relying on dictionar-
ies, rules and machine learning methods
that require a substantial amount of hu-
man effort. This paper proposes a com-
parative analysis on the applicability of
deep learning, a re-emerged data-driven
technique, in the context of clinical text
classification. Various deep learning ar-
chitectures were devised and evaluated for
extracting heart disease risk factors from
clinical documents. The data provided for
the 2014 i2b2/UTHealth shared task fo-
cusing on identifying risk factors for heart
disease was used for system development
and evaluation. Results have shown that a
relatively simple deep learning model can
achieve a high micro-averaged F-measure
of 0.9081, which is comparable to the best
systems from the shared task. This is
highly encouraging given the simplicity
of the deep learning approach compared
to the heavily feature-engineered hybrid
approaches that were required to achieve
state-of-the-art performances.

1 Introduction

Heart disease is a leading cause of morbidity and
mortality worldwide (Benjamin et al., 2017). As
failure to recognise atypical representations of
such serious illness may lead to adverse outcomes,
accurate diagnosis is crucial to ensure that patients

are placed on the proper treatment pathway. Elec-
tronic medical records (EMR) can be used to im-
prove the diagnosis ability along with measuring
the quality of care. The rapid adoption of EMRs
along with the necessity to enhance the quality of
health care has incentivised the development of
natural language processing (NLP) in the medi-
cal domain. An abundant amount of clinical in-
formation used for medical investigation is organ-
ised in unstructured narrative form, which is suit-
able for expressing medical concepts or events but
challenging for analysis and decision support as
gaining a full aspect of a patients medical history
by reading through EMRs is significantly time-
consuming, especially when only a specific piece
of information is needed. The difficulty of this
process increases in the case of heart disease due
to its complex progression, which regularly in-
volves various factors including lifestyle and so-
cial factors as well as specific medical conditions
(Stubbs and Uzuner, 2015). Various methods have
been proposed in the field of clinical concept ex-
traction, ranging from simple pattern matching to
systems based on symbolic or statistical data and
machine learning (Meystre et al., 2008; Gonzalez-
Hernandez et al., 2017). Those previously pro-
posed approaches have shown promising results
but it is very difficult to reach that point due to
the assiduous process of defining rules and extract-
ing features. This is where deep learning comes in
as this intriguing re-emerged concept can allevi-
ate heavily human dependent efforts required for
knowledge-based approaches and the lack of the
ability of many conventional machine learning al-
gorithms to learn without the necessity of careful
feature engineering with considerable domain ex-
pertise (LeCun et al., 2015).

This paper presents a comparative analysis
of two widely used deep learning architectures,
namely convolutional neural network (CNN) and
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recurrent neural network (RNN) as well as three
RNN variants, including long short-term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997),
bidirectional long short-term memory (BLSTM),
and gated recurrent unit (GRU) (Cho et al., 2014),
for extracting cardiac risk factors from EMRs. Us-
ing the data set from the i2b2/UTHealth shared
task (Stubbs and Uzuner, 2015), the goal is to de-
termine the risk factor indicators contained within
each document along with the temporal attributes
with respect to the document creation time (DCT).

2 Related Work

2.1 Deep Learning for Clinical Information
Extraction

Many recent publications have focused on extract-
ing relevant clinical information from EMRs us-
ing deep learning. One of the most fundamental
tasks involves the extraction of medical concepts
from unstructured clinical notes. This concept ex-
traction problem can be treated as a sequence la-
belling problem where the goal is to assign a clini-
cally relevant tag to each word in an EMR (Jagan-
natha and Yu, 2016). Jagannatha and Yu (2016)
experimented with different deep learning archi-
tectures based on recurrent networks, including
GRUs, LSTMs and BLSTMs. It turned out that
all the RNN variants outperformed the conditional
random field (CRF) baselines, which had previ-
ously been considered the state-of-the-art method
for information extraction in general.

As patient EMRs evolve over time, the sequen-
tiality of clinical events can be used for disease
progression analysis and the prediction of impend-
ing disease conditions (Cheng et al., 2016). Its
temporality induces the necessity of assigning no-
tions of time to each extracted medical concept.
Fries (2016) devised a solution for such more com-
plex problems by using a standard RNN initialised
with word2vec (Mikolov et al., 2013a) vectors
along with utilising DeepDive (Shin et al., 2015)
for forming relationships and predictions. Li and
Huang (2016) and Chikka (2016) also employed
word embedding vectors within their frameworks
but used CNNs to extract the temporal attributes
instead. While still not state-of-the-art, these ap-
proaches produced competitive results in the field
of temporal event extraction but also required a
separate model for each subtask (extracting con-
cepts and temporal attributes) and slight manual
engineering (Shickel et al., 2017; Bethard et al.,

2016). One thing to remark is that none of the ex-
isting systems has ever tried using a single, univer-
sal model that naturally learns the temporal char-
acteristics of those concepts based on their con-
texts and incorporates them into the feature learn-
ing process, which can be used for extracting med-
ical concepts and temporal attributes simultane-
ously. This work intends to explore this idea and
prove that the aforementioned capability is well
within the reach of deep learning.

2.2 i2b2/UTHealth Shared Task

In 2014, the Informatics for Integrating Biology
and the Bedside (i2b2) issued an NLP shared task
focusing on identifying risk factors for heart dis-
ease in clinical narratives. According to Stubbs
et al. (2015), a total of 49 systems from 20 teams
were submitted. The systems varied broadly,
from rule-based systems to complex hybrid sys-
tems with a combination of machine learning
techniques. Nevertheless, some similarities were
found among the top systems including the use
of preprocessing tools to obtain syntactic infor-
mation and section headers for determining tem-
poral labels. The results revealed that the top 10
systems achieved micro-averaged F1 scores over
0.87 while the top 6 systems were able to reach
micro-averaged F1 scores over 0.90. The most
successful system managed to achieve an F1 score
of 0.928 (Roberts et al., 2015) while the averaged
F1 score among all the systems was 0.815. While
half of the top 10 teams used a combination of
knowledge-driven methods, such as lexicon and
rules, and machine learning algorithms, including
CRF, support vector machine (SVM), Naı̈ve Bayes
classifier and Maximum Entropy, none of the par-
ticipants attempted to integrate neural networks
or deep learning into their systems. Furthermore,
there has not existed any approaches that use deep
learning to extract risk factor indicators from the
shared task data since its inception in 2014, which
is a research gap that this work intends to fill.

3 Methodology

3.1 Dataset

The dataset used in this work is the corpus pro-
vided for the 2014 i2b2/UTHealth shared task.
The corpus consists of 1,304 medical records de-
scribing 296 diabetic patients for cardiovascular
risk factors and time attributes with respect to
the DCT. The dataset was split by the challenge
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Risk Factor Indicator Training Instances Testing Instances Time Attribute

CAD mention, event, test, symptom 1186 784 X
Diabetes mention, high A1c, high glucose 1695 1180 X
Obesity mention, high BMI 433 262 X
Hyperlipidemia mention, high cholesterol, high LDL 1062 751 X
Hypertension mention, high blood pressure 1926 1293 X

Medication

ACE inhibitor, amylin, anti-diabetes,
ARB, aspirin, beta blocker, calcium
channel blocker, diuretic, DPP4 inhibitors,
ezetimibe, fibrate, GLP1 agonist, insulin,
Meglitinide, metformin, niacin, nitrate,
obesity medications, statin, sulfonylurea,
thiazolidinedione, thienopyridine

8638 5674 X

Smoking current, past, ever, never, unknown 771 512 n/a

Family history present, not present 790 514 n/a

Table 1: The indicators associated with each cardiac risk factor and the number of training and testing
instances at annotation level

Evidence Type Example

Phrase-based Significant PMH for CAD, HTN,
GERD, and past cerebral embolism

Logic-based Seen in Cardiac rehab locally last
week and BP 170/80

Discourse-based Findings suggestive of an obstructive,
coronary lesion in the left circumflex
distribution

Table 2: Three types of evidence

provider. The training set consists of 60% of the
entire dataset (790 records) and the test set con-
tains the remaining 40% (514 records). The anno-
tation guidelines describe a set of annotations to
indicate the presence of diseases (coronary artery
disease (CAD) and diabetes), relevant risk factors
(hyperlipidaemia, hypertension, obesity, smoking
status and family history) and associated medica-
tions. Each annotation for a risk factor also has an
indicator value from its own set (see Table 1) as
well as the time attribute (before, during or after
the DCT). Figure 1 shows an example of annota-
tions used for training and evaluation. The ulti-
mate goal is to classify risk factors and time in-
dicators at document level as per Gold Standard
annotation.

The evidence of risk factor indicators can be
categorised into three types according to the ter-
minologies described by Chen et al. (2015), which
include phrase-based, logic-based and discourse-
based indicators as presented in Table 2. Phrase-
based indicators are those that can be identified
directly by locating relevant phrases or particular

Risk Factor Phrase-
based

Logic-
based

Discourse-
based

CAD mention n/a event, test,
symptom

Diabetes mention high A1c,
high glucose

n/a

Obesity mention BMI n/a
Hyperlipidemia mention high cholesterol,

high LDL
n/a

Hypertention mention high blood
pressure

n/a

Medication all types n/a n/a
Smoking n/a n/a all statuses
Family history n/a n/a all statuses

Percentage of
training instances 85.33% 8.10% 6.57%

Table 3: Relationships between the indicators and
evidence types and the percentage of training in-
stances belonging to each type

names. Logic-based indicators are indirect infor-
mation that needs a comparison or further analy-
sis after being identified. Finally, discourse-based
indicators are those that appear in the form of sen-
tences and may require a parsing process. The re-
lationships between indicators and evidence types
are listed in Table 3.

3.2 Problem Formation and Evaluation

The classification of risk factors and time indi-
cators was posed as a document-level classifica-
tion problem. This can be seen as a multilabel
classification task where multiple labels are iden-
tified given an EMR. However, unique to the an-
notation guideline (Stubbs and Uzuner, 2015) and
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Complete version (for training):
<DIABETES start=“122” end=“130” text=“diabetes” time=“before DCT” indicator=“mention”/>
<DIABETES start=“512” end=“528” text=“diabetes type II” time=“before DCT” indicator=“mention”/>
<DIABETES start=“701” end=“718” text=“diabetes mellitus” time=“before DCT” indicator=“mention”/>

Gold standard version (for evaluation):
<DIABETES time=“before DCT” indicator=“mention”/>

Figure 1: Each complete annotation contains token-level information (risk factor tag, risk factor indicator,
offset, text information, and time attribute) while each gold standard annotation contains document-level
information (risk factor tag, risk factor indicator and time attribute) and cannot be duplicated.

the structure of the training data, which contains
phrase-level risk factor and time indicator annota-
tions (see Figure 1), it seems appropriate to for-
mulate the problem as an information extraction
task instead. This approach regards data as a se-
quence of tokens labelled using the Inside-Outside
(IO) scheme: I represents named entity tokens and
O indicates non-entity ones. As the main goal is
to determine the risk factor indicators contained
within the record along with the temporal cate-
gories of those indicators with respect to the DCT,
each entity is tagged with a label using the follow-
ing format:

I-risk factor.indicator.time

Figure 2 shows a sample EMR (represented by a
sequence of words) and associated labels. In this
example, the word “coronary” with the label “I-
cad.mention.before dct” can be interpreted that as
a mention of CAD which was present before the
document creation time.

Words: he, has, coronary, artery, disease,
and, diabetes

Labels: O, O, I-cad.mention.before dct,
I-cad.mention.before dct,
I-cad.mention.before dct, O,
I-diabetes.mention.before dct

Figure 2: A sample phrase in an EMR and associ-
ated labels

Given an EMR as input, the output is a se-
quence of labels, with each label belonging to
a given word. After removing duplicate labels,
the final output will be a set of unique labels
identified for that record (excluding the O la-
bel). For the example in Figure 2, the final out-
put will be generated as a set of two unique la-
bels, including “I-cad.mention.before dct” and “I-
diabetes.mention.before dct”. These labels will

be used to generate system annotations similar to
the one presented in Figure 1 which will subse-
quently be evaluated against the gold standard an-
notations provided by the challenge provider us-
ing the micro-averaged recall, precision and F-
measure as the primary evaluation metrics1.

3.3 Deep Neural Network Models
3.3.1 Convolutional Neural Network

He has coronary artery disease
(word of interest)

0 1 0

I-CAD

Input layer

Convolutional
layer

Max-pooling
layer

Fully-connected
layer and
softmax output

Figure 3: CNN architecture with multiple filter re-
gion sizes

The CNN model, as shown in Figure 3, is based
on the CNN architecture of Kim (2014) but uses
the window approach for NER, introduced by Col-
lobert et al. (2011), to classify each individual
word at a time instead of the entire sentence. This
approach assumes the label of a word is depen-
dent on its neighbouring words. Given a word to
tag, a fixed size window of n words around the
target word where n is odd is taken into account.
A window of n words is represented as a matrix
S ∈ Rd×n:

S =
[
w1 ... w

n− (n−1)
2

... wn

]
(1)

1The official evaluation script is available at
https://github.com/kotfic/i2b2 evaluation scripts
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where wi ∈ Rd is the d-dimensional word vec-
tor representing the ith word in S and w

n− (n−1)
2

is the target word. Let wi:i+j be the concatena-
tion of words wi,wi+1, ...,wi+j . A convolution
operation involves applying a filter k ∈ Rd×h to a
window of h words, where h < n, to generate a
new feature. For instance, a feature xi is computed
by

xi = f(k ·wi:i+h−1 + b) (2)

where f is an activation function and b ∈ R is
a bias. Note that this CNN architecture can em-
ploy multiple filter region sizes for extracting mul-
tiple features. This operation is applied to ev-
ery possible window of words in the sequence
{w1:h,w2:h+1, ...,wn−h+1:n} to generate a fea-
ture map x = (x1, x2, ..., xn−h+1) where x ∈
Rn−h+1. The pooling layer then applies the max-
pooling operation to down-sample each feature
map by taking the maximum value x̂ = max(x)
which represents the most important feature. Fi-
nally, multiple down-sampled feature maps form
a fully-connected layer, which is used as inputs
to the softmax distribution over all classes. The
subsampled feature maps provide a sequence rep-
resentation for softmax to map to an appropriate
class.

3.3.2 Recurrent Neural Network

He has coronary artery disease

Input layer

Recurrent
layer

Output layer

O O I-CAD I-CAD I-CAD

Figure 4: Basic structure of an RNN

A recurrent neural network is a class of neural net-
works specialised for processing sequential data.
Unlike the CNN, the RNN uses a recurrent layer to
learn the representation of clinical text, as shown
in Figure 4. The input to an RNN is a word se-
quence of length l representing the entire docu-
ment, denoted by a matrix S ∈ Rd×l:

S =
[
w1 w2 ... wl

]
(3)

where wi ∈ Rd is the d-dimensional word vector
representing the ith word in S. In an Elman-type

network (Elman, 1990), a hidden state output hi

is a result of nonlinear transformation of an input
vector wi and the previous hidden state hi−1:

hi = f(hi−1,wi) (4)

where f is a recurrent unit, such as a standard
recurrent unit, LSTM and GRU. Finally, the
hidden state hi is then used as an input to softmax
for identifying a risk factor in the IO format.

Bidirectionality. A bidirectional recurrent neu-
ral network (Schuster and Paliwal, 1997) consists
of two separated recurrent layers for computing
the forward hidden states (

−→
h1,
−→
h2, ...,

−→
hl) and the

backward hidden states (
←−
h1,
←−
h2, ...,

←−
hl). In this

settings,
−→
hi and

←−
hi can be regarded as preserved

information from the past and the future respec-
tively. By using the hidden states from both di-
rections combined, the network has complete past
and future context for every point in the input se-
quence.

3.4 Pre-trained Word Embeddings
Due to the incapability of neural networks to pro-
cess text input, each word is fed to the network
as an index taken from a finite dictionary. As
this simple representation does not contain much
semantic information, the first layer of each net-
work maps each index into its vector represen-
tation using pre-trained word embeddings. The
pre-trained vectors were trained on the 2014 i2b2
dataset. The number of embedding dimensions
was determined empirically. Given a small vo-
cabulary (36,663 words) and a range of embed-
ding dimensions from 20 to 300, an embedding
dimension of 20 yielded best results. Each vec-
tor was trained via the word2vec’s continuous bag-
of-words (CBOW) model (Mikolov et al., 2013b)
similar to that used by Kim (2014).

3.5 Hyperparameters and Training
The CNN model used 5-gram of each EMR as
input since a window of 5 words has shown to
be effective for many NLP tasks (Collobert et al.,
2011). Based on the hyperparameters described
by Kim (2014) and Zhang and Wallace (2015), the
convolutional layer uses multiple filter region sizes
{2, 3, 4}, each of which has 32 filters, and a rec-
tifier (ReLU) as the activation function. For the
RNN approach, experiments were performed on
the standard RNN as well as its variants: LSTM,
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BLSTM and GRU. All the recurrent networks use
the hyperbolic tangent as activation functions as it
was considered one of the most common choices
for RNN-type networks (Graves, 2012).

The hyperparameters apart from the above men-
tioned were tuned on the validation set (20% of
the training set) using the hyperparameter tun-
ing library within the framework of Bayesian
optimisation, namely Hyperopt (Bergstra et al.,
2013). Based on the hyperparameter optimi-
sation results, all the networks were trained
with mini-batch stochastic gradient descent us-
ing Nadam (Adam RMSprop with Nesterov mo-
mentum) (Dozat, 2016) with a batch size of 32.
Dropout regularisation was also applied to the
penultimate layer of each network for overfitting
prevention. The resulting optimal values of other
hyperparameters, including the number of hidden
units (hidden), learning rate (lr), dropout rate and
the number of epochs are listed in Table 4.

CNN RNN GRU LSTM BLSTM

hidden 256* 256 256 512 256
lr 0.001 0.002 0.002 0.002 0.004
dropout 0.2 0.3 0.1 0.3 0.5
epochs 15 40 50 45 40

* The number of units in the fully connected layer

Table 4: Hyperparameters estimated by Hyperopt

4 Results and Discussion

4.1 Overall Performance

Results for each deep learning model’s best run
against state-of-the-art models from the 2014
i2b2/UTHealth shared task are listed in Table 5.
Among the deep learning approaches, RNN-type
networks outperformed CNN in the context of
clinical text classification. Although the CNN
model achieved the highest recall, its precision is
far from being competitive, which results in a rel-
atively low F-measure. A comparison between the
RNN-type models shows that BLSTM achieved
the highest micro-averaged F-measure (0.9081) on
the test data, followed closely by GRU and LSTM.
A two-tailed unpaired t-test was also performed
to determine the significance of the difference in
F-measure between the two best-performing net-
works. Over 50 independent training and testing
sessions with different weight initialisation (drawn
from the uniform distribution), the test yielded a
statistically significant difference between the per-

formance of BLSTM (µ = 0.903, σ = 0.002) and
GRU (µ = 0.899, σ = 0.002) with p < 0.05, which
implies that the improvement in performance of
the BLSTM model is also statistically significant
compared with that of other remaining models.

In comparison with the top performing sys-
tems from the previous work, the results reveal
that the BLSTM model without employing any
knowledge-driven approaches ranked in the top
6 systems, and was substantially better than the
overall average (0.815) of all the participating sys-
tems in the shared task. As a universal classi-
fier, the performance of the BLSTM model is aus-
picious since it produced only 0.0195 loss in F-
measure when comparing against the first-ranked
system (Roberts et al., 2015) which involves the
use of a series of SVMs along with a rule-based
classifier and additional annotations. Besides
the best-performing model, the LSTM and GRU
models ranked in the top 7 systems while the
CNN and standard RNN models performed well
within the top 10 systems from the shared task.
This outcome concludes that simple deep learn-
ing models still can rank within the top 10 heavily
feature-engineered best-performing systems from
the shared task.

Model Recall Precision F-score

BLSTM 0.9180 0.8983 0.9081
GRU 0.9091 0.9002 0.9046
LSTM 0.9191 0.8836 0.9010
RNN 0.8956 0.8844 0.8900
CNN 0.9245 0.8383 0.8793

Roberts et al. (2015)* 0.9625 0.8951 0.9276
Chen et al. (2015)* 0.9436 0.9106 0.9268
Torii et al. (2014)* 0.9409 0.8972 0.9185
Cormack et al. (2015)† 0.9375 0.8975 0.9171
Yang and Garibaldi (2014)* 0.9488 0.8847 0.9156
Shivade et al. (2015)† 0.9261 0.8907 0.9081
Chang et al. (2015)* 0.9387 0.8594 0.8973
NCU‡ 0.9256 0.8586 0.8909
Karystianis et al. (2015)† 0.9007 0.8557 0.8776
Khalifa and Meystre (2015)† 0.8951 0.8552 0.8747

* A combination of knowledge- and data-driven approaches (hybrid)
† Knowledge-driven approaches only e.g. lexicon and rules
‡ Unknown (National Central University did not submit a paper)

Table 5: Experimental results and state-of-the-art
systems from 2014 i2b2/UTHealth shared task

4.2 Performance on Individual Risk Factors

Table 6 shows the performance of the deep learn-
ing models on individual risk factors. All five ar-
chitectures achieved micro-averaged F-measures

23



CNN RNN GRU LSTM BLSTM

CAD 0.6553 0.7966 0.7972 0.8010 0.8074
Diabetes 0.9133 0.9227 0.9177 0.9272 0.9171
Obesity 0.8717 0.8739 0.8819 0.8880 0.8880
Hyperlipidemia 0.9154 0.9209 0.9100 0.9243 0.9323
Hypertension 0.8839 0.9093 0.9102 0.9043 0.9187
Medication 0.9075 0.8901 0.9192 0.9090 0.9171
Smoking 0.8350 0.8077 0.8146 0.8152 0.8409
Family history 0.9397 0.9630 0.9572 0.9591 0.9630

Overall 0.8798 0.8900 0.9046 0.9010 0.9081

Table 6: Micro-averaged F-measure for individual risk factor categories (best runs); highest F-measures
for each category are bolded

over 0.87. These deep networks performed best on
the family history category, achieved F-measures
above 0.90 for the hyperlipidemia and diabetes
risk factors, and maintained F-measures over 0.87
for the hypertension and obesity risk factors along
with relevant medications. The worst classifica-
tion performance of all the models was obtained
for the CAD risk factor, followed by the smoking
status.

Among the deep learning models, highest
micro-averaged F-measures for most of the risk
factor categories were achieved by the BLSTM
network while the top performance for the dia-
betes and medication categories were obtained by
the LSTM and GRU networks respectively. Low-
est classification scores for most of the risk fac-
tor categories were achieved by the CNN model,
which implies its inferiority in comparison with
the RNN-type models for extracting cardiac risk
factor information from EMRs. The overall out-
come also reveals that even though the neural net-
work architectures with the integration of recur-
rent units can be potentially applied to this par-
ticular task with higher success rate, the capabil-
ity of the standard RNN is far from being highly
efficient and thus using the gating mechanism as
well and introducing bidirectionality can substan-
tially increase the chance of achieving better per-
formances.

4.3 Performance on Individual Risk Factor
Indicators

The results in Table 7 reveals that phrase-based in-
dicators have comparatively high F-measures in all
models. As the deep learning approach for clinical
concept extraction can be posed as a standard the
named entity recognition task, specific keywords
play a significant role in identifying named enti-
ties and an increase in the predictive performance

is simply due to a tremendous amount of sample
instances in the training data.

In contrast, the logic-based and discourse-based
indicators have substantially lower F-measure. As
both types of indicators infrequently appear in the
training data (see Table 3), the primary cause of
poor performance is likely due to the sparsity and
imbalance of training instances.

CNN RNN GRU LSTM BLSTM

Phrase-
based 0.7679 0.6818 0.7810 0.7342 0.7808

Logic-
based 0.3643 0.1857 0.2185 0.2114 0.2640

Discourse-
based 0.5341 0.4983 0.5425 0.5328 0.5721

Table 7: The average of F-measure performances
across all risk factor indicators for each evidence
type

4.4 Error Analysis

4.4.1 Complex Textual Evidence

Even though phrase-based evidence may vary
(e.g. CAD can appear as “heart disease” or
“CAD”), these phrases along with a sufficiently
large amount of samples are generally enough for
deep neural networks to achieve high classification
accuracy. However, the context of discourse-based
evidence may appear to be as complex as “prob-
able inferior and old anteroseptal myocardial in-
farction” or “Cath (5/88): 3v disease: RCA 90%,
LAD 30% mid, 80% distal, D1 70%, D2 40%
and 60%, LCx 30%, OM2 80%”. The difficulty
of learning the patterns and identifying these in-
dicators implies the need for a higher amount of
training instances and perhaps amended semantic
matching of medical terms to medical terminol-
ogy resources such as the UMLS Metathesaurus
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(Bodenreider, 2004) or Systematised Nomencla-
ture of Medicine – Clinical Terms (SNOMED
CT) (Stearns et al., 2001), such that information
in EMRs can be more accurately extracted using
deep learning.

4.4.2 Conditional Textual Evidence
Although deep learning requires less human effort
and time than dictionary-based and rule-based ap-
proaches as it can automatically learn the patterns
in data which results in more flexible predictive
power, the experimental results demonstrate the
limitation of such data-driven approach as it is in-
feasible to accurately identify logic-based indica-
tors in the test set without having seen the numbers
and their contexts in the training set. For example,
it is unlikely for deep learning models to classify
the evidence “glucose 420” as the diabetes.glucose
indicator without learning that particular pattern
during training as it is unable to perform compar-
ison during classification whether 420 is greater
than 126 (the glucose level greater than 126 is con-
sidered a risk factor (Stubbs and Uzuner, 2015)).
A decrease in classification accuracy is primarily
due to a massive amount of unforeseen evidence in
the test data i.e. many numbers that imply the risk
of heart disease never appear in the training set.
In this case, utilising dictionaries and rules based
on the domain knowledge would be more optimal
than collecting more data in which every possible
pattern, which may include every number that is
considered a risk factor as well as its context, is
required.

4.4.3 Data Sparsity and Class Imbalance
Figure 5 illustrates the relationship between clas-
sification performance of the BLSTM network2

and the number of training instances in terms of
risk factor indicators. When the number of sam-
ples is low (less than approximately 200 sam-
ples), each network’s performance significantly
varies depending on risk factor indicator. How-
ever, the prediction capability raises and tends to
be more stable as the number of training instance
increases. As many of the machine learning al-
gorithms greatly suffer from insufficient and im-
balanced data where the classes are not equally
presented, it is not surprising if deep learning is

2The relationship between classification performance of
the BLSTM network and the number of training instances
is selected as it is the best-performing model from the ex-
periment and the patterns found among other deep learning
architectures are very similar.

severely impacted by the same problem. Inade-
quate training samples typically result in failure
of pattern recognition while imbalanced classes in
the training set tend to bias the trained models to-
wards more common classes. These non-trivial is-
sues likely explain the relatively poor classifica-
tion results for various risk factor indicators, es-
pecially those that belong to the logic-based and
discourse-based types, due to misclassification of
either indicators or time attributes or both. Re-
garding the report from the 2014 i2b2/UTHealth
risk factor challenge (Stubbs et al., 2015), all the
participating systems also produced similar sets of
results due to these problems.
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Figure 5: Effect of training-sample size illustrated
by the relationship between classification perfor-
mance of the BLSTM network and the number of
training instances (risk factor indicator-level)

5 Conclusion

This work empirically evaluated the performance
of different deep learning architectures for identi-
fying risk factors for heart disease in clinical text.
The experimental results showed that the deep
learning approaches were not only comparable to
highly feature-engineered hybrid systems but most
importantly achieved relatively high performances
without the help of any knowledge-driven meth-
ods. The findings leads to an anticipation that
leveraging knowledge-based approaches with the
BLSTM model could potentially provide signifi-
cant performance improvements over best systems
for extracting key cardiac risk factors from EMRs.
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Abstract

We propose keyphrases extraction tech-
nique to extract important terms from the
healthcare user-generated contents. We
employ deep learning architecture, i.e.
Long Short-Term Memory, and leverage
word embeddings, medical concepts from
a knowledge base, and linguistic compo-
nents as our features. The proposed model
achieves 61.37% F-1 score. Experimen-
tal results indicate that our proposed ap-
proach outperforms the baseline methods,
i.e. RAKE and CRF, on the task of extract-
ing keyphrases from Indonesian health fo-
rum posts.

1 Introduction

The growth of Internet access facilitates users to
share and obtain contents related to healthcare
topic. There has been growing interest in us-
ing Internet to find information related to health-
care concerns, including symptoms management,
medication side effects, alternative treatment, and
fitness plan. The tremendous amounts of user-
generated health contents are available on the web
pages, online forums, blogs, and social networks.
These user-generated contents are actually poten-
tial sources for enriching medical-related knowl-
edge. It is highly desirable if the knowledge con-
tained in the user generated contents can be ex-
tracted and reused for Natural Language Process-
ing and text mining application.

Keyphrases, which is a concise representation
of document, describe important information con-
tained in that document. The number of text pro-
cessing tasks can take advantage of keyphrases,
e.g. document indexing, text summarization, text
classification, topic detection and tracking, infor-
mation visualization.

We believe that extracting keyphrases from doc-
uments in healthcare domain can be beneficial.
A medical question answering system is expected
to provide concise answers in response to clin-
ical questions. The keyphrases extracted from
the question can be used to formulate a query
to retrieve the answer passage from a collection
of medical documents. On the other hand, the
health-related web forums usually contain very
large archives of forum threads and posts. To make
use of those archives, it is critical to have function-
ality facilitating users to search previous forum
contents. Keyphrases identification is an impor-
tant step to tackle this kind of document retrieval
problem.

Most previous works on keyphrases extraction
task focused on long documents, e.g. scientific ar-
ticles and web pages, while few works attempt to
identify keyphrases from user-generated contents,
e.g. e-mail messages (Dredze et al., 2008), chats
(Kim and Baldwin, 2012; Habibi and Popescu-
Belis, 2013), and tweets (Li et al., 2010; Zhao
et al., 2011; Zhang et al., 2016). Extracting
keyphrases from an online forum is simply not a
trivial task, since the contents are written in free
text format (i.e. unstructured format), and often
prone to grammatical and typographical glitches.

In this paper, we address the task of keyphrases
extraction from user-generated posts in online
healthcare forums. We present the technique that
treats keyphrase extraction as a sequence labeling
task. In our experiment, we employ and com-
bine deep learning architectures, i.e. bi-directional
Long Short-Term Memory networks, to exploit
high level features between neighboring word po-
sitions. To improve the quality of our model,
we leverage several new hand-crafted features that
can handle our keyphrase extraction problems in
medical user-generated contents.
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2 Related Work

Keyphrases are usually selected phrases or clauses
that can capture the main topic of a given docu-
ment (Turney, 2000). Keyphrases are expected to
provide readers with highly valuable and represen-
tative information, such that looking at keyphrases
is sufficient to understand the whole body of a doc-
ument.

In general, keyphrases extraction methods can
be categorized into unsupervised and supervised
approach (Hasan and Ng, 2014). For the unsu-
pervised line of research, keyphrases extraction
can be formulated as a ranking problem, in which
each candidate keyphrase is assigned the score.
RAKE (Rose et al., 2010) uses ratio of word de-
gree and frequency to rank terms. Mihalcea and
Tarau (2004) studies the graph-based approach
that treats words as vertices and constructs edge
between words using co-occurrence.

On the other hand, supervised machine learn-
ing approach requires training data that contain
a collection of documents with their labeled key-
words which are often very difficult to obtain. Us-
ing this approach, keyphrase extraction is formu-
lated as a classification or sequence labeling task
in the level of words or phrases. The supervised
learning approach starts from generating candidate
keyphrases from a particular document. Then,
each candidate is classified as either a keyphrase
or non-keyphrase. The well-known method for
this approach is KEA (Witten et al., 1999), which
applied machine-learning (i.e. Naive Bayes) for
classifying candidate keyphrases. Sarkar et al.
(2010) utilizes neural network algorithm in clas-
sifying candidate phrase as a keyphrase.

Other supervised approach for keyphrases ex-
traction is based on sequence labeling problem
(Zhang, 2008; Cao et al., 2010; Zhang et al.,
2016). The assumption behind this model is that
the decision on whether a particular word serves
as a keyword is affected by the information from
its neighboring word positions. Zhang (2008) ap-
ply Conditional Random Fields (CRF) algorithm
to find keyphrases from the Chinese documents.
Zhang et al. (2016) proposes a joint-layer recur-
rent neural network model to extract keyphrases
from tweets, which is an application of deep neural
networks in the context of keyphrase extraction.

As far as our knowledge, there are limited
works regarding the task of keyphrase extrac-
tion from user-generated contents, especially for

healthcare domain. Sarkar (2013) applies hybrid
statistical and knowledge-base approach to extract
keyphrases from medical articles. Stopwords are
used to split candidate keyphrases, then candidates
were ranked based on two aspects: Phrase Fre-
quency * Inverse Document Frequency (PF-IDF)
and domain knowledge which is extracted from
medical articles. Cao et al. (2010) uses CRF for
extracting keywords from medical questions in on-
line health forum. They harness information about
word location and length as features in their exper-
iments.

3 Methodology

In this work, we see the problem of keyphrase
extraction as a sequence labeling, in which
each word wi is associated with a hidden la-
bel yi ∈ {keyword, non-keyword}. Formally,
given a medical forum posts containing N words
W = (w1, w2, ..., wN ), we want to find the
best sequence of labels Y = (y1, y2, ..., yN ), in
which each label is determined using probabilities
P (yi|wi−l, ..., wi+l, yi−l, ..., yi+l); and l is a small
integer.

3.1 Proposed Model
To cope with our problem, we employ a deep neu-
ral network-based approach specially designed for
sequence labeling problem, such as Long Short-
Term Memory (LSTM) Networks and its variants,
to extract high-level sequential features, before
they are feeded into the last layer that determines
the most probable label for each word or timestep.
Since we employ neural networks, we can also
view our model as a function F : RN×M →
RN×2:

[z1, z2, ..., zN ] = F ([x1, x2, ..., xN ])

where, M is the size of input vector in each
timestep, N is the number of timestep, xi ∈ RM is
the vector representation of word wi, and zi ∈ R2

is the output vector in each timestep (
∑

j zi,j = 1).
Furthermore, the vector representation of word
can be obtained using state-of-the-art technique,
such as the one proposed by (Mikolov et al., 2013).
Finally, yi can be determined as follows.

yi =

{
keyphrase if zi,0 > zi,1

non-keyphrase otherwise
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In our work, the operational definition of
keyphrase is actually extractive, in the sense that
keyphrase is explicitly extracted from a sequence
of words found in the document. For example,
from the following sentence: ”Doc, I have a fre-
quent back pain. What happen?”, we can extract
”frequent back pain” as our keyphrase.

In order to know that ”back” and ”frequent”
are part of the keyphrase along with ”pain”, we
need to consider such phrasal structure informa-
tion, i.e. the word ”back” that serves as the mod-
ifier of symptom ”pain”, as well the word ”fre-
quent” that informs its intensity level. Therefore,
we argue that sequential-based neural networks,
such as Long Short-Term Memory (LSTM) net-
works and their variants can better fit our problem
since they can naturally leverage neighboring in-
formation.

To get a better inference process, the infor-
mation from the past and future of current po-
sition in the sequence can be integrated. This
approach has been proven effective in the num-
ber of sequence labeling tasks, such as semantic
role labeling (Zhou and Xu, 2015) and named-
entity recognition (Ma and Hovy, 2016). Based on
those previous studies, we utilize a bi-directional
LSTM (B-LSTM) in our work to extract structural
knowledge by doing forward and backward pro-
cessing in the sequence. In order to do that, we
build two LSTMs with different parameters and
subsequently concatenate the outputs from both
LSTMs. Moreover, we build our layers for up to
two layers of B-LSTM. Finally, the locally nor-
malized distribution over output labels is com-
puted via a softmax layer. In the other scenario, we
also employ Conditional Random Fields (CRFs)
(Lafferty et al., 2001) to produce label predictions
in the last layer. Following Rei et al. (2016), we
used Viterbi algorithm to efficiently find the se-
quence of labels [y1, y2, ..., yM ] with the largest
score s(Y ). As can be seen in the following equa-
tion, s(Y ) computes CRF score of a sequence,
which means the likelihood of the output labels.

s(Y ) =

M∑

t=1

At,yt +
M∑

t=0

Byt,yt+1

where At,yt shows the confident score of of label
yt at timestep t, Byt,yt+1 show the likelihood of
transitioning from label yt to label yt+1. It is worth
to note that all these parameters are trainable.

The spirit of deep learning is basically to au-

tomatically extract features from the input with-
out the need of expensive feature engineering.
However, this idea works well when we have a
significant amount of training samples, which is
not applicable in our case since the size of our
data is small enough. As a result, to cope with
this problem, we combine deep learning technique
with several feature engineering steps. The idea
is that several hand-crafted features are leveraged
to help deep learning architectures understand the
main characteristics of the data before they ac-
tually learn more high-level features from those
hand-crafted features. Suppose, Fi,j represents a
type of feature vector extracted from an input xi in
one timestep and K is the number of feature types.
A feature vector for xi is defined as follows.

xi = concatenate(Fi,1, Fi,2, ..., Fi,K)

The detail of our proposed feature types is ex-
plained in the next subsection. Moreover, we also
argue that each feature has different contribution
to the model. Instead of concatenating all features
into one vector, we try to assign weights to every
feature type before we pass it to the next layer. In
order to do so, we create a new layer underneath
our model to do the weighting scenario. Suppose,
Wi ∈ IRa×bi is a trainable weight for feature vec-
tor Fi, where a is the size of input size in each
timestep and bi is the size of feature vector Fi. The
following equation presents our idea for weighting
the feature vectors.

xi = tanh(W1.Fi,1 +W2.Fi,2 + ..+WK .Fi,K)

3.2 Proposed Features

We perform automatic representation learning in
the input layer, in which vector representation of
a particular word is automatically learned. How-
ever, we argue that the end-to-end learning ap-
proach alone will have not effectively worked
in our case since the tiny size of dataset. So,
we leverage nine hand-crafted features that can
help our model to characterize the sequence of
keyphrases.

WORD EMBEDDING. We use pre-trained word
embedding that fills several slots in our feature
vector. A skip-gram model from Mikolov et al.
(2013) was used to generate a 128-dimensional
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vector of a particular word. The word embedding
we used in this work is trained using documents
that are collected from online forums, medical ar-
ticles, and medical question answering forums. By
using embedding feature, slank words and lexical
variants can be naturally handled since all variants
should have similar vector representation.

MEDICAL DICTIONARY. We also devise fea-
ture vector using the knowledge derived from
a dictionary containing medical terminologies.
Technically, we generate a one-hot feature vector
for each word in the sentence by checking whether
the word is listed in the dictionary.

WORD LENGTH. This feature represents the
length of each word (i.e., the number of characters
in every word) in the sentence. The rationale be-
hind proposing this kind of feature is that the med-
ical domain-specific words (e.g. ”influenza”, ”tu-
berculosis”) tend to be lengthy compared to gen-
eral words. Cao et al. (2010) found that there is a
correlation between the length of a word and its in-
formativeness value (inverse document frequency
value).

WORD POSITION. The important term most
likely appears in either beginning or end of doc-
ument. The first sentence of document typically
contains phrasal topic, while a few last sentences
usually emphasize the content discussed in the
document. In a medical consultation forum, a user
often starts her post with a statement explaining
the problem, then gives more explanation in form
of several narrative sentences. In the end, she asks
one or two questions. Keyphrases are potentially
extracted from a problem statement and the ques-
tions in the forum posts.

POS-TAG. Part-of-Speech category of word
can be also exploited as a feature, since it may
feed our model with grammatical information and
a better understanding of ambiguous words. Based
on our observation, many keyphrases have a com-
mon POS pattern, e.g. a verb followed by the
sequence of nouns. The POS-tag feature is rep-
resented as a one-hot-vector, whose length is the
number of tags.

MEDICAL ENTITY. We extract four types of
medical entity from the text, i.e. drug, treatment,
symptom, and disease. The medical entity often
become part of a keyphrase of the sentence or doc-
ument. Furthermore, this feature complements the
Medical Dictionary feature. While a drug or dis-
ease name is not available in the training data or

a medical dictionary, it is still possible to learn it
using medical entity recognizer.

ABBREVIATION AND ACRONYM. We also
identify whether a word is an abbreviation or
acronym. We compile an acronym dictionary and
then check whether a word in the forum post is
found in the dictionary. We have observed that im-
portant words are rarely shortened by the users.

WORD CENTRALITY. The role of this feature
is to rank words in a document by their impor-
tance. To extract this feature, we adapt TextRank
algorithm (Mihalcea and Tarau, 2004). We build
undirected graph, in which the word is represented
as the vertice and the distance between words as
the edge. We use word similarity score as weights
for the edge. Pre-trained word embedding model
is used to calculate the cosine similarity between
two word vectors. In our work, two words (ver-
tices) are adjacent (having an edge between them)
if their similarity are not negative. Moreover, we
use a modified PageRank algorithm (Page et al.,
1998) that consider weight of edge in calculation.

Formally, let G = (V,E) be an undirected
graph with the set of vertices V and set of edges E,
where E is a subset of V × V . For a given vertex
Vi, let In(Vi) be the set of vertices that points to it
(predecessors) and Out(Vi) be the set of vertices
that vertex Vi points to (successors), the modified
PageRank equation proposed by (?) can be seen in
the following formula.

WS(Vi) = (1−d)+d∗
∑

Vi∈In(Vi)

wji∑
Vi∈Out(Vj)

wjk

WORD STICKINESS. There are typical noises
found in the user-generated contents, such as lack
of proper punctuation usage. For example, in the
sentence ”I have a pain on forehead stomachache
and blurred vision”, there is no comma be-
tween the words ”forehead” and ”stomachache”,
as well between ”stomachache” and ”and”; while
it should be required. The model may mistakenly
select the sequence ”forehead stomachache” as a
single keyphrase.

To address this problem, we propose a feature
that is able to capture how likely a given word is
occurred together with the preceding and succeed-
ing words. We compute Pointwise Mutual Infor-
mation (PMI) of all bigrams to capture such infor-
mation using documents from health-related on-
line forum.
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Table 1: Statistical data of Indonesian healthcare
user-generated posts dataset

Number of posts 416
Total number of words 26,747
Number of keyphrases 1,861
Avg number of words per posts 64
Avg number of keyphrases per posts 4

The PMI formula can be seen as follows.

PMI(x, y) = log(
P (x, y)

P (x).P (y)
)

where p(x) is the occurrence probability of word
x, p(y) is the occurrence probability of word y,
and p(x, y) is the probability of word x and y co-
occur together.

The feature function is formally described as
fs(w) = [x, y], where w is a word in a partic-
ular document, x is the stickiness value between
w and its preceding word, and y is the stickiness
value between w and its succeeding word. For ex-
ample, given the word ”cancer” in the sentence
”How to prevent cancer doc?”, the fea-
ture value is fs(cancer) = [0.56, 0.1], where fs is
feature function for stickiness value. It is worth to
note that the word ”cancer” rarely co-occur with
the word ”doc”. It is reflected that the stickiness
value of the word ”cancer” relative to the word
”doc” is smaller than the stickiness value to the
word ”prevent”.

4 Evaluation Result

4.1 Data and Resources

The data for the experiment is taken from the
collection of consumer-health questions crawled
through Indonesian healthcare consultation fo-
rums (Hakim et al., 2017). Due to resources lim-
itation, we only manually annotate 416 sample
of user-generated posts. The description of the
dataset for experiment can be seen in Table 1

We use the dictionary from The Medical Coun-
cil of Indonesia1 to extract MEDICAL DICTIO-
NARY feature. On the other hand, POS-Tag fea-
ture is learned by model that is trained using data
from Dinakaramani et al. (2014).

1(www.kki.go.id/assets/data/arsip/
SKDI_Perkonsil,_11_maret_13.pdf)

4.2 Experiment

There are two main scenarios for the experiment.
First, feature ablation study aims to determine fea-
ture‘s contribution to the model performance. Sec-
ond, model selection finds the model that outputs
best result. The performance of a model is mea-
sured by precision, recall, and F1 metric. Pre-
cision is the number of keyphrases that are cor-
rectly extracted, divided by the total number of
keyphrases labeled by our system. Recall is the
number of keyphrases that are correctly extracted,
divided by the total number of keyphrases in the
gold-standard.

4.2.1 Feature Ablation Study

Ablation study is done by systematically remov-
ing feature sets to identify the most important fea-
tures. We adopt leave one out (LOO) technique
for feature ablation study. First, the model that
uses all proposed features is evaluated. After that,
9 other different models are constructed, each of
which uses combination of 8 features (another one
feature is ablated in each model). The difference
of F1-score between original model using all fea-
tures and model with one missing feature indicate
the contribution of (missing) feature to model per-
formance. For ablation study, we split the data into
80% training set and 20% testing set. In this work,
feature ablation is conducted using LSTM model.

Negative delta percentage score, as shown in
Table 2, means that our proposed features con-
tribute positively to improve model performance.
The WORD EMBEDDING, which is most basic fea-
ture in our model, contributes the most. By re-
moving word embedding feature, precision and re-
call decrease by 13.40% and 23.48% respectively.
WORD STICKINESS is the second most important
feature, indicated by change of 8.12% F-1 score.
Based on this ablation study, WORD POSITION is
not part of best feature combination.

We re-evaluate ablation study result using par-
tial match score. In this scheme, suppose that the
expected keyphrase consists of two words or more
and the predicted contains only one word of it,
partial match will still count it as a true positive.
We find that removing WORD POSITION feature
causes partial-match precision of model drops. So,
our decision is to include WORD POSITION feature
along with all other features in the final model.
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Table 2: Feature Ablation Evaluation (in %)

Removed Features Precision Recall F-1
Word Embedding -13.40 -23.48 -18.91
Medical Dictionary -3.44 -5.28 -4.30
Word Length -4.92 -5.78 -5.33
Word Position +2.91 +0.52 +1.70
POS-Tag -5.41 -6.25 -5.80
Medical Entity -6.15 -6.73 -6.40
Abbreviation and Acronym -4.85 -5.99 -5.35
Word Centrality -3.92 -5.44 -4.61
Word Stickiness -7.35 -9.02 -8.12

Table 3: Model Evaluation (in %)

Models Precision Recall F-1
RAKE 11.60 12.54 12.05
CRF 20.98 18.60 19.23
LSTMs 52.03 55.04 53.43
B-LSTM 55.12 58.07 56.48
Stacked-B-LSTMs 56.19 59.84 57.93
Stacked-B-LSTMs-CRF 59.12 60.11 59.22
Weight-Stacked-B-LSTMs 60.06 63.08 61.37

4.2.2 Model Selection

We test our model using 10-cross-validation sce-
nario. As the baselines, we implement RAKE
(Rose et al., 2010) and CRF (Cao et al., 2010).
For CRF model, we apply the similar features with
used in LSTM. The summary of various model
evaluation is presented in Table 3.

RAKE performs the worst on extracting
keyphrases from user-generated healthcare forum
posts, since it is actually devoted for formal text.
Performance of CRF model is also not good.
Based on our observation from the predicted out-
put by CRF, this method fails to predict the long
sequences as the keyphrases. LSTM outperforms
the baselines by achieving 53.43% F-1 score, 35%
higher than CRF.

Using bidirectional concept, LSTM is able
to integrate information from previous and after
timestep, so that B-LSTM deliver better result
compared to LSTM. Stacked-B-LSTMs using two
layers performs better than B-LSTM for this task.
Moreover, the weighting layer, which learns the
weight for each feature, improves model perfor-
mance. Hence, the best result was obtained by
Weight-Stacked-B-LSTMs, whose Precision, Re-
call, and F-1 are respectively 60.06%, 63.06%,

and 61.37%. It indicates that the feature weighting
process worked well and, on some degree, demon-
strate the reliability of our model in keyphrases ex-
traction for user-generated contents in healthcare
domain.

5 Conclusion

We proposed the model to address the task of
keyphrases extraction from user-generated con-
tents in medical domain. Extracting information
about health-related concerns from user-generated
forum post is not a trivial task, due to the fact
that the content is usually short and written in an
unstructured format, as opposed to formal text.
Our model is based on sequence labeling task
that employs deep learning approach using Long
Short-Term Memory networks. Furthermore, sev-
eral handcrafted features are proposed, including
word centrality to detect important word in a doc-
ument and word stickiness to obtain complete se-
quence of words as a keyphrase. We also propose
a new layer in the neural network architecture for
weighting the features. Our model successfully
outperforms baseline methods for keyphrase ex-
traction.
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Abstract

We present a machine learning pipeline
that identifies key sentences in abstracts
of oncological articles to aid evidence-
based medicine. This problem is charac-
terized by the lack of gold standard data-
sets, data imbalance and thematic differ-
ences between available silver standard
corpora. Additionally, available training
and target data differs with regard to their
domain (professional summaries vs. sen-
tences in abstracts). This makes super-
vised machine learning inapplicable. We
propose the use of two semi-supervised
machine learning approaches: To mit-
igate difficulties arising from heterogen-
eous data sources, overcome data imbal-
ance and create reliable training data we
propose using transductive learning from
positive and unlabelled data (PU Learn-
ing). For obtaining a realistic classifica-
tion model, we propose the use of abstracts
summarised in relevant sentences as un-
labelled examples through Self-Training.
The best model achieves 84% accuracy
and 0.84 F1 score on our dataset.

1 Introduction

The ever-growing amount of biomedical literat-
ure accessible online is a valuable source of in-
formation for clinical decisions. The PubMed
database (National Library of Medicine, 1946-
2018), for instance, lists approximately 30 million
articles’ abstracts. As a consequence, machine
learning (ML) based text mining (TM) is increas-
ingly employed to support evidence-based medi-
cine by finding, condensing and analysing relev-
ant information (Kim et al., 2011). Practitioners
in this field search for clinically relevant articles

and findings, and are typically not interested in the
bulk of search results which are devoted to basic
research. However, defining clinical relevance in a
given abstract is not a trivial task. On top, although
abstracts provide a very brief summary of their
corresponding articles’ content, practitioners de-
termine abstracts’ clinical relevance based on only
a few key sentences (McKnight and Srinivasan,
2003). To optimally support such users, it is thus
necessary to first retrieve only clinically relevant
articles and next to identify the sentences in those
articles which express their clinical relevance.

Any survival benefit of dMMR was lost in
N2 tumors. Mutations in BRAF(V600E)
(HR, 1.37; 95% CI, 1.08 to 1.70; P = .009)
or KRAS (HR, 1.44; 95% CI, 1.21 to 1.70;
P ¡ .001) were independently associated
with worse DFS. The observed MMR by tu-
mor site interaction was validated in an in-
dependent cohort of stage III colon cancers
(P(interaction) = .037).

Example 1: Snippet of highlighted clin-
ically relevant (or key; yellow background
color) and irrelevant (no background color)
sentences in a precision oncology setting.
Source document with PMID 24019539.

In this work, we present an ML pipeline to
identify key (clinically relevant) sentences, in a
precision oncology setting, in abstracts of oncolo-
gical articles to aid evidence-based medicine. This
setting is implied throughout the text when refer-
ring to clinical relevance or key (clinically relev-
ant) sentences. An example of relevant and ir-
relevant sentences is shown in Example 1. For
solving this problem no gold standard corpora
is available. Additionally, clinical relevance has
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only a vague definition and is a subjective meas-
ure. As manually labelling text is expensive, semi-
supervised learning offers the possibility to util-
ize related annotated corpora. We focus on Self-
Training (Wang et al., 2008), which mostly relies
on supervised classifiers trained on labelled data
and use of unlabelled examples to improve the de-
cision boundary. Several corpora can be used to
mitigate the issues arising from the lack of gold
standard data set and data imbalance. These cor-
pora implicitly define characteristics of key sen-
tences, but cannot be considered as gold standards.
In the following, we call them “silver standard”
corpora - collections of sentences close to the in-
tended semantic but with large amounts of noise.
Specifically, we employ Clinical Interpretations of
Variants in Cancer (CIViC) (Griffith et al., 2017)
for implicit notion of clinical relevance and posit-
ive data points, i.e. sentences or abstracts which
have clinical relevance. Unfortunately, negative
data points, i.e. sentences or abstracts which do
not have clinical relevance, are not present in this
data set. PubMed abstracts, referenced by CIViC,
are used as unlabelled data. Since we consider
all sentences in CIViC to be positive examples
and the corresponding abstracts are initially un-
labelled, additional data for negative examples is
required. We utilize the Hallmarks of Cancer
Corpus (HoC) (Baker et al., 2016) as an auxili-
ary source of noisy labelled data. To expand on
our set of labelled data points we propose trans-
ductive learning from positive and unlabelled data
(PU Learning) to identify noise within HoC, with
CIViC as a guide set for determining the relevance
of sentences from HoC. This gives us additional,
both positive and negative data points, used as an
initialization for Self-Training. The pipeline is
available at https://github.com/nachne/semisuper.

2 Related Work

Sentence classification is a special case of text cat-
egorisation. It has been used in a wide range of
fields, like sentiment analysis (Yu and Hatzivassi-
loglou, 2003; Go et al., 2009; Vosoughi et al.,
2015), rhetorical annotation, and automated sum-
marisation (Kupiec et al., 1995; Teufel and Moens,
2002). Between the two, feature engineering has
been reported as the major difference. For in-
stance, common stop words like “but”, “was”, and
“has” are often among the top features for sen-
tence classification, and verb tense is useful to

determine a sentence’s precise meaning (Agarwal
and Yu, 2009; Khoo et al., 2006). Additional fea-
tures beyond the pure language level have also
been proposed. For sentiment analysis, Yu and
Hatzivassiloglou (2003) use a dictionary of se-
mantically meaningful seed words to estimate the
likely positive or negative polarity of co-occurring
words, from which in turn a sentences’ polarity is
determined. Teufel and Moens (2002) focus on
identifying rhetorical roles of sentences for auto-
matic summarisation of scientific articles. They
use sentence length and location, the presence of
citations and of words included in headlines, la-
bels of preceding sentences, and predefined cue
words and formulaic expressions accompanying
Bag of Words (BOW).

Text represented as high dimensional BOW vec-
tors has been reported to be often linearly separ-
able, making Support Vector Machines (Joachims,
1998) (SVM) a popular choice for classifiers.
Conditional Random Fields (CRF) have been used
to predict sequences of labels rather than labelling
sentences one by one (Kim et al., 2011). In recent
years, Neural Networks (NN) and Deep Learn-
ing (DL) has increasingly been used, e.g. us-
ing Convolutional Neural Networks (CNN) (Kim,
2014; Rios and Kavuluru, 2015; Zhang et al.,
2016; Conneau et al., 2017). Other authors employ
various versions of Recurrent Neural Networks
(RNN): LSTM (Hassan and Mahmood, 2017), bi-
directional LSTM (Dernoncourt et al., 2017; Zhou
et al., 2016) or convolutional LSTM (Zhou et al.,
2015). The use of DL has also popularised the use
of pre-trained word embedding vectors. Habibi
et al. (2017) show that the use of word embed-
dings, in general, increases the quality of biomed-
ical named entity recognition pipelines.

Specific to the biomedical domain, sentence
classification has been used to determine the rhet-
orical role sentences play in an article or abstract.
Ruch et al. (2007) propose using the “Conclu-
sion” section of abstracts as examples for key sen-
tences. McKnight and Srinivasan (2003) have
classified sentences in abstracts of randomised
control trials as belonging to the categories “Intro-
duction”, “Methods”, “Results”, and “Discussion”
(IMRaD), using section headlines as soft labels for
training data in addition to a smaller hand annot-
ated corpus. They also report that adding sentence
location as a feature improved performance on the
“Introduction” and “Discussion” categories. Kim
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et al. (2011) used a CRF for sequential classifica-
tion, trained on the hand-annotated Population, In-
tervention, Background, Outcome, Study Design
of evidence-based medicine, or Other (PIBOSO)
corpus, with sentences annotated with one of the
aforementioned categories. Unfortunately, since
sentences in our primary source of positive data
are from a different context than the abstracts to be
classified, section headings, preceding sentences,
and location are not available for our task.

2.1 Semi-Supervised Learning

Semi-supervised learning has the potential to
match the performance of supervised learning
while requiring considerably less labelled data
(Wang et al., 2008; Thomas et al., 2012; Liu
et al., 2013). Soft labelling (e.g. aforementioned
heuristics for using section headlines as labels)
is sometimes subsumed under semi-supervised
learning as Distant Supervision (Go et al., 2009;
Vosoughi et al., 2015; Wallace et al., 2016). La-
bel Propagation (Zhu and Ghahramani, 2002) and
Label Spreading (Zhou et al., 2003) can be seen as
largely unsupervised classification, using labelled
data to initialise and control clustering. Likewise,
Nigam et al. (2011) propose Naive Bayes (NB)
based variants of the unsupervised Expectation-
Maximisation (EM) algorithm for utilising unla-
belled data in semi-supervised text classification.

2.1.1 PU Learning
PU Learning is a special case of semi-supervised
learning where examples in the unlabelled set U
are to be classified as positive (label 1) or neg-
ative (label 0), with only positive labelled data
P initially available. Therefore, the PU Learn-
ing problem can be approximated by learning
to discriminate P from U (Mordelet and Vert,
2014). For that, learning should favour false pos-
itive errors over false negatives, e.g. by using
class-specific weights for error penalisation. Ap-
proaches include one-class SVMs, which approx-
imate the support of the positive class and treat
negative examples as outliers; ranking methods,
which rank unlabelled examples by their decreas-
ing similarity to the mean positive example; and
two-step heuristics, which try to identify reliable
negative examples in the unlabelled data to ini-
tialise semi-supervised learning. We consider the
aforementioned heuristics useful for outlier detec-
tion to reduce noise in our auxiliary data, and
use variations of PU Learning algorithms in semi-

supervised learning, as our problem of finding
summary-like sentences without explicitly defined
negative sentences is closely related to PU Learn-
ing. An overview is available in (Liu et al., 2003).
Additional information can be found in (Elkan and
Noto, 2008; Plessis et al., 2014, 2015). An ex-
ample of the use of PU Learning, for spotting on-
line fake reviews, is available in (Li et al., 2014).

Without known negative examples, measuring
classification performance using accuracy or F1-
score in PU Learning is not possible. Lee and
Liu (2003) suggest an alternative score, called
PU-score, defined as Pr[f(X) = 1|Y =
1]2/Pr[f(X) = 1], for comparing PU Learning
classifiers that can be derived from positive and
unlabelled data alone. The authors show theoretic-
ally that maximising the PU-score is equivalent to
maximising the F1-score and can be used to com-
pare different models classifying the same data.
Nonetheless, it should be noted that this metric is
not bounded, making it viable only for comparing
classifiers trained and tested on the same data; it is
not an indicator for an individual classifier’s per-
formance.

2.1.2 Self-Training
Self-Training, used in this work, starts from an ini-
tial classifier trained on the labelled data. Previ-
ously unlabelled examples that were labelled with
high confidence are added to the training data.
This procedure repeats iteratively, retraining the
classifier until a terminating condition is met. NB
is a popular classifier for Self-Training because
the probabilities it produces provide a confidence
ranking, but any other algorithm may be used as
long as confidence scores can be derived (Wang
et al., 2008).

3 Methods

We present the data sources we use, the prepro-
cessing pipeline and describe in detail the experi-
ments performed with both PU Learning and Self-
Training.

3.1 Used Corpora
CIViC is a database of clinical evidence summar-
ies. Entries consist of evidence statements about
gene variants, such as their association with dis-
eases and the outcome of drug response trials. Ad-
ditional information includes the names of the re-
spective genes, variants, drugs, diseases, and a
variant summary. Each entry contains the PubMed
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ID of the respective publication the information is
taken from. Evidence statements are prototypes
of high-quality information in condensed form.
However, they are not themselves contained in the
abstracts they are based on, as they try to summar-
ize the entire article. At time of writing, CIViC
contains about 2,300 evidence statements consist-
ing of 6,600 sentences (5,300 without duplicates).
They make up our initial corpus of positive sen-
tences (P ).

PubMed abstracts referenced in CIViC. We ex-
tract about 12,700 sentences from 1,300 abstracts
referenced in CIViC, and use them as the unla-
belled corpus (U ). We use CIViC summaries and
the PubMed abstract corpus to estimate the ac-
ceptable range for the ratio of key sentences in
an abstract. We use the ratio of overall sentence
counts in the two corpora (CIViC summaries and
PubMed abstracts) as an upper bound of ≈ 0.4
(5,300/12,700). As a rough estimate for the lower
bound, based on an informed guess that half of the
sentences could be redundant, since one abstract
may correspond to multiple CIViC entries for dif-
ferent drug/variant combinations. This results in a
lower bound ≈ 0.2. Although this is a simplifying
assumption and disregards e.g. any differences in
information density in our data sources’ sentences,
it provides a rough guideline for the ratio of key
sentences in U a classifier should find.

Hallmarks of Cancer (HoC) describe common
traits of all forms of cancer. We use it as a silver
standard corpus consisting of about 13,000 sen-
tences from 1,580 PubMed abstracts. Sentences
not relevant to any of the hallmarks are left unla-
belled. We assume unlabelled sentences are less
likely to be clinically relevant than sentences with
one or more labels, aggregating them in the likely
negative set HoCn (about 8,900 sentences) and
the likely positive set HoCp (about 4,300 sen-
tences). In order to improve generalisation, as well
as to be able to validate our classifier, which re-
quires positive as well as negative labelled data,
we use HoC as auxiliary data. To utiliseHoCp and
HoCn as sources of realistic positive and negat-
ive sentences for training and test data, but avoid-
ing propagation of misclassification errors result-
ing from our simplifying assumption, they must be
filtered for noise (Section 3.3).

3.2 Text Preprocessing and Feature Selection

As features, we use word n-grams, character n-
grams, and sentence length, concatenating them to
form a mixed feature space. All tokens are con-
verted to lower-case. Biomedical scientific text
exhibits some particularities that have to be taken
into consideration during text preprocessing. To
normalise all text, before sentence splitting with
the PunktSentenceTokenizer of the Python Natural
Language Toolkit (NLTK) (Bird et al., 2009), we
use regular expressions: we substitute spaces for
full stops in common abbreviations followed by a
space and lower-case letter or digit (e.g. “ca. 5”
→ “ca 5”). As the pattern “patient no. V[123]”
is quite frequent in CIViC, we introduce a special
rule for not splitting it despite the upper-case. All
whitespace characters are replaced by spaces to
avoid splitting on newlines. Afterwards, to avoid
character encoding-related problems and to reduce
alphabet size, we normalize all text to ASCII be-
fore tokenization.

For word-level tokenization, we use NLTK’s
TreebankWordTokenizer and split the resulting
tokens at characters in {“-”, “/”, “.”, “,”, “—”, “¡”,
“¿”}. Sentences below a minimum character count
of 8 are denoted by a special “ empty sentence ”
token. To prepare word n-grams, we replace
tokens representing numbers or ordinals and their
spelled out versions by a special “ num ” token
and do the equivalent for e.g. ranges, inequal-
ities, percentages, measurement units, and years.
Tokens with suffixes common for drugs but not
found in common speech, such as “-inib”, are re-
placed by “ chemical ”, and sequences that start
with a letter, but contain digits, are replaced by
“ abbrev ” in the hope of catching identifiers of
biomedical entities. We evaluated the use of word
n-grams with n bounded from (1,1) (the bag-of-
words case) up to (1,4), thereby retaining inform-
ation about the order of words in a sentence.

We evaluated the use of character n-gram with
n in ranges from (2,3) to (2,6). To reduce alphabet
size and avoid overfitting, all sequences of non-
word characters except those in {“-”, “%”, “=”},
which may carry semantic information, are re-
placed by single spaces, and all digits are replaced
by 1.

In feature vectors, word and character n-grams
are weighted by their tf-idf score (Aizawa, 2003)
and sentence length is represented as inverse char-
acter count. Character n-grams proved to be more
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expressive than word n-grams, yielding better ac-
curacy scores when we tested each of them in
isolation. However, a combination of character
and word level n-grams and text length performed
best.

3.3 Noise reduction with PU Learning

Using PU Learning, we filterHoCn andHoCp for
sentences that are likely to be useful in our classi-
fication task. We explored several approaches to
PU Learning and subsequent noise reduction.

3.3.1 PU Learning
First, we explored several Two-Step techniques,
which (1) identify a set of reliable negative ex-
amples (RN ) from U and (2) train a classifier
on P and RN and retrain the classifier using the
predicted labels until a stopping criterion is met.
We present them next. i-EM is a variation of the
Expectation-Maximisation algorithm that relies on
a NB classifier, with predicted probabilities of la-
bels in range [0, 1]. s-EM is an extension to i-EM.
Initially, a subset S ⊂ P is added to U as spy doc-
uments. After training an initial classifier on P \S
vs. U ∪ S, the predicted probabilistic labels for
the known hidden positives in S are used to de-
termine a threshold t; all u ∈ U with probabilistic
labels p(yu) < t are moved to RN . In Step 2,
starting from a classifier trained to discriminate P
from RN , the EM algorithm is iterated as in i-EM
until it converges or the estimated classification er-
ror is deteriorating. Roc-SVM uses the Rocchio
algorithm for Step 1: Firstly, prototype vectors p̄
for P and ū for U are computed as a weighted dif-
ferences between the two sets’ respective average
examples. Using these vectors, RN is defined as
{u ∈ U : cos(u, ū) < cos(u, p̄)}, i.e. all unla-
belled sentences that are more similar to the pro-
totype of the unlabelled set than the positive sets.
Step 2 uses SVMs to expand RN . Initially, an
SVM is trained to discriminate P from RN . Af-
terwards, all u ∈ U \ RN with predicted label
0 are added to RN for iteratively retraining the
classifier as long as RN changes. This iteration
may go wrong and result in poor recall on the pos-
itive class; as a fallback strategy, if the classifier
at convergence misclassifies too large a portion of
P , the initial classifier is returned instead. CR-
SVM is a minor extension to Roc-SVM. P and
U are each ranked by decreasing cosine similarity
to the mean positive example; a probably negat-
ive set PN is built from the u ∈ U with a lower

score than a given ratio of least typical examples
in P . The negative prototype vector is then com-
puted using PN rather than U . Step 2 is the same
as in Roc-SVM. Additionally, we explored Biased
SVM, a soft-margin SVM that uses class-specific
weights for positive and negative errors. Weight
parameters are selected in a grid search manner
to find a combination that optimises the PU-score;
this effectively assumes U to contain only negli-
gible amounts of hidden positive examples.

3.3.2 Noise reduction
We experiment with two heuristics for noise re-
duction in HoC. For both of them, let clf(P,U)(x)
be the label for x predicted by classifier clf trained
on P and U . Appendix B (Figure 1) summarises
corpora used for this task.

Strict mode: Remove CIViC-like sentences,
i.e. likely hidden positives, from HoCn for the
reliable negative set HoC ′

n. Keep only CIViC-
like sentences in HoCp for a reliable positive set
HoC ′

p. This implies rather pessimistic assump-
tions about HoCp’s relevance, considering only
outliers as key sentences.

HoC′
n := HoCn \ {x ∈ HoCn : clf(CIV iC,HoCn)(x) = 1}

HoC′
p := {x ∈ HoCp : clf(CIV iC,HoCp)(x) = 1}

Tolerant mode: Remove CIViC-like sentences
from HoCn as before. But rather than requiring
sentences from HoCp to be CIViC-like, remove
those sentences from HoCp that are similar to re-
liable negative sentences, i.e. the purified HoC ′

n.
In doing so, HoCp is assumed to be largely relev-
ant, contaminated with non-key sentences.

HoC′
n := HoCn \ {x ∈ HoCn : clf(CIV iC,HoCn)(x) = 1}

HoC′
p := HoCp \ {x ∈ HoCp : clf(HoC′

n, HoCp)(x) = 1}

3.4 Semi-supervised learning with
Self-Training

In the following, let the labelled set be L :=
P ∪N , with positive labelled set P := CIV iC ∪
HoC ′

p and negative labelled set N := HoC ′
n. The

unlabelled set of original abstracts is denoted by
U . The purified sets HoC ′

p and HoC ′
n are ob-

tained using either of the above heuristics. Ap-
pendix B (Figure 2) summarises corpora used
for this task. We use: Standard Self-Training
(ST) with a confidence threshold. Having exper-
imented with different values, we use a threshold
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Reliable negatives: Strict mode: Tolerant mode:
P := CIV iC, P := CIV iC, P := HoC ′

n

U := HoCn U := HoCp U := HoCp

PU- pos. ratio PU- pos. ratio PU- pos. ratio
Method score in Utest score in Utest score in Utest

i-EM 2.06 0.11 1.61 0.06 0.94 0.36
s-EM 2.06 0.11 1.61 0.06 0.94 0.40
Roc-SVM 2.19 0.07 1.67 0.06 1.07 0.31
CR-SVM 2.19 0.08 1.67 0.06 1.04 0.57
Biased-SVM 2.28 0.03 1.70 0.05 1.13 0.31

Table 1: Removing noise fromHoCn andHoCp. Results for different PU Learning techniques, averaged
over 10 runs, on 20% reserved test sets Ptest ⊂ P and Utest ⊂ U . To generate HoC ′

n as required for
tolerant mode, Roc-SVM (highlighted in bold) was used in the previous step.

Algorithm 1 Self-Training
1: procedure SELF-TRAINING(training data L

with labels, unlabelled data U )
2: while U is not empty do
3: train classifier clf on L
4: predict labels for U with clf
5: move examples with most confidently

predicted labels from U to L
6: end while
7: return clf
8: end procedure

of 0.75 for classifiers producing class probabilit-
ies, and 0.5 for the absolute values of SVM’s de-
cision function; “Negative” Self-Training (NST):
Rather than using a confidence criterion, all unla-
belled examples classified as negative are added to
the training data for the next iteration. This is ana-
logous to the iterative SVM step of Roc-SVM, ex-
cept for the predefined rather than heuristically es-
timated initial negative set, and has shown to help
avoid an unrestricted propagation of positive la-
bels; A variant of the Expectation-Maximisation
(EM) algorithm as used in i-EM. Starting with
P and N as initial fixed-label examples, iter-
ate a NB classifier until convergence, using the
class probabilities predicted for U as labels for
the next training iteration; Label Propagation and
Label Spreading: These algorithms propagate la-
bels through high-density regions using a graph
representation of the data. Both are implemen-
ted in Scikit-learn with Radial Basis Function
(RBF) and k-Nearest-Neighbour (kNN) kernels
available. We were unable to obtain competitive
results with these techniques. In the Self-Training

algorithm (shown in Algorithm 1), we use Scikit-
learn’s implementations of SVM, NB, and Lo-
gistic Regression (LR) as underlying classifiers.

4 Results

Section 4.1 describes the effects of noise reduction
heuristics using PU Learning. The performances
of different semi-supervised approaches for train-
ing a classifier, with both strict and tolerant noise
reduction scenarios, are shown in Section 4.2.

4.1 PU Learning for Noisy Data

Table 1 summarises the PU-scores and ratio of ex-
amples in U classified as positive for different al-
gorithms for reducing noise in HoCn and HoCp

using the strict vs. tolerant heuristics.
Cleaning up HoCn removes some 2 to 7% of

examples, depending on the classifier. Additional
manual inspection of a subset of the sentences re-
moved confirms them as true negatives with re-
spect to key sentences.

Regarding HoCp, the strict heuristics keeps
only 5.5%, some 250 sentences, of positive ex-
amples. We suspect this is due to the different
thematic foci of HoC and the articles summar-
ised in CIV iC, as well as the summaries’ differ-
ent writing style. This leaves us with N := 8,300
sentences, P := 5,600 sentences and U := 12,700
sentences. As our experiments show, choosing this
very selective approach drastically improves the
nominal accuracy of subsequent steps; however,
it leaves a lack of real-world data in the positive
training set and harbours the risk of overfitting.

On the other hand, using the tolerant strategy,
roughly 25% of HoCp are removed due to be-
ing very similar to HoC ′

n. This results in a 50%
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Ptest : Ntest : U :
Method parameters acc p r F1 p r F1 pos. ratio
NST(SVM) C = 0.3 0.94 0.95 0.90 0.92 0.93 0.97 0.95 0.33
NST(LR) C = 6.0 0.89 0.99 0.75 0.84 0.86 0.99 0.92 0.13
NST(NB) α = 0.1 0.90 0.97 0.78 0.86 0.87 0.98 0.92 0.31
ST(SVM) C = 0.4 0.96 0.97 0.93 0.95 0.95 0.98 0.97 0.62
ST(LR) C = 4.0 0.96 0.96 0.94 0.95 0.96 0.98 0.97 0.62
ST(NB) α = 0.1 0.92 0.93 0.88 0.90 0.92 0.96 0.94 0.60
EM α = 0.1 0.91 0.92 0.85 0.88 0.91 0.95 0.93 0.62
Label Propagation RBF kernel 0.83 0.91 0.63 0.74 0.79 0.96 0.87 0.35
Label Propagation kNN kernel 0.69 0.96 0.22 0.36 0.66 0.99 0.79 0.03
Label Spreading RBF kernel 0.85 0.93 0.68 0.79 0.82 0.97 0.89 0.50
Label Spreading kNN kernel 0.79 0.92 0.54 0.68 0.76 0.96 0.85 0.32

Table 2: Performance of different semi-supervised approaches trained on P , N , and U after strict noise
filtering. ST = Self-Training. NST = “Negative” Self-Training. Results averaged over 10 runs with
randomised 20% validation sets from P and N ; min-df threshold = 0.002, 25% of most relevant features
selected with χ2.

Ptest : Ntest : U :
Method parameters acc p r F1 p r F1 pos. ratio
NST(SVM) C = 0.3 0.84 0.84 0.84 0.84 0.84 0.83 0.83 0.32
NST(LR) C = 6.0 0.81 0.88 0.72 0.79 0.76 0.90 0.82 0.17
NST(NB) α = 0.1 0.76 0.85 0.64 0.73 0.70 0.88 0.78 0.30
ST(SVM) C = 0.4 0.85 0.90 0.81 0.85 0.83 0.89 0.86 0.62
ST(LR) C = 6.0 0.86 0.87 0.85 0.85 0.84 0.86 0.85 0.66
ST(NB) α = 0.1 0.76 0.88 0.62 0.72 0.69 0.91 0.79 0.70
EM α = 0.1 0.74 0.88 0.58 0.70 0.68 0.91 0.78 0.70
Label Propagation RBF kernel 0.72 0.88 0.50 0.64 0.64 0.92 0.76 0.36
Label Propagation kNN kernel 0.58 0.90 0.20 0.32 0.54 0.98 0.70 0.02
Label Spreading RBF kernel 0.74 0.88 0.56 0.68 0.67 0.92 0.77 0.56
Label Spreading kNN kernel 0.68 0.91 0.43 0.58 0.62 0.96 0.77 0.34

Table 3: Performance of different semi-supervised approaches trained on P , N , and U after tolerant
noise filtering. Results averaged over 10 runs with randomised 20% validation sets from P and N ;
min-df threshold = 0.002, 25% of most relevant features selected with χ2. The model we consider most
suitable for identifying key sentences is highlighted in bold.

larger and less homogenous positive labelled set
compared to strict noise filtering, which we expect
to provide greater generality and robustness to our
classifier. This leaves us with N := 8,300 sen-
tences, P := 8,600 sentences and U := 12,700
sentences. This is enough to assume a noticeable
reduction of noise and easier distinction between
HoC ′

n and HoC ′
p, but it still contributes a con-

siderable amount of data to the positive set and
is not suspect to overfitting. Typical topics of
sentences removed as irrelevant include biochem-
ical research hypotheses and non-human study
subjects; however, as this heuristic is indirectly

defined, its decisions are not quite as clearly cor-
rect as those directly linked to CIViC.

Our results confirm Biased-SVM nominally
performs best among the PU Learning techniques
described above; this is simply because the PU-
score is maximised by minimising the amount of
positive examples found in U , which Biased-SVM
does by regarding U as negative and performing
supervised classification. However, we do not find
this to be useful for our purpose of noise detection,
or for finding hidden positive data in unlabelled
data in general. The EM-based techniques tend to
go the opposite direction and consider comparably
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large ratios of U as positive, were more sensitive
to distributions, and misclassified positive labelled
data. Roc-SVM, on the other hand, had stable per-
formance in our tests and scores close to those of
Biased-SVM, which is why we use this approach
to filter HoC for the subsequent steps. Our res-
ults also suggest the iterative second step is more
crucial than the exact heuristics for choosing a re-
liable negative set from the unknown data.

4.2 Semi-Supervised classification of key
sentences with Self-Training

We report accuracy (acc), precision (p), recall
(r), F1-score (F1) and the ratio of key sen-
tences found in U (pos.ratio) of different semi-
supervised learning methods for strict (Table 2)
and tolerant (Table 3) noise filtering scenarios.
We consider classification to have gone wrong if
the ratio of positive sentences in U significantly
deviates from the acceptable range [0.2, 0.4] (as
defined in Section 3.1). Additionally, results of su-
pervised ML pipeline on data sets generated after
noise filtering are available in Appendix A.

Our experiments show that strict noise filter-
ing leads to greatly improved classification accur-
acy; however, it may be fallacious to judge this
approach only by the scores it produces. Given
CIViC’s deviations from typical language in sci-
entific articles, the different thematic foci of CIViC
and HoC, and the negligible amount of realistic
positive sentences added in this scenario (Table
1), we suspect classifiers may overfit to superfi-
cial and incidental differences rather than learning
to generalise to correctly identify key sentences in
unseen abstracts. In order to avoid this, we discard
strict noise filtering.

On the other hand, tolerant filtering of HoCn

and HoCp still allows for reasonable classifica-
tion accuracy considering the data’s heterogen-
eity. We expect additional positive sentences to
provide improvements to generalisation that out-
weigh the lower nominal performance scores and
possible errors propagated due to remaining noise.
Although HoC’s notion of relevant sentences is
not identical to that implied by CIViC, our exper-
iments show that removing only the least suitable
sentences is enough to use HoC ′

p as meaningful
training data.

Standard Self-Training yields performance res-
ults very similar to supervised classification, ana-
logous to what can be observed in strict mode, but

a larger ratio of positive predictions forU . The lin-
ear classifiers SVM and Logistic Regression per-
form much better than NB, the latter modelling an
inaccurate probability distribution. In both strict
and tolerant mode, methods with an emphasis on
unsupervised clustering (EM, Label Propagation,
and Label Spreading) underperform, with a strong
bias towards the negative class. Label Propaga-
tion with k-Nearest-Neighbours kernel performs
particularly poorly, failing to find any positive ex-
amples in the unlabelled set. In contrast, NST
with base classifiers leads to positive ratios in U
close to our preliminary estimate, as well as ac-
ceptable classification accuracy. SVM performs
better than Logistic Regression and has balanced
precision and recall for both classes, appearing the
more robust choice.

5 Conclusion

We have developed a pipeline for identifying the
most informative key sentences in oncological ab-
stracts, judging sentences’ clinical relevance im-
plicitly by their similarity to clinical evidence
summaries in the CIViC database. To account
for deviations from typical content between pro-
fessional summaries and sentences appearing in
abstracts, we use the abstracts corresponding to
these summaries as unlabelled data in an semi-
supervised learning setting. An auxiliary silver
standard corpus is used for more realistic training
and validation data. To mitigate introducing er-
rors due to miscategorised examples in partitions
of the auxiliary data, we propose using PU Learn-
ing techniques in a noise detection preprocessing
step.

We evaluate different heuristics for semi-
supervised learning and measure their perform-
ance with heterogenous data. While methods with
an emphasis on unsupervised clustering perform
poorly, (which we attribute to the data violating
smoothness assumptions) Self-Training with lin-
ear classifiers proved robust to unfavourably dis-
tributed data, reaching performance scores similar
to those of supervised classifiers trained without
the unlabelled data. By adapting Self-Training
with SVMs to iteratively expand only the negat-
ive training set as in PU Learning, we were able
to restrict the amount of hidden positive examples
found in unlabelled data while maintaining good
accuracy scores. Our best model using this method
reaches 84% accuracy and 0.84 F1-score.
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As a byproduct of the proposed pipeline, we ob-
tain a silver standard corpus consisting of approx-
imately 12,700 sentences from our unlabelled set,
annotated with sentences’ estimated clinical relev-
ance, which may be useful for future classification
tasks. Our final pipeline can be used to help clini-
cians quickly assess which articles are relevant to
their work, e.g. by incorporating it into workflows
for the retrieval of cancer-related literature. As
such, it has been integrated in to Variant Inform-
ation Search Tool1 (VIST), a query-based docu-
ment retrieval system which ranks scientific ab-
stracts according to the clinical relevance of their
content given a (set of) variations and/or genes.

We encountered various difficulties resulting
from using a gold standard with atypical and
solely positive examples and the heterogeneity of
different training corpora. Although our problem
of finding key sentences is a standard PU Learn-
ing task, the methods described in the PU Learn-
ing literature cannot be used in a verifiable way on
real-world data without negative validation data.
Even for semi-supervised learning with positive
as well as negative labelled data, standard met-
rics alone are not enough to judge a classifier’s
adequacy, since the amount of noise in automat-
ically gathered training data is never completely
certain and the way unlabelled data is handled by a
classifier is not represented in performance scores.
By using heuristics for noise filtering and adapt-
ing self-training to incorporate unlabelled data in
a way suitable to our goal, we alleviate these diffi-
culties.
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han Högberg, Ulla Stenius, and Anna Korhonen.
2016. Automatic semantic classification of sci-
entific literature according to the hallmarks of can-
cer. Bioinformatics, 32(3):432–440.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. O’Reilly.

1https://triage.informatik.hu-berlin.de:8080/

Alexis Conneau, Holger Schwenk, Loı̈c Barrault, and
Yann Lecun. 2017. Very deep convolutional net-
works for text classification. In Proceedings of the
15th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Volume 1,
Long Papers, volume 1, pages 1107–1116.

Franck Dernoncourt, Ji Young Lee, and Peter Szo-
lovits. 2017. Neural networks for joint sentence
classification in medical paper abstracts. In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers, pages 694–700.
Association for Computational Linguistics.

Charles Elkan and Keith Noto. 2008. Learning classi-
fiers from only positive and unlabeled data. In Pro-
ceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data min-
ing, pages 213–220. ACM.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
CS224N Project Report, Stanford, 1(12).

Malachi Griffith, Nicholas C Spies, Kilannin Krysiak,
Joshua F McMichael, Adam C Coffman, Arpad M
Danos, Benjamin J Ainscough, Cody A Ramirez,
Damian T Rieke, Lynzey Kujan, et al. 2017. Civic
is a community knowledgebase for expert crowd-
sourcing the clinical interpretation of variants in can-
cer. Nature genetics, 49(2):170.

Maryam Habibi, Leon Weber, Mariana Neves,
David Luis Wiegandt, and Ulf Leser. 2017. Deep
learning with word embeddings improves biomed-
ical named entity recognition. Bioinformatics,
33(14):i37–i48.

A. Hassan and A. Mahmood. 2017. Deep learning for
sentence classification. In 2017 IEEE Long Island
Systems, Applications and Technology Conference
(LISAT), pages 1–5.

Thorsten Joachims. 1998. Text categorization with
support vector machines: Learning with many rel-
evant features. In Machine Learning: ECML-98,
Chemnitz, Germany, volume 1398 of Lecture Notes
in Computer Science, pages 137–142. Springer.

Anthony Khoo, Yuval Marom, and David Albrecht.
2006. Experiments with sentence classification. In
Proceedings of the Australasian Language Techno-
logy Workshop 2006, pages 18–25.

Su Kim, David Martı́nez, Lawrence Cavedon, and Lars
Yencken. 2011. Automatic classification of sen-
tences to support evidence based medicine. BMC
Bioinformatics, 12(S-2):S5.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746–1751. As-
sociation for Computational Linguistics.

43



Julian Kupiec, Jan O. Pedersen, and Francine Chen.
1995. A trainable document summarizer. In
SIGIR’95, Seattle, Washington, USA, pages 68–73.
ACM Press.

Wee Sun Lee and Bing Liu. 2003. Learning with
positive and unlabeled examples using weighted
logistic regression. In Machine Learning, Pro-
ceedings of the Twentieth International Conference
(ICML 2003), August 21-24, 2003, Washington, DC,
USA, pages 448–455. AAAI Press.

Huayi Li, Zhiyuan Chen, Bing Liu, Xiaokai Wei, and
Jidong Shao. 2014. Spotting fake reviews via col-
lective positive-unlabeled learning. In Proceedings
of the 2014 IEEE International Conference on Data
Mining, ICDM ’14, pages 899–904, Washington,
DC, USA. IEEE Computer Society.

Bing Liu, Yang Dai, Xiaoli Li, Wee Sun Lee, and
Philip S. Yu. 2003. Building text classifiers using
positive and unlabeled examples. In Proceedings
of the 3rd IEEE International Conference on Data
Mining (ICDM 2003), Melbourne, Florida, USA,
pages 179–188. IEEE Computer Society.

Zhiguang Liu, Xishuang Dong, Yi Guan, and Jin-
feng Yang. 2013. Reserved self-training: A
semi-supervised sentiment classification method
for chinese microblogs. In Sixth International
Joint Conference on Natural Language Processing,
Nagoya, Japan, pages 455–462. Asian Federation of
Natural Language Processing / ACL.

Larry McKnight and Padmini Srinivasan. 2003. Cat-
egorization of sentence types in medical abstracts.
In American Medical Informatics Association An-
nual Symposium, Washington, DC, USA. AMIA.

Fantine Mordelet and Jean-Philippe Vert. 2014. A bag-
ging SVM to learn from positive and unlabeled ex-
amples. Pattern Recognition Letters, 37:201–209.

National Library of Medicine. 1946-2018. Pubmed.
https://www.ncbi.nlm.nih.gov/
pubmed. Accessed: 2018-02-01.

Bhawna Nigam, Poorvi Ahirwal, Sonal Salve, and
Swati Vamney. 2011. Document classification us-
ing expectation maximization with semi supervised
learning. CoRR, abs/1112.2028.

Marthinus Du Plessis, Gang Niu, and Masashi Sug-
iyama. 2014. Analysis of learning from positive and
unlabeled data. In Proceedings of the 27th Interna-
tional Conference on Neural Information Processing
Systems - Volume 1, NIPS’14, pages 703–711, Cam-
bridge, MA, USA. MIT Press.

Marthinus Du Plessis, Gang Niu, and Masashi Sug-
iyama. 2015. Convex formulation for learning from
positive and unlabeled data. In Proceedings of the
32nd International Conference on Machine Learn-
ing, volume 37 of Proceedings of Machine Learning
Research, pages 1386–1394, Lille, France. PMLR.

Anthony Rios and Ramakanth Kavuluru. 2015. Con-
volutional neural networks for biomedical text clas-
sification: Application in indexing biomedical art-
icles. In Proceedings of the 6th ACM Conference on
Bioinformatics, Computational Biology and Health
Informatics, BCB ’15, pages 258–267, New York,
NY, USA. ACM.
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A Semi-supervised ML on filtered
datasets

Table 4 shows results of supervised baseline clas-
sifiers trained on P and N after strict filtering.
Performance is very good for all classifiers tested,
which is not surprising as CIViC and HoCn are
easy to separate even without filtering. The ra-
tio of the unlabelled set U classified as positive,
however, is outside of the acceptable range [0.2,
0.4] for selecting key sentences, probably due to
the more similar contents of CIViC and the corres-
ponding abstracts compared to HoC.

Table 5 shows the results of supervised classifi-
ers trained on only P andN after tolerant filtering.
Accuracies and F1-scores are about 10 percent
points lower compared to results in the strict fil-
tering scenario, which can be explained by HoCp

and HoCn being comparably difficult to separate.
However, performance is better compared to dis-
tinguishing CIV iC ∪ HoCp vs. HoCn without
any noise filtering.

B PU Learning and Self-Training: used
corpora
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Ptest : Ntest : U :
Method parameters acc p r F1 p r F1 pos. ratio
SVM C = 3.0 0.96 0.97 0.94 0.95 0.96 0.98 0.97 0.63
LR C = 6.0 0.96 0.96 0.94 0.95 0.96 0.97 0.97 0.64
NB α = 0.1 0.94 0.95 0.91 0.93 0.94 0.97 0.95 0.61

Table 4: Supervised classifiers trained on P and N after strict noise filtering. Results averaged over 10
runs with randomised 20% reserved test sets; min-df threshold = 0.002, 25% of most relevant features
selected with χ2.

Ptest : Ntest : U :
Method parameters acc p r F1 p r F1 pos. ratio
SVM C = 3.0 0.86 0.88 0.84 0.86 0.84 0.88 0.86 0.63
LR C = 6.0 0.86 0.88 0.85 0.86 0.85 0.87 0.86 0.63
NB α = 0.1 0.79 0.89 0.67 0.77 0.72 0.91 0.81 0.70

Table 5: Supervised classifiers trained on P and N after tolerant noise filtering. Results averaged over
10 runs with randomised 20% validation sets; min-df threshold = 0.002, 25% of most relevant features
selected with χ2.

Figure 1: PU Learning for noise reduction - used corpora

Figure 2: Semi-supervised training with Self-Training - used corpora
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Abstract

Ontology alignment is the task of identi-
fying semantically equivalent entities from
two given ontologies. Different ontologies
have different representations of the same
entity, resulting in a need to de-duplicate
entities when merging ontologies. We pro-
pose a method for enriching entities in an
ontology with external definition and con-
text information, and use this additional
information for ontology alignment. We
develop a neural architecture capable of
encoding the additional information when
available, and show that the addition of
external data results in an F1-score of
0.69 on the Ontology Alignment Evalua-
tion Initiative (OAEI) largebio SNOMED-
NCI subtask, comparable with the entity-
level matchers in a SOTA system.

1 Introduction

Ontologies are used to ground lexical items in var-
ious NLP tasks including entity linking, question
answering, semantic parsing and information re-
trieval.1 In biomedicine, an abundance of on-
tologies (e.g., MeSH, Gene Ontology) has been
developed for different purposes. Each ontology
describes a large number of concepts in health-
care, public health or biology, enabling the use of
ontology-based NLP methods in biomedical appli-
cations. However, since these ontologies are typ-
ically curated independently by different groups,
many important concepts are represented inconsis-
tently across ontologies (e.g., “Myoclonic Epilep-
sies, Progressive” in MeSH is a broader concept

1Ontological resources include ontologies, knowledgebases,
terminologies, and controlled vocabularies. In the rest of this
paper, we refer to all of these with the term ‘ontology’ for
consistency.

that includes “Dentatorubral-pallidoluysian atro-
phy” from OMIM).

This poses a challenge for bioNLP applica-
tions where multiple ontologies are needed for
grounding, but each concept must be repre-
sented by only one entity. For instance, in
www.semanticscholar.org, scientific pub-
lications related to carpal tunnel syndrome are
linked to one of multiple entities derived from
UMLS terminologies representing the same con-
cept,2 making it hard to find all relevant papers on
this topic. To address this challenge, we need to
automatically map semantically equivalent entities
from one ontology to another. This task is referred
to as ontology alignment or ontology matching.

Several methods have been applied to ontol-
ogy alignment, including rule-based and statisti-
cal matchers. Existing matchers rely on entity fea-
tures such as names, synonyms, as well as rela-
tionships to other entities (Shvaiko and Euzenat,
2013; Otero-Cerdeira et al., 2015). However, it
is unclear how to leverage the natural language
text associated with entities to improve predic-
tions. We address this limitation by incorporating
two types of natural language information (defini-
tions and textual contexts) in a supervised learning
framework for ontology alignment. Since the def-
inition and textual contexts of an entity often pro-
vide complementary information about the entity’s
meaning, we hypothesize that incorporating them
will improve model predictions. We also discuss
how to automatically derive labeled data for train-
ing the model by leveraging existing resources. In
particular, we make the following contributions:

• We propose a novel neural architecture for on-
tology alignment and show how to effectively

2See https://www.semanticscholar.org/
topic/Carpal-tunnel-syndrome/248228 and
https://www.semanticscholar.org/topic/
Carpal-Tunnel-Syndrome/3076
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Figure 1: OntoEmma consists of three modules: a) candidate selection (see §2.2 for details), b) feature
generation (see §2.2 for details), and c) prediction (see §2.3 for deatils). OntoEmma accepts two ontolo-
gies (a source and a target) as inputs, and outputs a list of alignments between their entities. When using
a neural network, the feature generation and prediction model are combined together in the network.

integrate natural language inputs such as defini-
tions and contexts in this architecture (see §2 for
details).3

• We use the UMLS Metathesaurus to extract
large amounts of labeled data for supervised
training of ontology alignment models (see
§3.1). We release our data set to help future re-
search in ontology alignment.3

• We use external resources such as Wikipedia
and scientific articles to find entity definitions
and contexts (see §3.2 for details).

2 OntoEmma

In this section, we describe OntoEmma, our pro-
posed method for ontology matching, which con-
sists of three stages: candidate selection, fea-
ture generation and prediction (see Fig. 1 for an
overview).

2.1 Problem definition and notation

We start by defining the ontology matching prob-
lem: Given a source ontology Os and a target
ontology Ot, each consisting of a set of entities,
find all semantically equivalent entity pairs, i.e.,
{(es, et) ∈ Os×Ot : es ≡ et}, where≡ indicates
semantic equivalence. For consistency, we prepro-
cess entities from different ontologies to have the
same set of attributes: a canonical name (ename),
a list of aliases (ealiases), a textual definition (edef),

3Implementation and data available at https://www.
github.com/allenai/ontoemma/

and a list of usage contexts (econtexts).4

2.2 Candidate selection and feature
generation

Many ontologies are large, which makes it compu-
tationally expensive to consider all possible pairs
of source and target entities for alignment. For
example, the number of all possible entity pairs
in our training ontologies is on the order of 1011.
In order to reduce the number of candidates, we
use an inexpensive low-precision, high-recall can-
didate selection method using the inverse docu-
ment frequency (idf ) of word tokens appearing in
entity names and definitions. For each source en-
tity, we first retrieve all target entities that share
a token with the source entity. Given the set of
shared word tokens ws+t between a source and
target entity, we sum the idf of each token over
the set, yielding idftotal =

∑
iεws+t

idf(i). To-
kens with higher idf values appear less frequently
overall in the ontology and presumably contribute
more to the meaning of a specific entity. We com-
pute the idf sum for each target entity and output
the K = 50 target entities with the highest value
for each source entity, yielding |Os|×K candidate
pairs.

For each candidate pair (es, et), we precompute
a set of 32 features commonly used in the ontology
matching literature including the token Jaccard
distance, stemmed token Jaccard distance, char-
acter n-gram Jaccard distance, root word equiv-
alence, and other boolean and probability values
4Some of these attributes may be missing or have low cover-
age. See §3.2 for coverage details.
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Figure 2: Siamese network architecture for computing entity embeddings for each source and target
entity in a candidate entity pair.

over the entity name, aliases, and definition.5

2.3 Prediction

Given a candidate pair (es, et) and the precom-
puted features f(es, et), we train a model to pre-
dict the probability that the two entities are seman-
tically equivalent. Figure 2 illustrates the architec-
ture of our neural model for estimating this proba-
bility which resembles a siamese network (Brom-
ley et al., 1993). At a high level, we first encode
each of the source and target entities, then concate-
nate their representations and feed it into a multi-
layer perceptron ending with a sigmoid function
for estimating the probability of a match. Next,
we describe this architecture in more detail.

Entity embedding. As shown in Fig. 2 (left),
we encode the attributes of each entity as follows:

• A canonical name ename is a sequence of tokens,
each encoded using pretrained word2vec em-
beddings concatenated with a character-level
convolutional neural network (CNN). The to-
ken vectors feed into a bi-directional long short-
term memory network (LSTM) and the hidden
layers at both ends of the bi-directional LSTM

5Even though neural models may obviate the need for feature
engineering, feeding highly discriminative features into the
neural model improves the inductive bias of the model and
reduces the amount of labeled data needed for training.

are concatenated and used as the name vector
vname.

• Each alias in ealiases is independently embed-
ded using the same encoder used for canonical
names (with shared parameters), yielding a set
of alias vectors valias−i for i = 1, . . . , |ealiases|.
• An entity definition edef is a sequence of tokens,

each encoded using pretrained embeddings then
fed into a bi-directional LSTM. The definition
vector vdef is the concatenation of the final hid-
den states in the forward and backward LSTMs.

• Each context in econtexts is independently em-
bedded using the same encoder used for defi-
nitions (with shared parameters), then averaged
yielding the context vector vcontexts.

The name, alias, definition, and context vec-
tors are appended together to create the entity
embedding, e.g., the source entity embedding es

is: vs = [vsname;v
s
alias−i∗ ;v

s
def;v

s
contexts]. In or-

der to find representative aliases for a given pair
of entities, we pick the source and target aliases
with the smallest Euclidean distance, i.e., i∗, j∗ =
argmini,j ‖vsalias−i − vtalias−j‖2
Siamese network. After the source and target
entity embeddings are computed, they are fed into
two subnetworks with shared parameters followed
by a parameterized function for estimating similar-
ity. Each subnetwork is a two layer feedforward
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network with ReLU non-linearities and dropout
(Srivastava et al., 2014). The outputs of the two
subnetworks are then concatenated together with
the engineered features and fed into another feed-
forward network with a ReLU layer followed by a
sigmoid output layer. We train the model to mini-
mize the binary cross entropy loss for gold labels.

To summarize, the network estimates the proba-
bility of equivalence between es and et as follows:

hs = RELU(RELU(vs; θ1); θ2)

ht = RELU(RELU(vt; θ1); θ2)

P (es ≡ et) = SIGMOID(RELU([hs;ht]; θ3); θ4)

3 Deriving and enriching labeled data

In this section, we discuss how to derive a large
amount of labeled data for training, and how to
augment entity attributes with definitions and con-
texts from external resources.

3.1 Deriving training data from UMLS
The Unified Medical Language System (UMLS)
Metathesaurus, which integrates more than 150
source ontologies, illustrates the breadth of cover-
age of biomedical ontologies (Bodenreider, 2004).
Also exemplified by the UMLS Metathesaurus is
the high degree of overlap between the content of
some of these ontological resources, whose terms
have been (semi-)manually aligned. Significant
time and effort has gone into cross-referencing se-
mantically equivalent entities across the ontolo-
gies, and new terms and alignments continue to
be added as the field develops. These manual
alignments are high quality, but considered to
be incomplete (Morrey et al., 2011; Mougin and
Grabar, 2014).

To enable supervised learning for our mod-
els, training data was derived from the UMLS
Metathesaurus. By exposing our models to labeled
data from the diverse subdomains covered in the
UMLS Metathesaurus, we hope to learn a variety
of patterns indicating equivalence between a pair
of entities which can generalize to new ontologies
not included in the training data.

We identified the following set of ontologies
within UMLS to use as the source of our labeled
data, such that they cover a variety of domains
without overlapping with the test ontologies used
for evaluation in the OAEI: Current Procedural
Terminology (CPT), Gene Ontology (GO), Hugo
Nomenclature (HGNC), Human Phenotype Ontol-
ogy (HPO), Medical Subject Headings (MeSH),

Online Mendelian Inheritance in Man (OMIM),
and RxNorm.

Our labeled data take the form (es, et, l ∈
{0, 1}), where l = 1 indicates positive examples
where es ≡ et. For each pair of ontologies, we
first derive all the positive mappings from UMLS.
We retain the positive mappings for which there
are no name equivalences. Then, for each posi-
tive example (es, et+, 1), we sample negative map-
pings (es, et−, 0) from the other entities in the tar-
get ontology. One “easy” negative and one “hard”
negative are selected for each positive alignment,
where easy negatives consist of entities with lit-
tle overlap in lexical features while hard negatives
have high overlap. Easy negatives are obtained by
randomly sampling entities from the target ontol-
ogy, for each source entity. Hard negatives are ob-
tained using the same candidate selection method
described in §2. In both easy and hard examples,
we exclude all target entities which appear in a
positive example.6

Over all seven ontologies, 50,523 positive align-
ments were extracted from UMLS. Figure 3 re-
ports the number of positive alignments extracted
from each ontology pair. For these positives,
98,948 hard and easy negatives alignments were
selected. These positive and negative labeled ex-
amples were pooled and randomly split into a 64%
training set, a 16% development set, and a 20%
test set.

Figure 3: Number of positive alignments ex-
tracted from each pair of ontologies from UMLS.

3.2 Deriving definitions and mention contexts
Many ontologies do not provide entity definitions
(Table 1). In fact, only a few (GO, HPO, MeSH)
of the ontologies we included have any definitions
at all.
6Although the negative examples we collect may be noisy due
to the incompleteness of manual alignments in UMLS, this
noise is also present in widely adopted evaluation of knowl-
edge base completion problems and relation extraction with
distant supervision (e.g., Li et al., 2016; Mintz et al., 2009).
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Table 1: Entities with definitions and contexts for
each of the training ontologies.

Ont. # of entities % w/ def. % w/ con.
CPT 13,786 0.0 97.9
GO 44,684 100.0 30.5

HGNC 39,816 0.0 0.8
HPO 11,939 72.5 17.9

MeSH 268,162 10.5 35.1
OMIM 98,515 0.0 2.8

RxNorm 205,858 0.0 5.1
Total 682,760 11.9 20.1

We can turn to external sources of entity def-
initions in such cases. Many biomedical and
healthcare concepts are represented in Wikipedia,
a general purpose crowd-sourced encyclopedia.
The Wikipedia API can be used to search for
and extract article content. The first paragraph
in each Wikipedia article offers a description of
the concept, and can be used as a substitute
for a definition. For each entity in the labeled
dataset described in the previous section, we query
Wikipedia using the entity’s canonical name. The
first sentence from the top Wikipedia article match
is extracted and used to populate the attribute
edef when undefined in the ontology. For exam-
ple, a query for OMIM:125370, “Dentatorubral-
pallidoluysian atrophy,” yields the following sum-
mary sentence from Wikipedia: “Dentatorubral-
pallidoluysian atrophy (DRPLA) is an autosomal
dominant spinocerebellar degeneration caused by
an expansion of a CAG repeat encoding a polyg-
lutamine tract in the atrophin-1 protein.” Based
on a human-annotated sample, the accuracy of our
externally-derived definitions is 75.5%, based on a
random sample of 200 definitions and two annota-
tors with Cohen’s kappa coefficient of κ = 0.88.7

Usage contexts are derived from scientific pa-
pers in Medline, leveraging entity annotations
available via the Semantic Scholar project (Am-
mar et al., 2018). In order to obtain the an-
notations, an entity linking model was used to
find mentions of UMLS entities in the abstracts
of Medline papers. The sentences in which a
UMLS entity were mentioned are added to the
econtexts attribute of that entity. For UMLS en-
tity C0751781, “Dentatorubral-Pallidoluysian At-

7Annotations are available at https://github.com/
allenai/ontoemma#human-annotations

rophy,” an example context: “Dentatorubral-
pallidoluysian atrophy (DRPLA) is an autoso-
mal dominant neurodegenerative disease clini-
cally characterized by the presence of cerebellar
ataxia in combination with variable neurological
symptoms,” is extracted from Yoon et al (2012)
(Yoon et al., 2012). This context sentence was
scored highly by the linking model, and provides
additional information about this entity, for exam-
ple, its acronym (DRPLA), the type of disease (au-
tosomal dominant neurodegenerative), and some
of its symptoms (cerebellar ataxia). Because there
are often numerous linked contexts for each en-
tity, we sample up to 20 contexts per entity when
available. The number of entities with context in
our labeled data is given in Table 1. The accuracy
of usage contexts extracted using this approach is
92.5%, based on human evaluation of 200 contexts
with Cohen’s kappa coefficient of κ = 1.7

4 Experiments

In this section, we experiment with several vari-
ants of OntoEmma: In the first variant (Onto-
Emma:NN), we only encode native attributes ob-
tained from the source and target ontologies:
canonical name, aliases, and native definitions.
In the second variant (OntoEmma:NN+f), we
also add the manually engineered features as de-
scribed in §2.2. In the third variant (Onto-
Emma:NN+f+w), we incorporate external defini-
tions from Wikipedia, as discussed in §3.2. In the
fourth variant (OntoEmma:NN+f+w+c), we also
encode the usage contexts we derived from Med-
line, also discussed in §3.2.

Data. We use the training section of the UMLS-
derived labeled data to train the model and use the
development section to tune the model hyperpa-
rameters. For evaluation, we use the test portion of
our UMLS-derived data as well as the OAEI large-
bio subtrack SNOMED-NCI task, the largest task
in OAEI largebio. The UMLS test set includes
29,859 positive and negative mappings. The OAEI
reference alignments included 17,210 equivalent
mappings and 1,623 uncertain mappings between
the SNOMED and NCI ontologies.

Baselines. Our main baseline is a logistic
regression model (OntoEmma:LR) using the same
engineered features described in §2.2. To illustrate
how our proposed method performs compared to
previous work on ontology matching, we compare
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Table 2: Model performance on UMLS test dataset

Model Prec. Recall F1
OntoEmma:LR 0.98 0.92 0.95
OntoEmma:NN 0.87 0.85 0.86
OntoEmma:NN+f 0.93 0.96 0.95
OntoEmma:NN+f+w 0.93 0.97 0.95
OntoEmma:NN+f+w+c 0.94 0.97 0.96

Table 3: Model performance on OAEI largebio
SNOMED-NCI task
Model Prec. Recall F1
AML:entity 0.81 0.62 0.70
OntoEmma:LR 0.75 0.56 0.65
OntoEmma:NN+f+w+c 0.80 0.61 0.69

to AgreementMakerLight (AML) which has con-
sistently been a top performer in the OAEI sub-
tasks related to biomedicine (Faria et al., 2013).
For a fair comparison to OntoEmma, we only use
the entity-level matchers in AML; i.e., relation and
structural matchers in AML are turned off.8

Implementation and configuration details.
We provide an open source, modular, Python
implementation of OntoEmma where different
candidate selectors, feature generators, and
prediction modules can be swapped in and out
with ease.3 We implement the neural model
using PyTorch and AllenNLP9 libraries, and
implement the logistic regression model using
scikit-learn. Our 100-dimensional pre-
trained embeddings are learned using the default
settings of word2vec based on the Medline
corpus. The character-level CNN encoder uses
50 filters of size 4 and 5, and outputs a token
embedding of size 100 with dropout probability
of 0.2. The LSTMs have output size 100, and
have dropout probability of 0.2.

Results. The performance of the models is re-
ported in terms of precision, recall and F1 score
on the held-out UMLS test set and the OAEI large-
bio SNOMED-NCI task in Tables 2 and 3, respec-
tively.

Table 2 illustrates how different variants of
OntoEmma perform on the held-out UMLS test
8The performance of the full AML system on the SNOMED-
NCI subtask for OAEI 2017 is: precision: 0.90, recall: 0.67,
F1: 0.77.

9https://allennlp.org/

set. We note that the bare-bones neural network
model (OntoEmma:NN) does not match the per-
formance of the baseline logistic regression model
(OntoEmma:LR), suggesting that the representa-
tions learned by the neural network are not suffi-
cient. Indeed, adding the engineered features to
the neural model in (OntoEmma:NN+f) provides
substantial improvements, matching the F1 score
of the baseline model. Adding definitions and
usage context in (OntoEmma:NN+f+w+c) further
improves the F1 score by one absolute point, out-
performing the logistic regression model.

While the UMLS-based test set in Table 2 rep-
resents the realistic scenario of aligning new enti-
ties in partially-aligned ontologies, we also wanted
to evaluate the performance of our method on the
more challenging scenario where no labeled data
is available in the source and target ontologies.
This is more challenging because the patterns
learned from ontologies used in training may not
transfer to the test ontologies. Table 3 illustrates
how our method performs in this scenario using
SNOMED-NCI as test ontologies. For matching
of the SNOMED and NCI ontologies, we enriched
the entities first using Wikipedia queries. At test
time, we also identified and aligned pairs of en-
tities with exact string matches, using the Onto-
Emma matcher only for those entities without an
exact string match. Unsurprisingly, the perfor-
mance of OntoEmma on unseen ontologies (in
Table 3) is much lower than its performance on
seen ontologies (in Table 2). With unseen on-
tologies, we gain a large F1 improvement of 4
absolute points by using the fully-featured neu-
ral model (OntoEmma:NN+f+w+c) instead of the
logistic regression variant (OntoEmma:LR), sug-
gesting that the neural model may transfer better
to different domains. We note, however, that the
OntoEmma:NN+f+w+c matcher performs slightly
worse than the AML entity matcher. This is to be
expected since AML incorporates many matchers
which we did not implement in our model, e.g., us-
ing background knowledge, acronyms, and other
features.

5 Discussion

Through building and training a logistic regres-
sion model and several neural network models,
we evaluated the possibility of training a super-
vised machine learning model for ontology align-
ment based on existing alignment data, and evalu-
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ated the efficacy of including definitions and usage
context to improve entity matching. For the first
question, we saw some success with both the lo-
gistic regression and neural network models. The
logistic regression model performed better than
the simple neural network model without engi-
neered features. Hand-engineered features encode
human knowledge, and are less noisy than features
trained from a neural network. The NN model re-
quired more training data to learn the same sparse
information encoded by pre-defined features.

To bolster performance, hand-engineered fea-
tures and extensive querying of third-party re-
sources were used to increase knowledge about
each entity. Definitions and usage contexts had
rarely been used by previous ontology matchers,
and we sought to exploit the value of these ad-
ditional pieces of information. Definitions espe-
cially, often offer information about an entity’s re-
lations and attributes, which may not be explic-
itly defined in the ontology. The ontologies used
for training contained inconsistent information –
some had definitions for all entities, some none;
some were well-represented in our context link-
ing model, some were not. To take advantage of
such information, therefore, we had to turn to ex-
ternal sources of definitions and contexts, which
are understandably more noisy than information
provided in the ontology itself.

Using Wikipedia and the Medline corpus, we
derived definitions and contexts for many of the
entities in the UMLS training corpus. Adding def-
initions improved the performance of our neural
network model. However, high quality definitions
native to each terminology would likely have im-
proved results further, since we could not ensure
that externally derived definitions were always rel-
evant to the entity of interest.

Limitations. Our ontology matcher did not im-
plement any structural matchers, and did not take
advantage of relationship data where it existed. In
ontologies with well-defined hierarchy or relation-
ships, the structural component provides orthogo-
nal and extremely relevant information for match-
ing. By choosing to focus on entity alignment, we
were unable to be competitive on global ontology
matching.

Of all the entities in our UMLS training, devel-
opment, and test datasets, only 11.9% of entities
had definitions from their source ontology (Table
1). Similarly, we were only able to derive con-

texts for 20.1% of the training entities from the
Semantic Scholar entity linking model (Table 1).
We were hoping for better coverage of the overall
dataset. We were, however, able to use Wikipedia
to increase the overall definition coverage of the
entities in our data set to 82.1%.

Although Wikipedia is a dense resource con-
taining curated articles on many concepts, it is by
no means exhaustive. Many of the entities in our
training and test data set did not correspond di-
rectly to entities in Wikipedia. We also could not
review each query to ensure a correct match be-
tween the Wikipedia article and the entity. The
data is therefore noisy and can introduce error in
some cases. Although the overall performance
improved upon querying Wikipedia for additional
definitions, we believe that dedicated definitions
from the source terminologies would perform bet-
ter where available.

Future work. We are exploring other ways to
derive high-quality definitions from external re-
sources, for example, by deriving definitions from
synonymous entities in other ontologies, or by
generating textual definitions using the logical
definitions given in an ontology. Similarly, we
can incorporate usage context from other sources.
For example, the Semantic MEDLINE Database
(SemMedDB) is a database of semantic relation-
ship predictions from PubMed articles (Kilicoglu
et al., 2012). The entity-relation triples in this
database can be used to retrieve PubMed article
context mapped to UMLS terms.

Continuing on, we aim to develop a more flex-
ible ontology matching system that takes into ac-
count all of the information available about an en-
tity. Flexible entity embeddings would represent
critical information for proper entity alignment,
while accounting for a variety of data types, such
as list-like and graph-like data. We would also like
to incorporate ontology structure and relations in
matching. Hierarchical structure is provided by
most biomedical terminologies, and provides es-
sential information for a matching system. One
possibility is ensembling OntoEmma with other
matcher systems that incorporate or focus on us-
ing structural features in matching.

Related work The OAEI has been driving on-
tology matching research in the biomedical do-
main since 2005. It provides evaluation data
supporting several tracks such as the anatomy,
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largebio, and more recently introduced phenotype
tracks (Faria et al., 2016). Participating matchers
implement a variety of matching techniques in-
cluding rule-based and statistical methods (Faria
et al., 2016; Gross et al., 2016; Otero-Cerdeira
et al., 2015; Shvaiko and Euzenat, 2013). Fea-
tures used by matchers can be element-level (ex-
tracted from each individual entity), or structure-
level (based on the topology of the ontology and
its relationships). Content features can be based
on terminology (i.e., names of entities), structure
(i.e., how entities are connected), annotations (i.e.,
annotations made to entities), or reasoning output.
Some features can also be derived from external
sources, such as cross-references to other ontolo-
gies, or cross-annotations in other datasets, such as
term coincidence in publications, or co-annotation
of experiments with terms from different ontolo-
gies (Husein et al., 2016).

Notable general purpose matchers that have
excelled in biomedical domain matching tasks
include AgreementMakerLight (AML), YAM++,
and LogMap. AML has consistently been a
top performer in the OAEI subtasks related to
biomedicine. It uses a combination of different
matchers, such as the lexical matcher (looking
for complete string matches between the names
of entities), mediating matcher (performing the
function of the lexical matcher through a third
background ontology), word-based string similar-
ity matcher (matching entities with minimal string
edit distances), and others. AML then combines
these various similarity scores to generate a global
alignment between the two input ontologies (Faria
et al., 2013). YAM++, another successful matcher,
implemented a decision tree learning model over
many string similarity metrics, but leaves the chal-
lenges of finding suitable training data to the user,
defaulting to information retrieval-based similar-
ity metrics for its decision-making when no train-
ing data is provided (Ngo and Bellahsene, 2016).
LogMap is a matcher specifically designed to ef-
ficiently align large ontologies, generating logi-
cal output alignments. The matcher uses high-
probability matches as anchors from which to de-
ploy its lexical and structural matchers (Jiménez-
Ruiz and Cuenca Grau, 2011).

Our system uses neural networks to learn entity
representations and features for matching. Several
published works discuss using neural networks to
learn weights over similarity metrics pre-defined

by the user or developer of the matching system
(Djeddi and Khadir, 2013; Peng, 2010; Huang
et al., 2008; Hariri et al., 2006). These systems
do not use neural networks to generate and learn
the features most appropriate for entity match-
ing. Qiu et al. (2017) proposes and tests an auto-
encoder network for unsupervised entity represen-
tation learning over a bag of words vector that
treats all descriptive elements of each entity (its
name, definitions etc.) equally. We are interested
in investigating how these various descriptive ele-
ments contribute to entity matching, how sparsity
of specific descriptive fields can be offset by deriv-
ing information from external resources, and also
whether we can use domain-specific training data
to optimize a model for the biomedical domain.

Conclusion In this paper, we propose using nat-
ural language text associated with entities to im-
prove ontology alignment. We describe a novel
neural architecture for ontology alignment which
can encode a variety of information, and derive
large amounts of labeled data for training the
model. To address the limited coverage of def-
initions and usage contexts describing entities,
we turn to external resources to supplement the
available information about entities in the test
ontologies. Our empirical results illustrate that
externally-derived definitions and contexts can ef-
fectively be used to improve the performance of
ontology matching systems.
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Säckinger, and Roopak Shah. 1993. Signature veri-
fication using a siamese time delay neural network.
In NIPS.

Warith Eddine Djeddi and Mohamed Tarek Khadir.
2013. Ontology Alignment Using Artificial Neu-
ral Network for Large-scale Ontologies. Int.
J. Metadata Semant. Ontologies 8(1):75–92.
https://doi.org/10.1504/IJMSO.2013.054180.

Daniel Faria, Catia Pesquita, Booma S. Balasubra-
mani, Catarina Martins, João Cardoso, Hugo Cu-
rado, Francisco M. Couto, and Isabel F. Cruz. 2016.
OAEI 2016 results of AML. volume 1766, pages
138–145.

Daniel Faria, Catia Pesquita, Emanuel Santos, Matteo
Palmonari, Isabel F. Cruz, and Francisco M. Couto.
2013. The AgreementMakerLight Ontology Match-
ing System. In On the Move to Meaningful In-
ternet Systems: OTM 2013 Conferences. Springer,
Berlin, Heidelberg, Lecture Notes in Computer Sci-
ence, pages 527–541. https://doi.org/10.1007/978-
3-642-41030-7 38.

Anika Gross, Cedric Pruski, and Erhard Rahm.
2016. Evolution of biomedical ontologies and
mappings: Overview of recent approaches.
Comput Struct Biotechnol J 14:333–340.
https://doi.org/10.1016/j.csbj.2016.08.002.

Babak Bagheri Hariri, Hassan Abolhassani, and
Hassan Sayyadi. 2006. A Neural-Networks-
Based Approach for Ontology Alignment.
Japan Society for Fuzzy Theory and In-
telligent Informatics, pages 1248–1252.
https://doi.org/10.14864/softscis.2006.0.1248.0.

Jingshan Huang, Jiangbo Dang, Michael N. Huhns, and
W. Jim Zheng. 2008. Use artificial neural network
to align biological ontologies. BMC Genomics 9
Suppl 2:S16. https://doi.org/10.1186/1471-2164-9-
S2-S16.

Inne Gartina Husein, Saiful Akbar, Benhard Sito-
hang, and Fazat Nur Azizah. 2016. Review
of ontology matching with background knowl-
edge. In 2016 International Conference on Data
and Software Engineering (ICoDSE). pages 1–6.
https://doi.org/10.1109/ICODSE.2016.7936159.
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Abstract 

Word2vec embeddings are limited to 
computing vectors for in-vocabulary 
terms and do not take into account 
sub-word information. Character-
based representations, such as 
fastText, mitigate such limitations. We 
optimize and compare these represen-
tations for the biomedical domain. 
fastText was found to consistently 
outperform word2vec in named entity 
recognition tasks for entities such as 
chemicals and genes. This is likely due 
to gained information from computed 
out-of-vocabulary term vectors, as 
well as the word compositionality of 
such entities. Contrastingly, perfor-
mance varied on intrinsic datasets. Op-
timal hyper-parameters were intrinsic 
dataset-dependent, likely due to differ-
ences in term types distributions. This 
indicates embeddings should be cho-
sen based on the task at hand. We 
therefore provide a number of opti-
mized hyper-parameter sets and pre-
trained word2vec and fastText models, 
available on 
https://github.com/dterg/bionlp-
embed. 

1 Introduction 

word2vec (Mikolov et al., 2013) and GloVe 
(Pennington et al., 2014) models are a popular 
choice for word embeddings, representing words 
by vectors for downstream natural language pro-
cessing. Optimization of word2vec has been 
thoroughly investigated by Chiu et al. (2016a) 
for biomedical text. However, word2vec has two 
main limitations: i) out-of-vocabulary (OOV) 
terms cannot be represented, losing potentially 

useful information; and ii) training is based on 
co-occurrence of terms, not taking into account 
sub-word information. With new entities such as 
genetic variants, pathogens, chemicals and drugs, 
these limitations can be critical in biomedical 
NLP.  

Sub-word information has played a critical role 
in improving NLP task performances and has pre-
dominantly depended on feature-engineering. 
More recently, character-based neural networks 
for tasks such as named entity recognition have 
been developed and evaluated on biomedical liter-
ature (Gridach, 2017). This has achieved state-of-
the-art performances but is limited by the quantity 
of supervised training data.  

Character-based representation models such as 
fastText (Bojanowski et al., 2017; Mikolov et al., 
2018) and MIMICK (Pinter et al., 2017) exploit 
word compositionality to learn distributional em-
beddings, allowing to compute vectors for OOV 
words. Briefly, fastText uses a feed-forward archi-
tecture to learn n-gram and word embeddings, 
whereas MIMICK uses a Bi-LSTM architecture to 
learn character-based embeddings in the same 
space of another pre-trained embeddings, such as 
word-based word2vec. 

Here we evaluate and optimize pre-trained 
character-based word representations with the 
fastText implementation for biomedical terms. To 
compare with word2vec models, we also optimize 
word2vec by extending the work by Chiu et al. 
(2016a). We report that fastText outperforms 
word2vec in all named entity recognition tasks of 
feature-rich entities such as chemicals and genes. 
However, in intrinsic evaluation, results and opti-
mal hyper-parameters vary. This is likely due to 
different entity type distributions within the intrin-
sic standards. This indicates representations 
should be selected and optimized based on the 
task at hand and the entities of interest. We evalu-
ate and provide optimized generalized fastText 
and word2vec models and models optimized on 
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individual datasets, outperforming a number of 
current state-of-the-art embeddings.  

2 Materials and Methods 

2.1 Data and pre-processing 

PubMed 2018 baseline abstracts and titles were 
parsed using PubMed parser (Achakulvisut and 
Acuna, 2016), each article was represented as a 
single line, and any new line characters within an 
article were replaced by a whitespace. Pre-
processing was performed using the NLPre mod-
ule (He and Chen, 2018). All upper-case sentences 
were lowered, de-dashed, parenthetical phrases 
identified, acronyms replaced with full term 
phrases (e.g. “Chronic obstructive pulmonary dis-
ease (COPD)” was changed to “Chronic pulmo-
nary disease (Chronic_pulmonary_disease)), 
URLs removed, and single character tokens re-
moved. Tokenization was carried out on 
whitespace. Punctuation was retained. This result-
ed in a training dataset of 3.4 billion tokens and a 

vocabulary of up to 19 million terms (Supp. Table 
1). 

2.2 Embeddings and hyper-parameters 

Word embeddings were trained on the pre-
processed PubMed articles using Skip-Gram 
word2vec and fastText implementations in gensim 
(Řehůřek and Sojka, 2010). As in Chiu et al. 
(2016a), we tested the effect of hyper-parameter 
selection on embedding performance for each hy-
per-parameter: negative sample size, sub-
sampling rate, minimum word count, learning rate 
(alpha), dimensionality, and window size. Extend-
ed parameter ranges were tested for some hyper-
parameters, such as window size. Additionally, we 
test the range of character n-grams for the fastText 
models, as originally performed for language 
models (Bojanowski et al., 2017). Due to the 
computational cost, especially since fastText 
models can be up to 7.2x slower to train compared 
to word2vec (Supp. Figure 1), we modify one hy-
per-parameter at a time, while keeping all other 
hyper-parameters constant. Performance was 
measured both intrinsically and extrinsically on a 
number of datasets. 

2.3 Intrinsic Evaluation 

Intrinsic evaluation of word embeddings is com-
monly performed by correlating the cosine simi-
larity between term pairs, as determined by the 
trained embeddings, and a reference list. We use 
the manually curated UMNSRS covering disor-
ders, symptoms, and drugs (Pakhomov et al., 
2016), and compute graph-based similarity and re-
latedness using the human disease ontology graph 
(Schriml et al., 2012) (HDO) and the Xenopus 
anatomy and development ontology graph 
(Segerdell et al., 2008) (XADO). 1 million pair-
wise combinations of entities and ontologies were 

 
Figure 1: Intrinsic evaluation of window size in word2vec (w2v) and fastText (FastT) models on 

UMNSRS, HDO, and XADO datasets (Supp. Table 4). 

 
Figure 2: Extrinsic evaluation of window size in 
word2vec (w2v) and fastText (FastT) models on 
BC2GM, JNLPBA and CHEMDNER datasets 

(Supp. Table 5).  
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randomly computed from each graph and entities 
which did not map to the ontology map or were 
multi-token were not considered. Similarity be-
tween a pair of terms was computed using the Wu 
and Palmer (1994) similarity metric, and related-
ness was determined by a simplified Lesk algo-
rithm (1986). In the latter, token intersection (ex-
cluding stopwords) was calculated between defi-
nitions and normalized by the maximum defini-
tion length. Pairs which did not have definition 
statements for any of the terms were excluded. 

As with UMNSRS, the computed similarity 
and relatedness scores were correlated with the 
cosine similarity determined by the embeddings 
models. As word2vec is not capable of represent-
ing OOV words, in literature pair terms which are 
not in vocabulary are commonly not considered 
for evaluation. To allow for comparison between 
the word2vec and fastText models, we represent 
OOV words as null vectors – as originally per-
formed by Bojanowski et al. (2017). However, to 
determine the difference in performance of in-
vocabulary word embeddings and OOV word em-

beddings, we measure correlation with only in-
vocabulary terms, and with OOV terms pairs con-
sidered and null-imputed for word2vec. 

2.4 Extrinsic evaluation 

Intrinsic evaluation by itself may provide lim-
ited insights and may not represent the true down-
stream performance (Faruqui et al. 2016; Chiu et 
al., 2016b). Therefore, we perform extrinsic eval-
uation using 3 named entity recognition corpora: 
(i) the BioCreative II Gene Mention task corpus 
(BC2GM) (Smith et al., 2008) for genes; (ii) the 
JNLPBA corpus (Kim et al., 2004) annotating 
proteins, cell lines, cell types, DNA, and RNA; 
and (iii) the CHEMDNER corpus (Krallinger et 
al., 2015) which annotates drugs and chemicals, as 
made available from Luo et al. (2017). Each of 
these corpora are originally split into a train, de-
velopment, and test sets – the same splits and sen-
tence ordering were retained here.  

The state-of-the-art BiLSTM-CRF neural net-
work architecture (Lample et al., 2016), as im-
plemented in the anago package, was used to train 
NER models and predict the development set of 
each corpus for each parameter. Accuracy was de-
termined by the F-score. Each model was run for 
up to 10 epochs and the best accuracy on the de-
velopment set was recorded. 

2.5 Optimized Embeddings 

Hyper-parameters achieving the highest perfor-
mance for each extrinsic corpus and intrinsic 
standard were determined for word2vec and 
fastText. Corpus-specific word2vec and fastText 
models were trained with the set of optimal hyper-
parameters for each corpus, as each corpus anno-
tates different entity classes. For a generalized op-
timal model, we also trained embeddings on op-
timal hyper-parameters determined across all cor-

 
Figure 3: Intrinsic evaluation of dimension size in word2vec (w2v) and fastText (FastT) models on 

UMNSRS, HDO, and XADO datasets (Supp. Table 6). 

 
Figure 4: Extrinsic evaluation of dimension size 
in word2vec (w2v) and fastText (FastT) models 

on BC2GM, JNLPBA and CHEMDNER 
datasets (Supp. Table 7). 
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pora and standards, as well as across intrinsic and 
extrinsic datasets separately. For the final extrinsic 
optimized evaluation, the test split was predicted. 

3 Results and Discussion 

3.1 General trends: word2vec hyper-
parameter selection 

 

Overall, intrinsic and extrinsic performance of 
word2vec models (Figure 1-12) obtained similar 
trends to Chiu et al. (2016a) for the same corpo-
ra/standards (i.e. UMNSRS, BC2GM, and 
JNLPBA), therefore we refer to Chiu et al. 
(2016a) for further discussion of these trends. Mi-
nor differences were recorded for minimum word 
count (Figure 7-8) and window size (Figure 1-2), 
where both UMNSRS similarity and relatedness 

 
Figure 5: Intrinsic evaluation of negative sampling size in word2vec (w2v) and fastText (FastT) 

models on UMNSRS, HDO, and XADO datasets (Supp. Table 8). 

  
Figure 6: Extrinsic evaluation of negative sampling 
size in word2vec (w2v) and fastText (FastT) models 

on BC2GM, JNLPBA and CHEMDNER datasets 
(Supp. Table 9). 

Figure 7: Extrinsic evaluation of minimum word 
count in word2vec (w2v) and fastText (FastT) 

models on BC2GM, JNLPBA and CHEMDNER 
datasets (Supp. Table 11). 

 

Figure 8: Intrinsic evaluation of the minimum word count in word2vec (w2v) and fastText (FastT) 
models on UMNSRS, HDO, and XADO datasets (Supp. Table 10). 
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decreased with increasing minimum word count, 
whereas in Chiu et al. (2016a) this was only the 
case for relatedness.  

In intrinsic evaluation of window size, particu-
larly UMNSRS (Figure 1), performance consist-
ently increased with increasing window size. This 
trend was also reported by Chiu et al. (2016a), 
where the maximum window size of 30 obtained 
the highest similarity and relatedness. We rea-
soned that abstracts generally concern a single 
topic, therefore predicted that increasing the win-
dow size to the average abstract length would cap-
ture more relevant information. This was indeed 
the case, obtaining 0.675 and 0.639 for UMNSRS 
similarity and relatedness respectively, compared 
to 0.627 and 0.584 similarity and relatedness re-
spectively reported by Chiu et al. (2016a) for 
PubMed. As higher intrinsic performance was ob-
tained in our results for similar window sizes, the 
difference in performance is also contributed to by 
an increase in the training data and different pre-
processing.  

In the case of extrinsic evaluation, the best per-
formance was generally obtained with lower win-
dow size – a similar trend to that reported in Chiu 
et al. (2016a). 

3.2 General trends: fastText hyper-
parameter selection 

Except for the character n-gram hyper-parameter, 
fastText models share the same hyper-parameters 
with word2vec models. Overall, similar trends in 
both intrinsic and extrinsic performance were ob-
tained for word2vec and fastText embeddings 
(Figure 1-12). However, optimal parameters 
were not necessarily identical, as discussed be-
low. 

3.3 Comparison of representations –  
Intrinsic evaluation 

While the overall performance trends with various 
hyper-parameters for fastText are similar to those 
obtained by word2vec, we report a number of no-
table differences.  

When intrinsically evaluated with UMNSRS, 
word2vec representations consistently achieved 
higher similarity and relatedness compared to 
fastText for hyper-parameters such as: window 
size, dimensions and negative sampling, irrespec-
tive of the selected hyper-parameters. However, 
evaluating with HDO and XADO intrinsic da-
tasets, results were more variable. fastText tended 
to perform similar to or outperform word2vec 
across negative sampling size, dimensions and 
window size hyper-parameter ranges.  

Differences in performance between datasets 
may be a result of differences in: (i) number of 
OOV terms; (ii) rarity of terms; and (iii) term 
types. As UMNSRS is a manually curated refer-
ence list of term pairs with the vocabulary of mul-
tiple corpora, including PubMed Central, only up 

 
Figure 9: Intrinsic evaluation of sub-sampling rate in word2vec (w2v) and fastText (FastT) models on 

UMNSRS, HDO, and XADO datasets (Supp. Table 12). 

 
Figure 10: Extrinsic evaluation of sub-sampling 

rate in word2vec (w2v) and fastText (FastT) 
models on BC2GM, JNLPBA and CHEMDNER 

datasets (Supp. Table 13). 
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to 9 total tokens were OOV (1.3%; Supp. Table 
2). HDO contained up to 5% OOV terms. As 
OOV terms are represented by null vectors for 
word2vec models, a decrease in performance with 
increase in OOV terms is expected.  

Skipping OOV term pairs from evaluation (ra-
ther than imputing) obtained similar performance 
trends across datasets, indicating that OOV is not 
the major contributing factor in such intrinsic per-
formance differences. However, this may also im-
ply that fastText degrades the performance for in-
vocabulary terms of the UMNSRS dataset. Simi-
lar results were reported by the original authors 
when assessed on the English WS353 dataset 
(Bojanowski et al., 2017). 

Despite terms being in-vocabulary, the frequen-
cy by which these occur in the training dataset 
may vary. This is indeed the case for UMNSRS 
and HDO, where UMNSRS has a median rank in-
vocabulary frequency 4 times higher than HDO. 
This may indicate fastText provides better repre-
sentations for rarer terms. XADO, however, has a 

median rank in-vocabulary frequency within 1.3 
times of UMNSRS. This implies there are addi-
tional contributing factors to such performance 
differences, including potentially differences in 
the quality of the ontology graph.   

As the intrinsic standards contain various entity 
classes, differences in representation models’ per-
formance (and optimal hyper-parameters) may be 
dependent on the distribution of entity types. 
fastText authors reported that fastText outper-
forms word2vec in languages like German, Ara-
bic, Russian and in rare English words 
(Bojanowski et al., 2017). This indicates that 
word2vec and fastText’s performance is depend-
ent on the compositionality and word character 
features, and may therefore be expected to vary 
between biomedical entity classes. 

Biomedical text generally contains terms such 
as chemicals, genes, proteins and cell-lines which 
are rich in features such as punctuation, special 
characters, digits, and mixed-case characters. 
Such orthographic features have been manually 
extracted in traditional machine learning methods, 
or more recently combined with word embed-
dings, and have been shown to have discriminat-
ing power in tasks such as named entity recogni-
tion (Galea et al., 2018). 

3.4 Comparison of representations –  
Extrinsic evaluation 

When performing named entity recognition as 
extrinsic evaluation of the word representations 
models, fastText consistently outperformed 
word2vec at any hyper-parameter value, and con-
sistently across all 3 corpora (Figures 
2,4,6,7,10,12). With 9-13% total OOV tokens, and 
14-34% OOV entity tokens (Supp. Table 3, Supp. 
Fig. 3,4), this indicates the overall likely positive  

 
Figure 11: Intrinsic evaluation of the alpha hyper-parameter in word2vec (w2v) and fastText (FastT) 

models on UMNSRS, HDO, and XADO datasets (Supp. Table 14). 

 
Figure 12: Extrinsic evaluation of alpha in 

word2vec (w2v) and fastText (FastT) models on 
BC2GM, JNLPBA and CHEMDNER datasets 

(Supp. Table 15). 
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contribution of gained information from computed 
OOV vectors. 

In terms of the specific corpora, the largest per-
formance difference was recorded for genes 
(BC2GM) and chemical names (CHEMDNER). 
As these two corpora only tag one entity type, en-
tity variation is lower than JNLPBA which tags 5 
entity classes and therefore this may contribute to 
the dissimilarities in performance difference be-
tween the corpora. 

 In addition to the rich and unique features, 
outperformance of fastText in extrinsic evaluation 
may also be attributed to the standardized nomen-
clature used in biomedical entities which provides  
additional within-token structure. For example, 
systematic chemical names follow the IUPAC 
nomenclature. Prefixes such as mono, di, and tri 
indicate number of identical substituents in a 
compound. Similarly, residual groups are repre-
sented by prefixes such as methyl- and bromo-. 
Additionally, the backbone structure of the mole-
cule is assigned a suffix that indicates structure 
features (e.g. simple hydrocarbon molecules uti-
lize suffixes to indicate number of single, double 
or more bonds, where -ane indicates single bonds, 
-ene double bonds, -ynes triple bonds etc).  

With such structure, as fastText is a character-
level model, for chemicals such as 1,2-
dichloromethane, most similar words include 
chemicals which share the substituents and their 
specific position, defined by the 1,2-dichloro- pre-
fix (Table 1). Therefore, fastText provides more 
structurally-similar chemicals, whereas word2vec 
would treat 1,2-dichloromethane and 2-
dichloromethane as two completely differ-
ent/unrelated terms (when excluding context or 
setting a small window size). 

As chemicals can be synthesized and named, it 
is likely for very specific and big molecules such 
as 1-(dimethylamino)-2-methyl-3,4-
diphenylbutane-1,3-diol to be OOV. This is a great 
advantage of character-level embeddings which 
still enable computing a representation. 

Given the highly standardized and structured 
nomenclature of chemicals, we briefly observed 

that fastText models are also able to recall struc-
tural analogs when performing analogy tasks. For 
example, methanol → methanal is an oxidation 
reaction where an alcohol is converted to an alde-
hyde, specifically the -OH group is converted to a 
=O group. Given ethanol and performing analogy 
task vector arithmetic, the aldehyde ethanal is re-
turned. Similar results were observed for sulfu-
ric_acid – sulfur + phosphorous, giving phosphor-
ic_acid. Formal evaluation on analogy tasks is re-
quired to assess how character-based embeddings 
perform compared to word2vec. 

Genes and proteins have full names as well as 
short symbolic identifiers which are usually acro-
nymic abbreviations. These are less structured 
than chemical names, however, as the root portion 
of the symbols represents a gene family, this ac-
counts for the similarity performance of character-
based embeddings. ZNF560 is an example of 
OOV protein that was assigned a vector close to 
ZNF* genes (Table 1) as well as SOX1. While 
SOX1 does not share character n-grams with 
ZNF560, similarity was determined based on co-
occurrence of ZNF genes and SOX1 – genes 
which are associated with adenocarcinomas 
(Chang et al., 2015).  

While the advantages of character-based simi-
larity for OOV terms are clear, from intrinsic 
evaluation it appears that for some entities 
word2vec provides better embeddings. An exam-
ple of this is when querying phosphatidylinositol-
4,5-bisphosphate (Supp. Table 16). Whereas the 
top 5 most similar terms returned by fastText are 
orthographically, morphologically, and structural-
ly similar, word2vec recalled PIP2 and PI(4,5)P2. 
These are synonyms of the queried term hence 
more similar than phosphatidylinositol-4-
phosphate, for example. A similar result was also 
observed for genetic variants (SNPs). While 
fastText returned rs- prefixed terms as most simi-
lar terms to the reference SNP identifier 
rs2243250 (which refers to the SNP Interleukin 4 
– 590C/T polymorphism), word2vec recalled 
terms 590C>T and 590C/T; the nucleotide poly-
morphism specified by the identifier itself (Supp  

 1,2-dichloromethane 1-(dimethylamino)-2-methyl-3,4-diphenylbutane-1,3-diol ZNF560  
 1,2-dichloroethane 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate ZNF580  
 1,2-dichlorobenzene 1,3-dimethylamylamine ZNF545  
 Dibromochloromethane 8-(diethylamino)octyl ZNF582  
 1,2-dichloropropane 2-cyclohexyl-2-hydroxy-2-phenylacetate ZNF521  
 water/1,2-dichloroethane diethylamine SOX1  

Table 1: Top 5 most similar words to a selection of out-of-vocabulary terms (two chemical systemat-
ic names and a protein symbol; top row). Sequences in bold indicate overlap with queried term. 
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Table 19).  
Additional examples comparing word2vec and 

fastText’s most similar terms for chemicals, genes 
and diseases are provided in Supp. Tables 18-22.  

From the quantitative results and the above 
qualitative examples, we observe a trade-off be-
tween character sequence similarity and context. 
The importance of which depends on the entity 
types – just as different languages benefit differ-
ently from word2vec and fastText models 
(Bojanowski et al., 2017).  

3.5 Effect of n-grams size 

Intrinsic evaluation shows high variability in the 
range of n-grams between the different standards 
(Table 2 & Supp. Table 25). UMNSRS achieves 
the highest performance (in terms of similarity) 
with 6-7 n-grams, whereas XADO achieves best 
results with 3-4 n-grams, and HDO achieves equal 
performance with ranges: 5-{6,7,8}, 4-6 and 6-8. 
This indicates the heterogeneity of the terms, both 
within the reference standards for HDO and 
XADO, and between standards. This further backs 
up the difference between the representation mod-
els due to entity type differences. 

Contrastingly, extrinsic evaluation showed high 
consistency in n-gram ranges, with all corpora re-
cording highest performance for the ranges 3-7 

and 3-8. Within standard error (Supp. Table 23, 
24), high performance was also obtained for rang-
es with lower limit of 2 and 3. Such ranges indi-
cate that both short and long n-grams provide rel-
evant information, complying with the previous 
discussion and examples for gene nomenclature 
and chemical naming conventions. 

3.6 Optimized Models 

Word embeddings trained on individual reference 
standards’ optimal hyper-parameters (Supp. Table 
25) achieved 0.733/0.686 similarity/relatedness 
with word2vec for UMNSRS (Supp. Table 26). 
This exceeds 0.652/0.601 reported by Chiu et al. 
(2016a), and the more recent 0.681/0.635 by Yu et 
al. (2017) achieved by retrofitting representations 
with knowledgebases, but not 0.75/0.73 by 
MeSH2Vec using prior knowledge (Jha et al., 
2017). We expect further improvement to our 
models by retrofitting and augmenting prior 
knowledge. 

Corpus-optimized fastText embeddings outper-
formed word2vec across all extrinsic corpora, re-
cording: 79.33%, 73.30% and 90.54% for 
BC2GM, JNLPBA, and CHEMDNER (Supp. Ta-
ble 26). This outperforms Chiu et al. (2016a), 
Pyysalo et al. (2013) and Kosmopoulos et al. 
(2015), although differences are also due to differ-

 UMNSRS HDO XADO 
 3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8 
2 0.443 

0.427 
0.463 
0.458 

0.503 
0.497 

0.532 
0.507 

0.544 
0.512 

0.554 
0.516 

0.219 
0.193 

0.282 
0.218 

0.295 
0.219 

0.296 
0.222 

0.302 
0.223 

0.302 
0.224 

0.031 
0.105 

0.047 
0.106 

0.039 
0.106 

0.032 
0.113 

0.030 
0.114 

0.024 
0.114 

3  0.487 
0.478 

0.517 
0.506 

0.548 
0.524 

0.560 
0.530 

0.561 
0.522 

 0.298 
0.213 

0.307 
0.217 

0.307 
0.215 

0.312 
0.226 

0.312 
0.225 

 0.054 
0.111 

0.048 
0.112 

0.038 
0.117 

0.032 
0.117 

0.030 
0.117 

4   0.534 
0.523 

0.562 
0.539 

0.570 
0.533 

0.582 
0.540 

  0.313 
0.218 

0.318 
0.227 

0.316 
0.228 

0.315 
0.227 

  0.040 
0.110 

0.036 
0.111 

0.035 
0.113 

0.030 
0.109 

5    0.584 
0.554 

0.603 
0.565 

0.596 
0.552 

   0.320 
0.230 

0.319 
0.226 

0.320 
0.228 

   0.034 
0.112 

0.031 
0.108 

0.029 
0.109 

6     0.612 
0.556 

0.607 
0.549 

    0.317 
0.228 

0.319 
0.234 

    0.037 
0.110 

0.035 
0.108 

7      0.601 
0.542 

     0.314 
0.231 

     0.033 
0.102 

                   
 BC2GM JNLPBA CHEMDNER 
 3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8 
2 78.96 79.72 79.78 79.91 79.71 80.26 78.20 77.76 77.99 77.89 77.96 77.96 89.14 89.48 89.66 89.72 89.58 89.46 
3  79.69 78.88 78.77 79.90 79.91  77.83 77.86 77.67 78.46 78.30  89.48 89.67 89.67 89.75 89.62 
4   78.94 78.42 78.91 79.05   77.58 76.91 78.00 77.58   89.28 89.37 89.22 89.32 
5    77.12 78.67 77.45     76.72 78.04 76.92    89.22 89.13 89.10 
6     77.77 77.97     77.82 78.06     89.03 88.81 
7      77.73      77.83      88.60 

 UMNSRS HDO XADO BC2GM JNLPBA CHEMDNER Sim Rel Sim Rel Sim Rel 

in
t w2v 0.726 0.690 0.314 0.237 0.095 0.077 76.43 71.84 87.83 

FastT 0.694 0.659 0.330 0.243 0.074 0.093 76.48 72.47 88.89 

ex
 w2v 0.506 0.469 0.252 0.184 0.024 0.120 77.13 73.61 88.93 

FastT 0.479 0.446 0.283 0.221 0.054 0.116 79.63 74.29 90.14 
Table 3. Intrinsic and extrinsic performance for word2vec and fastText models optimized on 
optimum hyper-parameters from intrinsic (int) and extrinsic (ex) datasets (Supp. Table 27). 

 

Table 2: Intrinsic (UMNSRS, HDO, XADO; upper row = similarity, lower row = relatedness) and ex-
trinsic (BC2GM, JNLPBA, CHEMDNER) evaluation of the effect of character n-gram ranges on per-

formance. Highest absolute accuracy is indicated in bold and accuracies within the standard error of the 
highest accuracy is italicized. 
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ent NER architectures used. However, our 90.54% 
CHEMDNER performance outperforms 89.28% 
using similar architectures and is close to the 
90.84% achieved for attention-based architectures 
(Luo et al., 2017) - the best performance reported 
in literature to date. 

Optimizing word2vec and fastText representa-
tions across all corpora and standards (Supp. Ta-
ble 28) decreased the performance difference in 
NER between word2vec and fastText. This is due 
to the differences in the optimal hyper-parameters 
between intrinsic and extrinsic data (Supp. Table 
29). Based on these differences, and as it had been 
shown that intrinsic results are not reflective of 
extrinsic performance (Chiu et al. 2016b), we 
generated separate word2vec and fastText models 
optimized on intrinsic and extrinsic datasets sepa-
rately (Table 3). Again, fastText outperforms 
word2vec in all NER tasks but only outperforms 
word2vec for the HDO intrinsic dataset, possibly 
due to similarity implied from disease suffixes 
captured by n-grams.  

4 Conclusion and future directions 

We show that fastText consistently outperforms 
word2vec in named entity recognition of entities 
such as chemicals and genes. This is likely to be 
contributed to by the ability of character-based 
representations to compute vectors for OOV, and 
due to the highly structured, standardized and fea-
ture-rich nature of such entities.  

Intrinsic evaluation indicated that the optimal 
hyper-parameter set, and hence optimal perfor-
mance, is highly dataset-dependent. While num-
ber of OOV terms and rarity of in-vocabulary 
terms may contribute to such differences, further 
investigation is required to determine how the dif-
ferent entity types within the corpora are affected. 
Similarly, for named entity recognition, investigat-
ing the performance differences for each entity 
class would provide a more fine-grained insight 
into which classes benefit mostly from fastText, 
and why.  

Empirically, we observed a trade-off between 
character sequence similarity and context in 
word2vec and fastText models. It would be inter-
esting to assess how embedding models such as 
MIMICK, where the word2vec space can be pre-
served while still being able to generate character-
based vectors for OOV terms, compare. 
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Abstract

Successful evidence-based medicine
(EBM) applications rely on answering
clinical questions by analyzing large
medical literature databases. In order
to formulate a well-defined, focused
clinical question, a framework called
PICO is widely used, which identifies
the sentences in a given medical text
that belong to the four components:
Participants/Problem (P), Intervention (I),
Comparison (C) and Outcome (O). In
this work, we present a Long Short-Term
Memory (LSTM) neural network based
model to automatically detect PICO ele-
ments. By jointly classifying subsequent
sentences in the given text, we achieve
state-of-the-art results on PICO element
classification compared to several strong
baseline models. We also make our
curated data public as a benchmarking
dataset so that the community can benefit
from it.

1 Introduction

The paradigm of evidence-based medicine (EBM)
involves the incorporation of current best evi-
dence, such as the reports of randomized con-
trolled trials (RCTs), into decision making for pa-
tient care (Sackett, 1997). Such evidence, in-
tegrated with the physician’s own expertise and
patient-specific factors, can lead to better patient
outcomes and higher quality health care (Sackett
et al., 1996). In practice, successful EBM appli-
cations rely on answering clinical questions via
analysis of large medical literature databases such
as PubMed. And most often, a PICO framework
is used to formulate a well-defined, focused clini-
cal question, which decomposes the question into

four parts: Participants/Problem (P), Intervention
(I), Comparison (C) and Outcome (O) (Richardson
et al., 1995).

Typically the analyses that underlie EBM begin
by selecting a set of potentially relevant papers,
which are then further refined by human judgment
to form the evidence base on which the answer to
a specific question depends. To facilitate this se-
lection process, it would be advantageous that all
papers (or at least their abstracts) can be organized
according to the PICO foci. Unfortunately, a sig-
nificant portion of the medical literature contains
either unstructured or sub-optimally structured ab-
stracts, without specifically identified PICO ele-
ments. Therefore, we would like to introduce a
method to automate the identification of PICO el-
ements in medical abstracts in order to make pos-
sible the automated selection of possibly relevant
articles for a proposed study.

In this paper, we present a system based on arti-
ficial neural networks (ANN) to tackle the issue of
extracting PICO elements in medical abstracts as
a classification task at the sentence level. Our key
contributions are as follows:

1. Previous methods for PICO elements ex-
traction focused on shallow models such
as Naive Bayes (NB), Support Vector Ma-
chines (SVM) and Conditional Random
Fields (CRF), which are limited in modeling
capacity. To significantly boost the perfor-
mance, we propose a Long Short-Term Mem-
ory (LSTM) based ANN model to solve this
task.

2. Most previous systems detected the PICO el-
ements one by one; thus several classifiers
needed to be built and trained separately,
which is sub-optimal in efficiency. That ap-
proach also cannot take advantage of shared
structure among the individual classifiers. In
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this work we extract PICO components si-
multaneously from any given medical ab-
stract.

3. In all previous works, the only dataset used
for training and test and made public is from
(Kim et al., 2011). However, this dataset
contains only 1000 abstracts, which is not
enough for a ANN based deep learning model
to obtain good generalization results. There-
fore, we curate a dataset comprising of over
tens of thousands of abstracts and make it
public as a benchmark dataset so that every-
one else can use it.

4. Instead of normally treating PICO detection
as a single sentence classification problem,
we view it as a sequential sentence classifi-
cation task, where the sequence of sentences
in an abstract is jointly predicted. In this
way, the information from the context sen-
tences can be used to help predict the current
sentence, which does improve the classifica-
tion accuracy considerably. Leveraging this
strategy, we obtain state-of-the-art PICO ele-
ments extraction accuracy, significantly out-
performing all previous methods.

2 Related Work

In many previous user studies, the generalized
use of the PICO framework or similar schema by
clinicians has been validated for its performance
improvement on searching literature for clinical
questions (Schardt et al., 2007; Boudin et al.,
2010c; Znaidi et al., 2015). This has greatly fueled
academic interest in the development of systems
for automatic PICO element detection. Over the
last decade, the research progress for this task can
be summarized according to three aspects: mod-
els for classification, dataset generation, and task
formulation.

Many well-known machine learning techniques
have been proposed to build stronger models for
this task, including Nave Bayes (NB) (Huang
et al., 2013; Boudin et al., 2010a; Demner-
Fushman and Lin, 2007), Random Forest (RF)
(Boudin et al., 2010a), Support Vector Machine
(SVM) (Boudin et al., 2010a; Hansen et al., 2008),
Conditional Random Field (CRF) (Kim et al.,
2011; Chung, 2009; Chung and Coiera, 2007)
and Multi-Layer Perceptron (MLP) (Boudin et al.,
2010a; Huang et al., 2011). Also Boudin et al. in

(Boudin et al., 2010b) proposed a location-based
weighting strategy as an extension to the language
modeling approach inspired by the special distri-
bution pattern of PICO elements in medical ab-
stracts. All these models heavily rely on care-
ful selections of hand-engineered features includ-
ing lexical features such as bag of words (BOW),
stemmed words and cue-words/verbs, and seman-
tic features such as synonyms and hypernyms pro-
vided by some ontologies (e.g., WordNet). As
an important complement to this task, most re-
cent work from Dernoncourt et al. (Dernoncourt
et al., 2016) proposed the model based on cur-
rently emerging deep ANN architectures such as
LSTM for further performance boosting, as well
as to remove the need for hand-crafted features.
However, this work has not targeted to address the
issue of PICO element detection.

To generate the datasets for both training and
test, earlier works mainly relied on manual an-
notation, which resulted in small corpora on the
order of hundreds of abstracts (Demner-Fushman
and Lin, 2007; Dawes et al., 2007; Chung, 2009;
Kim et al., 2011). Afterwards, later works made
use of the structural information embedded in
some abstracts for which the authors have clearly
stated distinctive sentence headings (Boudin et al.,
2010a; Huang et al., 2011, 2013). Specifically,
some abstracts contain explicit headings such
as “PATIENTS”, “SAMPLE” or “OUTCOMES”,
which can be used to locate sentences correspond-
ing to PICO elements. In this way, tens of thou-
sands of abstracts that contain PICO elements
from PubMed can be automatically compiled as
a well-annotated dataset, which can increase the
size of dataset by two orders of magnitude.

In terms of task formulation, most previous
works focused on categorizing one PICO class at
a time using an individual classifier (Boudin et al.,
2010a; Huang et al., 2013). Therefore, in order to
detect all four PICO components, one would need
to build and train four individual models, which is
inefficient. Furthermore, it is hard to disambiguate
the classification label conflicts between different
model predictions on the same sentence. These
limitations were resolved by working directly on
the labels of interest for EBM, allowing multi-
label classification instead of binary and allowing
sentences that are unrelated to labels of interest
to be labeled as an ”Other” category (Kim et al.,
2011; Demner-Fushman and Lin, 2007). This is a
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more realistic setting and ought to provide better
insight into the performance we should expect for
this kind of task.

3 The Proposed Model

First we introduce our notation. We denote scalars
in italic lowercase (e.g., k), vectors in bold lower-
case (e.g., s) and matrices in italic uppercase (e.g.,
W ). Colon notations xi:j and si:j are used to de-
note the sequence of scalars (xi, xi+1, ..., xj) and
vectors (si, si+1, ..., sj).

Our model is composed of three components:
the token embedding layer, the sentence-level la-
bel inference layer, and the label sequence opti-
mization layer (Figure 1). In the following sec-
tions they will be discussed in detail.

Figure 1: Model architecture. w: original token;
e: token embedding; h: bi-LSTM hidden state;
s: sentence representation vector; r: sentence la-
bel probability vector; y: predicted sentence la-
bel. Replacing bi-LSTM with convolutional neu-
ral network (CNN) did not improve the results: we
therefore used bi-LSTM.

3.1 Token Embedding Layer

This layer takes as input a given sentence w com-
prising N words w = [w1, w2, ...wN ] and outputs

its corresponding vector representation. Token
representations are encoded by the column vec-
tor in the embedding matrix Wword ∈ Rdw×|V |,
where dw is the dimension of the word vector and
V is the vocabulary of the dataset. Each column
Wword

i ∈ Rdw is the word embedding vector for
the ith word in the vocabulary. To transform a cer-
tain wordw into its corresponding embedding vec-
tor ew, we use the following equation:

ew =Wwordvw, (1)

where vw is the one hot vector of word w with
dimension of |V | that has 1 at the corresponding
index and zero in all other positions. The word
embeddings Wword can be pre-trained on large
unlabeled datasets using unsupervised algorithms
such as word2vec (Mikolov et al., 2013), GloVe
(Pennington et al., 2014) and fasttext (Bojanowski
et al., 2016).

3.2 Sentence-level Label Inference Layer
This layer takes as input the embedding vector e
of each token in a sentence from the token embed-
ding layer and produces a vector r ∈ Rl to rep-
resent the probability that this sentence belongs to
each label, where l is the number of labels. To
this aim, the sequence of embedding vectors e is
first input into a bi-directional LSTM (bi-LSTM),
which outputs a sequence of hidden states h1:N

(h ∈ Rdh) for a sentence of N words with each
hidden state corresponding to a token. To form the
final representation vector s of this sentence, atten-
tive pooling is used, which can be described using
the following equations (Yang et al., 2016):

ui = tanh(Wshi + bs), (2)

αi =
exp(u>i us)∑
j exp(u>j us)

, (3)

s =
∑

i

αihi, (4)

where us ∈ Rds is the token level context vec-
tor used to measure the relevance or importance of
each token with respect to the whole sentence, and
Ws ∈ Rds×dh is the transformation matrix for soft
alignment.

The obtained vector s is subsequently input to a
feed-forward neural network with only one hidden
layer, which outputs the corresponding probability
vector r.
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3.3 Label Sequence Optimization Layer

Each medical abstract consists of several sen-
tences with the sentence category following some
patterns, such as that the category “Results” is al-
ways followed by “Conclusion”. Such patterns
can yield better classification performance via the
conditional random field (CRF) algorithm. Given
the sequence of probability vectors r1:n from the
last label inference layer for an abstract of n sen-
tences, this layer outputs a sequence of labels y1:n,
where yi represents the predicted label assigned to
the ith sentence.

In order to model dependencies between subse-
quent labels, we incorporate a matrix T that con-
tains the transition probabilities between two sub-
sequent labels; we define T [i, j] as the probability
that a token with label i is followed by a token with
the label j. The score of a label sequence y1:n is
defined as the sum of the probabilities of individ-
ual labels and the transition probabilities:

s(y1:n) =
n∑

i=1

ri(yi) +
n∑

i=2

T [yi−1, yi]. (5)

The score in the above equation can be trans-
formed into the probability of a certain label se-
quence by taking a softmax operation over all pos-
sible label sequences:

p(y1:n) =
es(y1:n)∑

ŷ1:n∈Y e
s(ŷ1:n)

, (6)

where Y denotes the set of all possible label se-
quences. During the training phase, the objec-
tive is to maximize the probability of the gold la-
bel sequence. While in the testing phase, given
an input sequence, the corresponding sequence of
predicted labels is chosen as the one that maxi-
mizes the score using the Viterbi algorithm (For-
ney, 1973).

4 Experiments

4.1 Dataset Preparation

The dataset used in this study1 is curated from
MEDLINE, which is a free access database
on medical articles. Specifically, we extracted
489,026 abstracts from PubMed by stating the fol-
lowing search limits: 1. Text Availability: Ab-
stract; 2. Languages: English; 3. Publication

1https://github.com/jind11/PubMed-PICO-Detection

Types: Randomized Controlled Trial (Search con-
ducted on 2017/08/28). Among them, abstracts
with structured section headings were selected for
automatic annotation of sentence category. Al-
though P, I and O headings were our detection
targets, we also annotated the other types of sen-
tences into one of the AIM (A), METHOD (M),
RESULTS (R) and CONCLUSION (C) labels to
facilitate the use of our CRF label sequence op-
timization method. Note that, although we have 7
labels in total, we only care about the detection ac-
curacy of the P, I and O labels and thus mainly dis-
cuss their performance in the following sections.

In this study, the C component was incorpo-
rated into the I category since the “COMPARI-
SON” section also refers to a kind of intervention
in an RCT. And in fact, there are very few abstracts
with comparison labels found in PubMed.

We annotated a certain section heading into one
of the 7 labels based on whether it contains the key
words that belong to the assigned label as shown in
Table 1 (section headings are only used to gener-
ate gold labels and not used for model training and
inference). In very rare cases, the section heading
of a certain sentence may contain the key words of
more than one category, in which case that sen-
tence will be assigned into multi-labels accord-
ing to Table 1. Table 2 presents a typical abstract
example with section headings annotated into the
7 labels. A total of 24,668 abstracts contain at
least one of the P/I/O labels. There are 21,198
abstracts with P-labels, 13,712 with I-labels and
20,473 with O-labels (Table 3). Note that, the ab-
stracts in PubMed follow a diversity of rhetorical
structure and only a small fraction of them contain
PICO elements based on their section headings.

4.2 Training Settings

Ten-fold cross-validation was employed to assess
the results statistically, where abstracts were ran-
domly split into 10 equal partitions. Nine of them
were used for training and the remaining one for
testing. This step repeats for ten rounds. For
each round of training, 10% of the training set
was randomly extracted as the development set for
early stopping, that is, the test set was evaluated at
the highest development set performance, which
is measured by the average F1 score of all three
P/I/O labels.

The token embeddings were pre-trained on a
large corpus combining Wikipedia, PubMed and
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Category Heading Name Key Words
Aim (A) Objective, Background, Purpose, Importance, Introduction, Aim, Rationale, Goal,

Context, Hypothesis
Participants (P) Population, Participant, Sample, Subject, Patient
Intervention (I) Intervention
Outcome (O) Outcome, Measure, Variable, Assessment
Method (M) Method, Setting, Design, Material, Procedure, Process, Methodology
Results (R) Result, Finding
Conclusion (C) Conclusion, Implication, Discussion, Interpretation

Table 1: Key words of section headings in structured abstracts for automatic annotation.

Heading Name Cate. Sentences

AIMS A
[...] The aims of the trial were to test for differences between
standard 1-and 0.5-mg doses (both twice daily during 8weeks) in
(1) abstinence, (2) adherence and (3) side effects.

DESIGN M
Open-label randomized parallel-group controlled trial with 1-year
follow-up. [...]

SETTING M
Stop-Smoking Clinic of the Virgen Macarena University Hospital in
Seville, Spain.

PARTICIPANTS P
The study comprised smokers (n=484), 59.5% of whom were men
with a mean age of 50.67years and a smoking history of 37.5
pack-years.

INTERVENTION I
Participants were randomized to 1mg (n=245) versus 0.5mg
(n=239) and received behavioural support, which consisted of a
baseline visit and six follow-ups during 1year.

MEASUREMENTS O

The primary outcome was continuous self-reported abstinence
during 1year, with biochemical verification. [...] Also measured
were baseline demographics, medical history and smoking
characteristics.

FINDINGS R
Abstinence rates at 1year were 46.5% with 1mg versus 46.4% with
0.5mg [odds ratio (OR)=0.997; 95% confidence interval (CI) =
0.7-1.43; P=1.0]; [...]

CONCLUSIONS C
There appears to be no difference in smoking cessation
effectiveness between 1mg and 0.5mg varenicline, [...].

Table 2: A typical abstract example with section headings and their corresponding annotated labels. The
PMID of this abstract is 28449281.

Category Abstracts Sentences
P 21,198 27,695
I 13,712 24,602
O 20,473 32,525

Table 3: Number of times each of the categories P,
I and O appear in abstracts and in sentences in the
data.

PMC texts (Moen and Ananiadou, 2013) using the
word2vec tool2. They are fixed during the training

2https://code.google.com/archive/p/word2vec/

phase to avoid over-fitting3.

The model is trained using the Adam optimiza-
tion method (Kingma and Ba, 2014). For regu-
larization, dropout is applied to each layer and l2
regularization is also used. Hyperparameters were
optimized via grid search and the best configura-
tion is shown in Table 4. Code for this work is
available online4.

3http://bio.nlplab.org/
4https://github.com/jind11/LSTM-PICO-Detection
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Para. Para. Name Value
dw Token Embed. Size 200
dh LSTM Hidden Size 150
ds Attention Vector Size 300
bz Batch Size 40
lr Learning Rate 0.001
β l2 Regularization Ratio 0.0001

Table 4: Hyperparameters. Batch size refers to the
number of abstracts in one batch.

5 Results and Discussion

Table 5 and 6 detail the results of classification for
each label in terms of performance scores (pre-
cision, recall and F1) and confusion matrix, re-
spectively (for one fold). It can be seen that
the classifier is very good at predicting the la-
bels of AIM, RESULTS and CONCLUSION but
has difficulty in distinguishing among the labels of
PARTICIPANTS, INTERVENTION, OUTCOME
and METHOD. Indeed, the PARTICIPANTS, IN-
TERVENTION and OUTCOME sections can be
deemed as more specific aspects of the METHOD
descriptions, therefore, it is naturally more dif-
ficult to tell the P/I/O elements apart from the
METHOD section. Since our main goal is to accu-
rately extract the P/I/O components from a given
abstract, we will only discuss their performance in
the following.

Cate. p (%) r (%) F1 (%) Support
A 97.7 98.0 97.8 3811
P 88.5 82.8 85.6 2722
I 74.9 81.5 78.1 2331
O 84.5 83.2 83.8 3219
M 87.0 84.2 85.6 5623
R 93.3 96.4 94.8 9236
C 93.8 91.1 92.5 4312
Total 90.1 90.0 90.0 31254

Table 5: Results in terms of precision (p), recall (r)
and F-measure (F1) on the test set for each class
obtained by our model for one of the ten folds.

Table 7 compares our model against several pre-
viously widely-used baseline models. Since there
is no benchmarking dataset, we cannot compare
with published best models (this is one of the rea-
sons why we want to publish this dataset).

The first baseline is the logistic regression (LR)
model that uses the n-gram features extracted from
the current sentence for classification. In this

P M C A R O I
P 2213 197 5 29 84 49 145
M 181 4804 9 40 30 242 317
C 0 6 3904 8 393 1 0
A 4 43 3 3743 6 11 1
R 9 21 175 0 8952 65 14
O 15 277 11 20 136 2688 72
I 40 278 0 0 28 142 1843

Table 6: Confusion matrix obtained by our model
for one of the ten folds. Rows correspond to pre-
dicted labels, and columns correspond to true la-
bels.

scenario, each sentence is predicted individually
without context information from the surrounding
sentences considered. Likewise, the second base-
line MLP first computes the vector representation
for each sentence by taking the max pooling oper-
ation of the embeddings of all tokens in the sen-
tence, then classifies the current sentence via a
neural network with three hidden layers (hidden
layer dimensions are 400, 400 and 200, respec-
tively). On the other hand, the third baseline is
a CRF model that also uses n-grams as features
(only the first 100 tokens were used for each sen-
tence since most sentences are shorter than 100
tokens) and outputs the most probable label se-
quence for the whole abstract. Therefore, the CRF
baseline takes into account both preceding and
succeeding sentences when classifying the current
sentence.

As presented by Table 7, the LR baseline per-
forms worst, which is quite reasonable consider-
ing that it is still a very shallow model and only
uses the local sentence information. As a com-
parison, the MLP model also only considers the
features from the current sentence but performs
better than LR because its modeling capacity is
much larger. By incorporating the surrounding
sentences, the CRF baseline performs even bet-
ter than MLP system, which verifies that context
information is quite useful in sequential classifica-
tion problems.

Lastly but most importantly, our proposed
model performs much better than all the baselines
for all three P/I/O labels. The advantages of our
model and the reasons for its improved perfor-
mance are summarized below:

No human-engineered features Our model
does not rely on any hand-engineered features that
require much domain experience and are quite dif-
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Models P-element (%) I-element (%) O-element (%)
p r F1 p r F1 p r F1

LR 66.9 68.5 67.7 55.6 55.0 55.3 65.4 67.0 66.2
MLP 77.8 74.1 75.8 64.3 65.9 64.9 73.8 77.9 75.8
CRF 82.2 77.5 79.8 67.8 70.3 69.0 76.0 76.3 76.2

Our Model 87.8 83.4 85.5 72.7 81.3 76.7 81.1 85.3 83.1

Table 7: Performance in terms of precision (p), recall (r) and F-measure (F1) on the test set with several
baselines and our proposed model (average value based on 10 fold cross validation). Since the dataset
used here was introduced in this work, there is no previously published method for reference.

ficult to craft.

No n-gram features Unlike many other systems
that rely heavily on n-grams, our model simply
uses the token embedding vector to represent each
token and feeds it into the recurrent neural network
(RNN) model for inference. In this way, the pre-
trained embeddings on large corpora can encode
the syntactic and semantic information of words
for better language understanding. This can also
help combat word scarcity problem. For exam-
ple, the alternatively spelled tokens “tendonitis”
and “tendinitis” are two different unigrams, how-
ever, their semantic meanings are the same, and
this similarity can be revealed by their correspond-
ing closely parallel embedding vectors.

Joint prediction Instead of predicting each sen-
tence one by one, our model classifies all sen-
tences in one abstract jointly, which improves the
overall classification performance by implying the
constraints of coherency between subsequent pre-
dicted labels. This improvement is clearly evi-
denced by Table 8.

Sequence modeling An RNN model is good at
modeling sequences such as sentences by consid-
ering the dependency between tokens, which can-
not be accounted for by context-free models such
as those using bag of words features. And the
long-term memory characteristic of LSTM model
further grants the RNN model the ability to cope
with long sentences.

Figure 2 presents an example of the transition
matrix after the model has been trained, which en-
codes the transition probability between two sub-
sequent labels. It effectively reflects what label is
the most likely one that should follow the current
one. For example, a sentence pertaining to the RE-
SULTS is typically followed by a sentence pertain-
ing to the CONCLUSION (1.16), which makes
sense. From this transition matrix, we can figure

Model F1 (%)
P I O

Full Model 85.5 76.7 83.1
-sequence optimization 78.2 68.2 78.3

Table 8: Ablation analysis. 10 fold cross valida-
tion F1-scores are reported. “-sequence optimiza-
tion” is our model without the label sequence op-
timization layer.

out the most probable label sequence: A→M →
P → I → O → R → C, which is also consistent
with our observations.

Table 9 presents a few examples of prediction
errors that are related to P/I/O labels. This er-
ror analysis suggests that part of the model er-
ror comes from the ambiguity between some label
pairs, such as O and M, O and R, and I and M. For
example, the sentence “Plasma volume and total
body haemoglobin were determined at rest.” can
be deemed as a METHOD description in a gen-
eral sense, however, it can also be further specified
as an OUTCOME. On the other hand, a fair num-
ber of sentence labels are indeed debatable. For
instance, the sentence “Iron supplementation was
given to one group as a substitution remedy, an-
other group was given iron and folic acid and the
third group was without supplementation during
the collection period.” belongs to the PARTICI-
PANT label according to the gold standard, but it
makes more sense that it should be classified as an
INTERVENTION.

6 Conclusion

In this work we have presented an LSTM based
ANN architecture to detect the PICO elements in
medical RCT abstracts. We demonstrated that the
use of a more advanced LSTM model and jointly
predicting the classes of all sentences in a given
text can improve the overall classification perfor-
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Sentence Predicted Gold
The study included 16 patients who were randomized into one of three
6-month treatment protocols.

P M

Referral service doing n-of-1 trials at the requests of community and academic
physicians.

I M

Iron supplementation was given to one group as a substitution remedy, another
group was given iron and folic acid and the third group was without
supplementation during the collection period.

I P

Plasma urea and creatinine concentrations and angiotensin converting enzyme
activity were measured at the start of the study and the end of each treatment
period.

O R

Heart rate was recorded continuously throughout the maneuvre, while blood
was sampled for catecholamine determinations prior to the start of straining
and again approximately 10 s following the end of straining.

O I

Plasma volume and total body haemoglobin were determined at rest. O M

Table 9: Examples of prediction errors of our model that are related to P/I/O labels. The “Predicted”
column indicates the label predicted by our model for a given sentence. The “Gold” column indicates
the gold label of the sentence.

Figure 2: Transition matrix of label sequence. The
rows represent the label of the previous sentence,
while the columns represent the label of the cur-
rent sentence.

mance of PICO components. And by publishing
our curated dataset for benchmarking, we hope to
encourage competition by other approaches than
ours and that more effective and efficient methods
can be developed in the future.
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Abstract

This paper describes the COSTA scheme
for coding structures and actions in con-
versation. Informed by Conversation
Analysis, the scheme introduces an in-
novative method for marking multi-layer
structural organization of conversation and
a structure-informed taxonomy of actions.
In addition, we create a corpus of nat-
urally occurring medical conversations,
containing 318 video-recorded and man-
ually transcribed pediatric consultations.
Based on the annotated corpus, we investi-
gate 1) treatment decision-making process
in medical conversations, and 2) effects
of physician-caregiver communication be-
haviors on antibiotic over-prescribing. Al-
though the COSTA annotation scheme is
developed based on data from the task-
specific domain of pediatric consultations,
it can be easily extended to apply to more
general domains and other languages.

1 Introduction

Conversational understanding has been inves-
tigated for long by various fields of study
such as philosophy of language (Austin, 1962;
Searle, 1969, 1985; Wittgensein, 1953), sociol-
ogy (Schütz, 1967; Sacks, 1992; Garfinkel, 1967;
Goffman, 1983), and artificial intelligence (Grosz
and Sidner, 1986; Core and Allen, 1997; Perrault.
and Allen, 1980; Pollack, 1986) .

Conversational structures are at the heart of the
inquiry. Drawing from the philosophical and so-
ciological views of conversational understanding
(Schütz, 1967; Wittgensein, 1953; Weber, 1991),
Conversation Analysis (CA) was developed to
study the systematic organization of conversation
and answer the question: ‘How is conversation

made possible?’(Heritage, 1984; Schegloff, 2007;
Sacks et al., 1974). In artificial intelligence, re-
searchers also explored various theories and prac-
tices in analyzing conversation structures, based
on which intelligent dialog systems can be de-
veloped to assist human with various types of
tasks (Core and Allen, 1997; Carletta et al., 1997;
Grosz and Sidner, 1986; Jurafsky et al., 1997;
Stolcke et al., 2000; Mayfield et al., 2014). In
medicine, research shows that a thorough un-
derstanding of physician-patient communication
structure is important for delivering quality health
care and achieving optimal health outcomes (Her-
itage and Maynard, 2006; Zolnierek and Dimatteo,
2009; Stivers, 2007).

Despite the enormous contribution that existing
research has made to advance our knowledge in
conversational structures and understanding, limi-
tations exist and opportunities stand for future re-
search. For CA, although the theory and practices
of analyzing conversational structures and actions
exist, there has not been any synthesized scheme
to analyze the hierarchical structure of complete
conversations; nor is there any corpus in which
such information is annotated. In artificial intel-
ligence, although existing studies recognized the
role of structures and actions in conversation un-
derstanding and developed annotation schemes to
code such information, most of them has only
implemented structural annotations at a shallow
layer. Moreover, due to a lack of appropriate lan-
guage resources and tools, research on medical
communication in clinical setting remains limited.

Motivated by these challenges, we propose
COSTA (COnversational STructures and Actions)
– a scheme for coding hierarchical structures and
actions in conversations, and a corpus of medical
conversation with such annotations.
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Figure 1: A schematic representation of hierarchical structure of conversation. Blue nodes are turns following a chronological
order (the horizontal axis). The arrows link two turns in an adjacency pair. Base adjacency pairs are marked by green arrows;
adjacency pairs in sequence expansions are marked by gray arrows. Sequences are marked by blue boxes, and phases are
marked by yellow boxes.

2 Conversation Analysis

The COSTA scheme is informed by the socio-
logical theory of conversation analysis (CA). Al-
though CA resembles discourse structure theories
such as Rhetorical Structure Theory (RST) (Mann
and Thompson, 1988) and that of Penn Discourse
Tree Bank (PDTB) (Prasad et al., 2008) in a sense
that utterances are considered as structurally or-
ganized, what distinguishes CA is that its theory
is based on dialogic text rather than monological
text (e.g., news articles, academic articles, etc.).
Conversation is viewed as organized with ‘inter-
action’ orders (Weber, 1991); by contrast, mono-
logical text does not take into account recipients’
reactions in its immediate context. This means that
these two types of discourse are distinctively dif-
ferent and might need to be analyzed with different
structural frameworks.

Using naturally occurring conversational data,
CA aims to investigate the methods and resources
that participants systematically use and rely on
to produce intelligible actions and make sense of
each other (Heritage, 1984).

Two of the major dimensions of CA involve se-
quence organization and action formation. Se-
quence organization addresses questions such as
how successive turns are formed up to be ‘coher-
ent’ with the prior turn, and relatedly, how the
overall composition of a conversation gets struc-
tured, what those structures are, and how the
placement in the overall structure informs the con-
struction and understanding of the talk (Schegloff,
2007). Action formation refers to the problem as
to how the resources of language, the body, the en-
vironment of the interaction, and position in the
interaction are fashioned into conformations de-

signed to be and recognizable by the recipient as
particular action (Schegloff, 2007).

2.1 Conversational Structures

In CA, structural organization of conversation can
be conventionally analyzed at three layers (Sche-
gloff, 2007).

(1) Turn: Turns are segmented at each change of
speakership. A turn is analyzed in terms of how it
is designed to implement some social actions (e.g.,
a question, a proposal, etc. (Drew, 2014)).

(2) Sequence organization: Sequence organiza-
tion examines how successive turns are formed
up to be ‘coherent’ with the prior turn to ac-
complish some courses of social actions (e.g.,
question-answer, proposal-acceptance, greeting-
greeting, etc. (Schegloff, 2007)). Relatedly, ad-
jacency pairs are the most basic unit of sequence
organization (Schegloff, 2007). The idea is that
social actions are produced to either initiate a pos-
sible sequence of action or to respond to an al-
ready initiated action (Stivers, 2014). By initiat-
ing a sequence of actions, social actors impose a
normative obligation on co-interactants to provide
a type-fitted response at the first possible oppor-
tunity (Stivers, 2014; Sacks, 1992). Yet, an ad-
jacency pair may, but need not, be expanded, with
one or multiple forms of sequence expansions (i.e.,
pre-, insert, and post-expansion) (Schegloff, 2007;
Stivers, 2014). Therefore, a cluster of turns in con-
versation can be analyzed as to whether they form
up a coherent sequence with one base adjacency
pair and its expansions.

(3) Overall organization: A single conversation is
viewed as conducted to accomplish some social
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TID APP SL PS PR Speech Text Action Outcome
58 1-B 0 P4 D 感冒 了 .

(He’s) got a cold.
59 2-B 58 M 嗯 .

Ok.
60 1-B 0 P5 D 吃点药吧 ? B2

Take some oral medicine, ok?
61 1 60 M 啊 ? C0

Huh?
62 2 61 D 先吃点药 , 好吧 ?

Take some oral medicine first, ok?
63 2-B 60 M 哦 , 好 .

Oh, ok.
64 3-B 60 D 嗯 .

Ok.
65 1-B 0 P5 M 开 点 青霉素 给 我们 好吧?

Could you prescribe us some Penicillin? A1
66 2-B 65 D 嗯 , 行 .

Ok. Alright. D1

Table 1: An example of annotated excerpt. TID: Turn ID; PR: Participant Role (M: Mother, D: Doctor); APP: Adjacency
Pair Part; SL: Sequence Link; PS: Phase; Action: Conversational Action; Outcome: Prescribing Outcome. Note: Prescribing
outcome is annotated at the last turn of a conversation. D1 is included in this table for illustration purpose.

activities, and the social activities can be viewed
as involving multiple, normatively ordered se-
quences of actions (Sacks, 1992; Robinson, 2014;
Sacks and Schegloff, 1973). For example, the so-
cial activity of telling a trouble to a friend usu-
ally involves approaching, arriving at, delivering,
working up, and exiting from the trouble (Jeffer-
son, 1988); the activity of dealing with acute med-
ical concerns involves presenting, gathering infor-
mation about, diagnosing and treating the concern
in the American primary care settings (Robinson,
2003, 2014).

Based on the CA theory, we synthesize and for-
malize the CA analytical practices by developing
an annotation scheme of conversational structures
which has the following four layers:

(1) Turn: A conversation is segmented at each
change of speakership. A turn consists of all its
construction units before the speakership changes.
(2) Adjacency Pair: Turns are analyzed as to
whether they form up adjacency pairs. An adja-
cency pair has two parts - a first pair part (FPP)
initiates an action, and a second pair part (SPP)
responds to a FPP action. For instance, FPP could
be a request and SPP is a response to the request.
(3) Sequence of Actions: Turns are also analyzed
as to whether they form up a sequence of actions.
A sequence is composed of a base adjacency pair
and zero or more expansions.
(4) Phase: At a highest level, a conversation may
consist of several ordered phases. For instance, a
medical conversation may include phases for his-

tory taking, diagnosis, treatment, etc. A phase
consists of one or more sequences of actions.

This hierarchical structural organization of con-
versation is illustrated in Figure 1. In this fig-
ure, blue nodes are turns in a conversation in a
chronological oder. Yellow boxes represent phases
in a conversation; blue boxes represent sequences.
Within a sequence, an arrow links two turns in an
adjacency pairs - green arrows represent base ad-
jacency pairs, whereas gray arrows represent that
the adjacency pairs are expansions of a base adja-
cency pair.

These concepts can be further illustrated with
the examples in Table 1. Table 1 is a short excerpt
of a medical conversation in which the physician
and the mother are engaged in an activity of deal-
ing with the patient’s acute respiratory tract infec-
tion symptoms.
Phase: The excerpt contains two phases in a med-
ical conversation: Turns 58-59 belong to a diag-
nosis phase, in which a diagnosis of the patient’s
condition is provided and received; Turns 60-66
are part of a treatment phase, in which a treatment
recommendation is offered and accepted. Note
that a phase can contain multiple sequences. For
example, there are two sequences in Turns 60-66,
in which two treatment recommendations are of-
fered and received (Turns 60-63 and 64-66, re-
spectively).
Sequence: The example contains three sequence.
Two of them, Turns 58-59 and 65-66 each con-
tain only one adjacency pair. The third one, Turns
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60-64, contains two adjacency pairs: Turns 60-63-
64 is the base adjacency pair;1 Turns 61-62 is an
insert expansion of the bases pair, as the mother
and the physicians deal with repairing a hearing
problem with the physician’s turn (Schegloff et al.,
1977).

Adjacency pair and Turn: Each Chinese line in
Table 1 is a turn, and they form multiple adjacency
pairs. For instance, Turn 65-66 forms an adja-
cency pair, where the mother initiates a request for
a Penicillin prescription in Turn 65 and the physi-
cian grants it in Turn 66, thereby fulfilling the ex-
pectation set up by the request.

2.2 Conversational Actions

Definition of action has long been of considerable
interest to many fields. In CA, the central sense of
action is the ascription and assignment of ‘a main
job’ that the turn is doing (i.e., what the response
must deal with in order to count as an adequate
next turn; whether the turn fits to the overall con-
textual environment or not) (Levinson, 2014).

The structural placement of a turn thus is essen-
tial for action recognition and ascription in conver-
sations. First, action ascription is informed by the
sequential position of a turn in a local adjacency
pair (e.g., question-answer, offer-acceptance). A
first pair part (FPP), by projecting a matched sec-
ond pair part (SPP), maps an action onto the sec-
ond. Thus, the same utterance might be under-
stood as different actions by virtue of its location.
For example, Turn 58 ‘He’s got a cold.’ in Table
1 is understood as delivering a diagnosis, rather
than providing an account, because of its sequen-
tial context as being an initiating action in the di-
agnosis phase, rather than an answer responding
to a question (e.g., ‘Why is him not here today?’).
In sum, CA views the positioning of an utterance
in the ongoing conversation as fundamental to the
understanding of its meaning as performing some
actions. Social actors rely on their shared knowl-
edge or commensense about the sequential con-
text to make sense of each other. This structure-
informed theory about conversational actions thus
distinguishes CA from other approaches such as
Speech Act Theory, which exclusively focuses on
the surface composition of an utterance.

In this study, we use this structure-informed tax-

1While an adjacency pair typically contains two turns,
there are exceptions such as the one here, where Turn 64 is a
sequence closing third turn (see Section 3.2).

Item Number
Total Number of Visits 318
Total Number of Hospitals 5
Total Number of Physicians 9
Total Number of Patients 318
Average length of a visit 4.9 minutes
Total length of the recordings 26 hours

Table 2: Statistics of the raw data. Total number of patients
are calculated by those accompanied by caregivers.

onomy of action to identify the conversational ac-
tions that are hypothesized to affect the prescrib-
ing decision outcome of the medical visits. This
will be explained in Section 3.3.

3 Corpus Construction and Annotation
Scheme

How do we annotate structures and actions in con-
versation? In this section, we describe the corpus
that we constructed for the study and the annota-
tion procedure of the COSTA scheme.

3.1 Video-recording and Transcription
We created a corpus containing 318 medi-
cal conversations between pediatricians and pa-
tients/caregivers, collected from five hospitals in
China in 2013.

Raw Data: The raw data are video-recordings of
the medical conversations. Due to its pediatric
setting, the conversations were mostly between
physicians and patients’ caregivers. We call each
conversation (i.e., a recording of a complete medi-
cal visit) a visit. Table 2 shows raw data statistics.

Transcribing: The video-recordings were tran-
scribed to capture both what was said and how
it was said in the conversation. The conversa-
tion was segmented into turns at each speakership
change in two passes. The first pass transcribed
the verbatim words of a turn; the second pass tran-
scribed speech production features (e.g., intona-
tions, overlapping, etc.), as well as non-verbal ac-
tivities (e.g., nodding, coughing, etc.). Example
of the transcript is in the Speech Text column in
Table 1. Details of the transcribing symbols are
described in (Jefferson, 2004).

Five undergraduate students and one graduate
student transcribed the data. Each conversation
was transcribed by two annotators and verified by
a third. The inter-annotator agreement was 91%.2

2The character error rate was 8.9% when one transcript
was treated as the reference and the other as system output.
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Ethical Consideration: Research procedures
were reviewed and approved by the UCLA IRB
(Ref: IRB#13-000748). All identifiable informa-
tion were removed.

3.2 Structure Annotations
To annotate structures in conversation, we create
five attributes: Turn ID (TID), Participant Role
(PR), Adjacency Pair Part (APP), Sequential Link
(SL), and Phase (PS). The first four are at the turn
level, and the last one is at the sequence level.

TID (Turn ID) is a sequential number automati-
cally assigned to a turn, indicating the temporal
position of the turn in a conversation.

PR (Participant Role) marks the speakership of
a turn, using labels from a pre-defined label set
(which is task-specific). For example, in Table
1, Label D stands for Doctor, and M stands for
Mother. The PR label is particularly informative
when there are more than two participants.

APP (Adjacency pair part) marks the position of a
turn in an adjacency pair and it normally has one
of the two values:
• 1 marks an initiating action (FPP).
• 2 marks a responding action (SPP).

This can be illustrated in Table 1, lines 58-59. In
addition to 1 and 2, APP can have other values:
• 0 marks a turn occupied by a noticeable si-

lence or some non-verbal activities.
• 3 marks a turn as ‘sequence closing third

(SCT)’. SCT is in fact a minimal form of
post-expansion of an adjacency pair, indicat-
ing that no further talk is projected beyond
this turn. However, it is ritually used and
viewed as part of the base adjacency pair,
making it a three-part exception of the adja-
cency pair (Schegloff, 2007). For example, in
Table 1 (lines 60–64), a treatment recommen-
dation is delivered at line 60 and accepted
at line 63. This sequence can be considered
as completed with the second pair part turn
fulfills the expectation of the first pair part.
Following this, the physician produces an ac-
knowledgment token ’ok’ at line 64, indicat-
ing no further talk projected related to the se-
quence. This turn is thus marked as 3 in the
APP attribute.

Although a sequence is ideally composed of a
two-part adjacency pair (the minimal form), it can

be and is usually expanded, and thereby consist of
one base adjacency pair and one or more expan-
sions.

To distinguish a base adjacency pair from its ex-
pansions, we attach label B to the APP value of the
turns in the base adjacency pair, such as the pair
formed by Turns 58-59.

Given that an adjacency pair can be expanded
with other turns (e.g., by an insert expansion) and
some adjacency pairs can be incomplete (e.g., a
question is not answered), APP labels alone will
not be sufficient to indicate which turns form an
adjacency pair and which adjacency pairs form a
sequence. The SL attribute is created to solve this
problem.

SL (Sequential link) is a pointer to another turn in
the same sequence, indicating the dependency-like
relation between two turns. The SL values are set
according to the following rules:

• Rule 1: In an adjacency pair, the non-FPP
(e.g., SPP and SCT) always points to its cor-
responding FPP. That is, the SL value of an
non-FPP turn of an adjacency pair is the TID
of its corresponding FPP.
• Rule 2(a): The base adjacency pair in a se-

quence is like the root of a dependency struc-
ture; therefore, the SL of the FPP of the base
adjacency pair is set to 0.
• Rule 2(b): If a sequence includes any forms

of expansion, the expansion pair ’depends’ on
the base pair; therefore, the SL value of the
FPP of an expansion pair is the TID of the
FPP of the base adjacency pair.

To illustrate an example of a sequence with an
insert sequence, we can look at Turns 60–64 in Ta-
ble 1. At Turn 60, the physician initiates a recom-
mendation, which sets up an expectation for the
mother’s acceptance. However, the mother dis-
plays a hearing problem before she finally accepts
it at Turn 63. In this sequence, Turns 60 and 63 are
FPP and SPP of the base adjacency pair, respec-
tively; Turns 61 and 62 are FPP and SPP of an
insert expansion of the base adjacency pair. The
SL values of Turns 62-64, 60, and 61 are set ac-
cording to Rule 1, 2(a), and 2(b), respectively.

Note that although not shown in Table 1, ex-
pansion adjacency pair can possibly be further ex-
panded with its own expansions. In such cases,
the rules above still apply. As a result, the con-
versational structure of a sequence is a tree, and

80



it is very similar to the dependency structure for
a sentence: the SL attribute is just like the depen-
dency arc, indicating the dependency of the non-
FPP turns on FPP turns and that of the FPP of an
expansion pair on the FPP of the base adjacency
pair. While we are not using dependency type on
the arc, the type can be easily inferred from the
APP attribute including label -B.

PS (Phase) indicates the nature of sequence (i.e.,
what phase a sequence belongs to) in a conversa-
tion, and it is marked at the first turn in a sequence.

The labels for PS are task-specific and the ones
that we used for this corpus are: P0: Consulta-
tion opening, P1: Problem presentation, P2: His-
tory taking, P3: Physical examination, P4: Diag-
nosis, P5: Treatment, P6: Addressing additional
concerns, P7: Consultation closing.

In Table 1, Turn 58 is the start of a sequence of
actions for delivering diagnosis, thus its PS label
is P4. Similarly, Turn 60 and Turn 65 are the start
of two action sequences of physician’s treatment
recommendations, thus their PS labels are both P5.
Note that phases can go back and forth. Therefore,
a P7 label can precede a P6 Label.

In sum, PS marks the natures of and bound-
aries of sequences; SL marks the relations of turns
within a sequence (similar to a dependency tree);
and APP indicates the role of a turn within an ad-
jacency pair.

Based on the CA theory, this multi-layer struc-
ture annotation scheme is not only salient in indi-
cating a turn’s position in a conversation, but also
important for determining the type of action that
a turn undertakes (Stivers, 2014; Schegloff, 2007;
Sacks, 1992). The hierarchical structural infor-
mation thus forms a fine-grained contextual con-
straint for the way of a turn in conversation can
be understood. Therefore, by incorporating our
shared knowledge or commonsense about the con-
text of a turn in conversation, the COSTA annota-
tion scheme is capable of dealing with problems
such as comprehending indirect speech actions, as
it no long relies on the surface composition of a
turn to classify its action type.

As this is preliminary work, we used code-
recode procedure to test the agreement of the
structural and action annotations. The overall
agreement achieved 94.43% among the APP, SL,
and PS attributes3.

3Since PR is assigned during the transcribing process and

3.3 Task-specific Annotations
Besides examining conversational structures, we
also examine the decision-making process of an-
tibiotic treatment in the specific clinical context of
pediatric consultations. This task is motivated by
the fact that antibiotic over-prescribing and bacte-
rial resistance is a big global public health crises
today, and the problem is particularly severe in
China in the pediatric settings (Li et al., 2012;
Laxminarayan et al., 2013).

Several kinds of physician-patient/caregiver
conversational actions are annotated, as well as
prescribing outcome of the visits. For example,
the task-specific annotations are marked on the last
two columns of Table 1, and explained below:

Caregivers’ advocacy for antibiotics (A) is
marked in the turn where a caregiver advocates for
antibiotic treatment in the medical visits. This at-
tribute has four possible values, indicating a vary-
ing degree of overtness of the advocating actions:
• A1: Explicit request for antibiotics (e.g., Can

you prescribe me some antibiotics?)
• A2: Statement of desire for antibiotics (e.g.,

Her mother wants to put her on antibiotics.)
• A3: Inquiry about antibiotics (e.g., Does he

need antibiotics?)
• A4: Evaluation of treatment effectiveness

(e.g., Antibiotics always work well for her.)

Physicians’ treatment recommendation (B) is
used for a turn where physician makes a treatment
recommendation. This attribute has three possi-
ble values, indicating a varying degree of physi-
cian authoritarian style in delivering the treatment
recommendation.
• B1: Pronouncement (e.g., She has to take

some antibiotics now.)
• B2: Proposal (e.g., How about we put her on

antibiotics?)
• B3: Offer (e.g., If you’d like, I can prescribe

you some antibiotics.)

Response to treatment recommendation or Re-
sponse to antibiotic advocacy (C) is used for a
turn if it contains a response to either an antibiotic
treatment advocacy (A) or a treatment recommen-
dation (B). Such a turn normally appears immedi-
ately after a turn with an A or B action. Two pos-
sible values are: C1: Acceptance and C0: Non-
acceptance 4 .
TID is assigned automatically after the transcribing process,
they were excluded from the test.

4Partial or full rejection are annotated as non-acceptance.
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Item Total Avg.
Characters 468,162 1472.2
Words 270,042 849.2
Turns 39,216 123.3
Non-verbal turns 5,815 18.3
Adjacency pairs 20,123 63.3
Sequences 9114 28.7

Table 3: Statistics of the annotated corpus. Total number of
visit is 318. Avg. refers to that average number is calculated
per visit.

Prescribing Outcome (D) marks whether antibi-
otics are prescribed in a visit. This label is anno-
tated at the end of the conversation as a derived
result. It has two possible values: D1: Antibiotic
treatment and D0: Non-antibiotic treatment .

The overall code-recode agreement of the task-
specific annotations achieved 97% among the four
types of behavior5.

4 Results

In this section, we first present basic statistics of
our corpus; next, we report our findings on 1)
the process of treatment decision-making in med-
ical consultation, and 2) the association between
physician-patient/caregiver conversational behav-
iors and antibiotic prescribing outcome in medical
consultations.

4.1 Corpus Statistics
In total, our corpus contains 318 manually tran-
scribed conversations, among which 187 are acute
visits and 131 are follow-up visits. Table 3 sum-
marizes the statistics of the corpus. The cor-
pus contains nearly 40K turns with 470K Chi-
nese characters, which is considerably large in
terms of manually annotated natural human con-
versations. The Chinese sentences are then auto-
matically word segmented with an in-house CRF
model. On average, each visit has three partici-
pants (physician might talk to more than one care-
giver), and the turns in a visit form 63 adjacency
pairs, which in turn form 29 action sequences.

4.2 Treatment Decision-making Process
To investigate the process of treatment decision-
making in medical consultation, we focus on the
interactive process in which a physician’s treat-
ment recommendation is accepted. We found
that a physician’s treatment recommendation is

5See Chilisa and Preece (2005) for details of the code-
recode strategy. The overall code-recode agreement was cal-
culated based on the average of the four task-specific labels

Figure 2: Average number of action sequences and average
number of turns in a sequence in medical consultation phases.
P0: Opening P1: Problem presentation P2: History taking
P3: Physical exams P4: Diagnosis P5: Treatment P6: Ad-
dressing additional concerns P7: Closing.

not always immediately accepted in the next turn;
rather, it can be resisted or rejected by a patient
or caregiver. In doing so, the patient or caregiver
has the opportunity to negotiate for a treatment
that is in line with their own wants. As a result,
this could lead to rather expanded treatment rec-
ommendation action sequence shapes.

After examining our corpus, we found that
physicians’ treatment recommendations are re-
sisted by caregivers 41% of the time. On aver-
age, a treatment recommendation action sequence
takes 6.63 turns for its completion. In comparison,
other actions in a medical consultation are usually
less expanded. A history-taking action sequence
takes 4.70 turns, and a problem presentation action
sequence takes 3.95 turns to complete on average.

In our corpus, the average number of turns of an
action sequence is the greatest in treatment phase
(P5) throughout all phases in medical consulta-
tion. Figure 2 shows the distribution of the av-
erage number of turns for an action sequence and
average number of actions in each phase of medi-
cal consultations. The long sequence suggests that
the treatment phase is where communication prob-
lems (understanding or accepting physician’s rec-
ommendations) are most likely to occur.

4.3 Association between Conversational
Behaviors and Antibiotic Prescribing

From the annotated corpus, we can collect various
statistics to study the association between physi-
cian/caregiver behavior and antibiotics prescribing
outcome. Table 4 shows the distribution of advo-
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Advocating Action Type # of Visits % of Visits
A1 Requests 10 5.3
A2 Statements 14 7.5
A3 Inquiries 50 26.7
A4 Evaluations 26 13.9
Total 100 54.0

Table 4: Frequency and distribution of caregiver advocacy
for antibiotics. # of Visit refers to number of visits in which
advocacy is observed. % of Visit refers to proportion of visits
in which advocacy is observed out of 187 visits.

cating actions that Chinese caregivers use to ad-
vocate for antibiotics. Table 5 shows the distribu-
tion of antibiotics prescribing outcomes by occur-
rence of caregivers’ advocacy for antibiotics. The
result reveals that caregiver advocacy for antibi-
otic treatment is significantly associated with an-
tibiotic prescribing outcome. What is more trou-
bling about this finding is that while caregiver ad-
vocacy for antibiotic treatment occurred in 54% of
the acute visits in our corpus, similar kind of care-
giver advocacy for antibiotics were observed only
9% of the time in the similar setting of American
pediatric consultations (Stivers, 2002).

In addition, we found that physicians tend to use
less authoritarian styles of treatment recommenda-
tions (i.e., B2 and B3 combined) than more author-
itarian ones (i.e., B1). Table 6 shows distribution
of the three types of treatment recommendation
actions in the Chinese pediatric context. More-
over, in response to caregivers’ advocacy for an-
tibiotic treatment, physicians more frequently re-
sist it than grant it, as shown in Table 7. These
findings indicate that physicians play a less domi-
nant role in antibiotic over-prescribing in the med-
ical visits; in contrast, caregivers have a significant
influence on the prescribing outcomes.

Multivariate logistic regression results reveal
that caregiver advocacy for antibiotic treatment
significantly increases the likelihoods of antibi-
otic prescribing in a visit – caregivers’ advocacy
was associated with 9.23 times increased likeli-
hoods of antibiotic prescription (Odds Ratio (OR)
= 9.23, 95% Confidence Interval(CI): 3.30-33.08);
whereas physician’s response to caregivers’ advo-
cacy has a significant effect on the prescribing out-
come – physicians’ resistance to caregivers’ advo-
cacy reduced the likelihoods of antibiotic prescrip-
tions by 77% (OR=0.23, 95%CI: 0.06-0.68), con-
trolling for the socio-demographic variables in our
model.

Prescriptions V.w.A. V.w/o.A. Total %
Antibiotics 72 39 111 59.4
Non-antibiotics 28 48 76 40.6
Total # of Visits 100 87 187 100.0
% 53.5 46.5 100.0

Table 5: Frequency and distribution of prescribing outcomes
by occurrence of advocacy in number of visits. V.w.A.:visits
with advocacy; V.w/o.A.:visits without advocacy. The right-
most column shows the percentage of antibiotic prescriptions
out of a total of 187 visits. The bottom row shows the per-
centage of visits in which caregiver advocacy is observed out
of the 187 visits.

5 Discussion

Conversational structures have been recognized as
critical for conversational understanding in both
sociology and artificial intelligence. Although
past research has made enormous contributions to
this important inquiry, no annotation scheme ex-
ists, with which the hierarchical structural orga-
nizations of conversation can be captured. Moti-
vated by this gap, we developed the COSTA and
created a corpus annotated with this scheme.

5.1 Related Theories and Schemes

Informed by Conversation Analysis (CA), the
theoretical framework of the COSTA annotation
scheme is largely in line with the existing dis-
course structure theories and annotation schemes.
Although the existing theories have recognized
that utterances in conversation have higher-level
forms of hierarchical structures (Grosz and Sid-
ner, 1986; Carletta et al., 1997), most have only
implemented annotations of conversational struc-
tures at turn level and between a pair of turns
(e.g., by distinguishing Forward Communicative
Function and Backward Communicative Function
(Core and Allen, 1997; Jurafsky et al., 1997)).

In addition, the COSTA annotation scheme also
presents an innovative method for annotating ac-
tions in conversation. Most of the existing an-
notation schemes of dialog acts for conversations
(Core and Allen, 1997; Jurafsky et al., 1997; Stol-
cke et al., 2000) and particularly, for medical dia-
logue (Hoxha et al., 2016; Mayfield et al., 2014)
were based on Speech Act Theory (SAT); how-
ever, the SAT has long been criticized for being
difficult in dealing with indirect dialog acts. Dif-
ferent from the SAT, the CA theory considers the
sequential position of a turn as critical for action
recognition and ascription. The COSTA annota-
tion scheme thus 1) allows multi-layer annotation
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Action Type # of Visits %
B1 (Pronouncements) 61 41.5
B2 (Proposals) 65 44.2
B3 (Offers) 21 14.3
Total 147 100

Table 6: Frequency and distribution of physicians’ treatment
recommendations, by three recommendation actions. Per-
centage of action is out of a total of 147 visits, in which physi-
cians rather than caregivers initiated treatment discussions.

Response to Advocacy Visit %
C0 (Non-acceptance) 65 65.0
C1 (Acceptance) 35 35.0
Total 100 100

Table 7: Frequency and distribution of physicians‘ response
to caregiver advocacy for antibiotics. Percentage is out of a
total of 100 visits where caregiver advocacy is observed.

at a turn, and 2) depends on the multi-layer struc-
tural annotations of a turn for action taxonomy. It
thus offers great flexibilities in annotating indirect
actions.

5.2 Applications to Different Domains

The COSTA annotation scheme can be used for
both general domains and for task-specific do-
mains. While the values for TID, APP, and SL are
likely to remain the same for different domains,
the values for PR and PS and additional attributes
such as A-D labels as described in Section 3.3
are task-specific. In addition,, because the CA
theory about conversational structures and actions
applies to both ordinary conversation and task-
specific conversation, we believe that the same
scheme with slight customization (e.g., using a
different label set for PS) can accommodate analy-
sis of conversational structures and actions in other
task-specific service settings such as airliner hot-
lines, 911 call centers, etc. Furthermore, since so-
cial norms underlying conversations do not tend
to vary significantly across cultures, the COSTA
scheme can be applied to languages other than
Chinese.

5.3 Applications of the Corpus

Although research in medicine has long been
concerned with effective communication between
physicians and patients, related language re-
sources are still lacking. Our corpus is one of
the first to have multi-layer structure annotations
of complete natural conversations, in the task-
specific setting of physician-patients/caregivers
medical consultations.

The findings regarding structural shape of a typ-

ical medical consultation and the process through
which a treatment decision is made can be applied
to research and practices in medicine and beyond.
For example, communication effectiveness can be
improved by focusing on phases that are identified
as critical in medical consultations (e.g., treatment
phase in which sequences are most expanded). In
addition, intervention programs can be developed
to reduce antibiotic over-prescribing by training
physicians to resist caregivers’ pressure more ef-
fectively. Moreover, the rich information of the
corpus can be valuable for building intelligent di-
alogue system for applications in clinical setting
(Campillos et al., 2016).

6 Conclusion

In this paper, we propose a general scheme for an-
notating multi-layer conversational structures and
actions and use that scheme to build a corpus of
medical conversations in Chinese pediatric set-
tings. First, our work extends the theory and prac-
tice of the sociological field of conversation analy-
sis (CA) by creating an annotation scheme for cod-
ing conversational structures and actions. Second,
we create a corpus of naturally occurring conver-
sations between physicians and caregivers. The
corpus can be used not only for research of gen-
eral purposes such as conversational understand-
ing, modeling human social behavior of cooper-
ation and coordination, but also for more specific
purposes such as identifying risk factors for antibi-
otic prescribing. Third, we demonstrate that con-
versational behavior indeed affects medical deci-
sions. We hope our findings can be used to train
physicians for effective communication.

For future work, we want to test the usefulness
of the scheme in other domains. In addition, we
plan to extend COSTA to mark turn construction
unit (TCU) 6 . We plan to release the dataset once
it is completed.
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Abstract

In this study, we investigate learning-to-
rank and query refinement approaches for
information retrieval in the pharmacoge-
nomic domain. The goal is to improve the
information retrieval process of biomedi-
cal curators, who manually build knowl-
edge bases for personalized medicine. We
study how to exploit the relationships be-
tween genes, variants, drugs, diseases and
outcomes as features for document rank-
ing and query refinement. For a su-
pervised approach, we are faced with a
small amount of annotated data and a large
amount of unannotated data. Therefore,
we explore ways to use a neural document
auto-encoder in a semi-supervised ap-
proach. We show that a combination of es-
tablished algorithms, feature-engineering
and a neural auto-encoder model yield
promising results in this setting.

1 Introduction

Personalized medicine strives to relate genomic
detail to patient phenotypic conditions (such as
disease, adverse reactions to treatment) and to as-
sess the effectiveness of available treatment op-
tions (Brunicardi et al., 2011). For computer-
assisted decision making, knowledge bases need
to be compiled from published scientific evidence.
They describe biomarker relationships between
key entity types: Disease, Protein/Gene, Vari-
ant/Mutation, Drug, and Patient Outcome (Out-
come) (Manolio, 2010). While automated infor-
mation extraction has been applied to simple re-
lationships — such as Drug-Drug (Asada et al.,
2017) or Protein-Protein (Peng and Lu, 2017);
(Peng et al., 2015); (Li et al., 2017) interaction —
with adequate precision and recall, clinically ac-

tionable biomarkers need to satisfy rigorous qual-
ity criteria set by physicians and therefore call
upon manual data curation by domain experts.

To ascertain the timeliness of information, cu-
rators are faced with the labor-intensive task to
identify relevant articles in a steadily growing flow
of publications (Lee et al., 2018). In our sce-
nario, curators iteratively refine search queries in
an electronic library, such as PubMed.1 The in-
formation the curators search for, are biomarker-
facts in the form of {Gene(s) - Variant(s) - Drug(s)
- Disease(s) - Outcome}. For example, a cu-
rator starts with a query consisting of a single
gene, e.g. q1 = {PIK3CA}, and receives a set
of documents D1. After examining D1, the cu-
rator identifies the variants H1047R and E545K,
which yields queries q2 = {PIK3CA,H1047R}
and q3 = {PIK3CA,E545K} that lead to D2 and
D3. As soon as studies are found that contain
the entities in a biomarker relationship, the enti-
ties and the studies are entered into the knowledge
base. This process is then repeated until, theoret-
ically, all published literature regarding the gene
PIK3CA has been screened.

Our goal is to reduce the amount of docu-
ments which domain experts need to examine.
To achieve this, an information retrieval system
should rank documents high that are relevant to
the query and should facilitate the identification of
relevant entities to refine the query.

Classic approaches for document ranking, like
tf-idf (Luhn, 1957); (Spärck Jones, 1972), or bm25
(Robertson and Zaragoza, 2009), and, for exam-
ple, the Relevance Model (Lavrenko and Croft,
2001) for query refinement are established tech-
niques in this setting. They are known to be robust
and do not require data for training. However, as
they are based on a bag-of-words model (BOW),

1https://www.ncbi.nlm.nih.gov/pubmed
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they cannot represent a semantic relationship of
entities in a document. This, for example, yields
search results with highly ranked review articles
that only list query terms, without the desired re-
lationship between them. Therefore, we investi-
gate approaches that model the semantic relation-
ships between biomarker entities. This can either
be addressed by combining BOW with rule-based
filtering, or by supervised learning, i.e. learning-
to-rank (LTR).

Our goal is, to tailor document ranking and
query refinement to the task of the curator. This
means that a document ranking model should as-
sign a high rank to a document that contains the
query entities in a biomarker relationship. A query
refinement model should suggest additional query
terms, i.e. biomarker entities, to the curator that
are relevant to the current query. Given the com-
plexity of entity relationships and the high vari-
ety of textual realizations this requires either effec-
tive feature engineering, or large amounts of train-
ing data for a supervised approach. The in-house
data set of Molecular Health consists of 5833 la-
beled biomarker-facts, and 24 million unlabeled
text documents from PubMed. Therefore, a good
solution is to exploit the large amount of unla-
beled data in a semi-supervised approach. Li et al.
(2015) have shown that a neural auto-encoder with
LSTMs (Hochreiter and Schmidhuber, 1997) can
encode the syntactics and semantics of a text in
a dense vector representation. We show that this
representation can be effectively used as a feature
for semi-supervised learning-to-rank and query re-
finement.

In this paper, we describe a feature engineer-
ing approach and a semi-supervised approach. In
our experiments we show that the two approaches
are, in comparison, almost on par in terms of per-
formance and even improve in a joint model. In
Section 2 we describe the neural auto-encoder, and
then proceed in Section 3 to describe our models
for document ranking and in Section 4 the models
for query refinement.

2 Neural Auto-Encoder

In this study, we use an unsupervised method to
encode text into a dense vector representation. Our
goal is to investigate if we can use this repre-
sentation as an encoding of the relations between
biomarker entities.

Following Sutskever et al. (2014) Cho et al.

Figure 1: Document Ranking

(2014), Dai and Le (2015), and Li et al. (2015) we
implemented a text auto-encoder with a Sequence-
to-Sequence approach. In this model an encoder
Enc produces a vector representation v = Enc(d)
of an input document d = [w1,w2, . . . ,wn],
with wi being word embedding representations
(Mikolov et al., 2013). This dense representation
v is then fed to a decoder Dec, that tries to recon-
struct the original input, i.e. d̂ = Dec(v). During
training we minimize error(d̂, d). After training
we only use the Enc(d) to encode the text. We
want to explore if we can use Enc to encode the
documents and the query. We will use the out-
put of the document encoder Enc as features for
a document ranking model and for a query refine-
ment model.

3 Document Ranking

Information retrieval systems rank documents in
the order that is estimated to be most useful to a
user query by assigning a numeric score to each
document. Our pipeline for document ranking is
depicted in Figure 1: Given a query q, we first re-
trieve a set of documents Dq that contain all of
the query terms. Then, we compute a representa-
tion repq(q) for the query q, and a representation
repd(d) for each document d ∈ Dq. Finally, we
compute the score with a ranker model scorerank.

For repd we need to find a representation for
an arbitrary number of entity-type combinations,
because a fact can consist of e.g. 3 Genes, 4 Vari-
ants, 1 Drug, 0 Diseases and 0 Outcomes. In the
following, we describe several of the settings for
repq(q), repd(d) and the ranker model.

88



3.1 Bag-of-Words Models
We have implemented two commonly used BOW
models tf-idf and bm25. For these models the text
representations repq(q) and repd(d) is the vector
space model.

3.2 Learning-to-Rank Models
For the learning-to-rank models, we chose a mul-
tilayer perceptron (MLP) as the scoring function
scorerank. In the following we explain how
repq(q) and repd(d) are computed.

Feature Engineering Model We created a set of
basic features: encoding the frequency of entity
types, distance features between entity types, and
context words of entities. In this model, features
are query dependent and are computed on-demand
by a feature function f(q, d).

The algorithm to compute the distance feature
is as follows: Given query q with entities e ∈ q
and document d = [w1, w2, . . . , wn], with w being
words in the document. Let type(e) be the func-
tion that yields the entity type, f.ex. type(e) =
Gene. Then, if ei, ej ∈ q and there exists a
wk = ei, wl = ej then we add |l − k| to the
bucket of {type(ei), type(ej)}. To summarize the
collected distances we compute min(), max(),
mean() and std() over all collected distances for
each bucket separately.

For the context words feature, we collected in
a prior step a list of the top 20 words for each
{type(ei), type(ej)} bucket, i.e. we collect words
that are between wk = ei and wl = ej if |k − l| <
10. We remove stop words, special characters
and numbers from this list and also manually re-
move words using domain knowledge. The top 20
of remaining words for each {type(ei), type(ej)}
bucket are used as boolean indicator features.

Auto-Encoder Model In this model we use the
auto-encoder from Section 2 to encode the query
and the document. The input to the score function
is the element-wise product, denoted by �, of the
query encoding repq(q) = Enc(q) = q and the
document encoding repd(d) = Enc(d) = d:

scorerank(d,q) = MLP (d� q) (1)

To encode the queries we compose a pseudo text
using the query terms. The input to the auto-
encoder Enc are the word embeddings of the
pseudo text for repq(q) and the word embeddings
of the document terms for repd(d).

Figure 2: Query Refinement

4 Query Refinement

Query refinement finds additional terms for the
initial query q that better describe the information
need of the user (Nallapati and Shah, 2006). In
our approach we follow Cao et al. (2008), in which
the ranked documents Dq are used as pseudo rel-
evance feedback. Our goal is to suggest relevant
entities e that are contained in Dq and that are in a
biomarker relationship to q. Therefore, we define
a scoring function scoreref for ranking of candi-
date entities e to the query q with respect to the re-
trieved document set Dq. See Figure 2 for a sketch
of the query refinement pipeline. In the following,
we describe several of the scoring functions.

4.1 Bag-of-Words Models

We implemented the two classic query refine-
ment models the Rocchio algorithm (Rocchio and
Salton, 1965) and Relevance Model.

4.2 Auto-Encoder Model

In this model, we also try to exploit the auto-
encoding of the query. The idea is as follows: (i)
Given a list of documents and their scores Dq =
[(d1, s1), (d2, s2), . . . , (dn, sn)] for a query q from
the previous step, we use the ranking score si as
pseudo-relevance feedback to create a pseudo doc-
ument repc(D, ŝ) =

∑n
i diŝi = d̂. The scores s

are normalized so that they are non-negative and∑
i ŝi = 1, see Appendix A.1. (ii) From all enti-

ties ei ∈ Dq\q we generate new query encoding
repq(q ∪ ei) = Enc(q ∪ ei) = q̂ei (iii) We rank
the entities based on the pseudo document using
the scoring function

scoreref (q̂ei , d̂) = MLP (d̂� q̂ei) (2)
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i.e. we propose those entities as a query refinement
that agree with the most relevant documents.

5 Experiments

In this section, we first explain our evaluation
strategy to assess the performance of the respec-
tive models for document ranking and query re-
finement. Subsequently, we describe the settings
for the data and the results of the experiments that
we have conducted.

5.1 Evaluation Protocol

Document ranking models are evaluated by their
ability to rank relevant documents higher than ir-
relevant documents. Query refinement models are
evaluated both, by their ability to rank relevant
query terms high, and by the recall of retrieved
relevant documents when the query automatically
is refined by the 1st, 2nd and 3rd proposed query
term. We evaluate our models using mean aver-
age precision (MAP) (Manning et al., 2008, Chap-
ter 11) and normalized discounted cumulative gain
(nDCG) (Järvelin and Kekäläinen, 2000).

For both the document ranking and query re-
finement approach we interpret a biomarker-fact
as a perfect query and the corresponding papers
as the true-positive (or relevant) papers associ-
ated with this query. In this way, we use the cu-
rated facts as document level annotation for our
approach. Because we want to assist the itera-
tive approach of curators in which they refine an
initially broad query to ever narrower searches,
we need to create valid partial queries and asso-
ciated relevant documents to mimic this proce-
dure. Therefore, we generate sub-queries, which
are partials of the facts. We generated two data
sets: one for document ranking and one for query
refinement. For document ranking, we generated
all distinct subsets of the facts. For query refine-
ment, we defined the eliminated entities (of the
sub-query generation process) as true-positive re-
finement terms. For both data sets, we use all asso-
ciated documents, of the original biomarker-fact,
as true-positive relevant documents.

5.2 Data

Unlabeled Data As unlabeled data we use ∼24
Million abstracts of PubMed. To automatically
annotate PubMed abstracts with disambiguated
biomarker entities, we use a tool set that has been
developed together with biomedical curators. It

employs ”ProMiner”2 (Hanisch et al., 2005) for
Protein/Gene and Disease entity recognition and
regular expression based text scanning using syn-
onyms from ”DrugBank”3 and ”PubChem”4 for
the identification of Drugs and manually edited
regular expressions, relating to ”HGVS”5 stan-
dards, to retrieve Variants. We restricted the
PubMed documents to include at least one entity
of type Gene, Drug and Disease leaving us with
2.7 Million documents. Additionally we replaced
the text of every disambiguated entity with its id.

Labeled Data As labeled data we use a knowl-
edge base that contains a set of 5833 hand curated
{Gene(s) - Variant(s) - Drug(s) - Disease(s) - Out-
come} biomarker-facts and their associated papers
that domain experts extracted from ∼1200 full-
text documents. We only keep facts in which the
disambiguated entities are fully represented in the
available abstracts. This restricted our data set to a
set of 1181 distinct facts. The 4 top curated genes
are EGFR (29%), BRAF (13%), KRAS (8%), and
PIK3CA (5%).

Cross Validation To exploit all of our labeled
data for training and testing we do 4-fold cross-
validation. Because in our scenario a curator starts
with an initial entity of type Gene we have gener-
ated our validation and test sets based on Genes,
instead of randomly sampling facts. This also
guarantees us to never have the same sub-query
included in the training, validation and test set. In
total we have built 12 different splits of our data
set basing the validation and test set each on a dif-
ferent gene. The respective training sets are built
with all remaining facts that do not include the val-
idation and test gene. Statistics can be found in
Table 1.

5.3 Training of Embeddings and
Auto-Encoder

The training data for the embeddings and the auto-
encoder are the PubMed abstracts described in the
previous Section 5.2. We trained the embeddings
with Skip-Gram. For the vocabulary, we keep the
top 100k most frequent words, while making sure
all known entities are included. We use a win-
dow size of 10 and train the embeddings for 17

2https://www.scai.fraunhofer.de/en/business-research-
areas/bioinformatics/products/prominer.html

3https://www.drugbank.ca
4https://pubchem.ncbi.nlm.nih.gov
5http://www.hgvs.org
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Validation Testing Train
Gene #Data Gene #Data #Data
BRAF 1135 EGFR 1822 4386
BRAF 1075 KRAS 968 6310
BRAF 1088 PIK3CA 549 6944
EGFR 1700 BRAF 1241 4386
EGFR 1475 KRAS 968 5536
EGFR 1605 PIK3CA 549 5957
KRAS 573 EGFR 1822 5536
KRAS 804 BRAF 1241 6310
KRAS 778 PIK3CA 549 7754
PIK3CA 298 EGFR 1822 5957
PIK3CA 382 BRAF 1241 6944
PIK3CA 367 KRAS 968 7754

Table 1: Statistics about the train/validation/test
splits

epochs. We normalize digits to ”0” and lower-
case all words. Tokenization is done by splitting
on white space and before and after special char-
acters.

For both, the encoder and the decoder, we use
two LSTM cells per block with hidden size 400
each. We skip unknown tokens and feed the
words in reverse order for the decoder following
Sutskever et al. (2014). The auto-encoder was
trained for 15 epochs using early stopping.

5.4 Document Ranking

In this section, we describe the document ranking
models, their training and then discuss the results
of their evaluation.

Models We evaluate the BOW models (tf-idf,
bm25) (Section 3.1) and the two LTR models using
feature engineering (feat) and the auto-encoded
features (auto-rank) (Section 3.2). We also eval-
uate an additional set of models to investigate if
maybe simpler solutions can be competitive. See
Table 2 for an overview over all ranking models.

(a.) A simpler solution than learning a MLP
for a score function is to compute the similarity
between q = Enc(q) and the document encod-
ing d = Enc(d). Therefore, we use the cosine
similarity as scoring function between the vector
representations q and d (auto/cosine).

(b.) Instead of encoding the documents and
queries with the auto-encoder, we encode the doc-
uments and queries based on their tf-idf weighted
embeddings, i.e. q =

∑
tfidf(qi)∗wqi . Similarly

to the auto-rank model, the input to the classifier
MLP is the element-wise product of the query en-
coding and the document encoding (emb).

(c.) Due to promising results of the auto-rank
model, bm25, and the feat model, we also tested
combinations of them. We tested the concatena-
tion of the the bm25 score with the auto-rank fea-
tures (auto-rank + bm25) as well as the concatena-
tion of feat with the auto-rank features (auto-rank
+ feat).

Training We train our models with Adam
(Kingma and Ba, 2014) and tune the initial learn-
ing rate, the other parameters are kept default of
TensorFlow6. We use a pairwise hinge loss (Chen
et al., 2009) and compare relevant documents with
irrelevant documents.

The ranking score function is parameterized by
a MLP for which the number of layers is a hyper-
parameter which is tuned using grid-search. The
input layer size is based on the number of input
features. To limit the total number of parameters,
we decrease the layer size while going deeper, i.e.
layer i has size li = b−i+1

b |u|, with b being the
depth of the network, |u| the number of input fea-
tures. For activation functions between layers we
use ReLU (Glorot et al., 2011).

We employ grid search over the hyper-
parameters: dropout: [0.3, 0.2, 0.1, 0.0], number
of layers: [1, 2, 3, 4], learning rates for Adam:
[0.0005, 0.001], batch size: [40, 60], max 400
epochs. We conducted hyper-parameter tuning
for each model and validation/test split separately.
The best parameters for the models using the auto-
encoded features were: 1 layer, dropout p ∈
[0.3, 0.2] with a batch size of 60 and learning rate
0.0005. The feat models were best with 1-2 layers,
dropout 0.0 and a learning rate at 0.001.

The BOW models as well as auto/cosine were
only computed for the respective validation and
test sets.

Results In Table 3 we have listed the average
MAP and nDCG scores of the test sets. The tf-idf
model is outperformed by most of the other mod-
els. However, bm25, which additionally takes the
length of a document into account, performs very
well. tf-idf and bm25 have the major benefit of
fast computation.

The feat model slightly outperforms the auto-

6Tensorflow V 1.3 https://www.tensorflow.org/api docs/
python/tf/train/AdamOptimizer
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Model repq(q) repd(d) score
tf-idf BOW BOW dot product
bm25 BOW BOW + doc length bm25
emb q = tf-idf BOW ·w q = tf-idf BOW ·w MLP (q� d)
feat f(q, d) MLP (f(q, d))

auto/cosine q = Enc(q) d = Enc(d) cos(Enc(q), Enc(d))

auto q = Enc(q) d = Enc(d) MLP (q� d)
auto + bm25 q = Enc(q) , BOW d = Enc(d), BOW + doc length MLP (q� d, bm25)
auto + feat q = Enc(q) f(q, d) d = Enc(d) MLP (q� d, f(q, d))

Table 2: Query and document representation for ranking models

Test Metric tf-idf bm25 emb feat auto/
cosine

auto-
rank

auto-
rank
+ bm25

auto-
rank
+ feat

EGFR
MAP 0.289 0.632 0.310 0.575 0.054 0.545 0.588 0.699
nDCG 0.424 0.728 0.460 0.695 0.129 0.653 0.716 0.810

KRAS
MAP 0.327 0.610 0.466 0.609 0.058 0.575 0.774 0.820
nDCG 0.456 0.723 0.592 0.712 0.145 0.688 0.867 0.914

BRAF
MAP 0.342 0.656 0.427 0.704 0.063 0.563 0.702 0.812
nDCG 0.480 0.751 0.572 0.802 0.163. 0.671 0.820 0.901

PIK3CA
MAP 0.341 0.633 0.486 0.625 0.079 0.541 0.779 0.810
nDCG 0.473 0.729 0.617 0.718 0.171 0.656 0.859 0.895

Table 3: Test Scores Document Ranking

Figure 3: Correlation of Document Ranking Mod-
els

rank model. The distance features are a strong in-
dicator for the semantic dependency between enti-
ties. These relationships need to be learned in the
auto-rank model.

The cosine similarity of a query and a docu-
ment (auto/cos) does not yield a good result. This
shows that the auto-encoder has learned many fea-
tures, most of which do not correlate with our task.
We also find that emb does not yield an equal per-
formance to auto-rank. The combination of the

auto-rank + feat model is slightly better than the
auto-rank + bm25 model, both of which have the
overall best performance. This shows, that the
auto-encoder learns something orthogonal to term
frequency and document length. The best model
with respect to document ranking is the auto-rank
+ feat model.

In Figure 3 we show the correlation between
the different models. Interestingly, the bm25 and
the feat strongly correlate. However, the scores
of bm25 do not correlate with the scores of the
combination of auto-rank and bm25. This indi-
cates, that the model does not primarily learn to
use the bm25 score but also focuses on the the
auto-encoded representation. This underlines the
hypothesis that the auto-encoder is able to repre-
sent latent features of the relationship of the query
terms in the document.

Influence of the Data It is interesting to see that
the learned models do not perform well for the
EGFR set. The reason for this might be that testing
on it reduces the amount of training data substan-
tially, as EGFR is the best curated gene and thus
the largest split of the data set.

In a manual error analysis we compared the
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rankings of four of the best models (bm25, feat,
auto-rank, and auto-rank + bm25). We observe
cases where the auto-rank model is unable to de-
tect, when similar entities are used, i.e. entities
like Neoplasm and Colorectal Neoplasm. In these
cases the bm25 helps, as it treats different words
as different features. However, both bm25 and
the feat models rank reviews high, that only list
query terms. For example, when executing the
query {BRAF, PIK3CA, H1047R}, these models
rank survey articles high (i.e. (Li et al., 2016);
(Janku et al., 2012); (Chen et al., 2014)).

The auto-rank model on the other hand ranks
those document high, for which each entities are
listed in a semantic relationship (i.e. (Falchook
et al., 2013)).

5.5 Query Refinement

In this section we describe our training approaches
for query refinement and discuss our findings. The
pseudo relevance feedback for the query refine-
ment is based on the ranked documents from the
previous query. For our experiments we chose the
second best document ranker (auto-rank + bm25)
from the previous experiments, because our pro-
totype implementation for auto-rank + feat was
computationally too expensive.

Models We combined both the auto-encoder
features with the candidate terms of the respective
BOW models (auto-ref + rocch + relev). In order
to identify if the good results of this combination
are due to the BOW models, or if the auto-encoded
features have an effect, we trained a MLP with the
same amount of parameters, but only use the fea-
tures of the two BOW models as input (rocchio +
relev).

Training For training, we use the same settings
for query refinement as for document ranking and
again use a pairwise hinge loss. Here we com-
pare entities that occur in the facts with randomly
sampled entities which occur in the retrieved doc-
uments.

Due to limitations in time we were only able to
test our query refinement models on one valida-
tion/test split. We chose to use the split data set of
genes KRAS and PIK3CA for validation and test-
ing respectively. We have restricted our models to
only regard the top 50 ranked documents for re-
finement.

Results To evaluate the ranking of entity terms
we have computed nDCG@10, nDCG@100 and
MAP, see Table 4 for the results. We also compute
Recall@k of relevant documents for automatically
refined queries using the 1st, 2nd and 3rd ranked
entities. The scores can be found in Table 5.

Tables 4 and 5 show that the Relevance Model
outperforms the Rocchio algorithm in every as-
pect. Both models outperform the auto-encoder
approach (auto-ref ). We suspect that summing
over the encodings distorts the individual features
too much for a correct extraction of relevant enti-
ties to be possible.

The combination of all three models (auto-ref +
rocchio + relevance) outperforms the other mod-
els in most cases. Especially the performance for
ranking of entity terms is increased using the auto-
encoded features. However, it is interesting to see
that the rocchio + relevance model outperforms
the recall for second and third best terms. This
indicates that for user-evaluated term suggestions,
the inclusion of the auto-encoded features is ad-
visable. For automatic query refinement however,
in average, this is not the case.

Variants Diseases Drugs
H1047R Color. Neop. Lapatinib
V600E Liposarcoma Mitomycin
T790M Adenocarcin. Linsitinib
E545K Glioblastoma Dactolisib
E542K Stomach Neop. Pictrelisib

Table 6: Refinement Terms for Query {PIK3CA}

Query Refinement Example In Table 6 we
show the top ranked entities of type Variants, Dis-
eases and Drugs for the query {PIK3CA}. While
the diseases and the drugs are all relevant, V600E
and T790M are in fact not variants of the gene
PIK3CA.

However, when refining the query {PIK3CA,
V600E, BRAF, H1047R, Dabrafenib}, the top
ranked diseases are [Melanoma, Neoplasms, Car-
cinoma Non Small Cell Lung (CNSCL), Thy-
roid Neoplasms, Colorectal Neoplasms]. Using
Melanoma for refinement, retrieves the top ranked
paper (Falchook et al., 2013) which perfectly in-
cludes all these entities in a biomarker relation-
ship.
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Metrics rocchio relevance
model auto-ref rocchio

+ relevance

auto-ref
+ rocchio
+ relevance

nDCG@10 0.232 0.274 0.195 0.341 0.464
nDCG@100 0.360 0.397 0.329 0.439 0.536
MAP 0.182 0.223 0.156 0.270 0.386

Table 4: Ranked Entity Scores for KRAS Validation and PIK3CA Testing

Metrics
Top
n-th
Entity

rocchio relevance
model auto-ref rocchio

+ relevance

auto-ref
+ rocchio
+ relevance

1 0.594 0.603 0.272 0.574 0.696
Recall@10 2 0.535 0.561 0.339 0.580 0.522

3 0.533 0.544 0.366 0.555 0.458
1 0.683 0.691 0.307 0.680 0.779

Recall@40 2 0.603 0.633 0.374 0.649 0.586
3 0.610 0.623 0.402 0.626 0.522

Table 5: Refinement Recall Scores for KRAS Validation and PIK3CA Testing

6 Related Work

The focus of research in this domain has primar-
ily targeted the extraction of entity relations. Peng
and Lu (2017), Peng et al. (2015), and Li et al.
(2017) try to extract Protein-Protein relationships.
Asada et al. (2017) try to extract Drug-Drug inter-
action and Lee et al. (2018) target the extraction
of Mutation-Gene and Mutation-Drug relations.
Jameson (2017) have derived a document ranking
approach for PubMed documents using word em-
beddings trained on all PubMed documents. Xu
et al. (2017) propose using auto-encoders on the
vector-space model in a supervised setting for in-
formation retrieval and show that it improves per-
formance. The quality of biomedical word em-
beddings was investigated by Th et al. (2015) and
Chiu et al. (2016). Dogan et al. (2017) have devel-
oped an open source data set to which we would
like to adapt our approach. Sheikhshab et al.
(2016) have developed a novel approach for tag-
ging genes which we would like to explore.

Palangi et al. (2016) use LSTMs to encode the
query and document and use the cosine similar-
ity together with the click-through data as features
for ranking in a supervised approach. Cao et al.
(2008) define a distance based feature-engineered
supervised learning approach to identify good ex-
pansion terms. They try to elaborate if the se-
lected terms for expansion are useful for informa-
tion retrieval by identifying if the terms are ac-

tually related to the initial query. Nogueira and
Cho (2017) have introduced a reinforcement learn-
ing approach for query refinement using logging
data. They learn a representation of the text and
the query using RNNs and CNNs and reinforce
the end result based on recall of a recurrently
expanded query. Sordoni et al. (2015) have de-
veloped a query reformulation model based on
sequences of user queries. They have used a
Sequence-to-Sequence model using RNNs to en-
code and decode queries of a user.

7 Conclusion

We have considered several approaches for docu-
ment ranking and query refinement by investigat-
ing classic models, feature engineering and, due
to the large amount of unlabeled data, a semi-
supervised approach using a neural auto-encoder.

Leveraging the large amounts of unlabeled data
to learn an auto-encoder on text documents yields
semantically descriptive features that make sub-
sequent document ranking and query refinement
feasible. The combination with BOW features in-
creases the performance substantially, which for
our experiments, outputs the best results, for both
document ranking and query refinement.

We were able to achieve promising results,
however, there is a wide range of Sequence-to-
Sequence architectures and text encoding strate-
gies, therefore, we expect that there is room for
improvement.

94



References
Masaki Asada, Makoto Miwa, and Yutaka Sasaki.

2017. Extracting drug-drug interactions with atten-
tion cnns. In BioNLP 2017, Vancouver, Canada, Au-
gust 4, 2017, pages 9–18.

Francis Charles Brunicardi, Richard A. Gibbs,
David A. Wheeler, John Nemunaitis, William
Fisher, John Goss, and Changyi Johnny Chen. 2011.
Overview of the development of personalized ge-
nomic medicine and surgery. World Journal of
Surgery, 35:1693–1699.

Guihong Cao, Jian-Yun Nie, Jianfeng Gao, and
Stephen Robertson. 2008. Selecting good expansion
terms for pseudo-relevance feedback. In Proceed-
ings of the 31st Annual International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR 2008, Singapore, July 20-
24, 2008, pages 243–250.

Jing Chen, Fang Guo, Xin Shi, Lihua Zhang, Aifeng
Zhang, Hui Jin, and Youji He. 2014. BRAF V600E
mutation and KRAS codon 13 mutations predict
poor survival in Chinese colorectal cancer patients.
BMC Cancer, 14(1):802.

Wei Chen, Tie-Yan Liu, Yanyan Lan, Zhiming Ma,
and Hang Li. 2009. Ranking measures and loss
functions in learning to rank. In Advances in Neu-
ral Information Processing Systems 22: 23rd An-
nual Conference on Neural Information Processing
Systems 2009. Proceedings of a meeting held 7-
10 December 2009, Vancouver, British Columbia,
Canada., pages 315–323.

Billy Chiu, Gamal K. O. Crichton, Anna Korhonen,
and Sampo Pyysalo. 2016. How to train good word
embeddings for biomedical NLP. In Proceedings of
the 15th Workshop on Biomedical Natural Language
Processing, BioNLP@ACL 2016, Berlin, Germany,
August 12, 2016, pages 166–174.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
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A Supplemental Material

A.1 Normalizing Document Scores for Query
Refinement

Because we used a hinge loss instead of cross en-
tropy loss in the ranking model, we cannot inter-
pret the scores s of the ranker as logits. While we
do not know the magnitude of the ranker score,
we do, however, expect the scores to be positive
for relevant documents. If however many docu-
ments have scores below zero, this should also be
regarded. Based on this, we have defined a nor-
malization setting of the document scores:

smin = min(min(s), 0.0) (3)

ŝ =
s− smin

∑|s|
i (si − smin)

(4)
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Abstract

Event and relation extraction are central
tasks in biomedical text mining. Where
relation extraction concerns the detection
of semantic connections between pairs of
entities, event extraction expands this con-
cept with the addition of trigger words,
multiple arguments and nested events, in
order to more accurately model the diver-
sity of natural language.

In this work we develop a convolutional
neural network that can be used for both
event and relation extraction. We use a lin-
ear representation of the input text, where
information is encoded with various vector
space embeddings. Most notably, we en-
code the parse graph into this linear space
using dependency path embeddings.

We integrate our neural network into the
open source Turku Event Extraction Sys-
tem (TEES) framework. Using this sys-
tem, our machine learning model can be
easily applied to a large set of corpora
from e.g. the BioNLP, DDI Extraction and
BioCreative shared tasks. We evaluate
our system on 12 different event, relation
and NER corpora, showing good general-
izability to many tasks and achieving im-
proved performance on several corpora.

1 Introduction

Detection of semantic relations is a central task in
biomedical text mining where information is re-
trieved from massive document sets, such as sci-
entific literature or patient records. This informa-
tion often consists of statements of interactions be-
tween named entities, such as signaling pathways
between proteins in cells, or the combinatorial ef-
fects of drugs administered to a patient. Relation

and event extraction are the primary methods for
retrieving such information.

Relations are usually described as typed, some-
times directed, pairwise links between defined
named entities. Automated relation extraction
aims to develop computational methods for their
detection.

Event extraction is a proposed alternative for
relation extraction. Events differ from relations
in that they can connect together more than two
entities, that they have an annotated trigger word
(usually a verb) and that events can act as argu-
ments of other events. In the GENIA corpus, a
sentence stating “The binding of proteins A and B
is regulated by protein C” would be annotated with
two nested events REGULATION(C, BIND(A, B)).
While events can capture the semantics of text
more accurately, their added complexity makes
their extraction a more complicated task.

Many methods have been developed for relation
extraction, with various kernel methods such as
the graph kernel being widely used (Mooney and
Bunescu, 2006; Giuliano et al., 2006; Airola et al.,
2008). For the more complex task of event extrac-
tion approaches such as pipeline systems (Björne,
2014; Miwa et al., 2010), semantic parsing (Mc-
Closky et al., 2011) and joint inference (Riedel and
McCallum, 2011) have been explored.

In recent years, the advent of deep learning has
resulted in advances in many fields, and relation
and event extraction are no exception. Consid-
erable performance increases have been gained
with methods such as convolutional (Zeng et al.,
2014) and recurrent neural networks (Miwa and
Bansal, 2016). Some proposed systems have re-
lied entirely on word embeddings (Quan et al.,
2016), while others have developed various net-
work architectures for utilizing parse graphs as an
additional source of information (Collobert et al.,
2011; Liu et al., 2015; Xu et al., 2015; Ma et al.,
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2015; Peng et al., 2017a).
In this work we present a new convolutional

neural network method for extraction of both
events and relations. We integrate our network
as a classification module into the Turku Event
Extraction System (Björne, 2014)1, allowing it to
be easily applied to corpora or texts stored in the
TEES XML format. Our neural network model is
characterized by a unified representation of input
examples that can be applied to detection of both
keywords as well as their relations.

2 Materials and Methods

2.1 Corpora
We develop and evaluate our method on a large
number of event and relation corpora (See Ta-
ble 1). These corpora originate from three
BioNLP Shared Tasks (Kim et al., 2009, 2011;
Nédellec et al., 2013), the two Drug–Drug In-
teraction (DDI) Extraction tasks (Segura-Bedmar
et al., 2011, 2013) and the recent BioCre-
ative VI Chemical–Protein relation extraction task
(Krallinger et al., 2017). The BioNLP corpora
cover various domains of molecular biology and
provide the most complex event annotations. The
DDI and BioCreative corpora use pairwise relation
annotations, and one of the DDI corpora defines
also a drug named entity recognition (NER) task.

All of these corpora are used in the TEES XML
format and are installed or generated with the
TEES system. The corpora are parsed with the
TEES preprocessing pipeline, which utilizes the
BLLIP parser (Charniak and Johnson, 2005) with
the McClosky biomodel (McClosky, 2010), fol-
lowed by conversion of the constituency parses
into dependency parses with the Stanford Tools
(de Marneffe et al., 2006). These tools generate
the deep parse graph which is used as the source
for our dependency path features.

2.2 TEES Overview
The TEES system is based around a graph rep-
resentation of events and relations. Named enti-
ties and event triggers are nodes, and relations and
event arguments are the edges that connect them.
An event is modelled as a trigger node and its
set of outgoing edges. For a detailed overview of
TEES we refer to Björne (2014).

TEES works as a pipeline method that models
relation and event extraction as four consecutive

1http://jbjorne.github.io/TEES/

classification tasks (See Figure 2). The first stage
is entity detection where each word token in a sen-
tence is classified as an entity or a negative, gen-
erating the nodes of the graph. This stage is used
in NER tasks as well as for event trigger word de-
tection. The second stage is edge detection where
relations and event arguments are predicted for all
valid pairs of named entity and trigger nodes. For
relation extraction tasks where entities are given
as known data this is the only stage used.

In the entity detection stage TEES predicts a
maximum of one entity per word token. However,
since events are n-ary relations, event nodes may
overlap. The unmerging stage duplicates event
nodes by classifying each candidate event as a real
event or not. Finally, modifier detection can be
used to detect event modality (such as speculation
or negation) on corpora where this is annotated.

2.3 Neural Network Overview

In TEES the four classification stages are imple-
mented as multiclass classification tasks using the
SVMmulticlass support vector machine (Tsochan-
taridis et al., 2005) and a rich set of features de-
rived mostly from the dependency parse graph.

We develop our convolutional neural network
method using the Keras (Chollet et al., 2015) pack-
age with the TensorFlow backend (Dean et al.,
2015). We extend the TEES system by replacing
the SVM-based classifier modules with our net-
work, using various vector space embeddings as
input features. Our neural network design follows
a common approach in NLP where the input se-
quence is processed by parallel convolutional lay-
ers (Kim, 2014; Zeng et al., 2014; Quan et al.,
2016).

We use the same basic network structure for
all four TEES classification stages (See Figure 1).
The input examples are modelled in the context
of a sentence window, centered around the candi-
date entity, relation or event. The sentence is mod-
elled as a linear sequence of word tokens. Each
word token is mapped to relevant vector space em-
beddings. These embeddings are concatenated to-
gether, resulting in an n-dimensional vector for
each word token.

This merged input sequence is processed by a
set of 1D convolutions with window sizes 1, 3,
5 and 7. Global max pooling is applied for each
convolutional layer and the resulting features are
merged together into the convolution output vec-
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pad pad STAT3 phosphorylation may involve Vav and Rac-1 . pad

EWV 11 × 200 EPOS 11 × 8 Erel 11 × 8 Edist 11 × 8

Merge 11 × 224

Dropout 11 × 224

Conv1D1 11 × 512 Conv1D3 9 × 512 Conv1D5 7 × 512 Conv1D7 5 × 512

MaxPool 512 MaxPool 512 MaxPool 512 MaxPool 512

Merge 2048

Dropout 2048

Dense 400

Labels 10

Figure 1: We use the same network architecture
for all four classification tasks, with only the in-
put embeddings and the number of predicted la-
bels changing between tasks. This figure demon-
strates entity detection where the word “involve” is
being classified as belonging to one or more of 10
entity types. The input sentence is padded for the
fixed example length (11 in this case) and the word
tokens are mapped to corresponding embeddings,
in this example Word Vectors, POS tags, relative
positions and distances. The embedding vectors
are merged together before the convolutional lay-
ers, and the results of the convolution operations
are likewise merged before the dense layer, after
which the final layer shows the predicted labels.

tor. This output vector is fed into a dense layer of
200–800 neurons, which is connected to the final
classification layer where each label is represented
by one neuron. The classification layer uses sig-
moid activation, and the other layers use relu ac-
tivation. Classification is performed as multilabel
classification where each example may have 0–n
positive labels. We use the adam optimizer with
binary crossentropy and a learning rate of 0.001.

Dropout of 0.1–0.5 is applied at two stages in
the system to increase generalization. Weights are
learned for all input embeddings except for the
word vectors, where we use the original weights
as-is to ensure generalization to words outside the
task’s training corpus.

2.4 Input Embeddings

All of the features used by our system are repre-
sented as embeddings, sets of vectors where each
unique input item (such as a word string) maps to
its own n-dimensional vector. The type and num-
ber of embeddings we use varies by classification
task and is used to model the unique characteris-
tics of each task (See Figure 2). The pre-made
word vectors we use are 200-dimensional and the
rest of the embeddings (learnt from the input cor-
pus) are 8-dimensional.

Word Vectors are the most important of these
embeddings. We use word2vec (Mikolov et al.,
2013) vectors induced on a combination of the En-
glish Wikipedia and the millions of biomedical re-
search articles from PubMed and PubMed Central
by Pyysalo et al. (2013)2.

POS (Part-of-speech) tags generated by the
BLLIP parser are used to define the syntactic cat-
egories of the words.

Entity features are used in cases where such in-
formation is already available, as in relation ex-
traction where the pairs of entities are already
known, or in event extraction where named enti-
ties are predefined.

Distance features follow the approach proposed
by Zeng et al. (2014) where the relative distances
to tokens of interest are mapped to their own vec-
tors.

Relative Position features are used to mark
whether tokens are located (B)efore, (A)fter or in
the (M)iddle of the classified structure, or if they
form a part of it as entities, event triggers or argu-
ments. These features aim to model the context of
the example in a manner somewhat similar to the
shallow linguistic kernel of Giuliano et al. (2006).

Path Embeddings describe the shortest undi-
rected path from a token of interest to another to-
ken in the sentence. Multiple sets of vectors (0–
4), one for directed dependencies at each distance,
are used for the dependencies of the path. For
example, if paths of depth 4 are used, a short-
est path of three directed dependencies connecting
two tokens of interest could be modelled with four
embedding vectors e.g. ←dobj, nsubj→, nn→,
NULL. Our path embeddings are inspired by the
concept of distance embeddings used by Zeng
et al. (2014): Since it is possible to model linear
distances between tokens in the input sentence, it

2http://evexdb.org/pmresources/
vec-space-models/
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Figure 2: System stages. The TEES pipeline performs event extraction in four consecutive stages,
generating first 1. the nodes (entities) and 2. edges (relations) of the event graph, which is then “pulled
apart” in 3. unmerging, followed optionally by 4. modifier detection. The example being classified
is shown with a dotted line in each image, and other examples in the same sentence with light gray
dotted lines. We replace the four SVM classification stages in the TEES pipeline with convolutional
neural networks. In place of the rich feature representations we use a sentence model where word token
and dependency parse information is represented by embeddings. The Word Vector, POS and entities
features are straightforwardly produced from the information of each token. The distance and relative
position features model the position of the token in the sentence. The path features mark the dependencies
connecting each token to a token of interest (candidate entity or relation endpoint). The shortest path
features mark the set of dependencies forming the shortest path for a candidate relation. In the unmerging
stage candidate event arguments are also used as features.
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is also possible to model any other distance be-
tween these tokens, in our case paths in the depen-
dency parse.

Shortest Path Embeddings follow the ap-
proach of the n-gram features used in methods
such as the TEES SVM system. The shortest path
consists of the tokens and dependencies connect-
ing the two entities of a candidate relation. For
each token on the path we define two embeddings,
one for the incoming and one for the outgoing
dependency. For example, if the shortest path
would consist of three tokens and the two depen-
dencies connecting them, the shortest path embed-
ding vectors for the three tokens could be e.g. ([be-
gin],←nsubj), (←nsubj, dobj→), (dobj→, [end]).
Thus, our shortest path embeddings can be seen as
a more detailed extrapolation of the “on dep path
embeddings” of Fu et al. (2017).

Event Argument Embeddings are used only in
the unmerging stage where predicted entities and
edges are divided into separate events.

2.5 Parameter Optimization

When developing our system, we use the training
set for learning, and the development set for pa-
rameter validation. We use the early stopping ap-
proach where the network is trained until the vali-
dation loss no longer decreases. We train for up to
500 epochs, stopping once validation loss has no
longer decreased for 10 consecutive epochs.

Neural network models can be very sensitive
to the initial random weights. Despite the rela-
tively large training and validation sets, our model
exhibits performance differences of several per-
centage points with different random seeds. In
the current TensorFlow backend it is not possi-
ble to efficiently fix the random seed3, and in any
case this would be unhelpful, as the impact of any
given seed varies with the training data. Instead,
we compensate for the inherent randomness of the
network by training multiple models with random-
ized initializations and use as the final model the
one which achieved the best performance on the
validation set (measured using the micro-averaged
F-score).

In addition to the random seed and optimal
epoch, neural networks depend on a large number
of hyperparameters. We use the process of train-
ing multiple randomized models also for parame-

3https://github.com/keras-team/keras/
issues/2280

ter optimization. In addition to varying the random
seed, we pick a random combination of hyperpa-
rameters from the ranges to be optimized, so that
different models are randomized both in terms of
initialization and the parameters. We test sizes of
200, 400 and 800 for the final dense layer, filter
sizes of 128, 256 and 512 for the convolutional
layers and dropout values of 0.1, 0.2 and 0.5. In
addition, we experiment with path depths of 0–4
for the path embeddings.

Training a single model can still be prone to
overfitting if the validation set is too small. To
improve generalizability, we explore the use of
model ensembles. Instead of using the best ran-
domized model as the final one, we take n-best
models, ranked with micro-averaged F-score on
the validation set, and use their averaged predic-
tions. These ensemble predictions are calculated
for each label as the average of all the models’ pre-
dicted confidence scores.

With SVMs or random forests it is possible to
“refit” a classifier after parameter selection, by re-
training on the combined training and optimiza-
tion sets, and this approach is also used by the
TEES SVM classifiers. With the neural network,
we cannot retrain with the validation set, as there
would be no remaining data for detecting the op-
timal epoch. We approach also this issue using
model ensembles. As the final source of ran-
domization, we randomly redistribute the training
and validation set documents before training each
model. In this manner, the n-best models will to-
gether cover a larger part of the training data.

By training a large set of randomized mod-
els and using the n-best ones, we aim to address
the effect of random initialization, parameter op-
timization and coverage of training data using the
same process. However, with the size of the cor-
pora used, training even a single model is rela-
tively time consuming. In practice we are able to
train only around 20 models for each of the four
stages of the classification pipeline. Thorough pa-
rameter optimization comparable to the SVM sys-
tem is thus not computationally feasible with the
neural network, but good performance on varied
corpora indicates that the current approach is at
least adequate.

3 Results and Discussion

The results of applying our proposed system on
the various corpora are shown in Table 2. We com-
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Corpus Domain E I S
GE09 Molecular Biology 10 6 11380
GE11 Molecular Biology 10 6 14958
EPI11 Epigenetics and PTM:s 16 6 11772
ID11 Infectious Diseases 11 7 5118
REL11 Entity Relations 1 2 11351
DDI11 Drug–Drug Interactions - 1 5806
DDI13 9.1 Drug NER 4 - 9605
DDI13 9.2 Drug–Drug Interactions - 4 10239
GE13 Molecular Biology 15 6 8369
CG13 Cancer Genetics 42 9 5938
PC13 Pathway Curation 24 9 5040
CP17 Chemical–Protein Int. - 5 6249

Table 1: The corpora used in this work are listed
with their domain, number of event and entity
types (E), number of event argument and relation
types (I), and number of sentences (S).

pare our method with previous results from the
shared tasks for which these corpora were intro-
duced as well as with later research. In the next
sections we analyse our results for the different
corpus categories.

3.1 The BioNLP Event Extraction Tasks

The BioNLP Event Extraction tasks provide the
most complex corpora with often large sets of
event types and at times relatively small corpus
sizes. The GENIA corpora from 2009 and 2011
have been the subject of most event extraction re-
search. Our proposed method achieves F-scores
of 57.84 and 58.10 on GE09 and GE11, respec-
tively. Compared to the best reported results of
58.27 (Miwa et al., 2012) and 58.07 (Venugopal
et al., 2014), our method shows similar perfor-
mance on these corpora.

Our CNN reimplementation of TEES outper-
forms the original TEES SVM system on all the
BioNLP corpora. In addition, we achieve to the
best of our knowledge the highest reported perfor-
mance on the GE11, EPI11, REL11, CG13 and
PC13 BioNLP Shared Task corpora.

The annotations for the test sets of the BioNLP
Shared Task corpora are not provided, instead the
users upload their predictions to the task organiz-
ers’ servers for evaluation. While this method pro-
vides very good protection against overfitting and
data leaks, unfortunately many of these evaluation
servers are no longer working. Thus, we were able
to evaluate our system on only a subset of all ex-
isting BioNLP Shared Task corpora.

3.2 The Drug–Drug Interactions Tasks

There have been two instances of the Drug–Drug
Interactions Shared Task. The first one in 2011
concerned the detection of untyped relations for
adverse drug effects. Unlike the other corpora,
no official evaluator system or program exists for
this corpus so we use our own F-score calculation.
The lower performance compared to the original
TEES system warrants further examination, but in
any case the DDI11 corpus has been mostly super-
seded by the more detailed DDI13 corpora.

On the DDI13 corpora task 9.1, drug named en-
tity recognition, our CNN system performs better
than the original TEES entry, but neither of these
TEES versions can detect more than single-token
entities so they are not well suited for this task.
Nevertheless, this result demonstrates the poten-
tial applicability of our method also to NER tasks.

Of all the DDI corpora the DDI13 task 9.2 cor-
pus, typed relation extraction, has been the sub-
ject of much neural network based research in the
past few years. A large variety of methods have
been tested, and good results have been achieved
by highly varying network models, some of which
use no parsing or graph-like features, such as
the multichannel convolutional neural network of
Quan et al. (2016) which combines multiple sets
of word vectors and achieves an F-score of 70.21.
The highest result of 73.5 so far has been reported
by Lim et al. (2018) who used a binary tree-LSTM
model ensemble, with which our system achieves
minutely higher, in practice comparable perfor-
mance. Most recent DDI13 systems use corpus-
specific rules for filtering negative candidate re-
lations from the training data, which usually re-
sults in performance gains. As we aim to develop
a generic method easily applicable to any corpus
we did not implement these DDI filtering rules.

3.3 The CHEMPROT Task

Of all the evaluated corpora the CHEMPROT cor-
pus used in the BioCreative VI Chemical–Protein
relation extraction task is the most recent. Thus it
provides an interesting point of comparison with
current methods in relation extraction. All of our
models outperform the task winning system com-
bination of Peng et al. (2017b), with our mixed five
model ensemble achieving a 5 pp increase over the
shared task winning result. The CHEMPROT cor-
pus is relatively large compared to its low num-
ber of five relation types, possibly making learning
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Corpus P R F Team / System Method

GE09

58.48 46.73 51.95 * TEES (Björne et al., 2009) SVM
- - 55.96 6 x system ensemble (Kim et al., 2009) Metasystem
63.19 50.28 56.00 EventMine (Miwa et al., 2010) SVM
- - 57.4 M3+enju (Riedel and McCallum, 2011) Joint inference
65.19 52.67 58.27 EventMine+PR+FE (Miwa et al., 2012) SVM
63.08 53.96 58.16 BioMLN (Venugopal et al., 2014) MLN and SVM
64.94 48.08 55.25 Ours (single) CNN
67.58 48.02 56.15 Ours (5 x ensemble) CNN
69.87 49.34 57.84 Ours (mixed 5 x ensemble) CNN

GE11

57.65 49.56 53.30 † TEES (Björne and Salakoski, 2011) SVM
64.75 49.41 56.04 * FAUST (Riedel et al., 2011) Joint inference / parser
63.48 53.35 57.98 EventMine-CR (Miwa et al., 2012) SVM
63.61 53.42 58.07 BioMLN (Venugopal et al., 2014) MLN and SVM
66.46 48.96 56.38 Stacked Generalization (Majumder et al., 2016) SVM
64.86 50.53 56.80 Ours (single) CNN
68.76 49.97 57.87 Ours (5 x ensemble) CNN
69.45 49.94 58.10 Ours (mixed 5 x ensemble) CNN

EPI11

53.98 52.69 53.33 * TEES (Björne and Salakoski, 2011) SVM
54.42 54.28 54.35 EventMine multi-corpus (Miwa et al., 2013) SVM
65.97 45.79 54.06 Ours (single) CNN
65.40 48.84 55.92 Ours (5 x ensemble) CNN
64.93 50.00 56.50 Ours (mixed 5 x ensemble) CNN

ID11

48.62 37.85 42.57 † TEES (Björne and Salakoski, 2011) SVM
65.97 48.03 55.59 * FAUST (Riedel et al., 2011) Joint inference / parser
- - 55.6 M3+Stanford (Riedel and McCallum, 2011) Joint inference
61.33 58.96 60.12 EventMine EasyAdapt (Miwa et al., 2013) SVM
65.53 48.17 55.52 Ours (single) CNN
70.51 49.69 58.30 Ours (5 x ensemble) CNN
66.48 50.66 57.50 Ours (mixed 5 x ensemble) CNN

REL11

37.0 47.5 41.6 † VIB - UGhent (Van Landeghem et al., 2011) SVM
68.0 50.1 57.7 * TEES (Björne and Salakoski, 2011) SVM
70.87 59.56 64.72 Ours (single) CNN
76.30 48.09 58.99 Ours (5 x ensemble) CNN
73.65 61.17 66.83 Ours (mixed 5 x ensemble) CNN

DDI11

58.04 68.87 62.99 † TEES (Björne et al., 2011) SVM
60.54 71.92 65.74 * WBI (Thomas et al., 2011) kernels + CBR
69.83 55.49 61.84 Ours (single) CNN
69.78 57.21 62.88 Ours (5 x ensemble) CNN
77.57 49.93 60.75 Ours (mixed 5 x ensemble) CNN

DDI13 9.1

73.7 57.9 64.8 † TEES (Björne et al., 2013) SVM
73.4 69.8 71.5 * WBI-NER (Rocktäschel et al., 2013) CRF
72 63 67 Ours (single) CNN
71 63 67 Ours (5 x ensemble) CNN
73 63 68 Ours (mixed 5 x ensemble) CNN

DDI13 9.2

73.2 49.9 59.4 † TEES (Björne et al., 2013) SVM
64.6 65.6 65.1 * FBK-irst (Chowdhury and Lavelli, 2013) kernels
75.99 62.25 70.21 Multichannel CNN (Quan et al., 2016) CNN
73.4 69.6 71.48 Joint AB-LSTM Model (Sahu and Anand, 2017) LSTM
74.1 71.8 72.9 Hierarchical RNNs (Zhang et al., 2017) RNN
77.8 69.6 73.5 One-Stage Model Ensemble (Lim et al., 2018) RNN
75.80 70.38 72.99 PM-BLSTM (Zhou et al., 2018) LSTM
75.29 66.29 70.51 Ours (single) CNN
78.60 64.15 70.64 Ours (5 x ensemble) CNN
80.54 67.62 73.51 Ours (mixed 5 x ensemble) CNN

GE13

56.32 46.17 50.74 † TEES (Björne and Salakoski, 2013) SVM
58.03 45.44 50.97 * EVEX (Hakala et al., 2013) TEES + rerank
59.24 48.95 53.61 BioMLN (Venugopal et al., 2014) MLN and SVM
58.95 40.29 47.87 Ours (single) CNN
62.18 42.29 50.34 Ours (5 x ensemble) CNN
65.78 44.38 53.00 Ours (mixed 5 x ensemble) CNN

CG13

64.17 48.76 55.41 * TEES (Björne and Salakoski, 2013) SVM
55.82 48.83 52.09 † EventMine (Miwa and Ananiadou, 2013) SVM
60.45 51.34 55.52 Ours (single) CNN
63.92 51.00 56.74 Ours (5 x ensemble) CNN
66.55 50.77 57.60 Ours (mixed 5 x ensemble) CNN

PC13

55.78 47.15 51.10 † TEES (Björne and Salakoski, 2013) SVM
53.48 52.23 52.84 * EventMine (Miwa and Ananiadou, 2013) SVM
58.31 47.08 52.10 Ours (single) CNN
58.66 48.49 53.09 Ours (5 x ensemble) CNN
62.16 50.34 55.62 Ours (mixed 5 x ensemble) CNN

CP17

66.08 56.62 60.99 † TEES (Mehryary et al., 2017) SVM
56.10 67.84 61.41 † RSC (Corbett and Boyle, 2017) LSTM
72.66 57.35 64.10 * NCBI (Peng et al., 2017b) SVM, CNN, and RNN
71.40 61.86 66.28 Ours (single) CNN
74.38 60.44 66.69 Ours (5 x ensemble) CNN
75.13 65.07 69.74 Ours (mixed 5 x ensemble) CNN

Table 2: Results. Performance is shown in Precision, Recall and F-score, measured on the corpus test
set for related work and our TEES CNN method (single best model, 5 model ensemble, or mixed 5 model
ensemble with randomized train/validation set split). Shared task winning results are indicated with *
and shared task participant results with †. The highest F-score for each corpus is shown in bold. All of
our results except for DDI11 are evaluated using the official evaluation program or server of each task.
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Corpus 0 1 2 3 4
GE11 (n) 69.85 71.45 72.34 72.87 72.64
GE11 (e) 88.10 88.38 88.92 88.51 88.68
DDI13 (e) 59.46 59.23 58.22 56.50 54.37
CP17 (e) 54.55 55.46 56.51 56.98 56.25

Table 3: The effect of path embeddings. The im-
pact of using increasing depths of paths for em-
beddings is shown in terms of averaged F-score
on the development set for entity (n) and edge (e)
detection.

easier for our system.

3.4 Effect of Deep Parsing
Compared to neural networks which use either
only word vectors, or model parse structure at the
network level (e.g. graph-LSTMs), an interesting
aspect of our method is that it can function both
with and without parse information. By turning
dependency path features on and off we can evalu-
ate the impact of deep parsing on the system (See
Table 3).

The path embeddings have the most impact on
GE11 entity detection, where these paths link the
entity candidate token to each other token. In
GE11 event argument extraction the role of the
path context embeddings is diminished. Surpris-
ingly, on the DDI13 9.2 relation corpus path em-
beddings reduce performance, perhaps due to very
long sentences and very indirect relations between
the entity pairs. However, on another relation cor-
pus, the CHEMPROT corpus, the path embed-
dings again increase performance, perhaps indi-
cating that the CHEMPROT relation annotations
follow more closely sentence syntax.

3.5 Computational Requirements
Our system improves on performance compared to
the SVM-based TEES, but at the cost of increased
computational requirements. The neural network
effectively requires a specialized GPU for training
and even then training times can be an issue.

For example, training the original TEES system
on a four-core CPU for the GE09 task takes about
3 hours and classification of the test set with this
model can be done in four minutes. For compari-
son, our GE09 neural network with 20 models for
all four stages takes around nine hours to train on
a Tesla P100 GPU. However, test set classification
with a single model takes only about three min-
utes and using a five model ensemble about ten
minutes.

Thus, while training the proposed method is
much slower, classification can be performed rel-
atively quickly. While the hardware and time re-
quirements are much higher than with the SVM
system, our proposed system can for some corpora
achieve performance increases of even 10 pp. In
most applications such gains are likely worth the
increased computational requirements.

4 Conclusions

We have developed a convolutional neural net-
work system that together with different vector
space embeddings can be applied to diverse text
classification tasks. We replace the TEES sys-
tem’s event extraction pipeline components with
this network and demonstrate considerable perfor-
mance gains on a set of large event and relation
corpora, achieving state-of-the-art performance on
many of them and the best reported performance
on the GE11, EPI11, REL11, CG13, PC13, DDI13
9.2 and CP17 corpora.

To the best of our knowledge our system rep-
resents the first application of neural networks to
extraction of complex events from the BioNLP
GENIA corpora. Our system uses a unified lin-
ear sentence representation where graph analyses
such as dependency parses are fully included using
our dependency path embeddings, and we demon-
strate that these path embeddings can increase the
performance of the convolutional model. Unlike
systems where separate subnetworks are used to
model graph structures, our network receives all
of the information through the unified linear repre-
sentation, allowing the whole model to learn from
all the features.

The Turku Event Extraction System provides
a unified approach for utilizing a large number
of event and relation extraction corpora. As we
integrate our proposed convolutional neural net-
work method into the TEES system, it can be used
as easily as the original TEES system, with the
framework handling tasks such as preprocessing
and format conversions. Our Keras-based neural
network implementation can also be extended and
modified, allowing continued experimentation on
the wide set of corpora supported by TEES. We
publish our method and our trained neural network
models as part of the TEES open source project4.

4https://github.com/jbjorne/TEES/wiki/
TEES-CNN-BioNLP18
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Abstract

In this paper, we present a novel Biomedi-
cal Question Answering system, BioAMA:
“Biomedical Ask Me Anything” on task
5b of the annual BioASQ challenge (Ba-
likas et al., 2015). We focus on a wide va-
riety of question types including factoid,
list based, summary and yes/no type ques-
tions that generate both exact and well-
formed ‘ideal’ answers. For summary-
type questions, we combine effective IR-
based techniques for retrieval and diver-
sification of relevant snippets for a ques-
tion to create an end-to-end system which
achieves a ROUGE-2 score of 0.72 and a
ROUGE-SU4 score of 0.71 on ideal an-
swer questions (7% improvement over the
previous best model). Additionally, we
propose a novel Natural Language Infer-
ence (NLI) based framework to answer
the yes/no questions. To train the NLI
model, we also devise a transfer-learning
technique by cross-domain projection of
word embeddings. Finally, we present a
two-stage approach to address the factoid
and list type questions by first generating a
candidate set using NER taggers and rank-
ing them using both supervised and unsu-
pervised techniques.

1 Introduction

In the era of ever advancing medical sciences and
the age of the internet, a remarkable amount of
medical literature is constantly being posted on-
line. This has led to a need for an effective re-
trieval and indexing system which can allow us
to extract meaningful information from these vast
knowledge sources. One of the most effective and
natural ways to leverage this huge amount of data

in real life is to build a Question Answering (QA)
system which will allow us to directly query this
data and extract meaningful and structured infor-
mation in a human readable form.

Our key novel contributions are as follows:

1. We achieve state of the art results in auto-
matic evaluation measures for the ideal an-
swer questions in Task 5b of the BioASQ
dataset, yielding a 7% improvement over
the previous state of the art system (Chandu
et al., 2017).

2. We introduce a novel NLI-based approach for
answering the yes/no style questions in the
BioASQ dataset. We model this as a Textual
Entailment (TE) problem and use Hierarchi-
cal Convolutional Neural Network based In-
fersent models (Conneau et al., 2017) to an-
swer the question. To address the challenge
of inadequate training data, we also intro-
duce a novel embedding projection technique
which allows for effective transfer learning
from models trained on larger datasets with
a different vocabulary to work well on the
much smaller BioASQ dataset.

3. We present two-stage approach to answer
factoid and list type questions. By using an
ensemble of biomedical NER taggers to gen-
erate a candidate answer set, we devise unsu-
pervised and supervised ranking algorithms
to generate the final predictions.

4. We improve upon the MMR framework for
relevant sentence selection from the chosen
snippets that was introduced in the work of
Chandu et al. (2017). We experiment with a
number of more informative similarity met-
rics to replace and improve upon the baseline
Jaccard similarity metric.
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2 Relevant Literature

Biomedical Question answering has always been
a hot topic of research among the QA commu-
nity at large due to the relative significance of the
problem and the challenge of dealing with a non
standard vocabulary and vast knowledge sources.
The BioASQ challenge has seen large scale par-
ticipation from research groups across the world.
One of the most prominent among such works
is from Chandu et al. (2017) who experiment
with different biomedical ontologies, agglomer-
ative clustering, Maximum Marginal Relevance
(MMR) and sentence compression. However, they
only address the ideal answer generation with their
model. Peng et al. (2015) in their BioASQ sub-
mission use a 3 step pipeline for generating the
exact answers for the various question types. The
first step is question analysis where they subdivide
each question type into finer categories and clas-
sify each question into these subcategories using a
rule based system. They then perform candidate
answer generation using POS taggers and use a
word frequency-based approach to rank the can-
didate entities. Wiese et al. (2017) propose a neu-
ral QA based approach to answer the factoid and
list type questions where they use FastQA: a ma-
chine comprehension based model (Weissenborn
et al., 2017) and pre-train it on the SquaD dataset
(Rajpurkar et al., 2016) and then finetune it on the
BioASQ dataset. They report state of the art re-
sults on the Factoid and List type questions on the
BioASQ dataset. Another prominent work is from
Sarrouti and Alaoui (2017) who handle the gener-
ation of the exact answer type questions. They use
a sentiment analysis based approach to answer the
yes/no type questions making use of SentiWord-
Net for the same. For the factoid and list type
questions they use UMLS metathesaurus and term
frequency metric for extracting the exact answers.

3 The BioASQ challenge

BioASQ challenge (Balikas et al., 2015) is a large
scale biomedical question answering and seman-
tic indexing challenge, which has been running as
an annual competition since 2013. We deal with
the Phase B of the challenge which deals with
large scale biomedical question answering. The
dataset provides a set of questions and snippets
from PubMed, which are relevant to the specific
question. It also provides users with a question
type and urls of the relevant PubMed articles it-

self. The 5b version of this dataset consists of
1,799 questions in 3 distinct categories:

1. Factoid type: This question type has a sin-
gle entity as the ground truth answer and ex-
pects the systems to output a set of entities
ordered by relevance; systems are evaluated
using the mean reciprocal rank (Radev et al.,
2003) of the answer entities with reference to
the ground truth answer entity.

2. List type: This answer type expects the sys-
tem to return an unordered list of entities as
answer and evaluates them using a F-score
based metric against a list of reference an-
swer entities which can vary in number.

3. Yes/No type: This question type asks the sys-
tems to answer a given question with a binary
output namely yes or no. The questions typi-
cally require reasoning and inference over the
evidence snippets to be able to answer the
questions correctly.

The dataset expected the participants to gener-
ate two types of answers, namely, exact and ideal
answers. In ideal answers, the systems are ex-
pected to generate a well formed paragraph for
each of the question types which explains the an-
swer to the question. They call these answers
‘ideal’ because it is what a human would expect
as an answer by a peer biomedical scientist. In the
exact answers the systems are expected to gener-
ate “yes” or “no” in the case of yes/no questions,
named entities in the case of factoid questions and
list of named entities in the case of list questions.

4 Ideal Answers

This section describes our efforts to address the
ideal answer category on BioASQ.

Our pipeline for ideal answers has three stages.
The first stage involves pre-processing of answer
snippets and ranking of answer sentences by var-
ious retrieval models described in the following
sections. The retrieval model scores form the
soft positional component introduced in the MMR
algorithm. We perform sentence selection next,
where we select the top 10 best sentences for gen-
erating an ideal answer. The third and final stage
involves tiling together the selected sentences to
generate a coherent, non redundant, ideal answer
for the given question as mentioned in (Chandu
et al., 2017). The subsequent subsections explain
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Figure 1: Pipeline for ideal answer generation

the pipeline for ideal answer type questions in de-
tail (see Figure 1).

4.1 Question-Sentence Retrieval
In this section we describe various approaches
which were adapted to improve the initial re-
trieval of candidate sentences. We used the stan-
dard BM25 algorithm with custom pre-processing
of excluding medical entities from stop word re-
moval.

4.1.1 Indri
Indri (Strohman et al., 2005) is a retrieval model
based on the use of statistical language models
and query likelihood. We employed a two-stage
smoothing that considers characteristics of both
the question and answer sentences.

The Indri score for a candidate sentence is esti-
mated in a collection (C) of snippets as follows:

p(qi|d) = (1− λ)pmle(qi|d) + λpmle(qi|C) (1)

pmle(qi|d) =
tf + µpmle(qi|C)

length(d) + C
(2)

pmle(qi|C) =
ctf

length(C)
(3)

where, λ is the coefficient for linear interpola-
tion based smoothing that accounts for question
length smoothing and also compensates for differ-
ences in the word importance (gives idf-effects).
Since the questions are of moderate length, after
tuning, the best value of λ is attained at 0.75

In equation 2, µ is parameter for Bayesian
smoothing using Dirichlet priors used for sentence
length normalization, improving the estimates of
the sentence sample.Since sentences of snippets
can be of varying lengths, after tuning, the best
value of µ is attained at 5000.

4.2 Sentence Selection
Once the top most relevant snippets have been
chosen, we want to choose sentences from these

snippets which are most relevant to a specific
question. In this section we demonstrate how this
selection is done.

4.2.1 MMR
We use the Maximum Marginal Relevance
(MMR) algorithm (Forst et al., 2009) as the base-
line for sentence selection. In contrast to the ba-
sic Jaccard similarity metric used in previous work
(Chandu et al., 2017), we experimented with other
similarity measures which consistently perform
better than the Jaccard baseline. MMR ensures the
selected set contains non-redundant yet complete
information. The sentences are selected based on
two aspects, the sentence’s relevance to the ques-
tion and how different it is to the already selected
sentences. At each step we select a sentence to ap-
pend to the ranking based on the equation below.

si = arg max
sj∈R\S

(λ · sim(q, si)

− (1− λ) ·maxs∈S(simsent(si, sj))) (4)

We define a custom similarity metric between
sentences which uses positional values of sen-
tences from the initial ranking as follows:

simsent(si, sj) = (1− β) · (1− rank(di)

n
)

+ β · sim(si, sj) (5)

Here, simsent(si, sj) is the sentence to sentence
similarity, sim(q, si) is the question - sentence
similarity, rank(di) is the rank of the snippet di,
which contains the sentence si, S are Sentences al-
ready selected for summary i.e. which are ranked
above this position. In the above equation, we
tried various metrics to account for the sentence to
sentence similarity. In cases where β is non-zero,
equation 4 is identified as our SoftMMR which in-
cludes soft scoring based on sentence position.
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β Configuration Rouge-2 Rouge-SU4
- baseline 0.7064 0.6962
0.5 BM25, Jaccard 0.7175 0.7110
0.5 BM25, Dice 0.7193 0.7106
0.6 BM25, Dice 0.7133 0.7053
0.6 BM25, Jaccard 0.7133 0.7053
0.5 Indri, Jaccard 0.7206 0.7135
0.5 Indri, Dice 0.7113 0.7052

Table 1: ROUGE scores for different experiments
on similarity metrics for extractive summarization

4.2.2 Dice’s similarity Coefficient (DSC)
Dice’s similarity Coefficient (DSC) (Srensen,
1948) is a quotient of similarity between two sam-
ples and ranges between 0 and 1 calculated as

dsc = (2 ∗ nt)/(nx + ny)

where nt is the number of character bigrams found
in both strings, nx is number of bigrams in string
x and ny is the number of bigrams in string y.
We used Dice coefficient as a similarity metric be-
tween two sentences in 5

4.3 Evaluation

The pipeline described above is primarily de-
signed to improve the ROUGE evaluation metric
(Lin, 2004). Although a higher ROUGE score
does not necessarily reflect improved human read-
ability, MMR can improve readability by reduc-
ing redundancy in generated answers. Results for
ideal answers for Task 5 phase b are shown in Ta-
ble 1. We also compare our results with other state
of the art approaches in Table 4.

5 Exact answers

Exact answers represent the subset of the BioASQ
task where the responses are not structured para-
graphs, but instead either a single entity (yes/no
types) or a combination of named entities (factoid
or list types) that compose the correct reply to the
given query. The main idea refers to evaluating if
a response is able to capture the most important
components of an answer. For factoid or list types
of questions, we must return a list of the most
likely entities to compose the answer. The main
difference between them is that ground truth for
factoid questions is composed of only one correct
answer and the evaluation method is Mean Recip-
rocal Rank (MRR). However, the ground truth for

list is an actual list of correct answers with vary-
ing length, which uses F-measure as an evaluation
metric. The BioASQ submission format allows
everyone to submit 5 ranked answers for factoid
and 1 to 10 answers for list. For yes/no questions,
the ground truth is simply the yes or no label, us-
ing F-measure as an evaluation metric.

5.1 Yes/No type questions
Although yes/no questions require a simple bi-
nary response, calculating yes/no responses for the
BioASQ question can be challenging:

1. There is an inherent class-bias towards the
questions answered by yes in the dataset;

2. The dataset is quite small for training a com-
plex semantic classifier;

3. An effective model must perform reasoning
and inference using the limited information
it has available, which is extremely difficult
even for non-expert humans.

Due to the nature of the question type, these
questions can not be simply classified by using
word-level features. Learning the semantic rela-
tionship between the question and the sentences
in the documents is quite elemental to solving this
task. Hence, we present a Natural Language Infer-
ence (NLI)-based system that learns if the asser-
tions made by the questions are true in the context
of the documents. As a part of this system, we
first generate assertions from questions and eval-
uate the entailment or contradiction of these as-
sertions using a Recognizing Textual Entailment
(RTE) model. We then use these entailment scores
for all the sentences in the snippets or documents
to heuristically evaluate if the answer to the yes/no
question.

5.1.1 Assertion Extraction
The first step towards answering the question is to
identify the assertions made by the question. For
this, we use a statistical natural language parser
to identify the syntactical structure in the ques-
tion. We, then, heuristically generate assertions
from the questions.
Consider the following example question:

Is the monoclonal antibody Trastuzumab (Her-
ceptin) of potential use in the treatment of prostate
cancer?

Upon parsing of this question, we have the
phase constituents of the question. Almost all
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yes/no questions have a standard format that be-
gins with an auxiliary verb followed by a noun
phrase. In this example, we can toggle the ques-
tion word with the first noun phrase to generate the
assertion:

The monoclonal antibody Trastuzumab (Her-
ceptin) is of potential use in the treatment of
prostate cancer.

In a similar manner, we then create positive as-
sertions for all yes/no questions. As a simple ex-
tension to this, we can also create negative asser-
tions by using not along with the auxiliary verbs.

5.1.2 Recognizing Textual Entailment
The primary goal of our NLI module is to infer
if any of the sentences among the answer snip-
pets entails or contradicts the assertion posed by
the question. We segmented the answer snippets
for each question to produce a set of assertion-
sentence pairs. To then evaluate if these asser-
tions can be inferred or refuted from the sentences,
we built a Recognizing Textual Entailment (RTE)
model using the InferSent model (Conneau et al.,
2017), which computes sentence embeddings for
every sentence and has been shown to work well
on NLI tasks. In training InferSent, we experi-
enced two major challenges:

1. The number of assertion-sentence pairs in
BioASQ is too few to train the textual entail-
ment model effectively.

2. The models that are pre-trained on SNLI
(Bowman et al., 2015) datasets use GLOVE
(Pennington et al., 2014) embeddings that
cannot be used for biomedical corpora
which have quite different characteristics and
vocabulary compared to the corpora that
GLOVE was trained on.

However, we have pre-trained embeddings
available that were trained on PubMed and PMC
texts along with Wikipedia articles (Pyysalo et al.,
2013). To leverage these embeddings, we im-
plemented an embedding-transformation method-
ology to projecting the PubMed embeddings to
GLOVE embedding space and then fine tune the
pre-trained InferSent on the BioASQ dataset for
textual entailment. The hypothesis is that, since
both the embeddings had a significant fraction
of documents in common (Wikipedia corpus), by
transforming the embeddings from one space to
another, the sentence embeddings from the model

would still represent a lot of the semantic features
of the input sentences that can subsequently used
for classifying textual entailment. For this task,
we explore both linear and non-linear methods of
embedding transformation.

While simple, a linear projection of embeddings
from one space to another has shown to be quite
effective for a lot of multi-domain tasks. By im-
posing an orthogonality constraint on the project
matrix, we model this problem as an orthogonal
Procrustes problem:
Let dp and dg be the embedding dimensions of
PubMed embeddings and GLOVE embeddings re-
spectively. If Ep and Eg are the matrices of
PubMed embeddings (N × dp) and their corre-
sponding GLOVE embeddings (N × dg) for the
words that both the embeddings have in common
(N ), the projection matrix (dg × dp) can be com-
puted as,

W ∗ = arg min
W

‖WEᵀ
p − Eᵀ

g‖

subject to the constraint thatW is orthogonal. The
solution to this optimization problem is given by
using the singular value decomposition of Eᵀ

gEp,
i.e.W ∗ = UV ᵀ where Eᵀ

gEp = UΣV ᵀ With this
simple linear transformation, we then computed
the transformed embeddings for all the words in
the PubMed embeddings that are not present in the
GLOVE embeddings.

We also explore a non-linear transformation
using a feed-forward neural network where the
the objective is to learn function f such that,
f(ep; θ) = eg where, ep and eg are PubMed and
GLOVE embeddings respectively. We model f
using a deep neural network with parameters θ,
and train using the common words in both the em-
beddings.

The transformed embeddings from these mod-
els were used in conjunction with the pre-trained
InferSent model to encode the semantic features of
the biomedical sentences as sentence embeddings.
Subsequently, we employ these sentence embed-
dings of the assertion-sentence pairs for a partic-
ular question to train a three-way neural classifier
to predict if the relationship between the two is en-
tailment, contradiction or neither.

It is worth noting here that the embedding trans-
formation techniques that we implemented are not
specific to the NLI tasks and, in fact, enable trans-
fer learning of a much broader set of tasks on
smaller datasets like BioASQ by using the pre-
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trained models on large datasets of other domains
and fine-tuning on the smaller dataset.

5.1.3 Classification
As a final step, we use the textual entailment re-
sults for each assertion-sentence pair generated
to heuristically classify the answer as yes or no.
Since our system comprises multiple stages with
the errors of each cascading to the final stage, we
do not get perfect entailment results for the pairs.
However, since we have a lot of pairs, we aggre-
gate these entailment scores to compute the overall
entailment or contraction scores to reduce the ef-
fect of accumulated errors for individual pairs on
classification.

We used a simple unsupervised approach for
classification by just comparing the overall entail-
ment and contradiction scores, i.e. if the total
number of snippet sentences that entail the asser-
tion are Ne and the total number of snippet sen-
tences that contradict are Nc, then,

answerq =

{
yes if Ne ≥ Nc

no otherwise

The end-to-end architecture of our system from
the input questions and snippets to the answer is
shown Figure 2.

5.1.4 Experimental Details
For parsing the questions, we used BLLIP
reranking parser (Charniak and Johnson, 2005)
(Charniak-Johnson parser) and used the model
GENIA+PubMed for biomedical text. For train-
ing the textual entailment classifier using In-
ferSent’s sentence embeddings, we used Stan-
ford’s SNLI dataset (Bowman et al., 2015) to
achieve a test-set accuracy of 84.7%.

5.1.5 Results
The performance of the system on yes/no ques-
tions on the training set of phase 5b has been tab-
ulated in table 2. While the accuracies are better
than a random classifier, the task is far from be-
ing solved. Nonetheless, the classifier does handle
the class bias in the training data and performance
similarly on both the categories of answers. More-
over, this classifier achieved the second best test
accuracy of 65.6% on phase 5 of BioASQ 5b (Ta-
ble 4). While we implemented a simple heuristic
based answer-classifier, we believe that a super-
vised classifier using the sentence embeddings as

Category Accuracy (%)
Yes 56.5 (252/444)
No 58.9 (33/56)

Overall 57.0 (285/500)

Table 2: Class-wise accuracies on yes/no ques-
tions in training set of BioASQ Phase 5b

well as fine-tuning of the textual entailment clas-
sifier on BioASQ dataset would considerably en-
hance the overall performance of the system.

5.2 Factoid & List Type Questions
Most of the state-of-the-art models for this task
involve training end-to-end deep neural architec-
tures to identify a subset of entities (or phrases)
from the relevant snippets that are most likely to
answer the question. But, owing to the small
size of the dataset, we cannot effectively train
such models on the BioASQ dataset. Hence, we
adopted a two-stage approach that first finds a set
of entities that could potentially answer the ques-
tion and a supervised classifier to rank the entities
on the basis of their likelihood of answering the
question.

For devising the model and evaluation, we pri-
marily focused on factoid type questions since the
methodology for the list-type question would be
largely similar and different only in the number of
top entities returned.

5.2.1 Candidate Selection
We found that the most critical step in the an-
swer generation process is to identify the set of
potential answer candidates that can be fed into
a classifier or ranker to identify the best candi-
dates. At first, in order to accomplish this, we used
Named Entity Recognition (NER) taggers to form
a set of candidate answers. The taggers that we
used include Gram-CNN (Zhu et al., 2017), Ling-
Pipe(Carpenter, 2007) and PubTator (Wei et al.,
2013). To analyze the effectiveness of these tag-
gers, we performed an analysis on BioASQ train-
ing set 5b by evaluating the fraction of questions
whose answers are included in the candidate entity
set by the taggers.

Table 3 shows the relative performances of the
three taggers, their union as well as intersection
on train dataset of BioASQ 5b factoid type ques-
tions. A question is exactly answered if a tagger
tags an entity that matches an answer exactly, and
it is partially answered if there is a non-zero over-
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Figure 2: The complete system for yes/no answer classification using a question and relevant snippets

lap with an entity tagged and an answer for the
question. We can notice that PubTator and Ling-
Pipe have a good recall with relatively low preci-
sion, while Gram CNN has high recall but low pre-
cision. However, the final results with the Named
Entity Taggers were not aligned with our expec-
tations. This is mostly because the answers for
BioASQ are usually a combination of BioNERs
and complementary words, making it hard to de-
fine a pruning method that is able to yield satisfac-
tory results. Surprisingly, a group of candidates
formed of the 100 most frequent n-grams (n from
1 to 4) from the snippets’ sentences were a bet-
ter candidate group than the NER approach for
our supervised ranking method (with NER taggers
used as features instead of candidate entities).

5.2.2 Classification Features
Upon computing the set of candidate answers, we
use the question q, set of relevant snippet sen-
tences S and entity type ti to devise a feature vec-
tor for each individual entity ei that comprises the
following features:

• BM25 Score: The BM25 scores for all the
sentences are computed with the question as
the query. Then, the scores of the sentence
that contain the entity are aggregated to com-
pute the BM25 score for the entity, i.e.

ScoreBM25(ei) =
∑

s∈S
ScoreBM25(ei) · 1(s, ei)

where 1(s, ei) is 1 iff sentence s has entity ei.
• Indri Score: Computed in the same manner

as BM25 score in (i)
• Number of Sentences: Number of sentences
s ∈ S that contain the entity ei

• NER Tagger: A multinomial feature that rep-
resents which tagger among PubTator, Ling-
Pipe and GramCNN the entity was extracted
with. This feature is included to identify the
relative strengths of the different taggers.
• Tf Idf: The aggregate Tf-Idf scores of the en-

tity with S as the set of documents
• Entity Type: Is a boolean feature that is 1 if

the type of the entity (for example, gene) is
present in the question, and 0 otherwise.
• Relative Frequency: The amount of times the

entity appears on the snippets’ sentences di-
vided by the total appearance of all of the rel-
evant entities.
• Query Presence: Is a boolean feature that is

1 if the query contains the entity completely
and 0 otherwise.

NER Tags
% of questions % of

Exactly Partially tokens
Answered Answered extracted

PubTator 32.05 72.15 52.27
Gram CNN 34.90 99.03 94.97
LingPipe 26.67 76.75 11.06

Union 49.04 99.65 99.25
Intersection 16.29 38.00 3.33

Table 3: Baseline recall of different NER Taggers
measured by the fraction of questions that can be
answered by an ideal classifier if the candidates
are chosen using the tagger. We also measure pre-
cision as the fraction of total unique tokens from
the documents that are tagged.

5.2.3 Unsupervised Ranking
As a baseline, we first present an unsupervised
ranking system for the candidate answers. In this
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Model Exact Answers Exact Answers Exact Answers Ideal Answers
Yes/No type Factoid type List type All types

Accuracy (%) MRR F1 score ROUGE-2
(Chandu et al., 2017) - - - 0.653

(Peng et al., 2015) 0.714 0.272 0.187 -
(Wiese et al., 2017) - 0.392 0.361 -

Sarrouti and Alaoui (2017) 0.461 0.207 0.243 0.577
BioAMA(Ours) 0.653 0.195 0.234 0.721

Table 4: Comparison of our model with other state of the art approaches

Figure 3: Unsupervised generation of factoid/list
type answers using NER taggers and BM25 re-
trieval model

system, the snippet sentences are first ranked using
the BM25 model. Then, for each entity, a score is
computed by aggregating the BM25 scores of the
sentences in which the entity is present. The ra-
tionale for this is that the entities in the top ranked
sentences are more likely to be the answers. This
entity score (which is equivalent to the BM25
score described in 5.2.2) is then used to rank the
entities and return the top k entities as answers to
the question. The overall unsupervised system is
shown in Figure 3.

5.2.4 Learning To Rank

In order to rank the candidate entities in a su-
pervised way, we use a ranking classifier based
on the features described in 5.2.2. For ranking,
we choose point-wise ranking classifiers over pair-
wise and list-wise, because it yields similar results
to ranking methods with a less time-consuming
and computationally expensive approach. We use
a traditional SVM-Light (Joachims, 1998) imple-
mentation for point-wise ranking. The data for su-
pervision is derived from the actual answers and
candidate entities are ranked based on their over-

lap with the actual answers.
Once we rank the entities, we use a naive ap-

proach of merely taking top 5 entities as answers
for factoid type and top 10 for list-type. One
could, however, devise a separate model for iden-
tifying the number of top entities to return as an-
swers for the list-type answers.

We found that using just the NER entities as the
answer candidates, the classifier could achieve an
MRR of 0.06 on factoid type questions and an F-
measure of 0.18 for list type questions. However,
by having all the n-grams (n = 1, 2, 3, 4) from the
snippets as candidate answers and using NER tags
as LeToR features, the performance was improved
to an MRR of 0.195 on factoid type questions and
an F1 score of 0.234 on list type questions. The
results are summarized in Table 4.

6 Conclusion and Future Work

In this paper, we present a framework for tackling
both ideal and exact answer type questions and
obtain state of the art results on the ideal answer
type questions on the BioASQ dataset. For exact
answers, we incorporate neural entailment mod-
els along with a novel embedding transformation
technique for answering yes/no questions, and em-
ploy LeToR ranking models to answer factoid/list
based questions. For ideal answers, we improve
the IR component of extractive summarization.
Although this improves ROUGE scores consider-
ably, the human readability aspect of the generated
summary answer is not greatly improved. As fu-
ture directions, we believe that effective abstrac-
tive summarization based approaches like Pointer
Generator Networks (See et al., 2017) and Re-
inforcement Learning based techniques (Paulus
et al., 2017) would improve the human readability
of ideal answers. We aim to continue our research
in this direction to achieve a good balance between
ROUGE score and human readability.

116



References
Georgios Balikas, Anastasia Krithara, Ioannis Partalas,

and George Paliouras. 2015. Bioasq: A challenge on
large-scale biomedical semantic indexing and ques-
tion answering. In Revised Selected Papers from
the First International Workshop on Multimodal Re-
trieval in the Medical Domain - Volume 9059, pages
26–39, New York, NY, USA. Springer-Verlag New
York, Inc.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large an-
notated corpus for learning natural language infer-
ence. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguis-
tics.

Bob Carpenter. 2007. Lingpipe for 99.99% recall
of gene mentions. In Proceedings of the Second
BioCreative Challenge Evaluation Workshop, vol-
ume 23, pages 307–309.

Khyathi Chandu, Aakanksha Naik, Aditya Chan-
drasekar, Zi Yang, Niloy Gupta, and Eric Nyberg.
2017. Tackling biomedical text summarization:
Oaqa at bioasq 5b. In BioNLP 2017, pages 58–66.
Association for Computational Linguistics.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and maxent discriminative
reranking. In ACL 2005, 43rd Annual Meeting of
the Association for Computational Linguistics, Pro-
ceedings of the Conference, 25-30 June 2005, Uni-
versity of Michigan, USA, pages 173–180.

Alexis Conneau, Douwe Kiela, Holger Schwenk,
Loı̈c Barrault, and Antoine Bordes. 2017. Su-
pervised learning of universal sentence representa-
tions from natural language inference data. CoRR,
abs/1705.02364.

Jan Frederik Forst, Anastasios Tombros, and Thomas
Roelleke. 2009. Less is more: Maximal marginal
relevance as a summarisation feature. In Advances
in Information Retrieval Theory, pages 350–353,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Thorsten Joachims. 1998. Text categorization with
support vector machines: Learning with many rel-
evant features. In European conference on machine
learning, pages 137–142. Springer.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Proc. ACL workshop on
Text Summarization Branches Out, page 10.

Romain Paulus, Caiming Xiong, and Richard Socher.
2017. A deep reinforced model for abstractive sum-
marization. CoRR, abs/1705.04304.

Shengwen Peng, Ronghui You, Zhikai Xie, Beichen
Wang, Yanchun Zhang, and Shanfeng Zhu. 2015.
The fudan participation in the 2015 bioasq chal-
lenge: Large-scale biomedical semantic indexing
and question answering. In CLEF.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

S. Pyysalo, F. Ginter, H. Moen, T. Salakoski, and
S. Ananiadou. 2013. Distributional semantics re-
sources for biomedical text processing. In Proceed-
ings of LBM 2013, pages 39–44.

Dragomir Radev, Y Hong Qi, Harris Wu, and Weiguo
Fan. 2003. Evaluating web-based question answer-
ing systems.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev,
and Percy Liang. 2016. Squad: 100, 000+ ques-
tions for machine comprehension of text. CoRR,
abs/1606.05250.

Mourad Sarrouti and Said Ouatik El Alaoui. 2017.
A biomedical question answering system in bioasq
2017. In BioNLP 2017, pages 296–301. Association
for Computational Linguistics.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. CoRR, abs/1704.04368.

Trevor Strohman, Donald Metzler, Howard Turtle, and
W. Bruce Croft. 2005. Indri: a language-model
based search engine for complex queries.

T. Srensen. 1948. A method of establishing groups of
equal amplitude in plant sociology based on simi-
larity of species and its application to analyses of
the vegetation on danish commons. In Kongelige
Danske Videnskabernes Selskab, pages 1–34.

Chih-Hsuan Wei, Hung-Yu Kao, and Zhiyong Lu.
2013. Pubtator: a web-based text mining tool
for assisting biocuration. Nucleic acids research,
41(W1):W518–W522.

Dirk Weissenborn, Georg Wiese, and Laura Seiffe.
2017. Fastqa: A simple and efficient neu-
ral architecture for question answering. CoRR,
abs/1703.04816.

Georg Wiese, Dirk Weissenborn, and Mariana L.
Neves. 2017. Neural question answering at bioasq
5b. CoRR, abs/1706.08568.

Qile Zhu, Xiaolin Li, Ana Conesa, and Ccile Pereira.
2017. Gram-cnn: a deep learning approach with lo-
cal context for named entity recognition in biomedi-
cal text. Bioinformatics, page btx815.

117



Proceedings of the BioNLP 2018 workshop, pages 118–128
Melbourne, Australia, July 19, 2018. c©2018 Association for Computational Linguistics

Phrase2VecGLM: Neural generalized language model–based
semantic tagging for complex query reformulation in medical IR

Manirupa Das†, Eric Fosler-Lussier†, Simon Lin‡, Soheil Moosavinasab‡,
David Chen‡, Steve Rust‡, Yungui Huang‡ & Rajiv Ramnath†

The Ohio State University† & Nationwide Children’s Hospital‡

{das.65, fosler.1, ramnath.6}@osu.edu
{Simon.Lin, SeyedSoheil.Moosavinasab, David.Chen3,
Steve.Rust, Yungui.Huang}@nationwidechildrens.org

Abstract

In fact-based information retrieval, state-
of-the-art performance is traditionally
achieved by knowledge graphs driven by
knowledge bases, as they can represent
facts about and capture relationships be-
tween entities very well. However, in
domains such as medical information re-
trieval, where addressing specific infor-
mation needs of complex queries may re-
quire understanding query intent by cap-
turing novel associations between poten-
tially latent concepts, these systems can
fall short. In this work, we develop
a novel, completely unsupervised, neural
language model–based ranking approach
for semantic tagging of documents, using
the document to be tagged as a query into
the model to retrieve candidate phrases
from top–ranked related documents, thus
associating every document with novel re-
lated concepts extracted from the text.
For this we extend the word embedding–
based generalized language model (GLM)
due to (Ganguly et al., 2015), to em-
ploy phrasal embeddings, and use the se-
mantic tags thus obtained for downstream
query expansion, both directly and in feed-
back loop settings. Our method, eval-
uated using the TREC 2016 clinical de-
cision support challenge dataset, shows
statistically significant improvement not
only over various baselines that use stan-
dard MeSH terms and UMLS concepts for
query expansion, but also over baselines
using human expert–assigned concept tags
for the queries, on top of a standard Okapi
BM25–based document retrieval system.

1 Introduction

Existing state-of-the-art information retrieval (IR)
systems such as knowledge graphs (Su et al., 2015;
Sun et al., 2015), or information extraction tech-
niques centered around entity relationships (Ritter
et al., 2013), that often rely on some form of weak
supervision from ontological or knowledgebase
(KB) sources, tend to perform quite reliably on
fact-based information retrieval and factoid ques-
tion answering tasks. However, such systems may
be limited in their ability to address the com-
plex information needs of specific types of queries
(Roberts et al., 2016; Diekema et al., 2003) in do-
mains such as clinical decision support (Luo et al.,
2008) or guided product search (Teo et al., 2016;
McAuley and Yang, 2016), due to: 1) complex and
subjective, or lengthy nature of the query contain-
ing multiple topics, 2) vocabulary mismatch be-
tween the query expression and knowledge repre-
sentations in the document collection, and 3) lack
of sufficiently complete knowledge bases of “re-
lated concepts”, covering all possible relations be-
tween candidate concepts that may exist in a col-
lection, essential for effectively addressing these
types of queries (Hendrickx et al., 2009).

We hypothesize, that similar to human ex-
perts who can determine the aboutness of an
unseen document by recalling meaningful con-
cepts gleaned from similar past experiences via
shared contexts, a completely unsupervised ma-
chine learning model could be trained to associate
documents within a large collection with meaning-
ful concepts discovered by fully leveraging shared
contexts within and between documents, thus sur-
facing “related” concepts specific to the current
context (Lin and Pantel, 2002; Halpin et al., 2007;
Xu et al., 2014; Kholghi et al., 2015a; Turney and
Pantel, 2010; Pantel et al., 2007; Bhagat and Hovy,
2013; Hendrickx et al., 2009). As a trivial exam-
ple, ordinarily unrelated concepts (noun phrases,

118



in this work) such as “scarlet macaw” and “rac-
coon” occurring in separate documents d1 and d2
may become related by a novel context such as
“exotic pets” that may occur as terms in a query
or as a phrase in a document dp which could be
related to both d1 and d2. If by some means,
documents d1 and d2 were semantically tagged
with the phrase “exotic pets” via dp, those docu-
ments would surface in the event of such a query
(Hendrickx et al., 2009; Bhagat and Ravichandran,
2008). This could thus help to better close the vo-
cabulary gap between potential user queries and
the documents. To our knowledge, ours is the
first work that employs word and phrase-level em-
beddings for local context analysis in a pseudo-
relevance feedback setting (Xu and Croft, 2000),
using a language model-based document ranking
framework, to semantically tag documents with
appropriate concepts for use in downstream re-
trieval tasks (Kholghi et al., 2015a; De Vine et al.,
2014; Sordoni et al., 2014; Zhang et al., 2016;
Zuccon et al., 2015; Tuarob et al., 2013).

The main contributions of our work, are as fol-
lows: 1) We present a novel use for a neural lan-
guage modeling approach that leverages shared
context between documents within a collection
via phrase-based embeddings (1, 2, and 3-grams),
finding the right trade-off between the local con-
text around each term versus its global context
within the collection, incorporating a local context
analysis-based pseudo-relevance feedback mech-
anism(Xu and Croft, 2000) for concept extrac-
tion. 2) Our method is fully unsupervised, i.e.
it includes no outside sources of knowledge in
the training, leveraging instead the shared contexts
within the document collection itself, via word and
phrasal embeddings, mimicking a human that po-
tentially reads through the documents in the col-
lection and uses the seen information to make rele-
vant concept tag judgments on unseen documents.
3) Our method presents a black-box approach for
tagging any corpus of documents with meaningful
concepts, treating it as a closed system. Thus the
concept associations can be pre-computed offline
or periodically, as new documents are added to
the collection and can reside outside of the docu-
ment retrieval system, allowing for it to be plugged
into any such system, or for the underlying re-
trieval system to be changed. It is also in contrast
to previous approaches to document categoriza-
tion for retrieval, such as those based on cluster-

ing, e.g. clustering by committee (Lin and Pantel,
2002) or semantic class induction as in (Lin and
Pantel, 2001b), LDA-based topic modeling (Blei
et al., 2003; Griffiths and Steyvers, 2004; Tuarob
et al., 2013) and supervised or active learning ap-
proaches (Kholghi et al., 2015a) for concept ex-
traction in information retrieval.

2 Background and Motivation

The problem of vocabulary mismatch in informa-
tion retrieval where semantic overlap may exist
while there is no lexical overlap, can be greatly
alleviated by the use of query expansion (QE)
techniques; whereby a query is reformulated to
improve retrieval performance and obtain addi-
tional relevant documents by expanding the origi-
nal query with additional relevant terms, and re-
weighting the terms in the expanded query (Xu
and Croft, 2000; Rivas et al., 2014). This can also
be done by learning semantic classes or related
candidate concepts in the text and subsequently
tagging documents or content with these seman-
tic concept tags, that could then serve as a means
for either query-document keyword matching, or
for query expansion, to facilitate downstream re-
trieval or question answering tasks (Lin and Pan-
tel, 2002; Xu and Croft, 2000; Lin and Pantel,
2001b; Xu et al., 2014; Bhagat and Ravichandran,
2008; Li et al., 2011; Tuarob et al., 2013; Halpin
et al., 2007; Lin and Pantel, 2001a; McAuley and
Yang, 2016). This is exactly the approach we
adopt in order to achieve query expansion in an au-
tomated, fully unsupervised fashion, using a neu-
ral language model for local relevance feedback
(Xu and Croft, 2000).

A major problem of approaches like LSA
(Deerwester et al., 1990) and LDA–based topic
modeling (Blei et al., 2003; Griffiths and Steyvers,
2004) is that they only consider word co-
occurrences at the level of documents to model
term associations, which may not always be re-
liable. Furthermore, these are parameterized ap-
proaches, where the number of topics K is fixed;
and the final topics learnt are available as bags of
words or n-grams from which topic labels must
yet be inferred by an expert. In contrast, word and
phrasal embeddings take into account local co-
occurrence information of terms in the top ranked
documents retrieved in response to a query (cor-
responding to the relevance feedback step in IR).
This leads to a better modeling of query ver-
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sus document term dependencies (Ganguly et al.,
2015; Xu and Croft, 2000) lending itself to direct
unsupervised extraction of meaningful terms re-
lated to a document, and eventually to the query.

Automatic query expansion techniques can be
further categorized as either global or local. While
global techniques rely on analysis of a whole
collection to discover word relationships, local
techniques emphasize analysis of the top-ranked
documents retrieved for a query (Xu and Croft,
2000; Manning et al., 2009). Global methods in-
clude: (a) query expansion/reformulation with a
thesaurus or ontology, e.g. WordNet, UMLS (b)
query expansion via automatic thesaurus genera-
tion, and (c) techniques like spelling correction
(Manning et al., 2009). Local methods adjust a
query relative to the documents that initially ap-
pear to match the query, which is the basic idea
behind our language modeling approach to seman-
tic tagging. Basic local methods comprise: (a) rel-
evance feedback, (b) pseudo-relevance feedback,
(or blind relevance feedback), and (c) (global) in-
direct relevance feedback (Manning et al., 2009).
Pseudo-relevance feedback automates the man-
ual part of relevance feedback, so that the user
gets improved retrieval performance without an
extended interaction.

Here, we find an initial set of most relevant doc-
uments, then assuming that the top k ranked doc-
uments are relevant, relevance feedback is done
as before under this assumption. Our proposed
method tries to exactly mimic the human user be-
havior via pseudo-relevance feedback to semanti-
cally pre-tag documents that can later aid down-
stream novel retrieval for direct querying or re-
fined querying. Thus, in our work we combine this
local feedback approach with our neural language
model, Phrase2VecGLM, as the query mechanism.
Using a pseudo-document representation of top-
K TFIDF terms for the document as a query into
the GLM, we make novel use of Phrase2VecGLM,
to semantically tag documents with phrases rep-
resentative of latent concepts within those docu-
ments. This makes the collection more readily
searchable by use of these tags for query expan-
sion in downstream IR, particularly helpful in our
specific use case of medical information retrieval
(Luo et al., 2008; Kholghi et al., 2015b; De Vine
et al., 2014; Halpin et al., 2007; Li et al., 2011;
Zhang et al., 2016). Additionally, our method
treats all queries in our dataset as unseen at test

time, on which our actual results and gains are re-
ported.

3 Dataset and Task

The TREC Clinical Decision Support (CDS) task
track investigates techniques to evaluate biomed-
ical literature retrieval systems for providing an-
swers to generic clinical questions about patient
cases (Roberts et al., 2016), with a goal toward
making relevant biomedical information more dis-
coverable for clinicians. For the 2016 TREC CDS
challenge, actual electronic health records (EHR)
of patients, in the form of case reports, typically
describing a challenging medical case, as shown
in Figure 1 are used. A case report is, for our
purposes a complex query having a specific infor-
mation need. There are 30 queries in the chal-
lenge dataset, corresponding to such case reports,
divided into 3 topic types, at 3 levels of granularity
Note, Description and Summary text.

The target document collection is the Open
Access Subset of PubMed Central (PMC), con-
taining 1.25 million articles consisting of title,
keywords, abstract and body sections. In our
work, we develop our query expansion method as
a blackbox system using only a subset of 100K
documents of the entire collection for which hu-
man judgments are made available by TREC. This
allows us to derive “inferred measures” for Nor-
malized Discounted Cumulative Gain (NDCG)
and Precision at 10 (P@10) scores for our eval-
uation (Voorhees, 2014). However, we evaluate
our method on the entire collection of 1.25 mil-
lion PMC articles on a separate search engine
setup using an ElasticSearch (Gormley and Tong,
2015) instance, that indexes this entire set of ar-
ticles on all available fields. Our unsupervised
document tagging method as outlined in Section
4 employs only the abstract field of the 100K
PMC articles, for developing the Phrase2VecGLM
language model–based document ranking subse-
quently used in query expansion.

4 Methodology

In our work, a concept is defined as a “candidate
term” or “noun phrase” scored by a chosen metric
e.g. top-K TFIDF, for downstream use in our algo-
rithm (see Section 4.1 & Algorithm 1). They are
used in both, training, as building blocks for unsu-
pervised model creation by first learning a phrasal
embedding space on the document collection and
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Figure 1: Sample query from the TREC 2016 challenge dataset, representing a clinical note with patient
history, at Note, Description and Summary granularity levels.

subsequent construction of the GLM (Section 4.2),
and at inference, for semantically concept–tagging
documents. At the time of evaluation, concepts re-
fer to either query terms representing a query doc-
ument (Yang et al., 2009), or concept tags for tar-
get documents. Thus our concepts, predominantly
noun phrases, vary from a single unigram term to
consisting of up to three terms as employed by our
phrase-embedding based language model (Section
4.1). Word embedding techniques use the infor-
mation around the local context of each word to
derive the embeddings. We therefore hypothesize
that using these embeddings within a language
model (LM) could help to derive terms or con-
cepts that may be closely associated with a given
document (Ganguly et al., 2015). Then further ex-
tending the model to use embeddings of candidate
noun phrases, we could leverage such shared con-
texts for query expansion, despite no lexical over-
lap between the query and a given document. This
could potentially help both: 1) the global context
analysis for IR leading to better downstream re-
trieval performance from direct query expansion,
and, 2) the local context analysis from top-ranked
documents aiding query refinement for complex
query reformulation within a relevance feedback
loop (Su et al., 2015; Xu and Croft, 2000).

Thus, using our phrasal embedding based gen-
eral language model, Phrase2VecGLM, described
in Section 4.2 we generate top-ranked document
sets for each document in the collection, treating
each document as a query. We subsequently se-
lect concepts to tag query documents with, from
the top-ranked documents sets for each query. We
apply our language model-based concept discov-
ery to query expansion (QE) both directly on the
challenge dataset queries, as well as via relevance

feedback, using the concept tags for the top-ranked
documents as QE terms. We evaluate the ex-
panded queries on a separate ElasticSearch–based
search engine setup, showing improvement in both
methods of query expansion (Gormley and Tong,
2015; Chen et al., 2016).

4.1 Pre-processing corpus for Phrasal GLM
We first pre-process the documents in our col-
lection by lower-casing the text, removing most
punctuation, like commas, periods, ampersands
etc. keeping however, the hyphens, in order to
retain hyphenated unigrams, also keeping semi-
colons and colons for context. We use regular ex-
pressions to retain periods that occur within a dec-
imal value replacing these with the string decimal
that then gets its own vector representation.

Since we implement both unigram and phrasal
embedding–based GLMs, we process the same
document collection accordingly, for each. For the
unigram model, our tokens are single or hyphen-
ated words in the corpus. For the phrasal model,
we do an additional step of iterating through
each document in the corpus, extracting the noun
phrases in each using the textblob (Loria, 2014)
toolkit. This at times gave phrases of up to a length
of six, so we only admit ones of size up to three
which may include some hyphenated words, to
avoid tiny frequency counts. We then plug these
extracted phrases back into the documents to ob-
tain a “phrase-based corpus” for training, that has
both unigrams and variable-length phrases upto 3-
grams, with no tokens repeated for the n-gram pro-
cessed corpus.

We then pre-compute various document and
collection level statistics such as raw counts, term
frequencies (phrase frequencies for phrasal cor-
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pus), IDF and TF-IDF (Sparck Jones, 1972) for
the terms and phrases. Following this, we proceed
to generate various embedding models (Mikolov
et al., 2013) for both our unigram and phrasal
corpora having different length vector represen-
tations and context windows using the gensim
(Řehůřek and Sojka, 2010) package, using the pro-
cessed text. In particular we generate word em-
beddings trained with the skip-gram model with
negative sampling (Mikolov et al., 2013) with vec-
tor length settings of 50 with a context window of
4, and also length 100 with a context window of
5. We also train with the CBOW learning model
with negative sampling (Mikolov et al., 2013) for
generating embeddings of length 200 with a con-
text window of 7. But we report all of our re-
sults on experiments run off the models having an
embedding length of 50. Our method is outlined
in detail, in the pseudocode shown in Algorithm
1, and assumes that the document and collection
statistics as well as the embedding models are al-
ready computed and available. We now describe
how the processed corpus and the collection and
document-level statistics are employed as building
blocks to construct our phrasal embedding-based
generalized language model, Phrase2VecGLM.

4.2 Phrasal Embedding-based GLM

Standard Jelinek–Mercer smoothing–based lan-
guage models used for query–document match-
ing can lead to poor probability estimation when
query terms do not appear in the document due
to a key independence assumption in these mod-
els, wherein query terms are sampled indepen-
dently from either the document or the collection
(Zhai and Lafferty, 2004). Thus given our goal
of alleviating vocabulary mismatch to reformulate
complex queries, we find that the word-embedding
based generalized language model due to Ganguly
et al. (2015), that models term dependencies us-
ing vector embeddings of terms, lends itself ex-
actly for this purpose as it relaxes this indepen-
dence assumption to incorporate term similarities
via vector embeddings. This leads to better prob-
ability estimations in the event of semantic over-
lap between query terms and documents while no
lexical overlap by proposing a generative process
in which a “noisy channel” may transform a term
t sampled from a document d or the collection
C, with probabilities α and β respectively, into a

query term q′. Thus, by this model we have:
∏

q′∈q
P (q′|d) =

∏

q′∈q
[λP (q′|d)

+ α
∑

t∈d
P̂sim doc(q

′, t|d)

+ β
∑

t∈d
P̂sim Coll(q

′, t|d)

+ (1− λ− α− β)P (q′|C)]

(1)

Here P (q′|d) and P (q′|C) are the same as direct
term sampling without transformation, from ei-
ther the document d or collection C, by a regular
Jeliner-Mercer smoothing-based LM as in Equa-
tion (2), when t = q′:

P (d|q) =
∏

q′∈q
λ.P̂ (q′|d) + (1− λ).P̂ (q′|C)

=
∏

q′∈q
λ
tf(q′, d)
|d| + (1− λ). cf(q

′)
|C|

(2)

However, when t 6= q′ we may sample the term
t either from document d or collection C where
the term t is transformed to q′. When t is sampled
from d, since the probability of selecting a query
term q′, given the sampled term t, is proportional
to the similarity of q′ with t, where sim(q′, t) is
the cosine similarity between the vector represen-
tations of q′ and t, and

∑
(d) is the sum of the

similarity values between all term pairs occurring
in document d, the document term transformation
probability can be estimated as:

P̂sim doc(q
′, t|d) = sim(q′, t)∑

(d)
.
tf(t, d)

|d| (3)

Similarly when t is sampled from C, where for
the normalization constant, instead of considering
all (q′, t) pairs in C, we restrict to a small neigh-
bourhood of say 3 terms around the query term q′,
i.e. Nq′ , to reduce the effect of noisy terms, then
the collection term transformation probability can
be estimated as:

P̂sim Coll(q
′, t|d) = sim(q′, t)∑

Nq′
.
cf(t)

|C| (4)

Equation 1 combines all these term transforma-
tion events by denoting the probability of observ-
ing a query term q′ without transformation (stan-
dard LM) as λ, that of document sampling–based
transformation as α and the probability of collec-
tion sampling–based transformation as β.
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Thus, per Equations (2) and (1), deriving the
posterior probabilities P (d|q) for ranking docu-
ments with respect to a query involves maximizing
the conditional log likelihood of the query terms in
a query q given the document d, as shown:

P (d|q) = −
∑

q′∈q
[log(P (q′|d))] (5)

We use their original word (uni-gram)
embedding–based model as a baseline in our
work. Our model, Phrase2VecGLM, further
augments the original model using variable length
noun-phrases in the vocabulary prior to learning
the embedding space for the GLM. While the
model by Ganguly et al, is designed as an IR
matching function, we extend this model in our
work to incorporate embeddings of candidate
noun phrases from the collection, and re-purpose
the model to be used as a pseudo-relevance feed-
back function to select new query expansion terms
(Xu and Croft, 2000). Thus, working with the
hypothesis that concepts in the form of “candidate
noun-phrases” provide more support for meaning,
we update the vocabulary to include noun-phrases
of up to a length of three, extracted from the text.
The vocabulary terms now consist of phrases,
introducing more contextually meaningful terms
into the set used in term similarity calculations
(Equation 3). This improves concept matching,
giving additional coverage toward final query
term expansion via LM–based document ranking.

5 Algorithm

Our algorithm (Algorithm 1) works by intrinsi-
cally using the Phrase2VecGLM model (Section
4.2) for query expansion, to discover concepts
that are similar in the shared local contexts that
they occur in, within documents ranked as top-
K relevant to a query document, and using one
of two options for specified threshold criteria to
tag the document, as described below. Thus our
algorithm consists of two main parts: 1) A doc-
ument scoring and ranking module applying di-
rectly the phrasal embeddings–based general lan-
guage model described in sections 4.2, 5.1 & al-
gorithm 1, and, 2) A concept selection module
to tag the query document with, coming from
the set of top ranked matching documents to a
query document from step 1. There are a cou-
ple of different variations implemented for the
concept selection scheme: (i) Selecting the top

TF-IDF term from each of the top-K matching
documents as the set of diverse concepts, repre-
sentative of the query document, and (ii) Select-
ing the top-similar concept terms matching each
of the representative query document terms, us-
ing word2vec/Phrase2Vec similarities on the top-
ranked set of documents (Mikolov et al., 2013).
The code for the corpus pre-processing, model
building and inference (semantically tagging doc-
uments) is made available online 1 and the dataset
is available publicly 2.

5.1 Implementation Details

In the pseudocode given by Algorithm 1,
< docStats > represents a set of tuples con-
taining various pre-computed document level
frequency and similarity statistics, having el-
ements like docTermsFreqsRawCounts,
docTermsTFIDFs,
docTermPairSimilaritySums.
< collStats > represents a similar
set for collection level frequency and
similarity measures with elements like
collTermsFreqRawCountsIDFs and
collTermPairSimilaritySums. The procedure
also assumes available, the precomputed hashtable
dqTerms, holding the top TF-IDF terms for each
document d, used for querying into the GLM. We
have excluded the implementation details for the
methods selectConceptsEmbeddingsModel,
selectConceptsTFIDF and also the GLM
method (which essentially computes Equations
(1) and (5) for the query document to be tagged
with concepts.

6 Experimental Setup

We run two different sets of experiments: (1)
Direct query expansion of the 30 queries in the
TREC dataset, using UMLS concepts (Manual,
2008) for our augmented baselines, and, (2) Feed-
back loop–based query expansion where we use
the concept tags for a subset of the top returned
articles for the Summary Text–based queries ran
against an ElasticSearch index, as query expan-
sion terms, (here MeSH terms-based QE (Adams
and Bedrick, 2014) is an augmented baseline), and
evaluate both types of runs against our Elastic-
Search (ES) index setup described in Section 6.2.

1https://github.com/manirupa/Phrase2VecGLM
2http://www.trec-cds.org/2016.html#documents
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Algorithm 1 Document Ranking and Concept Selection by Phrase2VecGLM
Initialize hashtables rankedListBestMatchedDocs, word2vecConcepts, TFIDFConcepts; .
These hold ranked document matches and selected concept tags for documents d ∈ C;

1: procedure GENERATEDOCUMENTRANKINGSCONCEPTS(queryDocs, vectorEmbeddingsModel,<
docStats >,< collStats >, lambda, alpha, beta, query length,K)

2: for d ∈ queryDocs do
3: rankedListBestMatchedDocs[d] = Phrase2VecGLM(dqTerms[d], query length, lambda, alpha, beta,
4: < docStats >,< collStats >)
5: word2vecConcepts[d] =
6: selectConceptsEmbeddingsModel(dqTerms[d], < docStats >
7: rankedListBestMatchedDocs[d], vectorEmbeddingsModel,K)
8: TFIDFConcepts[d] =
9: selectConceptsTFIDF(dqTerms[d], < docStats >,

10: rankedListBestMatchedDocs[d],K)
11: end for
12: end procedure

For direct query expansion we take all gran-
ularity levels of query topics described in Sec-
tion 3, i.e. Summary, Description and Notes text,
and feed these into our GLMs obtaining the top-
K ranked documents for each query and drawing
our query expansion concept tags from this set ac-
cording to the algorithm described in Section 5.
For our augmented query baselines, we use UMLS
terms within the above query texts generated from
the UMLS Java Metamap API that is quite effec-
tive in finding optimal phrase boundaries (Boden-
reider, 2004; Chen et al., 2016).

For the relevance feedback–based query expan-
sion, we take the top 10-15 documents returned
by our ES index setup for each of the Summary
Text queries and use the concept tags assigned
to each of these top returned documents by our
unigram and phrasal GLMs as the concept tags
for query expansion for the original query. We
then re-run these expanded queries through the ES
search engine to record the retrieval performance.
The MeSH terms used for the augmented baseline
for the feedback loop case, are directly available
for a majority of the PMC articles from the TREC
dataset itself. Section 4.1 outlines the details of
how the dataset was processed to generate the vo-
cabulary and various elements of the GLM.

6.1 Human–Judged Query Annotation
Additionally, to evaluate our feedback loop
method against a human judgments–based base-
line, we use Expert Term annotations for the query
topics available from a 2016 submission to TREC
CDS, where 3 physicians were invited to partic-

ipate in a manual query expansion experiment.
Each physician was assigned 10 out of the 30
query topics from the 2016 challenge. Based on
the clinical note, each physician provided a list
of 2 to 4 key-phrases. The key-phrases did not
have to be part of the note, but could be derived
from the physician’s knowledge after reading the
note (Chen et al., 2016). The search keywords for
the query topics thus manually provided by these
domain experts, were used to retrieve correspond-
ing matching PMC article IDs from the PubMed
domain. The expert then spot-checked the top–
ranked articles to see if these were mostly relevant.
If so, they finalized the keywords assigned. Oth-
erwise, they kept fine-tuning the keywords, until
they got a desired set of results, simulating exactly
the adaptive decision support (relevance feedback
loop) in IR. We also develop an interpolated model
with a coefficient γ that interpolates between the
unigram and phrasal models, which gets perfor-
mance comparable to the phrasal model, but does
not outperform the other models by itself, hence
we do not report those results here. Because the
challenge data provides relevance judgments only
on a subset of documents (which Phrase2VeGLM
is trained on), we report our results using the in-
ferred measures (Voorhees, 2014), for “normal-
ized discounted cumulative gain” (NDCG) and
“Precision at 10” (P@10). Although the TREC
CDS 2016 query set is categorized into three topic
types for Diagnosis, Tests and Treatment, we do
not divide our evaluation runs into three corre-
sponding sets, evaluating our method's perfor-
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mance on the entire TREC query data set instead.

6.2 Evaluation on ElasticSearch (BM25)
For the search engine–based evaluation of our
proposed method, we replicated an ElasticSearch
(ES) instance setup with similar settings used in
a 2016 challenge submission (Chen et al., 2016).
Among the different algorithms available, BM25
(with parameters k1=3 and b=0.75) was selected
as the ranking algorithm in our setup due to
slightly better performance observed than others,
with a logical OR querying model implemented,
and the minimum percentage match criterion in
ES, for search queries, set at 15% of the keywords
matched for a document. Since our GLM outlined
in Section 4.2 uses the abstract field of the arti-
cle for query expansion, we boosted the abstract
field 4 times and the title field 2 times in our ES
search index setup.

6.3 Results and Discussion
Table 1 outlines our results obtained with the vari-
ous experimental runs described in Section 6. The
hyper–parameters for our best performing mod-
els were empirically determined and set to be at
(λ, α, β) = (0.2, 0.3, 0.2) for the word embedding–
based GLM and (λ, α, β) = (0.2, 0.4, 0.2) for
the phrasal embedding–based GLM, similar to
those reported by Ganguly et al., (2015). All
models were evaluated for statistical significance
against the respective baselines using a two-sided
Wilcoxon signed rank test, for p << 0.01, indi-
cated by bold face value, if found to be significant.

As seen from the results, our unigram and
phrasal GLM–based methods for query expansion
appear quite promising for both direct query ex-
pansion and feedback loop based decision support.
For both methods, our trivial baseline is the BM25
algorithm of ElasticSearch itself, that uses only the
Summary text from the clinical note as the query,
with no expanded set of terms.

We summarize our key findings as follows:
We run two additional baselines for generation
of QE terms: (i) a vanilla language model us-
ing standard Jelinek-Mercer smoothing, equiva-
lent to Phrase2VecGLM with settings (λ, α, β) =
(0.5, 0.0, 0.0) such that the embedding space is not
used to derive term similarities, and (ii) the stan-
dard Phrase2vec embedding space model itself
(De Vine et al., 2014) prior to deriving the GLM.
Both these baselines actually perform worse than
the trivial BM25 baseline for QE on the Summary

text, in both direct and relevance feedback set-
tings.

For direct query expansion, UMLS concepts
found within the Summary, Description and Notes
text of the query itself, were used as augmented
baselines. Of these, the Notes UMLS–based ex-
pansion worked rather poorly (we attribute this to
extra noise concepts in the lengthy Notes text).
Though Description text–based UMLS terms did
worse than our vanilla Summary text baseline, the
Description UMLS terms run through the unigram
GLM to get expanded terms did significantly bet-
ter than Description UMLS terms indicating that
our method helps improve term expansion. For
direct query expansion, the biggest gain against
the baseline was observed for the Summary text
UMLS terms run through the unigram GLM to
get expanded terms, with a P@10 value of 0.2817.
The phrasal model did comparably to the unigram
model, however did not beat it, for the direct set-
ting of query expansion.

For the feedback loop based query expansion
method, we had two separate human judgment–
based baselines, one using the MeSH terms avail-
able from PMC for the top 15 documents returned
in a first round of querying the ES index with Sum-
mary text, and the other based on the expert an-
notations of the 30 query topics as described in
Section 6. The MeSH terms baseline got a P@10
of 0.2294, even less than our vanilla Summary
Text baseline with no expanded terms, while our
Expert Terms baseline beat this baseline signifi-
cantly. One reason for the lower performance of
the MeSH terms model, we believe, is lack of
MeSH term coverage for all the documents cho-
sen. Our unigram GLM–based expanded terms
from the top–15 documents returned by Summary
Text beat the Expert Terms baseline quite sig-
nificantly with P@10 of 0.2792. This was out-
performed by the phrasal GLM–based expanded
terms model with P@10 of 0.2872.

Finally our combined model using the uni-
gram + phrasal GLM terms from the top–15 off
of the Summary text, beat our vanilla baseline,
and was outperformed by our very best combined
terms model which generated unigram + phrasal
GLM–based terms for the top–15 documents for
each query, off of the Summary + Summary
UMLS concepts, getting a P@10 of 0.3091. As
an example to illustrate, a set of concept tags
learned by our unigramGLM model may look like:
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Metric

Query Expansion Method Query Text NDCG ** P@10 **

Direct setting:

BM25+Standard LM (Jelinek-Mercer sm.) QE Terms (baseline) Summary 0.0475 0.1172
BM25+Phrase2Vec (without GLM) QE Terms (baseline) Summary 0.0932 0.2267
BM25+DescUMLS QE Terms (augmented baseline) Summary 0.1070 0.2299
BM25+DescUMLS+unigramGLM QE Terms (model) Summary 0.1010 0.2414
BM25+None (baseline) Summary 0.1060 0.2489
BM25+SumUMLS QE Terms (augmented baseline) Summary 0.1466 0.2644
BM25+SumUMLS+unigramGLM QE Terms (model) Summary 0.1387 0.2817

Feedback Loop setting:

BM25+Standard LM (Jelinek-Mercer sm.) QE Terms (baseline) Summary 0.0265 0.0867
BM25+Phrase2Vec (without GLM) QE Terms (baseline) Summary 0.0662 0.1318
BM25+MeSH QE Terms (baseline) Summary 0.0970 0.2294
BM25+None (baseline) Summary 0.1060 0.2489
BM25+Human Expert QE Terms (augmented baseline) Summary 0.1029 0.2511
BM25+unigramGLM QE Terms (model) Summary 0.1173 0.2792 *
BM25+Phrase2VecGLM QE Terms (model) Summary 0.1159 0.2872 *

Feedback Loop Combined Models

BM25+unigramGLM Terms+Phrase2VeclGLM Terms (baseline) Summary 0.1057 0.2756
BM25+SumUMLS+unigramGLM Terms+Phrase2VecGLM Summary 0.1206 0.3091 *
QE Terms (model)

Table 1: Results for IR after Query Expansion (QE) by different methods using unigram and phrasal
GLM–generated QE terms, in direct and feedback loop settings. Bold face values indicate statistical
significance at p<< 0.01 over the previous result or baseline. Single asterisks indicate our best perform-
ing models. Double asterisks indicate inferred measures (Voorhees, 2014). Numbers are from evaluation
of ranking results based on document relevance judgments available for all 30 queries in the dataset.

<'query doc':(4315343, ['dementia', 'cognitive',
'bp']), 'concept tags': ['alzheimers', 'diabetes',
'behavioral'] >, and for the phrasalGLM model
we may have: <'query doc':(3088738, ['albenda-
zole', 'eosinophilic ascites', 'parasitic infection']),
'concept tags': ['corticosteroid therapy', 'case hy-
perinfection', 'strongyloides stercoralis'] >.

7 Conclusions and Future Work

In this work, we demonstrate that our proposed
method of semantic tagging for query expansion,
via word and phrasal GLM–based document rank-
ing for pseudo-relevance feedback, can prove an
effective means to serve complex, specific infor-
mation needs such as clinical queries in medi-
cal information retrieval that require adaptive de-
cision support, performing better in some cases
than even human expert–provided query expan-

sion terms. This is especially helpful to solve the
problem of lack of keyword coverage for all docu-
ments in any collection, e.g. MeSH terms for PMC
articles. In future we hope to leverage end-to-
end recurrent neural architectures such as LSTMs,
possibly with attention mechanisms (Rocktäschel
et al., 2015; Bahdanau et al., 2014) to improve our
current method of semantic tagging for complex
querying in medical IR.
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Abstract

We investigate the incorporation of
character-based word representations into
a standard CNN-based relation extraction
model. We experiment with two common
neural architectures, CNN and LSTM, to
learn word vector representations from
character embeddings. Through a task on
the BioCreative-V CDR corpus, extract-
ing relationships between chemicals and
diseases, we show that models exploiting
the character-based word representations
improve on models that do not use this in-
formation, obtaining state-of-the-art result
relative to previous neural approaches.

1 Introduction

Relation extraction, the task of extracting seman-
tic relations between named entities mentioned in
text, has become a key research topic in natu-
ral language processing (NLP) with a variety of
practical applications (Bach and Badaskar, 2007).
Traditional approaches for relation extraction are
feature-based and kernel-based supervised learn-
ing approaches which utilize various lexical and
syntactic features as well as knowledge base re-
sources; see the comprehensive survey of these
traditional approaches in Pawar et al. (2017). Re-
cent research has shown that neural network (NN)
models for relation extraction obtain state-of-the-
art performance. Two major neural architectures
for the task include the convolutional neural net-
works, CNNs, (Zeng et al., 2014; Nguyen and Gr-
ishman, 2015; Zeng et al., 2015; Lin et al., 2016;
Jiang et al., 2016; Zeng et al., 2017; Huang and
Wang, 2017) and long short-term memory net-
works, LSTMs (Miwa and Bansal, 2016; Zhang
et al., 2017; Katiyar and Cardie, 2017; Ammar
et al., 2017). We also find combinations of those
two architectures (Nguyen and Grishman, 2016;
Raj et al., 2017).

Relation extraction has attracted particular at-
tention in the high-value biomedical domain. Sci-
entific publications are the primary repository of
biomedical knowledge, and given their increasing
numbers, there is tremendous value in automat-
ing extraction of key discoveries (de Bruijn and
Martin, 2002). Here, we focus on the task of un-
derstanding relations between chemicals and dis-
eases, which has applications in many areas of
biomedical research and healthcare including tox-
icology studies, drug discovery and drug safety
surveillance (Wei et al., 2015). The importance
of chemical-induced disease (CID) relation extrac-
tion is also evident from the fact that chemicals,
diseases and their relations are among the most
searched topics by PubMed users (Islamaj Dogan
et al., 2009). In the CID relation extraction task
formulation (Wei et al., 2015, 2016), CID relations
are typically determined at document level, mean-
ing that relations can be expressed across sen-
tence boundaries; they can extend over distances
of hundreds of word tokens. As LSTM models can
be difficult to apply to very long word sequences
(Bradbury et al., 2017), CNN models may be bet-
ter suited for this task.

New domain-specific terms arise frequently in
biomedical text data, requiring the capture of un-
known words in practical relation extraction appli-
cations in this context. Recent research has shown
that character-based word embeddings enable cap-
ture of unknown words, helping to improve perfor-
mance on many NLP tasks (dos Santos and Gatti,
2014; Ma and Hovy, 2016; Lample et al., 2016;
Plank et al., 2016; Nguyen et al., 2017). This
may be particularly relevant for terms such as gene
or chemical names, which often have identifiable
morphological structure (Krallinger et al., 2017).

We investigate the value of character-based
word embeddings in a standard CNN model for
relation extraction (Zeng et al., 2014; Nguyen and
Grishman, 2015). To the best of our knowledge,
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there is no prior work addressing this.
We experiment with two common neural ar-

chitectures of CNN and LSTM for learning the
character-based embeddings, and evaluate the
models on the benchmark BioCreative-V CDR
corpus for chemical-induced disease relation ex-
traction (Li et al., 2016a), obtaining state-of-the-
art results.

2 Our modeling approach

This section describes our relation extraction mod-
els. They can be viewed as an extension of the
well-known CNN model for relation extraction
(Nguyen and Grishman, 2015), where we incor-
porate character-level representations of words.
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Figure 1: Our model architecture. Given the
input relation mention marked with two entities
“hemolysis” and “tamoxifen”, the convolutional
layer uses the window size k = 3 and the num-
ber of filters m = 4.

Figure 1 presents our model architecture. Given
an input fixed-length sequence (i.e. a relation
mention) of n word tokens w1, w2, w3, ..., wn,1

marked with two entity mentions, the vector repre-
sentation layer encodes each ith word in the input
relation mention by a real-valued vector represen-
tation vi ∈ Rd. The convolutional layer takes the
input matrix S = [v1,v2, ...,vn]

T to extract high
level features. These high level features are then
fed into the max pooling layer to capture the most
important features for generating a feature vector
of the input relation mention. Finally, the feature
vector is fed into a fully-connected neural network
with softmax output to produce a probability dis-
tribution over relation types. For convenience, we
detail the vector representation layer in Section 2.2
while the remaining layers appear in Section 2.1.

1We set n to be the length of the longest sequence and pad
shorter sequences with a special “PAD” token.

2.1 CNN layers for relation extraction

Convolutional layer: This layer uses different
filters to extract features from the input matrix
S = [v1,v2, ...,vn]

T ∈ Rn×d by performing con-
volution operations. Given a window size k, a
filter can be formalized as a weight matrix F =
[f1,f2, ...,fk]

T ∈ Rk×d. For each filter F , the
convolution operation is performed to generate a
feature map x = [x1,x2, ...,xn−k+1] ∈ Rn−k+1:

xj = g
(∑k

h=1 fhvj+h−1 + b
)

where g(.) is some non-linear activation function
and b ∈ R is a bias term.

Assume that we use m different weight matrix
filters F (1), F (2), ..., F (m) ∈ Rk×d, the process
above is then repeatedm times, resulting inm fea-
ture maps x(1),x(2), ...,x(m) ∈ Rn−k+1.
Max pooling layer: This layer aims to capture the
most relevant features from each feature map x by
applying the popular max-over-time pooling oper-
ation: x̂ = max{x} = max{x1,x2, ...,xn−k+1}.
From m feature maps, the corresponding out-
puts are concatenated into a feature vector z =
[x̂(1), x̂(2), ..., x̂(m)] ∈ Rm to represent the input
relation mention.
Softmax output: The feature vector z is then fed
into a fully connected NN followed by a softmax
layer for relation type classification. In addition,
following Kim (2014), for regularization we apply
dropout on z only during training. The softmax
output procedure can be formalized as:

p = softmax
(
W1(z ∗ r) + b1

)

where p ∈ Rt is the final output of the network
in which t is the number of relation types, and
W1 ∈ Rt×m and b1 ∈ Rt are a transformation
weight matrix and a bias vector, respectively. In
addition, ∗ denotes an element-wise product and
r ∈ Rm is a vector of independent Bernoulli ran-
dom variables, each with probability ρ of being 0
(Srivastava et al., 2014).

2.2 Input vector representation

This section presents the vector representation
vi ∈ Rd for each ith word token in the input re-
lation mention w1, w2, w3, ..., wn. Let word to-
kens wi1 and wi2 be two entity mentions in the
input.2 We obtain vi by concatenating word em-
beddings ewi ∈ Rd1 , position embeddings e

(p1)
i−i1

2If an entity spans over multiple tokens, we take only the
last token in the entity into account (Nguyen et al., 2016).
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and e
(p2)
i−i2
∈ Rd2 , and character-level embeddings

e
(c)
wi ∈ Rd3 (so, d = d1 + 2× d2 + d3):

vi = ewi ◦ e
(p1)
i−i1
◦ e(p2)i−i2

◦ e(c)wi

Word embeddings: Each word type w in the
training data is represented by a real-valued word
embedding ew ∈ Rd1 .
Position embeddings: In relation extraction, we
focus on assigning relation types to entity pairs.
Words close to target entities are usually in-
formative for identifying a relationship between
them. Following Zeng et al. (2014), to specify en-
tity pairs, we use position embeddings e

(p1)
i−i1

and

e
(p2)
i−i2
∈ Rd2 to encode the relative distances i− i1

and i − i2 from each word wi to entity mentions
wi1 and wi2 , respectively.
Character-level embeddings: Given a word type
w consisting of l characters w = c1c2...cl
where each jth character in w is represented by
a character embedding cj ∈ Rd4 , we investi-
gate two approaches for learning character-based
word embedding e

(c)
w ∈ Rd3 from input c1:l =

[c1, c2, ..., cl]
T as follows:

(1) Using CNN (dos Santos and Gatti, 2014; Ma
and Hovy, 2016): This CNN contains a convolu-
tional layer to generate d3 feature maps from the
input c1:l, and a max pooling layer to produce a
final vector e(c)w from those feature maps for rep-
resenting the word w.

(2) Using a sequence BiLSTM (BiLSTMseq)
(Lample et al., 2016): In the BiLSTMseq, the in-
put is the sequence of l character embeddings c1:l,
and the output is a concatenation of outputs of a
forward LSTM (LSTMf) reading the input in its
regular order and a reverse LSTM (LSTMr) read-
ing the input in reverse:

e
(c)
w = BiLSTMseq(c1:l) = LSTMf(c1:l) ◦ LSTMr(cl:1)

2.3 Model training

The baseline CNN model for relation extraction
(Nguyen and Grishman, 2015) is denoted here
as CNN. The extensions incorporating CNN and
BiLSTM character-based word embeddings are
CNN+CNNchar and CNN+LSTMchar, respec-
tively. The model parameters, including word, po-
sition, and character embeddings, weight matrices
and biases, are learned during training to mini-
mize the model negative log likelihood (i.e. cross-
entropy loss) with L2 regularization.

3 Experiments

3.1 Experimental setup

We evaluate our models using the BC5CDR cor-
pus (Li et al., 2016a) which is the benchmark
dataset for the chemical-induced disease (CID) re-
lation extraction task (Wei et al., 2015, 2016).3

The corpus consists of 1500 PubMed abstracts:
500 for each of training, development and test.
The training set is used to learn model parame-
ters, the development set to select optimal hyper-
parameters, and the test set to report final re-
sults. We make use of gold entity annotations
in each case. For evaluation results, we measure
the CID relation extraction performance with F1
score. More details of the dataset, evaluation pro-
tocol, and implementation are in the Appendix.

3.2 Main results

Table 1 compares the CID relation extraction re-
sults of our models to prior work. The first 11
rows report the performance of models that use the
same experimental setup, without using additional
training data or various features extracted from ex-
ternal knowledge base (KB) resources. The last
6 rows report results of models exploiting vari-
ous kinds of features based on external relational
KBs of chemicals and diseases, in which the last 4
SVM-based models are trained using both training
and development sets.

The models exploiting more training data and
external KB features obtained the best F1 scores.
Panyam et al. (2016) and Xu et al. (2016) have
shown that without KB features, their model per-
formances (61.7% and 67.2%) are decreased by 5
and 11 points of F1 score, respectively.4 Hence
we find that external KB features are essential; we
plan to extend our models to incorporate such KB
features in future work.

In terms of models not exploiting external data
or KB features (i.e. the first 11 rows in Table
1), our CNN+CNNchar and CNN+LSTMchar ob-
tain the highest F1 scores; with 1+% absolute F1
improvements to the baseline CNN (p-value <
0.05).5 In addition, our models obtain 2+% higher

3http://www.biocreative.org/tasks/
biocreative-v/track-3-cdr/

4Pons et al. (2016) and Peng et al. (2016) did not provide
results without using the KB-based features. Xu et al. (2016)
and Pons et al. (2016) did not provide results in using only
the training set for learning models.

5Improvements are significant with p-value < 0.05 for a
bootstrap significance test.
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Model P R F1
MaxEnt (Gu et al., 2016) 62.0 55.1 58.3
Pattern rule-based (Lowe et al., 2016) 59.3 62.3 60.8
LSTM-based (Zhou et al., 2016) 64.9 49.3 56.0
LSTM-based & PP (Zhou et al., 2016) 55.6 68.4 61.3
CNN-based (Gu et al., 2017) 60.9 59.5 60.2
CNN-based & PP (Gu et al., 2017) 55.7 68.1 61.3
BRAN (Verga et al., 2017) 55.6 70.8 62.1
SVM+APG (Panyam et al., 2018) 53.2 69.7 60.3
CNN 54.8 69.0 61.1
CNN+CNNchar 57.0 68.6 62.3
CNN+LSTMchar 56.8 68.8 62.2
Linear+TK (Panyam et al., 2016) 63.6 59.8 61.7
SVM (Peng et al., 2016) 62.1 64.2 63.1
SVM (+dev.) (Peng et al., 2016) 68.2 66.0 67.1
SVM (+dev.+18K) (Peng et al., 2016) 71.1 72.6 71.8
SVM (+dev.) (Xu et al., 2016) 65.8 68.6 67.2
SVM (+dev.) (Pons et al., 2016) 73.1 67.6 70.2

Table 1: Precision (P), Recall (R) and F1 scores (in
%). “& PP” refers to the use of additional post-
processing heuristic rules. “BRAN” denotes bi-
affine relation attention networks. “SVM+APG”
denotes a model using SVM with All Path Graph
kernel. “Linear+TK” denotes a model combin-
ing linear and tree kernel classifiers. “+dev.” de-
notes the use of both training and development sets
for learning models. Note that Peng et al. (2016)
also used an extra training corpus of 18K weakly-
annotated PubMed articles.

F1 score than the traditional feature-based mod-
els MaxEnt (Gu et al., 2016) and SVM+APG (Pa-
nyam et al., 2018). We also achieve 2+% higher
F1 score than the LSTM- and CNN-based methods
(Zhou et al., 2016; Gu et al., 2017) which exploit
LSTM and CNN to learn relation mention rep-
resentations from dependency tree-based paths.6

Dependency trees have been actively used in tradi-
tional feature-based and kernel-based methods for
relation extraction (Culotta and Sorensen, 2004;
Bunescu and Mooney, 2005; GuoDong et al.,
2005; Mooney and Bunescu, 2006; Mintz et al.,
2009) as well as in the biomedical domain (Fundel
et al., 2007; Panyam et al., 2016, 2018; Quirk and
Poon, 2017). Although we obtain better results,
we believe dependency tree-based feature repre-
sentations still have strong potential value. Note
that to obtain dependency trees, previous work on
CID relation extraction used the Stanford depen-

6Zhou et al. (2016) and Gu et al. (2017) used the same
post-processing heuristics to handle cases where models
could not identify any CID relation between chemicals and
diseases in an article, resulting in final F1 scores at 61.3%.

dency parser (Chen and Manning, 2014). How-
ever, this dependency parser was trained on the
Penn Treebank (in the newswire domain) (Marcus
et al., 1993); training on a domain-specific tree-
bank such as CRAFT (Bada et al., 2012) should
help to improve results (Verspoor et al., 2012).

We also achieve slightly better scores than the
more complex model BRAN (Verga et al., 2017),
the Biaffine Relation Attention Network, based
on the Transformer self-attention model (Vaswani
et al., 2017). BRAN additionally uses byte pair
encoding (Gage, 1994) to construct a vocabulary
of subword units for tokenization. Using subword
tokens to capture rare or unknown words has been
demonstrated to be useful in machine translation
(Sennrich et al., 2016) and likely captures similar
information to character embeddings. However,
Verga et al. (2017) do not provide comparative re-
sults using only original word tokens. Therefore,
it is difficult to assess the usefulness specifically
of using byte-pair encoded subword tokens in the
CID relation extraction task, as compared to the
impact of the full model architecture. We also
plan to explore the usefulness of subword tokens
in the baseline CNN for future work, to enable
comparison with the improvement when using the
character-based word embeddings.

It is worth noting that both CNN+CNNchar and
CNN+LSTMchar return similar F1 scores, show-
ing that in this case, using either CNN or BiL-
STM to learn character-based word embeddings
produces a similar improvement to the baseline.
There does not appear to be any reason to prefer
one of these in our relation extraction application.

4 Conclusion

In this paper, we have explored the value of
integrating character-based word representations
into a baseline CNN model for relation extrac-
tion. In particular, we investigate the use of
two well-known neural architectures, CNN and
LSTM, for learning character-based word repre-
sentations. Experimental results on a benchmark
chemical-disease relation extraction corpus show
that the character-based representations help im-
prove the baseline to attain state-of-the-art per-
formance. Our models are suitable candidates to
serve as future baselines for more complex mod-
els in the relation extraction task.

Acknowledgment: This work was supported by
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Appendix

Dataset and evaluation protocol: We evaluate
our models using the BC5CDR corpus (Li et al.,
2016a), which is the benchmark dataset for the
BioCreative-V shared task on chemical-induced
disease (CID) relation extraction (Wei et al., 2015,
2016).7 The BC5CDR corpus consists of 1500
PubMed abstracts: 500 each for training, devel-
opment and test set. In all articles, chemical and
disease entities were manually annotated using the
Medical Subject Headings (MeSH) concept iden-
tifiers (Lipscomb, 2000).

CID relations were manually annotated for each
relevant pair of chemical and disease concept iden-
tifiers at the document level rather than for each
pair of entity mentions (i.e. the relation annota-
tions are not tied to specific mention annotations).
Figure 2 shows examples of CID relations. We
follow Gu et al. (2016) (see relation instance con-
struction and hypernym filtering sections) and Gu

7http://www.biocreative.org/tasks/
biocreative-v/track-3-cdr/
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1601297|t|Electrocardiographic evidence of myocardial injury in psychiatrically 
hospitalized cocaine abusers.
1601297|a|The electrocardiograms (ECG) of 99 cocaine-abusing patients were 
compared with the ECGs of 50 schizophrenic controls. Eleven of the cocaine
abusers and none of the controls had ECG evidence of significant myocardial 
injury defined as myocardial infarction, ischemia, and bundle branch block.
1601297 33 50 myocardial injury Disease D009202
1601297 83 90 cocaine Chemical D003042
1601297 135 142 cocaine Chemical D003042
1601297 194 207 schizophrenic Disease D012559
1601297 232 239 cocaine Chemical D003042
1601297 305 322 myocardial injury Disease D009202
1601297 334 355 myocardial infarction Disease D009203
1601297 357 365 ischemia Disease D007511
1601297 371 390 bundle branch blockDisease D002037
1601297 CID D003042 D009203
1601297 CID D003042 D002037

Figure 2: A part of an annotated PubMed article.

et al. (2017) to transfer these annotations to men-
tion level relation annotations.

In the evaluation phase, mention-level classifi-
cation decisions must be transferred to the docu-
ment level. Following Gu et al. (2016), Li et al.
(2016b) and Gu et al. (2017), these are derived
from either (i) a pair of entity mentions that has
been positively classified to form a CID relation
based on the document or (ii) a pair of entity men-
tions that co-occurs in the document, and that has
been annotated as having a CID relation in a doc-
ument in the training set.

In an article, a pair of chemical and disease con-
cept identifiers may have multiple entity mention
pairs, expressed in different relation mentions.

The longest relation mention has about 400
word tokens; the longest word has 37 characters.

We use the training set to learn model parame-
ters, the development set to select optimal hyper-
parameters, and the test to report final results using
gold entity annotations. For evaluation results, we
measure the CID relation extraction performance
using F1 score.

Implementation details: We implement CNN,
CNN+CNNchar, CNN+LSTMchar using Keras
(Chollet et al., 2015) with a TensorFlow backend
(Abadi et al., 2016), and use a fixed random seed.
For both CNN+CNNchar and CNN+LSTMchar,
character embeddings are randomly initialized
with 25 dimensions, i.e. d4 = 25. For CNNchar,
the window size is 5 and the number of filters at
50, resulting in d3 = 50. For LSTMchar, we set
the number of LSTM units at 25, also resulting in
d3 = 50.

For all three models, position embeddings are
randomly initialized with 50 dimensions, i.e. d2 =
50. Word embeddings are initialized by using 200-
dimensional pre-trained word vectors from Chiu

et al. (2016), i.e. d1 = 200; and word types (in-
cluding a special “UNK” word token represent-
ing unknown words), which are not in the em-
bedding list, are initialized randomly. Follow-
ing Kiperwasser and Goldberg (2016), the “UNK”
word embedding is learned during training by re-
placing each word token w appearing nw times
in the training set with “UNK” with probability
punk(w) =

0.25
0.25+nw

(this procedure only involves
the word embedding part in the input vector repre-
sentation layer). We use ReLU for the activation
function g, and fix the window size k at 5 and the
L2 regularization value at 0.001.

We train the models with Stochastic gradi-
ent descent using Nadam (Dozat, 2016). For
training, we run for 50 epochs. We per-
form a grid search to select the optimal hyper-
parameters by monitoring the F1 score after each
training epoch on the development set. Here,
we select the initial Nadam learning rate λ ∈
{5e-06, 1e-05, 5e-05, 1e-04, 5e-04}, the number
of filters m ∈ {100, 200, 300, 400, 500} and the
dropout probability ρ ∈ {0.25, 0.5}. We choose
the model with highest F1 on the development set,
which is then applied to the test set for the evalua-
tion phase.
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Abstract

With the development of medical informa-
tion management, numerous medical data
are being classified, indexed, and searched
in various systems. Disease phrase match-
ing, i.e., deciding whether two given dis-
ease phrases interpret each other, is a ba-
sic but crucial preprocessing step for the
above tasks. Being capable of relieving the
scarceness of annotations, domain adapta-
tion is generally considered useful in med-
ical systems. However, efforts on applying
it to phrase matching remain limited. This
paper presents a domain-adaptive match-
ing network for disease phrases. Our net-
work achieves domain adaptation by ad-
versarial training, i.e., preferring features
indicating whether the two phrases match,
rather than which domain they come from.
Experiments suggest that our model has
the best performance among the very few
non-adaptive or adaptive methods that can
benefit from out-of-domain annotations.

1 Introduction

In recent years, hospitals depend more on infor-
mation systems to store and retrieve medical data
for diagnosis and treatment. To facilitate reliable
and efficient processing of medical data, disease
phrase matching has been identified as a crucial
task in those medical systems. Given two disease
phrases, this task requires identifying whether they
are able to interpret each other.

Owing to complicated medical terminologies,
overlapping words or similar syntactic structures
are not reliable cues for disease phrase matching.
Table 1 shows two matching candidates for “La-
tent syphilis, specified as early or late” (Phrase

∗Work was done during the internship at Tencent AI Lab.

Phrase 1 Phrase 2 Label

Latent syphilis, spec-
ified as early or late

Syphilis latent Yes

Latent syphilis, spec-
ified as early or late

Late syphilis,
specified

No

Table 1: Examples of disease phrase matching.

1). In the first one, the absent participial modifier
and the different word order do not prevent the two
phrases from matching. The second one is, how-
ever, a false match, though it shares more words
and similar syntactic structures with Phrase 1.

Given the variability of human languages, su-
pervised phrase or sentence matching is widely ap-
plied in information identification (Madnani et al.,
2012; Yin et al., 2016), textual entailment (Marelli
et al., 2014), web search (Li et al., 2014), entity
linking (Traylor et al., 2017), and disease infer-
ence (Nie et al., 2015). As deep learning drew at-
tentions on various tasks (Lecun et al., 2015), ded-
icated neural matching models are also designed
in two types of structures. 1) Siamese-based net-
works (Neculoiu et al., 2016; Mueller and Thya-
garajan, 2016): the input phrases are first encoded
by the same network; the encoded vectors are then
used to compute similarities by metrics like Co-
sine. 2) Matching-aggregating networks: fine-
grained units of the two phrases are represented
and matched in word-by-word (Rocktäschel et al.,
2015), one-direction (Wang and Jiang, 2016),
or bilateral-multi-perspective (Wang et al., 2017)
manners to produce matching features; the fea-
tures are aggregated into a vector, based on which
the matching label is predicted.

Despite encouraging results in other areas, neu-
ral matching models still face specific challenges
on medical data. Different medical subfields like
physiology and urology may adopt diverse termi-
nologies. Due to their professional nature, it is
hard to obtain human annotations at scale for a
single subfield. This causes systems on a partic-
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ular target subfield or domain to have too few an-
notations to learn a complicated neural model. It
may be tempting to involve annotations from one
or more source domains for more training data.
But since all above models assume in-domain an-
notations, the effect of source-domain annotations
remains uncertain on the trained models.

This paper takes a perspective that is orthogo-
nal to works on designing sophisticated matching
networks. We employ domain adaptation in dis-
ease phrase matching to effectively exploit source
annotations. Based on Bilateral Multi-Perspective
Matching (BiMPM) (Wang et al., 2017), we pro-
pose a Domain-Adaptive BiMPM (DA-BiMPM)
model. Inspired by domain-adversarial train-
ing (Ganin et al., 2016) on text classification (Liu
et al., 2017), relation extraction (Fu et al., 2017),
and paraphrase identification (Yu et al., 2018), we
introduce a domain discriminator in addition to
the matching predictor in BiMPM. With such a
discriminator, DA-BiMPM is encouraged to learn
features predictive of the matching labels, while
being least discriminative of which domain the
data comes from. In doing so, it is expected
that the learned models distill domain-insensitive
knowledge from source annotations. On two med-
ical datasets from different subfields, we set up
non-adaptive baselines fed with or without source-
domain annotations, as well as an adaptive one.
Experimental results show that, when trivially in-
volving source-domain data, only the strongest
baseline BiMPM can achieve a slight gain. Com-
pared with the adaptive approach, DA-BiMPM is
capable of making more improvement on BiMPM.

2 Preliminaries

Before going into details of DA-BiMPM, we start
with introducing the BiMPM model (Wang et al.,
2017), which is illustrated by components outside
the dotted box in Figure 1. Its encoding, matching,
and aggregation layers are described as follows.
Phrase Encoder. Given a disease phrase P =
(p1, . . . , pn) with n words, BiMPM encode it as
follows. First, it transforms P in to a vector se-
quence P = (p1, . . . ,pn). Each word is repre-
sented by concatenating a pre-trained GloVe (Pen-
nington et al., 2014) vector and a character-
BiLSTM-encoded vector. A BiLSTM is then ap-
plied on P to represent context in both directions:

←−
HP = (

←−
h P

1,
←−
h P

2, . . . ,
←−
h P

n) =
←−−−
LSTM(P) (1)

−→
HP = (

−→
h P

1,
−→
h P

2, . . . ,
−→
h P

n) =
−−−→
LSTM(P) (2)

Phrase Matcher. Given context representations

Figure 1: The architecture of (DA-)BiMPM.

of P and Q, a phrase matcher compares them with
each time step of one against all of the other’s in
both directions. For example, when comparing
word pi with Q, we generated a matching vector

mP
i = (

−→
h P

i ⊗
−→
HQ,

←−
h P

i ⊗
←−
HQ) (3)

Here ⊗ denotes the multi-perspective matching
operation defined in (Wang et al., 2017). We re-
fer readers to this paper for details.
Aggregation Layer. Given all matching vectors
MP = (mP

1, . . . ,m
P
n) by comparing P to Q, and

MQ vice versa, we apply another BiLSTM layer
to aggregate both of them, respectively. Formally,

(
−→
AP,
←−
AP) = BiLSTM(MP) (4)

(
−→
AQ,
←−
AQ) = BiLSTM(MQ) (5)

Finally, we concatenate the four ending hidden
vectors of the BiLSTM layer, i.e., −→a P

n,←−a P
1,−→a Q

m,
and ←−a Q

1 , as the matching features F.
To decide whether P and Q match, we apply a

fully connected softmax layer on F to produce the
prediction y(F). Denoting all parameters of the
feature extraction layers by φf , and the prediction
layer φy, for ground truth y(k) of the k-th phrase
pair, the instance-level matching loss is

l(k)(φf , φy) = l(y(F(k)), y(k)) (6)

3 Domain-Adversarial Training

Given the configurations of BiMPM, the net-
work parameters {φf , φy} are optimized to min-
imize the gap between predicted and ground-truth
matching labels. When source-domain training
data is involved, due to the large parameter space
of φf , the model may be satisfied with fitting la-
bels in each domain separately instead of finding
a unified explanation. This limitation thus causes
the model to miss potential benefits of learning
domain-independent matching features.
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To fully utilize source-domain annotations, we
apply domain-adversarial training (Ganin et al.,
2016) on BiMPM. As illustrated by the dotted box
in Figure 1, we add a domain discriminator d(.) on
F, i.e., the matching features. The discriminator
is configured with the same fully-connected and
softmax layers as the matching prediction layer.
Given the domain d(k) where the k-th phrase pair
is from, the domain loss is similarly given as

l
(k)
d (φf , φd) = ld(d(F(k)), d(k)) (7)

Different from minimizing the matching loss l(k),
we optimize the domain loss l

(k)
d in the contrary

direction. In other words, we prefer {φf , φd} that
preserve little domain-specific information.

Formally, given training phrase pairs in the tar-
get domain with indices k ∈ T , and source-
domain data with indices k ∈ S, our joint objec-
tive function is given as follows by interpolating
both the matching and the domain losses:

L(φf , φy, φd) =
1

|S ∪ T |
∑

k∈S∪T

l(k)(φf , φy)

− λ
[ 1

|S|
∑

k∈S

l
(k)
d (φf , φd) +

1

|T |
∑

k∈T

l
(k)
d (φf , φd)

] (8)

When optimizing the objective function, we seek
for a saddle {φ̂f , φ̂y, φ̂d} such that:

φ̂f , φ̂y = argmin
φf ,φy

L(φf , φy, φ̂d) (9)

φ̂d = argmax
φd

L(φ̂f , φ̂y, φd) (10)

By considering domain adaptation and matching
label prediction in the joint objective, the training
process pursuits a balance between both aspects.
Interactions between the matching loss and the do-
main loss will force their shared parameters, i.e.,
φ̂f , to be generalizable across domains.

4 Experiments

4.1 Datasets and Baselines

We employ ICD10DATA1 and MIMIC (Johnson
et al., 2016) as the source and target domain
datasets, respectively. ICD10DATA consists of di-
verse disease names from multiple medical sub-
fields2 and their approximate synonyms. MIMIC
is a public dataset on computational physiology.
The used phrase pairs are composed of terminol-
ogy co-reference pairs of disease entities. Because
both datasets consist of only positive pairs, we
have to generate negative pairs. For each positive
pair 〈P,Q〉, we corrupt Q with a random phrase

1http://www.icd10data.com/. We only used the
ICD-10-CM (diagnosis) subset.

2We uniformly treat them as from one source domain.

Dataset # of Pairs Subfield Domain

ICD10DATA 29,783 Mixed Source
MIMIC 22,504 Physiology Target

Table 2: Statistics of source and target datasets.

from all other pairs containing neither P nor Q. We
summarize both datasets in Table 2.

We adopt a training/validation/testing split of
3:1:1 on the target dataset, and conduct 5-fold
cross validation. Average results on the five test-
ing sets are reported. When involving the source
dataset to help train better classifiers for the target
domain, we use all annotations for training. We
compare DA-BiMPM with five baselines:
Cosine: Phrases are represented by summing their
GloVe (Pennington et al., 2014) word vectors.
Their similarities are measured by Cosine scores.
Support Vector Machine (SVM): An SVM clas-
sifier is trained and applied on the concatenation
of the phrase pairs’ GloVe vectors.
Random Forest: Instead of SVM, this baseline
applies random forest to train matching classifiers.
Siamese-LSTM: We use an existing implementa-
tion3 of Mueller and Thyagarajan (2016).
BiMPM: This is the matching-aggregating net-
work (Wang et al., 2017) described in Section 2.

In DA-BiMPM, we adopt the same configura-
tion with that of BiMPM. We empirically set λ in
Equation 8 to 0.5 throughout the experiments.

4.2 Preliminary Results

Figure 2 demonstrates the changes of the three
losses in Equations 6, 7, and 8, respectively. We
observe that, as training proceeds to about 100
iterations, all losses tend to decrease and then
converge. Readers may notice that the domain
loss follows a decreasing trend, which seems in-
consistent with its negative coefficient in Equa-
tion 8. Note that the matching and domain losses
are both functions of the feature extraction param-
eters φf , thus are correlated. As the matching
loss decreases, φf may inevitably capture domain-
dependent information. Therefore, the trade-off
between minimizing the matching loss and maxi-
mizing the domain loss cannot achieve both objec-
tives in positive directions. It can only prevent the
latter loss from decreasing too much. The same
figure also shows that, after 20 iterations, the vali-
dation accuracy grows quickly and then converges
to 96.04%, yielding a testing accuracy of 96.96%.

3https://github.com/dhwajraj/
deep-siamese-text-similarity
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Figure 2: Training losses and
validation accuracy.

Model S. + T. T. Only

Cosine 48.22 53.73
SVM 78.54 80.04
Random Forest 83.61 86.15
Siamese-LSTM 90.75 90.97
BiMPM 91.27 91.06

DA-BiMPM 96.96 N/A

Table 3: Testing accuracy (%)
w/ or w/o source annotations.

Setting Accuracy

BiMPM (S. Only) 90.74
BiMPM (T. Only) 91.06
BiMPM (S. + T.) 91.27

BiMPM (DDC variant) 92.39
DA-BiMPM (unsupervised) 96.12

DA-BiMPM (supervised) 96.96

Table 4: (DA-)BiMPM’s testing ac-
curacy (%) w.r.t. different settings.

4.3 Comparative Studies

In Table 3, we report the performance of all ap-
proaches. For each baseline, we train the model by
aggregating both the entire source-domain dataset
and the training set of the target domain. For com-
parison, we also trained them without the source
dataset. We have the following observations.

First, when given the combined training set, the
performance of the five baselines increases by the
order they are presented. Specifically, the simplest
Cosine approach is close to random guesses. Su-
pervised methods like SVM and Random Forest,
on the other hand, produce much better results.
Neural network approaches, including Siamese-
LSTM and matching-aggregating-based BiMPM,
have the best performance among all baselines.

Moreover, including the source-domain dataset
for training have different effects on the baselines.
For the first four baselines, this dataset harms
the training process and results in inferior perfor-
mance. In contrast, BiMPM achieves slightly bet-
ter accuracy by involving source-domain annota-
tions. We note that such different effects may be
due to a different model complexity. As a com-
plicated model, BiMPM is able and tends to bene-
fit from larger training data, even if they are from
different domains. In summary, if exploited in a
straight-forward manner, source-domain annota-
tions cannot always guarantee better performance.

Finally, DA-BiMPM achieves more than five
points of performance gain on top of BiMPM.
Note that BiMPM has already taken advantage
of source-domain annotations. Compared with
BiMPM, DA-BiMPM only accepts domain labels
as additional training information. The match-
ing classifier trained by DA-BiMPM has the same
structure, and requires the same input to make pre-
dictions, with that of BiMPM. This indicates that
DA-BiMPM is making domain-adaptive exploita-
tion of source-domain data from the feature level.

In Table 4, we evaluate DA-BiMPM in the unsu-
pervised setting, i.e., considering only source an-

notations in matching loss. This is done by not in-
volving any target data when updating the predic-
tion layer. We compete with Deep Domain Con-
fusion (DDC) (Tzeng et al., 2014), where an adap-
tation layer based on Maximum Mean Discrep-
ancy (Borgwardt et al., 2006) is applied after the
phrase matcher. We also include (DA-)BiMPM’s
results in other relevant settings for comparison.
It is observed that approaches with more informa-
tion achieve better accuracy. Specifically, with ac-
cess to the source data and distribution of the target
training set, the unsupervised DA-BiMPM outper-
forms DDC-based BiMPM by nearly four points.

4.4 A Case Study

To further examine the impact of domain adapta-
tion, we study a phrase pair “bleed” and “gun shot
wound to the head” in the target set. When involv-
ing only target data, BiMPM correctly judged the
pair as a mismatch. We find that, if involved in
a pair, “bleed” on both sides tends to suggest a
match. The numbers of instances for and against
this feature are 1,401 and 747, respectively.

After trivially accessing source data, BiMPM
achieved a slight gain. However, the above statis-
tics are both 41 on the source set, implying a dif-
ferent data distribution. BiMPM was mislead on
the above pair, and gave a false positive label.
Meanwhile, DA-BiMPM overcomes the domain
difference, and corrected the label to negative.

5 Conclusion

We present DA-BiMPM, a domain-adversarial
network for disease phrase matching. It outper-
forms the base model BiMPM as well as four other
baselines, with or without source annotations.
Experiments also demonstrate that, when triv-
ially combined with target-domain training data,
source-domain data does not always make posi-
tive impacts. However, DA-BiMPM can better ex-
ploit the source-domain data, even if BiMPM or
its DDC variant have taken advantage of it.
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Abstract

Overcrowding in emergency rooms is a
major challenge faced by hospitals across
the United States. Overcrowding can re-
sult in longer wait times, which, in turn,
has been shown to adversely affect patient
satisfaction, clinical outcomes, and proce-
dure reimbursements. This paper presents
research that aims to automatically predict
discharge disposition of patients who re-
ceived medical treatment in an emergency
department. We make use of a corpus that
consists of notes containing patient com-
plaints, diagnosis information, and dispo-
sition, entered by health care providers.
We use this corpus to develop a model
that uses the complaint and diagnosis in-
formation to predict patient disposition.
We show that the proposed model sub-
stantially outperforms the baseline of pre-
dicting the most common disposition type.
The long-term goal of this research is to
build a model that can be implemented as
a real-time service in an application to pre-
dict disposition as patients arrive.

1 Introduction

Studies show that wait times not only affect patient
satisfaction, but also the perception of providers
and quality of care (Chandra et al., 1981). Fur-
thermore, the Center for Medicare and Medicaid
Services is tying reimbursements to the Hospi-
tal Consumer Assessment of Healthcare Providers
and Systems (HCAHPS) scores. As a financial
and patient experience priority, hospitals are fo-
cused on addressing issues that affect patient sat-
isfaction. One common issue is long wait times in
the emergency rooms, that are due to high volume

and overcrowding. Another issue is that of bed
management and its effect on wait times. If no
in-patient beds are available, admitted patients are
kept in the emergency department until beds open.
This is commonly referred to as patient boarding
and has been shown to negatively affect outcomes
and wait times. (Felton et al., 2011).

Improved bed management and resource uti-
lization are necessary to achieve shorter wait
times. This paper describes a first attempt at an ex-
perimental model which aims to predict discharge
disposition based on chief complaint (i.e. symp-
toms description) and diagnosis information con-
tained in clinical notes. The corpus that we use
contains approximately 260,000 annotated emer-
gency department records. The records contain
free text of a complaint and admit diagnosis, and
are labeled with the disposition information. The
disposition, which is the destination after medical
treatment, can be classified as Admit, Discharge,
Observation, Expire, Left Against Medical Advice
(AMA), Asthma Observation Unit (AOU), Eloped,
or Transfer.

A model that predicts disposition type could
be realized as an informational alert system in-
tegrated with electronic medical record software.
Patient complaints are made available before dis-
charge dispositions, allowing for an immediate
prediction of disposition. In some cases the com-
plaint is available hours before the discharge diag-
nosis or the disposition. Thus, such a model could
provide integrated real-time forecasting on poten-
tial discharges and in-patient admissions.

The rest of the paper is organized as follows.
Sec. 2 presents related work. Sec. 3 describes the
corpus. Sec. 4 presents the experimental setup.
Results are reported in Sec. 5. We present error
analysis in Sec. 6 and conclude in Sec. 7.

142



2 Related Work

The Academic Emergency Medicine journal pub-
lished preliminary results that attempt to predict
emergency department in-patient admissions to
improve same-day patient flow (Peck et al., 2012).
They used three methods – expert opinion, Naive
Bayes, and a generalized linear regression model
– to analyze two months worth of emergency de-
partment data from the Boston VA healthcare Sys-
tem. However, Peck et al. (2012) focused strictly
on predicting admit dispositions only, while we
aim to predict all possible outcomes. Furthermore,
their results focus strictly on structured fields, such
as urgency level, age, sex, chief complaint, and the
provider seen, while we work with free text in clin-
ical notes. Another issue with the above model is
that by including the provider seen to predict ad-
mission, they are tightly coupling the model to the
Boston VA health care System.

Previous work has been done which aims to pre-
dict patient outcomes using unstructured text. Ya-
mashita et al. (2016) analyzed admission records
of 1,222 patients who had a clinical pathway of
cerebral infraction. The goal was to develop
a method for automatically performing clinical
evaluations and to identify early interventions
for cases that may have clinically important out-
comes.

There has been a lot of other related work in
the NLP area on unstructured electronic medical
records and, in particular, in the clinical domain.
For example, Jonnagaddala et al. (2015) devel-
oped a model to automatically identify smoking
status using a SVM model. Jung et al. (2011) ex-
tracted events from clinical notes and used this in-
formation to construct a timeline of patient med-
ical history. Both of the above mentioned works
also used unstructured clinical notes, but focused
on identifying patient history information. Cogley
et al. (2012) used machine learning to determine
whether a patient experienced a particular medical
condition. However, while Cogley et al. (2012)
looked at patient history and physical examination
reports, we wish to predict disposition from com-
plaint and admitting diagnosis alone.

3 Data

The data used in this project is provided by the
Krasnoff Quality Management Institute of North-
well Health. Northwell Health is a not-for-profit
healthcare network that includes 22 hospitals and

Disposition Percentage (%)
Admit 30.88
AMA 0.89
AOU 0.05
Discharge 63.66
Eloped 0.27
Expired 0.08
Observation 3.56
Transfer 0.56

Table 1: Distribution of disposition labels in the
training corpus.

over 500 medical offices. Krasnoff Quality Man-
agement Institute provides analytics support for
the many facilities across Northwell Health. The
dataset contains de-identified emergency depart-
ment records from several facilities across the sys-
tem. Each record includes information about the
patient complaint, diagnosis, and the resulting dis-
position, filled out by clerical staff or nurses. We
use a subset of the entire dataset in the present
study, approximately 260,000 records. 215,000
are used to train the model, and 45,000 are used
for testing.

There are eight possible values for the disposi-
tion outcome. Table 1 shows the distribution of the
values in the corpus. Note that the outcome types
are not evenly distributed. The most common dis-
position type, discharge, accounts for over 63%
of all disposition types, and the two most frequent
types, discharge and admission to the hospital, ac-
count for over 94% of all disposition types. The
observation unit, which is an area in some emer-
gency rooms which allows for extended evaluation
for patients whose stays will likely be less than one
day, follows as the third most common disposi-
tion (3.56%). Left against medical advice (AMA),
asthma observation unit (AOU), left without notice
(eloped), death in the ER (expired), and transfer to
a different facility all account for less than 1% of
total number of records.
Example Records Each instance in the dataset
contains information about the symptoms, the di-
agnosis, and is annotated with its final disposition.
The notes in the dataset do not contain information
related to the treatment of the patient. Below we
show several complaint instances from the corpus.
As expected, since this information was entered
by clinical staff, the text is quite noisy, contains
a lot of specific medical abbreviations (“pt”), in-
complete sentences, and typos (“cant”).

143



Data Point Value
Complaint flu-like symptoms
Admit diag. fever
Discharge diag. viral illness
Complaint Abdominal pain & heart burn
Admit diag. NULL
Discharge diag. enteritis

Table 2: Complaint, admit diagnosis, and dis-
charge diagnosis examples.

• “pt called EMS ’I cant see’ pt says she cant
open her eyes”
• “bite, animal pain in limb puncture wound of

left thigh, initial encounter, observation”
• “head injury car passenger injured in colli-

sion with two- or three-wheeled motor vehi-
cle in traffic accident, initial encounter mvc
(motor vehicle collision)”

The records also contain admitting diagnosis
and discharge diagnosis. The admitting diagno-
sis is entered shortly after the complaint and may
be updated by staff. The discharge diagnosis is en-
tered once the patient’s visit is complete. Table 2
shows two examples.

4 Experiments

Our aim is to create a prototype model that will
be able to make predictions with the complaint
and admit diagnosis extracted from clinical notes.
Our model is trained with the Averaged Percep-
tron (Freund and Schapire, 1999) algorithm imple-
mented with Learning Based Java (Rizzolo, 2011).
While classical Perceptron comes with generaliza-
tion bound related to the margin of the data, Aver-
aged Perceptron also comes with a PAC-like gen-
eralization bound (Freund and Schapire, 1999).
This linear learning algorithm is known, both the-
oretically and experimentally, to be among the
best linear learning approaches and is competitive
with SVM and Logistic Regression, while being
more efficient in training. We do not use neural
network approaches in this work both due to the
moderate size of the dataset (neural models have
been shown to have a steep learning curve (Koehn
and Knowles, 2017) and also because our goal is
to develop a model that would be as efficient as
possible. We train the classifier on the training
partition of the corpus and report results on the
test partition. All the data was normalized by re-
moving special characters, lowercased, and POS

Disposition Rel. freq. Accuracy
(%) (%)

Discharge 63.4 75.7
Admit 31.1 77.9
Observation 3.6 96.3
Eloped 0.3 0.0
AMA 0.7 0.0
Transfer 0.6 0.0
AOU 0.1 0.0
Expire 0.1 99.9
Total - 75.7

Table 3: Accuracy results by disposition type.

tagged with the NLTK tagger (Bird, 2006).

4.1 Features
The features include bag-of-word unigrams and
bigrams, and collocations. To control for the vo-
cabulary size, we only include the top unigrams
and bigrams occurring in the training data. 75 un-
igram and bigram features are included.

The collocation features are based on a list of
keywords extracted from the top 50 words occur-
ring in the training data. Each collocation feature
is a conjunction of the keyword, word tokens and
part-of-speech tags occurring in the 2-word win-
dow around the keyword. Sample collocation fea-
tures are shown below:

• Wi−2, POSi−2, Wi−1, POSi−1, Infection,
Wi+1, POSi+1, Wi+2, POSi+2

• Wi−2, POSi−2, Wi−1, POSi−1, Pain, Wi+1,
POSi+1, Wi+2, POSi+2

5 Results

We evaluate the model using both accuracy and
F-score. Table 3 shows accuracy results by dis-
position type. We note that the most frequent
class baseline that corresponds to selecting the dis-
charge disposition, is 63.4. This is substantially
lower than the overall accuracy of 75.7. The accu-
racy for the discharge class is 75.7%, while the ac-
curacy for the second most frequent class, admit,
is 77.9% (recall from Table 1 that the two labels
account for over 94% of all instances in the train-
ing data). The performance on the least common
disposition labels is poor, with the exception of ex-
pire (this is further discussed in the next section).

We further evaluate by computing precision, re-
call, and F-score for each class (Table 4). In gen-
eral, the performance is higher for more frequent
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Disposition Precision Recall F-score
(%) (%) (%)

Discharge 75.2 92.0 82.8
Admit 70.4 50.2 58.6
Observation 100.0 0.1 0.2
Eloped 0.0 0.0 0.0
AMA 0.0 0.0 0.0
Transfer 0.0 0.0 0.0
AOU 0.0 0.0 0.0
Expire 64.1 68.0 66.0
Total 73.2 74 70.8

Table 4: Precision, recall, and f-score results by
disposition type.

classes, and very poor for the least common labels.
The best F-score of 82.8% is achieved for the most
frequent class, discharge. Again, one interesting
exception here is the expire class.

6 Error Analysis

We analyze several cases on which the classi-
fier’s predictions were incorrect. The first instance
(shown below) had a prediction for discharge but
the correct label was admit.

• abdominal pain pleural effusion in other con-
ditions classified elsewhere pleural effusion
associated with hepatic disorder

“Pleural effusions”, which is a condition in which
excess fluid buildup is present around the lungs,
is a potentially serious condition. In our corpus,
pleural effusion cases were over five times more
likely to be admitted than discharged. In this case,
the addition of “abdominal pain” feature resulted
in the classifier considering it a discharge record.

The next record was a discharge which was pre-
dicted to be an admit. This may be due to the pres-
ence of the word “bleeding”.

• abdominal pain diverticulitis of large intes-
tine without perforation or abscess without
bleeding

Finally, some notes are extremely short, such as
the complaint “chest pain”, which was labeled as
admit but the model classified it as discharge, due
to it being the most common disposition for “chest
pain”.

It is clear that this task is challenging, given the
brief and noisy nature of the clinical notes, which
contributes to data sparseness, and ambiguity of

features that may indicate multiple likely disposi-
tion outcomes.

Lastly, some dispositions were not classifiable
by the model. In particular, we conjecture that
leaving against medical advice (AMA) may be tied
to factors not seen in symptoms such as social de-
terminants. Observation and transfer classifica-
tion may be improved with features that better tar-
get those dispositions. Clinical experts will need
to be engaged for this task to better understand the
feasibility of predicting those dispositions.

7 Conclusion

We presented a model for predicting emergency
room disposition from clinical notes. We used a
corpus of emergency room records that contains
information on symptoms, diagnosis, and disposi-
tion labels, entered by medical staff. We showed
that the proposed model significantly outperforms
the baseline approach of selecting the most fre-
quent class. The nature of the corpus is such that
two most common classes account for over 94% of
all cases. Although most machine learning prob-
lems have to do with label imbalance, we believe
that our task is unique in that the imbalance is ex-
treme. The performance of the model is better than
the baseline in the most prevalent dispositions, as
well as one very rare disposition of expire. The
other least frequent classes are not classifiable by
the model. We hypothesize that some dispositions
may be tied to factors not reflected in symptoms,
such as social determinants.

Although the results are promising, more work
is needed to reach the level where such a model
can be utilized in real-time applications. For ex-
ample, text correction and text normalization of
the clinical data might be helpful, given that the
notes contain a lot of noise. However, we be-
lieve that the proposed experiment is an important
step towards building a real-time system that can
provide predictions as complaints come into emer-
gency departments. Such a system can be utilized
to assist clinical leadership in staffing and opera-
tional decisions.
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Abstract 

Automatic recognition of biomedical enti-
ties in text is the crucial initial step in bio-
medical text mining. In this paper, we in-
vestigate employing modern neural net-
work models for recognizing biomedical 
entities. To compensate for the small 
amount of training data in biomedical do-
main, we propose to integrate dictionaries 
into the neural model. Our experiments on 
BB3 data sets demonstrate that state-of-
the-art neural network model is promising 
in recognizing biomedical entities even 
with very little training data. When inte-
grated with dictionaries, its performance 
could be greatly improved, achieving the 
competitive performance compared with 
the best dictionary-based system on the en-
tities with specific terminology, and much 
higher performance on the entities with 
more general terminology. 

1 Introduction 

In the microbial community, knowledge about 
habitats of bacteria is crucial for the study, e.g. 
metagenomics. To extract such information from 
the biomedical literature, the very first step is to 
accurately recognize bacteria and habitat entities 
in text. State-of-the-art systems mainly have taken 
two approaches: dictionary-based and feature-
based. 

Dictionary-based approach looks for all the 
possible names in one or more dictionaries (or on-
tologies, or databases, or gazetteers) of entities. 
The performance depends on the quality and 
comprehensiveness of the dictionaries built for 
each entity type, which require a lot of expert 
knowledge and maintenance costs. It is well suited 
for entities with closely defined vocabularies of 
specific names, such as species and diseases, but 
fails to accurately recognize entities with names 
consisting of more common words, e.g. habitat 
entities. TagIt (Cook et al., 2016) is a dictionary-
based system participating BioNLP Shared Task 

2016, which yielded the best performance in rec-
ognizing bacteria entities, however could not 
compete with other machine learning systems on 
recognizing habitat entities. 

Feature-based machine learning systems are 
currently more widely used in biomedical entity 
recognition. When properly trained, a machine 
learning model can potentially recognize new en-
tity names and new spelling variations of an entity 
name. Traditional machine learning approaches, 
are feature-rich supervised learning classifiers, re-
quiring significant domain-specific feature engi-
neering. Recently neural network models gain in-
creasingly more research attention as they could 
automatically learn useful features from raw data. 
Compared with the work on NER in general do-
main (Lample et al., 2016, Chiu and Nichols, 
2016, Ma and Hovy, 2016), there is little pub-
lished work on employing modern neural network 
models for BioNER. It is probably due to the 
small sizes of human-annotated corpora in bio-
medical domain, which makes it very hard to train 
non-trivial neural network models. 

In this paper, we investigate employing state-
of-the-art neural network models to recognize bi-
omedical entities. Our experiments on BB3 data 
sets show that even with very little training data, 
modern neural network model is promising in 
recognizing bacteria and habitat entities. To com-
pensate for the shortage of annotated training data, 
we propose to utilize dictionaries or ontologies, 
which is abundant in biomedical domain, to en-
hance the neural models. The experiment results 
demonstrate that our dictionary-enhanced neural 
model yielded better performance than the cur-
rently best systems, especially on habitat entities. 

2 Dictionary-Enhanced BiLSTM-CRF 
Model 

Following the most state-of-the-art neural network 
models for general domain NER, we design a sim-
ilar BiLSTM-CRF model as shown in Figure 1 for 
recognizing bacteria and habitats in text. 
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When receiving a sentence of tokens as input, 
e.g. “Vibrios are ubiquitous”, the system first 
forms a representation for each token, which is the 
concatenation of its word embedding, character-
based representation and dictionary-matching rep-
resentation of the token.  

Next, the vector representations of tokens are 
fed into a bidirectional LSTM. The hidden state 
for each token position in BiLSTM is the concate-
nation of the hidden states from the forward and 
backward LSTMs. As a result, it contains both the 
left and right context information useful to make 
prediction for this token. 

Finally, a Conditional Random Field (CRF) 
layer, modeling the dependencies between succes-
sive labels, is added on top of the BiLSTM net-
work to find the most likely sequence of labels as 
the final output. 

2.1 Word Embedding 

There are various word embedding techniques, 
e.g. word2vec, Glove and fasttext. They address 
different types of semantic similarities, and thus 
perform differently for different NLP tasks. We 
tested Glove and fasttext for our task and found 
that fasttext performed better. Thus, we used the 
fasttext method to train word embeddings. Word 
embedding dimension is set to 100. 

We downloaded PubMed 2017 baseline, ex-
tracted all the titles and abstracts, segmented them 
into tokens using different strategies: 
 using a segmentation model for general 

English text or a model specially trained on 
biomedical text. 

 removing punctuations or not. 
 converting all characters into lower case 

and all digits to “0” or not. 
We compared the performance of all the above 
strategies in the experiments, and found that re-

moving punctuations, lowercasing all characters 
and converting all digits to “0” did not result in 
better performed embeddings. So, we generated 
embeddings without removing punctuations and 
any other conversions. 

2.2 Character-Based Representation 

Although the word embeddings capture the se-
mantic similarities between tokens, they ignore 
the character-level regularities of the token, like 
suffixes or prefixes, which are proven to be effec-
tive in NER tasks. We generate a character-based 
representation for each token using a LSTM 
model like that proposed in Lample et al., 2016. 
The dimensions of the character embedding and 
the hidden states of the BiLSTM are both set to be 
25, so the dimension of the final character-level 
representation is 50. 

2.3 Dictionary-Matching Representation 

To train a non-trivial neural network model with-
out overfitting it, a huge amount of annotated data 
are needed, which are much costlier to obtain in 
biomedical domain than in general domain since 
expert domain knowledge is required for annotat-
ing data. On the other hand, dictionaries, ontolo-
gies and databases are abundant in biomedical 
domain. We propose to make better use of such 
available knowledge in neural network models to 
compensate for the small sizes of annotated data. 

In this paper, we incorporate dictionaries into 
the neural network model by adding a third part to 
the token representation: dictionary-matching rep-
resentation. For each given dictionary, a diction-
ary matching feature is assigned to each input to-
ken. The matching feature indicates whether a 
word sequence formed by the token and its con-
secutive neighbors is in the dictionary. The maxi-
mal length of the word sequence is set to 6. When 
there are multiple overlapping matches, longer 
matches are preferred over shorter matches, and 
earlier matches in the sentence are preferred over 
later matches. The matching feature can take one 
of the five values: ‘B’, ‘I’, ‘O’, ‘E’, ‘S’, which 
means ‘Begin’, ‘Inside’, ‘Outside’, ‘End’ and 
‘Single’ respectively, indicating the position of the 
token in the matched word sequence. Figure 2 
shows an example sentence and the dictionary 
matching feature for each of its tokens. There are 
two types of entities to be recognized: bacteria 
and habitats, and two dictionaries are applied, one 
for each entity type. 

 
Figure 1: The BiLSTM-CRF model for entity 

recognition. 
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To generate the dictionary-matching representa-
tion for the token, we embed the matching feature 
for each dictionary into a 5-dimensional real-
valued vector and then concatenate the vectors for 
all the dictionaries. As in Figure 2, the dictionary-
matching representation of a token will be a 10-
dimensional vector representing the matching fea-
tures of this token in two dictionaries. 

3 Experiments and Results 

We implemented our models based on the open 
source code of NeuroNER1 (Dernoncourt et al., 
2017) and evaluated their performance using the 
dataset provided by the Bacteria Biotope task in 
the BioNLP Shared Task 2016 (BB3). 

The BB3 task has no separate task for named 
entity recognition. It is jointly evaluated with 
downstream applications such as categorization or 
event extraction. Only in the BB3-cat+ner sub-
task, the official BB3 evaluation service addition-
ally outputs the boundaries scoring about the sys-
tem’s ability to predict entity boundaries, in terms 
of SER (Slot Error Rate), Precision and Recall. 
For this reason, we primarily focus on the BB3-
cat+ner subtask. We use the SER, Precision and 
Recall, output by the official BB3 evaluation ser-
vice, as the evaluation metrics for our experi-
ments. According to the official evaluation (De-
léger et al., 2016), TagIt system achieved the best 
performance on detecting bacteria boundaries 
(SER: 0.236, recall: 0.772, precision: 0.954), 
while LIMSI system worked best on habitat enti-
ties (SER: 0.597, recall: 0.504, precision: 0.728). 
Bacteria are easier to recognize than habitats be-
cause bacteria names are mainly specific terms 
from a closely defined vocabulary, i.e. NCBI Tax-
onomy, with little variations, while habitat names 
usually consist of common English nouns and ad-
jectives, e.g. “egg”, “water”, “fish” and expressed 
in various ways. 

3.1 Dataset and Preprocessing 

The dataset of the BB3-cat+ner subtask consists 
of 161 documents, split into training, development 
and test sets, which include 71, 36 and 54 docu-
                                                      
1 http://neuroner.com/ 

ments and 1122, 698, 1022 entity occurrences re-
spectively. 

Entities occurring in the training or develop-
ment documents are annotated in BRAT format. 
We preprocessed the data by first segmenting all 
the text into sentences of tokens using spaCy2, and 
then tagging each token with a label in BIOES la-
belling scheme. For example, “B-Bacteria” means 
the token is the beginning word of a bacteria enti-
ty mention, and “S-Habitat” means the token is by 
itself the mention for a habitat entity. 

3.2 Word Embeddings 

For segmenting text to train word embeddings, we 
could use a segmentation model for general Eng-
lish text, or alternatively a model specifically 
trained on biomedical text. For the general model, 
we used spaCy, and for the specific model, we ap-
plied OpenNLP with its specially trained model 
on the GENIA corpus. 

As shown by the first two lines in Table 1, us-
ing a specific model trained on domain text gained 
higher precision while lower recall than using a 
general English model. It also shows that the 
state-of-the-art BiLSTM-CRF model is a promis-
ing approach for recognizing biomedical entities, 
even with very little training data like in BB3 task. 

3.3 Integration of Dictionaries 

In general, performance of neural models could 
get far improved by using more training data. 
However, it is costly to collect a large amount of 
training data in biomedical domain. Recently, 
more and more research work focused on finding 
ways to compensate for the shortage of training 
data, e.g. using semi-supervised learning or multi-
task learning techniques. In this paper, we exploit-
ed the way of integrating dictionaries or ontolo-
gies into the neural network model to improve 
performance. For detecting bacteria and habitats, 
we use the most recent comprehensive dictionar-
ies3 specially built for these two types of entities 
by TagIt. We tested two strategies of matching 
with dictionary entries: case-sensitive and case-

                                                      
2 https://spacy.io/ 
3 https://github.com/bitmask/BioNLP-BB3 

 Vibrios are ubiquitous to oceans , coastal waters , and estuaries . 
Bacteria S O O O O O O O O O O O 
Habitat O O O O S O B E O O S O 

 

Figure 2: Dictionary matchings of an example sentence. 
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insensitive matching. In Table 1, “B+H” repre-
sents for using bacteria and habitat dictionaries, 
and “lower” means case-insensitive matching with 
the dictionary. 

From Table 1, we can have the following ob-
servations: 
(1) By comparing the “B+H” lines with the first 

two lines, we can observe that integrating dic-
tionaries into neural models can significantly 
improve the performance. For example, the 
overall SER is reduced by 12%-16%. 

(2) By comparing the “B+H” lines with “B+H, 
lower” lines, we see that case-insensitive 
matching with dictionary is more effective 
than case-sensitive matching. 

(3) Compared with the existing two best systems 
using traditional dictionary-based (TagIt) or 
feature-based (LIMSI) approaches, our best 
model “OpenNLP (B+H, lower)” can perform 
competitively on recognizing bacteria entities 
and much better on recognizing habitat enti-
ties. 

4 Conclusions and Future Work 

To the best of our knowledge, this is the first work 
of applying state-of-the-art neural network models 
in recognizing bacteria and biotope entities. The 
experiment results on BB3 task show that it is 
promising even with very small sized training da-
ta. Its performance can be much improved by in-
tegrating dictionaries, achieving competitive per-
formance on bacteria entities and much better per-
formance on habitat entities compared with the 
best traditional methods. 

As for future work, we intend to (1) test our 
model on more types of biomedical entities; (2) 
investigate other ways of integrating dictionaries 

or ontologies with neural networks; (3) extend our 
model to deal with the embedded entities and dis-
continuous entities, which are special challenges 
for BioNER. 
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Systems Overall Bacteria boundaries Habitat boundaries 

SER Recall Prec. F1 SER Recall Prec. SER Recall Prec. 

spaCy 0.487 0.596 0.789 0.678 0.415 0.693 0.814 0.519 0.544 0.775 

OpenNLP 0.493 0.549 0.830 0.661 0.376 0.656 0.891 0.558 0.490 0.785 

spaCy (B+H) 0.435 0.624 0.828 0.712 0.324 0.701 0.919 0.503 0.578 0.768 

spaCy (B+H, lower) 0.429 0.617 0.852 0.715 0.318 0.710 0.918 0.499 0.556 0.801 

OpenNLP (B+H) 0.442 0.578 0.876 0.697 0.330 0.684 0.925 0.514 0.511 0.835 

OpenNLP (B+H, lower) 0.415 0.617 0.867 0.721 0.301 0.707 0.938 0.483 0.563 0.816 

TagIt (Cook et al., 2016) - - - - 0.236 0.772 0.954 0.599 0.476 0.675 

LIMSI (Grouin, 2016) - - - - 0.277 0.751 0.903 0.597 0.504 0.728 

Table 1:  Experiment results. 
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Abstract 

A search that is targeted at finding a spe-

cific document in databases is called a 

Single Citation search. Single citation 

searches are particularly important for 

scholarly databases, such as PubMed®, 

because users are frequently searching for 

a specific publication. In this work we de-

scribe SingleCite, a single citation match-

ing system designed to facilitate user’s 

search for a specific document. We report 

on the progress that has been achieved to-

wards building that functionality.  

1 Introduction 

PubMed, a search engine that works on MED-

LINE®, processes on average 3 million queries a 

day and is recognized as a primary tool for schol-

ars in the biomedical field (Falagas, Pitsouni, 

Malietzis, & Pappas, 2008; Lu, 2011; Wildgaard 

& Lund, 2016). Given the significance of Pub-

Med, improving query understanding offers tre-

mendous opportunities for providing better search 

results. In this work we present SingleCite, a sin-

gle citational matching tool designed with the goal 

to improve current single citation searching func-

tionality in PubMed. 

PubMed queries are generally being classified 

as informational or navigational. Informational 

queries, also known as topical searches, such as 

colon cancer, or familial Mediterranean fever, are 

intended to satisfy information needs on a search 

topic. They tend to retrieve many documents, the 

information need is typically not satisfied with 

just one result, and the user does not know in ad-

vance which document will be the most useful. 

Navigational queries, also called known-item 

queries (Ogilvie & Callan, 2003), such as Kat-

anaev AND Cell 2005, 120(1):111-22, are in-

tended to retrieve a specific publication. Pro-

cessing navigational queries requires techniques 

rather different from those used for information 

searches, and includes access to structured cita-

tion data, syntactic parsers, and intelligent 

metadata (volume, issue, page, date fields) 

parsers. Parsing and managing citations is a criti-

cal task of digital libraries and has been studied 

extensively (Anzaroot & McCallum, 2013; Kim, 

Le, & Thoma, 2008; Zhang, Cao, & Yu, 2011). 

Addressing navigational queries is particularly 

important for scholarly citation databases, includ-

ing PubMed, where navigational searches consti-

tute about half of all queries (Islamaj, Murray, 

Névéol, & Lu, 2009; Yeganova, Kim, Comeau, 

Wilbur, & Lu, 2018), unlike general search do-

main where they represent a significantly smaller 

portion (Jansen, Booth, & Spink, 2007). Moreo-

ver, because of specificity of the expected re-

sponse, retrieving the correct document is of great 

importance.  

Users that have a specific document in mind, 

frequently enter a query they believe uniquely 

identifies that document. A specific document 

may be accessed in various ways. Author name(s) 

queries and title queries are two most frequent 

navigational search patterns (Yeganova et al., 

2018). Other search patterns include combina-

tions of author(s), year, key words, journal, vol-

ume, issue, page and date fields. Not all naviga-

tional queries lead to retrieving a single citation. 

Author name queries may retrieve several PMIDs 

written by the same person. Similarly, title queries 

targeted at retrieving a document with a particular 

title, may be interpreted as key words and retrieve 

multiple matching documents. Our single citation 

matching tool is not intended to handle such que-

ries. It is designed for queries that provide enough 

information to establish a high probability match 

between a query and a single correct document. 

When such a document is found, PubMed redi-

rects a user directly to that document, instead of a 

summary page which generally contains many re-

trieved results. 
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Here we present SingleCite, a single citation 

matching algorithm designed to retrieve a high 

probability match for a navigational query target-

ing a unique document. The algorithm establishes 

a query-document mapping by building a regres-

sion function to predict the probability of a re-

trieved document being the target based on three 

variables: the score of the highest scoring re-

trieved document, the difference in score between 

the two top retrieved documents, and the fraction 

of a query matched by the candidate citation. We 

demonstrate the advantage of our method by com-

paring it with the currently existing single citation 

matching scheme in PubMed and manually anno-

tating a random sample of 1,000 queries on which 

the two methods disagreed. We also apply Single-

Cite on 1 million zero-hit PubMed queries and re-

cover a single citation match for 3.3% of them. 

2 Methods  

To create the mapping between a query and a can-

didate PubMed document we propose an algo-

rithm that predicts the probability of a retrieved 

document being the target given a query. We pro-

pose three variables to measure the success of 

match between a query and a PubMed record: the 

log odds score of the top scoring pmid, the differ-

ence between log odds scores of the two top scor-

ing pmids, and the fraction of alpha-numeric 

query characters that match the record. In the next 

subsection we address the details of how we com-

pute the log odds score between a query and a 

PubMed record. Then we describe how we build 

the regression function that takes as input the three 

variables and predicts the probability of a re-

trieved document being the target. In this work we 

also propose techniques to create artificial que-

ries, where each query is created from a known 

document. This query set is essential for training 

the regression functions in the absence of manu-

ally annotated data. 

2.1   Computing the query-document score  

We represent PubMed documents by their biblio-

graphic data including article title, author 

name(s), journal title, volume, issue, page, and 

date as features. Features from abstracts are not 

used as they are generally not as specific and less 

likely to be the source of a user’s query terminol-

ogy for a single citation. The seven fields of inter-

est will be referred to as citation fields. We index 

the elements of citation fields by including all 

non-stop word single tokens and capitalized stop 

words, that are then lower cased. We also index 

all token pairs with the following exceptions: do 

not include first name or initials alone, do not in-

clude the last page of a page range alone, do not 

include the issue, except as paired with the vol-

ume. 

The features are then weighted with the IDF 

weights approximating naïve Bayesian weights, 

and the resultant weighted features are added up 

for each element of a document matching the 

query. Using these IDF weights we compute the 

log odds score that the matching document is what 

the user was seeking.  

To produce log odds scoring that is as close to 

the truth as possible we make some modifications 

to the weighting. The first problem is that IDF 

weighting is used for both word pairs and single 

words. To correct for this dependency, we modify 

the IDF weights of pairs as follows: 

𝑚𝑜𝑑𝐼𝐷𝐹(𝑤1,𝑤2) = 𝐼𝐷𝐹(𝑤1,𝑤2) − 𝐼𝐷𝐹𝑤1 

We also adjust the IDF weights to correct for 

the unevenness in the amount of dependency 

within fields in the bibliographic record. The un-

evenness is caused by terms in some fields being 

more independent then in others. For example, the 

terms in the author, page, volume, issue and date 

fields tend to be independent of each other. On the 

other hand, in fields such as article titles and jour-

nal titles terms are more dependent. Intuitively, it 

is significantly more difficult to predict author 

first name given the last name, or to predict issue 

given the volume, then to predict a word follow-

ing another word in a title. 

 

Figure 1: Query annotation based on clicked arti-

cle. 

We use a machine annotated training set to op-

timize the weight modification. The machine an-

notated queries are created from NCBI PubMed 

logs by sampling navigational queries that are fol-

lowed by a user clicked document. Given a query 

Query: “Strategies for assessing and fostering 

hope Penrod.J.& Morse.J.M” 

Clicked Article: “Penrod, J., & Morse, J. M. 

(1997). Strategies for assessing and fostering 

hope: The Hope Assessment.” 

Derived Query Parse: Strategies for as-

sessing and fostering hope [Title] Penrod.J. 

[Author] & Morse.J.M [Author]. 
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and a clicked pmid, we interpret the parts of the 

query by mapping them to citation fields of the 

clicked document (title, author, journal, volume, 

issue, page and date). This approach allows us to 

obtain an unlimited amount of citation query–

pmid pairs. Figure 1 presents an example of such 

annotation. Using the machine annotated queries 

as a training set we now modify the IDF weights 

to improve the matching between the query ele-

ments and PubMed citation. To correct for the de-

pendencies within the title fields, we upweight the 

IDF weights for terms coming from all the re-

maining fields by the factor of 1.4. The factor of 

1.4 is empirically determined using a grid search.  

Given a query, we can now score all PubMed 

records and retrieve top ten ranks. As users fre-

quently submit queries with misspelled words 

(Behnert & Lewandowski, 2017) we have incor-

porated spell checking limited to a single edit cor-

rection per term into our processing. This is im-

plemented by retrieving the top ten scoring rec-

ords based on the original query and then applying 

spelling correction to the query one term at a time. 

This may increase the match score between the 

query and a record. If we have increased the dif-

ference between the top score and the next best 

score, the revised query is accepted as the pre-

ferred result. Otherwise the original scores are re-

tained.  

Now that we can compute the scores between a 

query and candidate pmids, the next step is how 

to interpret and combine the scores. To address 

that question we build regression functions to map 

the log odds scores and the fraction of the query 

matched, to the probability the top scoring docu-

ment being the target. Since the training of a re-

gression function requires labeled query-pmid 

pairs, we propose methods for producing artificial 

queries.  

2.2 Artificial Queries 

We propose techniques for creating an artificial 

dataset of annotated citation queries modelled 

upon user’s actual queries. Simulating test collec-

tions for evaluating retrieval quality has been ex-

plored in the literature (Azzopardi & de Rijke, 

2006; Azzopardi, de Rijke, & Balog, 2007) as it 

offers a viable alternative to manually annotating 

queries. Constructing simulated known-item que-

ries present a particularly well-defined task; the 

retrieval goal is the document from which a query 

is constructed.  

We have already shown how to get an unlim-

ited supply of query-document pairs. From each 

such pair, we can take the annotated query as a 

model describing the fields from which the query 

is composed and the length of each such piece. We 

then randomly sample a PubMed document. Us-

ing the pattern of the annotated query, we generate 

a synthetic query from the reference PubMed doc-

ument mimicking the structure of the annotated 

query. For example, if the annotated query con-

tains an author name, we extract an author name 

from the document that is closest in length to the 

author name element in the model query. The 

same technique holds for all the fields found in the 

model query. A second technique randomly se-

lects a PubMed document, creates its citation as a 

text string, and then randomly splits it into two 

strings. Each of these strings then simulates a cut-

and-paste query. 

The advantage of such queries is that we know 

the target document the query is intended to re-

trieve. However, we have no guarantee the query 

will retrieve the document on which it is based. 

Using these two techniques, we created a set of 

one million queries.  

2.3 Training the Regression Functions using 

Artificial Queries 

Based on the synthetic queries which have known 

target documents in PubMed, the goal is to build 

a regression model for estimating the relationship 

between the three dependent variables and the 

predictor. Predictor in this model is label of a 

query document pair, 1 if the document is identi-

fied correctly, and 0 otherwise. For each query we 

carry out retrieval using our system and record the 

top scoring documents from PubMed; x and y rep-

resent values determined by the retrieval as 

x = score1; y = (score1-score2) ⁄ score1.   

To be kept, a score had to be greater than a cer-

tain lower bound and we only record at most 

scores for the top three documents. The first stage 

of our computation is to estimate the probability 

𝑝(𝑡 ∈ 𝑃𝑢𝑏𝑀𝑒𝑑|𝑥, 𝑦), where t represents the tar-

get document of the query. We construct the first 

regression function which estimates that probabil-

ity given 𝑥 𝑎𝑛𝑑 𝑦. The second stage of the com-

putation is to estimate 𝑝(𝑑1 = 𝑡|𝑥, 𝑦, 𝑡 ∈
𝑃𝑢𝑏𝑀𝑒𝑑), the probability that the document at 

rank 1 is the target document. Again, we use all 

the artificial queries and their retrieved documents 

as long as at least two scores were above the 
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threshold to directly estimate 

𝑝(𝑑1 = 𝑡|𝑥, 𝑦, 𝑡 ∈ 𝑃𝑀). This is obtained by a 

straightforward application of the two-dimen-

sional isotonic regression algorithm (Spouge, 

Wan, & Wilbur, 2003). Consequently, we can 

combine this probability with the previously esti-

mated 𝑝(𝑡 ∈ 𝑃𝑢𝑏𝑀𝑒𝑑|𝑥, 𝑦) and obtain: 

𝑝(𝑑1 = 𝑡|𝑥, 𝑦) = 

𝑝(𝑑1 = 𝑡|𝑥, 𝑦, 𝑡 ∈ 𝑃𝑀)𝑝(𝑡 ∈ 𝑃𝑀|𝑥, 𝑦). 

Given retrieval results from our system for a 

query, 𝑝(𝑑1 = 𝑡|𝑥, 𝑦) provides an estimate of 

how likely the user was looking for document 𝑑1.  
The final step in the model constructs a third re-

gression by taking as input 𝑝(𝑑1 = 𝑡|𝑥, 𝑦) and the 

query fraction matched. We hypothesize that if the 

query is a sufficiently good match to a PubMed rec-

ord and there is a reasonable gap to the next best 

score, the top scoring record may be of interest 

even if not exactly what the user was seeking. We 

conjecture this to depend on the quality of match 

and how much of the query is involved in the 

match. The difficulty however is that we do not 

have a way to simulate this problem with known 

answers. Instead, we compare our system output to 

the output of a legacy system (known to have high 

precision) possessed and currently used by NCBI 

to processes single citation queries. A total of 

343,731 unique queries were collected from Pub-

Med logs on October 12, 2016. These were the que-

ries that triggered the single citation matching sys-

tem in PubMed. The existing system produced a 

presumed high-quality answer for 58,375 queries. 

SingleCite produced probabilistic output of varia-

ble quality for 232,256 of these queries. For the 

51,472 queries where the existing and the new sys-

tem both made predictions, we counted predictions 

as correct when the two systems agreed on the re-

trieved pmid (45,713) and incorrect otherwise 

(5,759). Using this data, we build the regression 

function that combines the probability of top scor-

ing document being the target obtained from previ-

ous step and the fraction of the query matched for 

the 51,472 queries. We empirically chose a thresh-

old of 0.98 and accept predictions from the third 

regression function that are above or at that value. 

3 Evaluation 

We ran SingleCite on the 343,731 query set men-

tioned above, and predicted high probability an-

swers on 26,892 queries (with the 0.98 threshold) 

where the legacy system made no predictions. To 

evaluate the accuracy of our algorithm, we ran-

domly sampled 500 queries from the set where we 

alone made predictions and examined the quality 

of the answers. We found 7 answers clearly wrong 

and 5 probably wrong but potentially useful. 

Wrong answers were mostly seen with the shorter 

queries. These results are consistent with a 98% 

accuracy level. We further randomly sampled 200 

queries from the set of 11,688 queries where the 

legacy system alone made the prediction. There 

we found 22% of answers clearly wrong and 8% 

probably wrong, but potentially useful. The re-

maining 70% of queries produced a single citation 

match that we thought was correct. On close ex-

amination of queries missed by SingleCite, we 

identified a few opportunities for improvement, 

including enriching the index with journal name 

abbreviations (currently index contains only full 

journal names), and better handling of hyphenated 

last names (for example, query containing Shiloh 

did not retrieve the target document containing 

Shiloh-Malawsky as an author).  

As a second experiment, we ran SingleCite on 

one million queries randomly sampled from que-

ries submitted to PubMed in 2017 that produced 

no results using the legacy system. We found a 

single citation match for 3.34% of them. 

4 Conclusion 

Here we present our preliminary work on the sin-

gle citation matching tool aimed to facilitate 

user’s search for a specific document in PubMed. 

The method depends on good feature engineering 

combined with novel approaches for adjusting 

feature weights when combining elements from 

different fields. We also describe how we create 

one million synthetic queries, each along with the 

PMID of the document used as the source. Single-

Cite shows promising results compared to the ex-

isting system for finding single citations. The tool 

can also be used as part of NLP pipeline for iden-

tifying citations in text, abstract or full text, and 

mapping them to corresponding PMIDs. The tool 

can further be useful for citation management sys-

tems and portfolio analysis.  
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Abstract 

We investigate the quality of task specific 
word embeddings created with relatively 
small, targeted corpora. We present a 
comprehensive evaluation framework 
including both intrinsic and extrinsic 
evaluation that can be expanded to named 
entities beyond drug name. Intrinsic 
evaluation results tell that drug name 
embeddings created with a domain 
specific document corpus outperformed 
the previously published versions that 
derived from a very large general text 
corpus. Extrinsic evaluation uses word 
embedding for the task of drug name 
recognition with Bi-LSTM model and the 
results demonstrate the advantage of using 
domain-specific word embeddings as the 
only input feature for drug name 
recognition with F1-score achieving 0.91. 
This work suggests that it may be 
advantageous to derive domain specific 
embeddings for certain tasks even when 
the domain specific corpus is of limited 
size. 

1     Introduction 

The ability of word embeddings to capture 
latent, contextual information has proven useful 
to a variety of NLP tasks, such as named entity 
recognition (Santos & Guimarães, 2015), 
syntactic parsing (Levy & Goldberg, 2014), and 
question answering (Iyyer et al., 2014). Within 
biomedical research, word embeddings 
developed in most previous studies were 
generated from very large, generic corpora (e.g. 
news articles). This is appropriate for 
generalized language models. However, for 
specialized domains and tasks, it may be 
beneficial to generate word embeddings from a 
targeted corpus. We propose a biomedical 
domain-specific word embedding model and a 
novel evaluation framework, which mainly 
focus on representing drug names in the current 

stage. This framework can be expanded to other 
biomedical entities such as protein, gene, and 
chemical compound names in the future. We 
evaluate the developed word embeddings with a 
comprehensive intrinsic evaluation framework 
that includes relatedness, coherence, and outlier 
detection assessment, as well as an extrinsic 
evaluation that focuses on the task of drug name 
recognition and classification with a 
bidirectional long short-term memory (Bi-
LSTM) RNN model. 

2     Related Work 

In the biomedical domain, word embeddings are 
primarily used for biomedical named entity 
recognition (BNER) with evaluations conducted 
on tasks such as JNLPBA (Kim et al., 2004), 
BioCreAtIvE (Hirschman et al., 2005), and 
BioNLP Shared Tasks. Tang et al. (2014) 
explored the impact of three different types of 
word representations (WR) on clustering-based 
representation, distributional representation and 
word embedding. Segura-Bedmar et al. (2015) 
generated word embeddings with word2vec and 
a combined Wikipedia and MedLine corpus. The 
results were evaluated on the SemEval-2013 
Task 9.1 Drug Name Recognition dataset 
(Segura-Bedmar et al., 2013). Wang et al. (2015, 
November) used word embeddings for bio-event 
trigger detection. Li et al. (2015) incorporated 
word embedding features with bag-of-words 
(BOW) features for bio-event extraction and 
evaluated results on the BioNLP 2013 GENIA 
task (Nédellec et al., 2013). 
Drug name recognition (DNR) in biomedical 
literature and clinical notes is essential for many 
medical information and relation extraction tasks 
(e.g. drug-drug interaction). Significant effort 
has been devoted to DNR and the common 
methods can be categorized as (Lu et al., 2015): 
(1) dictionary-based approaches (Rindflesch et 
al., 2000; Sanchez-Cisneros et al., 2013), (2) 
rule-based/ontology-based approaches (Hamon 
& Grabar, 2010; Coden et al., 2012), (3) 
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machine learning-based approaches (Lamurias et 
al., 2013; Lu et al., 2015), and (4) hybrid 
approaches (Korkontzelos et al., 2015). 

3 Word Embeddings Training 

We extracted text from PubMed and DrugBank 
to construct our corpus. For PubMed, we used 
“drug” as the keyword of query to broadly select 
drug related abstracts, which yielded 474,273 
abstracts. From DrugBank 1  Release Version 
5.0.5 we extracted the fields: “description” 
“indication” “pharmacodynamics” “mechanism-
of-action” “toxicity” for 8,226 drugs.  
We employed the skip-gram model in word2vec 
to generate word embeddings. Moreover, as 
studies have found that word embeddings have a 
consistent relationship with word frequencies, 
even after the interception of frequency-based 
effects by algorithms and vector length 
normalization (Schnabel et al., 2015), we 
employed correlation analysis between vectors 
and frequencies as the evaluation metric to tune 
the parameters for the word embedding model. 
For our final result, we trained the word 
embedding model in word2vec with parameters: 
size = 420, window = 5, min_count = 2. 

4     Intrinsic Evaluation 

4.1    Relatedness assessment 

Relatedness evaluation is the most popular and 
direct intrinsic word embedding evaluation 
method. It is expected that high quality word 
embeddings will display significant correlation 
(e.g. Pearson’s, Spearman’s) between the cosine 
similarity of the embedding vectors for related 
word pairs and the human scores. 
We evaluated the results on two biomedical 
domain inventories: UMNSRS-Rel and 
UMNSRS-Sim (Pakhomov et al., 2010). These 
datasets provide human-annotated scores of 
relatedness and similarity between clinical term 
pairs. We measured the correlation between the 
scores provided by the UMNSRS datasets and 
calculated by our model, using Spearman’s 
correlation coefficient. We also compared our 
model to a publicly available word embedding 
set trained on about 100 billion words from 
Google News samples2. 
 

                                                        
1 www.drugbank.ca/releases/latest 
2 https://code.google.com/archive/p/word2vec/ 

Corpora PubMed+ 
DrugBank  

Google 
News  

drug-drug 0.737 0.430 
drug-X 0.530 0.293 

drug-nonDrug 0.492 0.245 
whole dataset 0.555 0.345 

nonDrug-nonDrug 0.565 0.368 
 

Table 1: Relatedness assessment on UMNSRS-Rel 
dataset 
 

Corpora PubMed+ 
DrugBank  

Google 
News  

drug-drug 0.764 0.495 
drug-X 0.529 0.435 

drug-nonDrug 0.449 0.385 
whole  dataset 0.597 0.402 

nonDrug-nonDrug 0.601 0.381 
 

Table 2: Similarity assessment on UMNSRS-Sim 
dataset 
 

As shown in Table 1 and 2, our model and 
UMNSRS show positive correlations in both 
relatedness and similarity assessment, with most 
of the correlation coefficients higher than 0.5, 
which means the relationship represented in 
vector space is consistent with human 
annotations. In particular, the highest 
consistency is achieved for the relationship of 
drug-drug pairs, where coefficients reach 0.737 
and 0.764 for relatedness and similarity, 
respectively. In addition, the proposed model 
trained on PubMed+DrugBank shows 
significantly higher correlations with human 
scores than the model trained on a Google News 
corpus in all word pair types. This is important 
because the Google News based embeddings 
were trained on an extremely large dataset 
compared to our corpus.  

4.2    Coherence assessment 

Conceptually, we expect that a good word 
embedding should be surrounded by a coherent 
neighborhood of similar words. From this 
concept, we propose a novel intrinsic evaluation 
metric as a supplement to current relatedness 
analysis (Schnabel et al., 2015). In coherence 
assessment, we assess whether a given word 
embedding is mutually related to the word 
embeddings in its local neighborhood. Here we 
created a neighborhood for each drug name and 
explored the relation with the closest neighbor 
terms. We expect that other drug entities should 
be preferentially represented in the 
neighborhood. Setting the neighborhood size 
from 3 to 10, we calculated the percentage of 
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drug names within the neighborhood of each 
drug, with selected results shown in Table 3. 
 

Size of 
neighborhood 3 5 7 9 10 
Percentage of 

drug/all_neighbors 
(%) 

61.1 58.8 56.9 55.2 54.6 

Table 3: Percentage of drug entities within a 
drug’s neighborhood across all drugs. 
 

From Table 3, we see that the percentage of 
drug entities declines with the expansion of 
neighborhood size. Noting that neighbors were 
arranged by the cosine similarity relative to the 
target word, such decline implies that drug 
entities tend to be the closest neighbors. Beyond 
that, drug entities still occupy more than half of 
the nearest 10 neighbors. These results suggest 
there is a strong coherence in the semantic space.  

4.3    Outlier Detection 

As a final intrinsic measure of word embedding 
quality, we consider a modification of a 
previously proposed outlier detection task. 
Given a group of words W, the compactness 
score of word 𝑤" ∈ 𝑊  represents the 
compactness of the cluster W\{wm}.  
Performance on the outlier detection task can be 
evaluated by accuracy and outlier position 
percentage (OPP) (Camacho-Collados & Navigli, 
2016). Ideally, if outliers in all the groups were 
identified and listed at the last position, accuracy 
and OPP should be 1 and 100% respectively. 
In this study, the goal of outlier detection is to 
identify the non-drug words as outliers. We 
created two datasets each with 400 groups of 
words (|D|=400). Following the work of 
Camacho-Collado and Navigli, the first dataset, 
D-Manu, contains 4 to 8 drugs and 1 manually 
selected non-drug outlier ( |𝑊| ∈ [5, 9] ). 
Additionally, we modify the previously 
presented work by forming a second dataset, D-
Rand, in which each group contains 4 to 8 drugs 
and 1 randomly selected non-drug outlier (|𝑊| ∈
[5, 9] ). Tables 4 and 5 show the evaluation 
results of outlier detection on D-Rand and D-
Manu. On D-Rand, outliers were identified in 
more than 40% of groups across different sizes, 
and OPP values indicate that the average outlier 
position was around 70% to the right end (100%) 
of the list arranged by compactness score. 
Meanwhile, for D-Manu, the accuracy values are 
all higher than 0.8 and the OPP values are all 
above 93%.  

 

Group size-|W| 5 6 7 8 9 
Accuracy 0.43 0.44 0.41 0.40 0.41 
OPP(%) 69.2 72.0 73.6 70.3 72.4 

Table 4: Accuracy and OPP of outlier detection on 
D-Rand 

Group size-|W| 5 6 7 8 9 
Accuracy 0.82 0.83 0.85 0.80 0.83 

OPP 93.4 94.3 95.3 93.9 94.9 
Table 5: Accuracy and OPP of outlier detection on 
D-Manu 

To gain further insight on the potential 
correlation between the outlier task performance 
and the similarity distribution over the outlier 
term and the non-outlier terms, we calculated the 
average similarity between each pair of non-
outlier terms and the average between non-
outliers and the outlier for each group in D-Rand 
and D-Manu. We found that the average 
similarity between non-outliers was about 0.21. 
The average similarity between non-outliers and 
randomly selected outliers and manually selected 
outliers was about 0.16 and 0.12, respectively. 
This result confirmed that the greater distinction 
in word similarity is consistent with the better 
accuracies in outlier detection.  

5 Extrinsic Evaluation - DNR 

5.1 DNR with Bi-LSTM Model 

We employ a bidirectional long short-term 
memory (Bi-LSTM) RNN model that is 
designed to process text input as a sequence of 
tokens (constituent parts, usually words) and 
predict the label for each token. The BLSTM-
RNN model combines two RNNs: the forward 
RNN processes the sequence from left to right 
and the backward RNN processes it from right to 
left. We use a BIO scheme for the sequence 
labeling task. Specifically, each token is labeled 
as one B-X, I-X or O indicating it is at the 
beginning (B), inside (I), or outside (O) of the 
entity of type X (e.g. drug name).  
In order to achieve the best results and compare 
the impact of the word embedding model in the 
labeling task, we introduced three BLSTM-RNN 
variants: (1) Fixed embedding (BLSTM-F): 
Word embedding values were provided by the 
pre-trained word embedding model and treated 
as fixed constants; (2) Varied embedding 
(BLSTM-V): Word embedding values were also 
provided by the pre-trained word embedding but 
treated as learnable parameters; (3) Randomly-
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initialized embedding (BLSTM-R): Word 
embedding values were initialized randomly and 
treated as learnable parameters. 

5.2 Experiments on Drug Name Recognition 

We evaluated our model on DDI-Extraction-
2011 task (Segura-Bedmar et al., 2011) using 
two metrics: Exact matching-the predicted 
entity must have exactly the same boundary with 
the annotated entity and Partial matching-the 
predicted entity must have some overlap with the 
annotated entity. Table 6 shows the results of 
three BLSTM models. Regarding to the impact 
of pre-trained word embeddings, there is no 
obvious improvement when introducing the pre-
trained embedding values instead of randomly 
initialized vector values. Moreover, the f1-score 
of BLSTM-V that sets embedding values as 
learnable parameters in RNN model is increased 
to 0.911 from 0.891 in BLSTM-F that treats 
them as fixed constants. Overall, our BLSTM 
models achieve very good results on DNR 
according to f1-scores, and treating embedding 
values as learnable parameters, regardless of pre-
trained or randomly initialized, lead to better 
results than setting them fixed, indicating the 
great advantage of RNN models for drug name 
recognition task. 
 

 Exact Matching Partial Matching 
P R F1 P R F1 

BLSTM-F 0.89 0.90 0.89 0.91 0.92 0.91 
BLSTM-V 0.91 0.91 0.91 0.93 0.94 0.94 
BLSTM-R 0.90 0.92 0.91 0.93 0.94 0.93 
 *Bold indicates the highest score in the column. 
Table 6: Evaluation results on DDI-Extraction-
2011 test set.  

5.3 Experiments on Drug Name Classification 

In DDI-Extraction-2013 challenge (Segura-
Bedmar et al., 2013), the drugs were annotated 
with four types instead of one type in 2011 task, 
including: drug, brand, group, and drug_n. Thus, 
it becomes a drug name recognition and 
classification task. We evaluated our results 
using four metrics provided by the organizers, 
with f1-scores shown in Table 7. Pre-trained 
word embeddings showed their advantages, for 
instance, f1 of strict matching were improved 16% 
in BLSTM-V than BLSTM-R. While updating 
the pre-trained embedding values did not show 
obvious improvement by comparing BLSTM-F 
and BLSTM-V. 

 

DrugBank+MedLine BLSTM-F BLSTM-V BLSTM-R 
Strict matching 0.735 0.724 0.631 
Type matching 0.753 0.737 0.654 
Exact oundary 

matching 0.789 0.801 0.658 

Partial boundary 
matching 0.816 0.823 0.688 

drug 0.824 0.852 0.750 
brand 0.722 0.588 0.344 
group 0.722 0.702 0.697 
drug_n 0.381 0.333 0 

Table 7: Results on DDI-Extraction-2013 test set. 

6     Conclusion 

We presented biomedical domain-specific word 
embeddings formulated with the word2vec 
model using PubMed and DrugBank text sources 
and a comprehensive intrinsic and extrinsic 
evaluation framework for word embeddings that 
includes new and existing metrics. We found 
that our word embeddings demonstrated superior 
performance based on relatedness assessment, 
neighborhood coherence, and outlier detection. 
Moreover, we also found that these embeddings 
performed better than those generated from very 
large datasets such as Google News. This is 
significant because our training dataset is 
approximately two orders of magnitude smaller.  
Since drug name recognition (DNR) is an 
important biomedical NLP task, we used DNR 
as the downstream task for extrinsic evaluation 
of the developed drug name embeddings. We 
utilized the pre-trained word embeddings in Bi-
LSTM model for the task of drug name 
recognition and classification. For drug name 
recognition, setting embedding values as 
learnable parameters in RNN model has more 
impact on the performance than utilizing pre-
trained word embeddings. For drug name 
classification, pre-trained word embeddings 
offer significant performance increases over 
randomly-initialized embeddings, while 
updating the pre-trained embedding values 
during the BLSTM model training has little 
improvement. This work provides a useful tool 
or framework for processing raw biomedical text 
and extracting drug entities, which could be 
helpful in processing other unstructured data and 
medical entities. 
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Abstract 

Creating simulated search environments has 

been of a significant interest in information re-

trieval, in both general and biomedical search 

domains. Existing collections include modest 

number of queries and are constructed by 

manually evaluating retrieval results. In this 

work we propose leveraging MeSH term as-

signments for creating synthetic test beds. We 

select a suitable subset of MeSH terms as que-

ries, and utilize MeSH term assignments as la-

bels for retrieval evaluation. Using well stud-

ied retrieval functions, we show that their per-

formance on the proposed data is consistent 

with similar findings in previous work. We 

further use the proposed retrieval evaluation 

framework to better understand how to com-

bine heterogeneous sources of textual infor-

mation. 

1 Introduction 

PubMed is a search engine processing on average 

3 million queries a day and is recognized as a pri-

mary tool for scholars in the biomedical field (M. 

Falagas, Pitsouni, Malietzis, & Pappas, 2008; Lu, 

2011; Wildgaard & Lund, 2016).  

PubMed provides access to a collection of ap-

proximately 28 million biomedical abstracts as of 

2018, of which about 4.5 million have full text 

document available in PubMed Central. With the 

growing availability of full-text articles, an essen-

tial question to consider is how to leverage full 

text information to improve PubMed retrieval? 

While a number of studies have pointed out the 

benefits of full text for various text mining tasks 

(Cohen, Johnson, Verspoor, Roeder, & Hunter, 

2010; Westergaard, Stærfeldt, Tønsberg, Jensen , 

& Brunak, 2018), combining these two resources 

for information retrieval is not a trivial endeavor. 

Naïvely merging full text articles with abstract 

data, naturally increases the recall, but at a cost for 

precision, generally degrading the overall quality 

of combined search (Lin, 2009).  

Research is required to understand how to best 

combine abstracts and full texts, examine the rel-

ative importance of different sections in full text, 

investigate the performance of different scoring 

functions, etc. A major obstacle in such efforts is 

the lack of large-scale gold standards for retrieval 

evaluation. Hence, creating such large-scale re-

trieval evaluation framework is the goal of this 

work. 

Gold standards are typically assembled by us-

ing human judgments, which are time consuming, 

expensive and not scalable. Pioneering examples 

are a TREC collection (Hersh, Cohen, Ruslen, & 

Roberts, 2007) and a BioASQ collection 

(Tsatsaronis et al., 2015). Simulating test collec-

tions for evaluating retrieval quality offers a via-

ble alternative and has been explored in the liter-

ature (Azzopardi & de Rijke, 2006; Azzopardi, de 

Rijke, & Balog, 2007; Kim, Yeganova, Comeau, 

Wilbur, & Lu, 2018). In this work we create an 

evaluation framework based on MeSH term as-

signments, and use that framework to test the per-

formance of several classic ranking functions. 

We examine the utility of MeSH terms as query 

surrogates and MeSH term assignments as 

pseudo-relevance rankings. We describe how we 

select a subset of MeSH terms as candidate MeSH 

queries and discuss the retrieval results using five 

different retrieval functions available in SOLR. 

MeSH queries are representative of real user que-

ries. This approach allows us to create a large-

scale relevance ranking framework that is based 

on human judgements and is publicly available. 

MeSH queries are available for download at: 
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https://ftp.ncbi.nlm.nih.gov/pub/wbur/mesh_que-

ries/. 

2 MeSH Term Based Queries for Re-

trieval Evaluation 

Each paper indexed by MEDLINE® is manually 

assigned on average thirteen MeSH terms (Huang, 

Neveol, & Lu, 2011) by an indexer, who has ac-

cess to both the abstract and full text of articles. It 

is plausible to assume that MeSH terms assigned 

to a document are highly reflective of its topic, 

and the document is highly relevant to that MeSH 

term. 

In this work we propose using a subset of 

MeSH terms as queries and rely on the assumption 

that documents with the MeSH terms assigned are 

relevant to the query. As queries, we aim to select 

MeSH terms that satisfy certain frequency re-

quirements, and those that are correlated with real 

user queries. We will refer to the final set of 

MeSH terms that we use as queries as MeSH que-

ries. Using MeSH terms for evaluation of various 

NLP tasks has been described in the literature 

(Bhattacharya, Ha−Thuc, & Srinivasan, 2011; 

Yeganova, Kim, Kim, & Wilbur, 2014). How-

ever, to our knowledge, using MeSH terms as 

query surrogates and MeSH assignments as rele-

vance rankings has not been yet described. 

2.1 MeSH term preprocessing 

We preprocess the MeSH terms by applying sev-

eral processing steps, which include lowercasing, 

removing all non-alphanumeric characters, and 

dropping stop words from MeSH term strings. We 

further drop tokens in the remaining MeSH term 

string that are pure digits.  

2.2 Frequency Threshold 

We apply frequency threshold to remove MeSH 

terms that are not likely to be useful as queries. 

Some MeSH terms such as Humans, are very gen-

eral, and are not useful for evaluation of retrieval 

results. Humans is assigned to an overwhelming 

fraction of PubMed documents, even to those that 

are not directly discussing the topic. For example, 

an article studying dietary experiments on rats in-

volving the hormone “insulin” is assigned hu-

mans because it studied animals to understand di-

abetes for humans. Another complication are am-

biguous MeSH terms. With the frequency thresh-

old, our goal is to limit the analysis to those MeSH 

terms that tend to carry the same meaning across 

the corpus. 

For a single token MeSH term, we consider two 

frequencies: the number of PubMed documents 

the MeSH term is assigned to, and the frequency 

of the token used as a text word in PubMed ab-

stracts. For a single token MeSH term, we re-

quired that the smaller of the two frequencies is at 

least half as big as the larger. For multi-token 

MeSH terms, the frequency with which each indi-

vidual token in the MeSH term appears in the text 

is at most ten times as high as the frequency of the 

MeSH term. These requirements lead to 5,117 sin-

gle-token and 1,735 multi-token MeSH terms for 

use as queries. 

2.3 Presence in User Queries 

The second essential consideration is to select 

MeSH terms that are likely to be used as queries. 

We collected PubMed queries issued in the 2017 

calendar year. We normalized these user queries 

in the same manner as MeSH terms. We found 

that among the 5,117 single token MeSH terms, 

about half of them appeared as queries. Among 

the 1,735 multi-token MeSH terms 96% have 

been issued as a query. Based on this analysis, we 

decided to proceed with the multi-token MeSH 

queries for our experiments. We will refer to that 

set of MeSH terms as MeSH queries. 

3 SOLR Retrieval Functions 

SOLR is an open source search platform built on 

Apache Lucene which has been widely used in the 

search industry for more than a decade. It offers a 

number of useful features including fast speed, 

distributed indexing, replication, load-balanced 

querying, and automated failover and recovery. 

Lucene-based SOLR search engine is a popular 

industry standard for indexing, search and re-

trieval. SOLR provides several ranking options, 

and our interest is in evaluating them using MeSH 

queries and pseudo-relevance judgements.   

We investigated most of the weighting formu-

las available in the native SOLR/Lucene search 

engine, and report the top five best performing 

ones: tf.idf, BM25, DFR, IBS and Dirichlet.  

tf.idf is the SOLR default ranking algorithm 

and one of the most basic weighting schemes used 

in information retrieval (Robertson, 2004).  
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BM25 is  the ranking algorithm described in 

(Robertson SE, 1995) and (Sparck Jones, Walker, 

& Robertson, 1998).  

DFR is the implementation based upon the di-

vergence from randomness (DFR) framework in-

troduced in (Amati & Van Rijsbergen, 2002) . 

IBS is based upon a framework for the family 

of information-based models, as described in 

(Clinchant & Gaussier, 2010).  

Dirichlet is an language model for Bayesian 

smoothing using Dirichlet priors from (Zhai & 

Lafferty, 2004). 

4 Results 

MeSH terms are assigned based on article ab-

stracts and full texts, hence it is natural to include 

in the retrieval experiments not only PubMed ar-

ticles, but also corresponding PubMed Central full 

text articles. To that end, we created a retrieval en-

vironment which included all PubMed articles 

(~27 million abstracts) and their available PMC 

full text counterparts (~4 million full texts) in a 

unified system. The search environment was cre-

ated in such a way that we can distinguish Pub-

Med and PMC records, and identify which PMC 

record corresponds to a PubMed abstract. The re-

trieval system, however, treated all PubMed and 

PMC documents independently. For PubMed rec-

ords, we indexed the title and the abstract fields, 

for the PMC full text records we indexed title, ab-

stract and full text fields. We evaluated each re-

trieval method available in SOLR by querying the 

unified database using MeSH queries. Retrieved 

documents (both PubMed and PMC) where 

scored using SOLR weighting functions and re-

turned in the order of diminishing score.  

For each MeSH query, we retrieved the top 

2,000 documents. Among those, we considered 

only documents to which MeSH terms have al-

ready been assigned (recent documents may not 

have been assigned MeSH terms yet) and call 

them the retrieved set. Documents in the retrieved 

set that are assigned MeSH query as a MeSH term 

are treated as positive, while the rest are consid-

ered negative. Given these assignments, we can  

compute Mean Average Precision (MAP) and 

Precision-Recall Break Even (BE) (M. Falagas, 

Pitsouni, E., Malietzis, G., & Pappas, G., 2008) to 

measure the success of each retrieval function.  

Table 1 presents the summary of the retrieval 

results from SOLR using the five different 

weighting formulas, averaged over the 1,735 

multi-token MeSH queries. Table 1 shows that 

BM25 outperforms tf.idf in terms of both MAP 

and BE. This result is consistent with results re-

ported in (Lin, 2009). We also observe that BM25 

and DFR outperform the other three ranking 

methods, with DFR showing slightly better results 

than BM25.  

A common consideration with document rank-

ing formulas is how robust they are to document 

length. This next experiment examines whether 

different ranking formulas favor shorter PubMed 

abstracts to longer PMC full text documents, or 

the opposite. Among the top 2,000, we considered 

positive retrieved documents for which both Pub-

Med and PMC records exist. For such articles, it 

is possible for both PubMed and PMC records to 

be included in top 2K or just one of them to be 

present. For each query, we counted the total num-

ber of positive documents as PMC articles that are 

ranked higher than PubMed articles (denoted as 

PMC > PM), as well as the number of positive 

documents for which PubMed articles are ranked 

higher (PM > PMC). 

The counts are presented in Table 2. We ob-

serve that tf.idf pulls more PubMed abstracts into 

the highest scoring 2,000, thus favoring relatively 

short (PubMed) documents. Dirichlet, on the 

other hand favors PubMed Central full text arti-

cles. These experiments suggest that tf.idf and Di-

richlet are more extreme. By contrast, BM25, 

DFR and IBS favor PubMed abstracts, but not as 

strongly.  

Our next goal is to consider the value of full 

text articles for retrieval. We analyze the retrieval 

performance by computing MAP and BE 

measures in retrieving 1) PubMed articles only 2) 

PMC articles only and 3) both PubMed and PMC 

articles using BM25 and DFR retrieval functions. 

For the combined retrieval, we assign each article 

the maximum of its PubMed and PMC score 

 MAP BE 

tf .idf 0.380 0.506 

BM25 0.413 0.532 

DFR 0.417 0.536 

IBS 0.404 0.524 

Dirichlet 0.305  0.454 

Table 1. Retrieval results for multi-word que-

ries, based on the top 2K retrieved documents. 

Presented are averages over 1,735 multi-word 

MeSH queries.  
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and evaluate based on that maximum. We observe 

from Table 3, that both BM25 and DFR per-

formed better in retrieving PubMed articles than 

PMC articles. Using the maximum of the PubMed 

score and PMC score does not yield improved per-

formance over the abstract-only search for both 

BM25 and DFR. 

 

5 Conclusion and Discussion 

In this work we propose a large-scale collection 

for relevance testing. The collection represents a 

subset of MeSH terms that we use as queries and 

MeSH term assignments as pseudo relevance 

rankings. The value of this resource is significant 

not only in its simplicity and intuitiveness, but 

also in the quality of relevance judgements 

achieved though leveraging decades of manual 

curation. Moreover, by using MeSH terms we are 

guaranteed to include as queries significant and 

important PubMed topics. Many of these terms 

are frequently used as queries. To summarize, 

MeSH queries provide a reliable and high-quality 

collection of queries.  

To further validate the feasibility of this collec-

tion, we used well studied retrieval functions on 

the set. In the future, we plan to use the proposed 

test collection to understand how to leverage full 

text documents for better search. 
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Abstract

Off-target effects played a vital role in the
pharmacological understanding of drug effi-
cacy and this research aimed to use text min-
ing strategy to curate molecular level infor-
mation and unveil the mechanism of off-target
effect caused by the usage of anti-multiple
myeloma (MM) drugs. After training a hy-
brid CNN-CRF-LSTM neural network upon
the training data from TAC 2017 benchmark
database, we extracted all of the side effects
of 16 anti-MM drugs from drug labels, and
combined the results with existed database.
Afterwards, gene targets of anti-MM drugs
were obtained by using structure similarity,
and their related phenotypes were retrieved
from Human Phenotype Ontology. Further-
more, linked phenotypes to candidate genes
and adverse reaction of known drugs formed
a knowledge graph. Through regulation anal-
ysis upon intersected phenotypes of drugs and
target genes, an off-target effect caused by
SLC7A7 was found, which with high pos-
sibility unveiled the pharmacological mecha-
nism of side effect after using combination of
anti-MM drugs.

1 Introduction

Drug genetics aimed to discern the association be-
tween drugs and adverse reaction, and allowed to
personalized medication (Stephen, 2011). Associat-
ing off-target effects with adverse reaction of drugs
to discover the new pharmacological effect of them
is a daunting task when using experimental method
alone.(Eugen et al., 2012).

As a pioneer work, Lountkine et al.,(Eugen et al.,
2012) explored a computational method to predict
novel off-target effects of 656 marketed drugs. By

using the chemoinformatics information, like lig-
and affinity, Similarity Ensemble Approach (SEA)
(Keiser et al., 2009) was used to calculate structural
similarity of drugs and targets, and the relations be-
tween drugs and targets was rebuild. In the mean-
time, the adverse reaction (ADR) of drug targets were
curated from authoritative database including Drug-
Bank, GeneGo Metabase, and Thompson Reuters In-
tegrity. Thus, a large scale drug-target-ADR net-
work was built, and the coincidental overlap of ADR
among target gene and drugs potential gene gave illu-
minative explanation for the mechanism of off-targets
effect.

Generally, the mechanism of off-target candidate
filtering requires the prerequisite of target-drug pair
indications. So far, this pair information has been
widely predicted by inferring the similarity both in
chemical structure and relevance info. Andreas et al.,
(Andreas et al., 2007) used chemical structure infor-
mation to infer the drug-target pair, while Monica et
al., (Monica et al., 2008) used phenotypic side ef-
fect similarities to make the inference. As a large-
scale bioinformatics attempt, Mohan et al., (Mohan
et al., 2008) exploited a huge training set of 10 mil-
lion compounds with known in-vitro activities, pre-
dicted both primary and secondary pharmacology for
1279 molecules, and over 30 thousands possible in-
teractions were predicted for these drugs.

Multiple myeloma (MM) is one of the most com-
mon hematological malignancies, the incidence of
which ranks second just next to non-Hodgkin lym-
phoma. Although recent advances in MM treatment
has largely improved the patients clinical outcome, it
remains an incurable disease due to drug-resistance
and relapse which are almost inevitable (Terpos,
2017). Common adverse drug reactions (ADRs) re-
lated to anti-MM treatment include hematologic toxic
effects (eg. anemia, neutropenia and thrombocy-
topenia), thrombosis, impaired immune function, pe-
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ripheral neuropathy, and gastrointestinal toxic effects
(eg. mucositis, diarrhea), among many others. These
ADRs bring harm to patients health and quality of
life, and may result in premature discontinuation of
treatment due to intolerance to side effects. Since the
underlying mechanisms are largely unclear, currently
they are mostly managed with symptomatic and/or
supportive care, along with dosage reduction or treat-
ment discontinuation (McCullough et al., 2018). A
better understanding on the mechanisms will help us
find ways to effectively cope with the above men-
tioned safety concerns in treating MM.

In this research, we proposed a novel pharma-
cological knowledge discovery strategy which inte-
grated both Biomedical natural language processing
(BioNLP) and medical informatics. The adverse re-
actions (ADRs) were trained by newly released ADR
training data (Demner-Fushman et al., 2018), and
were extracted on-line with large-scale of text mining
upon 16 anti-MM drugs by using conditioned random
field (CRF) and long short term memory (LSTM)
neural networks. Subsequently, Human Phenotype
Ontology (HPO) (Sebastian et al., 2017) and Ligand
Similarity prediction were used to calculate the tar-
get phenotypes. Bioinformatics analysis hinted that
an off-target gene, SLC7A7, played vital role in the
side effect of a combination usage of anti-MM drugs.

2 Material and Method

2.1 Data Resource

Marketed drugs for MM were collected from
drugs.com (Drugs). After searching anti-MM chem-
icals and removing drug synonyms, 16 drugs were
extracted from the original pharmaceutical list, and
drug targets were collected from SwissTargetPedic-
tion (David et al., 2014), as shown in supplementary
table, Table S1 (Sixteen anti-MM drugs their possible
targets). Meanwhile, drug labels were extracted from
DailyMED database (National Library of Medicine
and Services, 2005).

Human Phenotype Ontology (HPO) (Sebastian
et al., 2017) provides standardized vocabulary of
phenotypic abnormalities in human diseases. From
HPO, matches of target genes and their correspond-
ing phenotype terms were retrieved, as shown in table
S2(Phenotype matching result for specific gene).

2.2 Sequence labeling by BioNLP Algorithm

2.2.1 Vector representation of tokens
Regarding the input form for a neural network, word
embedding, controlled vocabulary - DISORDER, and
part of speech (POS) are used for vector representa-
tion of tokens.

• Pre-trained Embeddings: Compared with ran-
domly initialized word embeddings, pre-trained
word embeddings generally yield better exper-
imental results. 200 dimensional embeddings
of GloVe ((Pennington et al., 2014)) was cho-
sen, instead of word2vec word vectors, as GloVe
is more preferable for named entity recognition
tasks than word2vec (Ma and Hovy, 2016).

• DISO is a standardized dictionary from Metathe-
saurus of UMLS. The dictionary consists of the
following 12 subtypes, i.e. acquired abnor-
mality, anatomical abnormality, cell or molec-
ular dysfunction, congenital abnormality, dis-
ease or syndrome, experimental model of dis-
ease, finding, injury or poisoning, mental or be-
havioral dysfunction, neoplastic process, patho-
logic function, and sign or symptom.

• The NLTK toolkit is taken into consideration to
obtain the POS of each token. Randomly initial-
ized feature weights was assigned to each POS
type, and a lookup operation convert each sen-
tence into a POS-embedding vector.

2.2.2 Integration of CRF and LSTM for
sequence labeling

For sequence labeling task as ADR extraction, CRF
is a popular mathematical method which defines the
probability of the annotation of the label sequence
L = (l1, l2, ..., ll), given the observation sequence
O = (o1, o2, ..., ol): exp(

∑
j λjtj(li−1, li,O, i)) +∑

k µksk(li,O, i)), where tj(li−1, li,O, i)) is a tran-
sition feature function that represents the transition
distribution of label pair {li−1, li} based on obser-
vation sequence O, while sk(li,O, i) refers to state
feature function that quantify the state distribution of
the label yi given the observation sequence O. The
mechanism of CRF is to optimize the parameters λj
and µk, and maximize the probability of P (L|O):
P (L|O, λ, µ) = 1

Z(O)exp(
∑

j λjtj(li−1, li,O, i)) +∑
k µksk(li,O, i)), where Z(O) is for normalization

(Lafferty et al., 2001).
In the meantime, LSTM is a special Recurrent neu-

ral networks(RNNs) which could capture time dy-
namics via cycles in the graph, and especially, is capa-
ble of capturing long-distance dependencies with the
employment of a special cell and three grates, i.e. in-
put gate, forget gate, and output gate. Supposing that
t represents a time point, xt is the input vector at time
t. it, ft, ct, ot stand for different gates state at time t.
Wi, Wf , Wc, Wo are the weight matrices for hidden
state ht. Ui, Uf , Uc, Uo denote the weight matrices of
different gates for input xt. bi, bf , bc, bo denote the
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Figure 1: The idea of the CNN-LSTM-CRF sequence
labeling method

bias vectors from different gates. And the formulas
for LSTM unit at time t are:

it = σ(Wiht−1 + Uixt + bi)
ft = σ(Wfht−1 + Ufxt + bf )
ct = ft ∗ ct−1 + it ∗ tanh(Wcht−1 + Ucxt + bc)
ot = σ(Woht−1 + Uoxt + bo)
ht = ot ∗ tanh(ct)

, (1)

where σ is the element-wise sigmoid function and ∗ is
the element-wise product. And ht is the hidden state,
namely the finally output of LSTM unit at time t.

To achieve a better semantic understanding in bio-
logic domain, a combined BLSTM-CNNs-CRF neu-
ral network was put forward by Ma et al.(Ma and
Hovy, 2016), where CNNs are utilized to model
character-level information, bi-directional LSTM
(BLSTM) is used to capture past and future infor-
mation respectively, and CRF is employed to decode
the best label sequence. In order to further improve
the labeling accuracy for this specific task, double-
BLSTM layer is taken into consideration instead of
single-BLSTM layer, namely BLSTM, mentioned in
Ma et al.(2016).

The detailed algorithm steps are shown in Figure
1. For each word in training text, the character-level
representation vector computed by CNN, the DISO
and POS feature got by lookup random initialization
weights, concatenated with word embedding vector
are designed as the input of the double-BLSTM net-
work. And the output vectors of double-BLSTM are
fed to the CRF layers to jointly decode the best label
sequence. The flowchart of a specific labeling em-
ployment example is presented in the following.

For instance, ”I have a cough.” where ”cough”
is the target word. After the sentence being sepa-
rated into words, the words are broken into letters,
which can be embedded into a one-hot vector to com-
pute the character representation vector by CNN. The
character-level representation vectors of each words,
their DISO and POS representation vector and word
embeddings, computed by glove, are combined as the
inputs of double-BLSTM, which has double-layer of
two processes, i.e. the past(left) and the future(right).
The past process takes information only from ’I’ to
’cough’ while the future process takes information
only from ’cough’ to ’I’. These two pieces of in-
formation was concatenated as the final outputs of
double-BLSTM and, simultaneously, the inputs of
CRF. With the utilization of CRF, the labels of sen-
tence are tagged as ’O O O B’.

2.3 Phenotype matching algorithm
To decide whether two phenotype words match or not,
two criteria were applied. First, both phenotypes are
available in the database with the same is a ·ID; sec-
ond, the word embedding distance of two terms are
small sufficiently. The algorithm is shown in the fol-
lowing.

• If both phenotypes are available in the database
with the same is a ·ID, the output will be True.

• If not, each target phenotype is converted into a
word embedding, and if the distance of the two
vectors is less than a threshold value t, the two
phenotype terms are matched. Otherwise, the
two terms are not matched.

Algorithm 1 Phenotype matching algorithm
Input: Term A, term B, threshold value t
Output: True/False

1: if (A ∈ HPO)
∧
(B ∈ HPO)

∧
(A · is a ·ID =

B · is a · ID) then
2: return True
3: else if Cosine Distance(A,B) < t then
4: return True
5: else
6: return False
7: end if

2.4 Flowchart of the proposed strategy for
off-target side effect prediction

The purpose of this research is to find the co-
occurrence of phenotype from both drug and the re-
lated protein, so as to illuminate the pharmacological
mechanism of the drug side effect.
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Figure 2: Flowchart of the proposed off-target mech-
anism discovery

By using an integration of the CRF and LSTM
text mining algorithms, sequence labeling was car-
ried on to extract side effects, SEdrug, of anti-
MM drugs from DailyMed drug labels. Poten-
tial drug targets, Targetdrug, were filtered by
querying SwissTargetPredcition Database. Mean-
while, related phenotype of Targetdrug, i.e.,
Pheno(Targetdrug), was obtained by using Hu-
man Phenotyping Ontology (HPO). Subsequently,
off-target gene, Targetoff−target

drug , of corresponding
drugs were filtered out by intersection analysis of
SEdrug and Pheno(Targetdrug).

3 Result

3.1 Database querying result

In total, 48 types of anti-MM drugs are collected by
searching drug.com. And with the 48 drug names as
searching condition, 16 different drugs and 16 corre-
sponding labels are extracted from 27 drug labels, ac-
quired by DailyMED. Among the 16 drugs, 2 are pro-
tein drugs, and the left 14 non-protein drugs are taken
to predict their potential targets with the utilization
of SwissTargetprediction, where 15 potential targets
can be obtained from each drug. Searching the 15 po-
tential targets in HPO, targets, not only our predicted
targets but also targets existing in HPO, are achieved.
With the application of HPO, drugs, potential target
genes, and corresponding phenotype are related with
each other. Meanwhile, corresponding ADRs form
acquired drug labels can be collected with the strat-
egy of sequence labeling, and improvement of the re-
lationship between drugs and ADRs can be achieved

through drugs.com, where related drugs’ ADRs are
collected. Eventually, drugs, potential targets, and
data of overlapping ADRs are acquired via artificial
recognition. And it is revealed in the result that under
the circumstance of a certain drug, its potential targets
have a tight relation with its ADRs.

3.2 Phenotype matching and phenotype
coincidence

For the trained samples in table S3, F-Score and
Matthews Correlation Coefficient (MCC) were calcu-
lated, and a best threshold t = 0.57 was obtained.
Here F − score = 2Precision×Recall

Precision+Recall , and MCC =
TP×TN−FP×FN

2
√

(TP+FP )(TP+FN)(TN+FP )(TN+FN)
. The selection of t

is shown in figure 3. The best F-score and MCC are
0.733, 0.622 separately.

Figure 3: threshold selection for phenotype matching

By using algorithm 1, the gene whose phenotypes
in HPO are highly consistent with drug ADRs were
retrieved, and the coincidence were evaluated by Jac-
card similarity coefficient. Among all the intersection
of phenotype terms, the most prominent output pair
is melphalan-SLC7A7 for Jaccard value being 0.280
and melphalan-CA2 for Jaccard value being 0.198.
As shown in table 1, phenotype coincidence for mel-
phalan and SLC7A7/CA2 is clear, that hinted that the
two genes possibly play roles in the side effects of the
drug.

3.3 Knowledge discovery of off-target side effect

An illuminative evidence comes from Melphalan, a
common anti-MM drug. Through intersection anal-
ysis of SEMelphalan and Pheno(TargetMelphalan),
anemia, thrombocytopenia and diarrhea were found
to be the same phenotypes of the drug Melphalan and
the possible target SLC7A . Observing its target genes
are NR3C1, NR0B1, ANXA1, NOS2, NR1L2, and
its possible target gene is SLC7A, we found that, af-
ter taking another anti-MM drug Prednisone, mRNA
level of target genes goes down and that of SLC7A
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Gene: SLC7A
Known ADRs Off-target effect
Sparse hair Alopecia
Thrombocytopenia Thrombocytopenia
Leukopenia Leukopenia
Diarrhea Diarrhea
Nausea Nausea
Anemia Anemia
Vomiting Vomiting
Muscle weakness Muscular parlysis
Respiratory insufficiency Dyspnea

Table 1: Consistency of ADRs of melphalan alkeran
evomela in clinical records and off-target curations

Figure 4: Mechanism of off-target side effects via
functioning of SLC7A7 after MVP drug usage

goes up. That made it high chance for off-target
event of SLC7A to manifest its off-target side effects:
Pheno(TargetMelphalan). Thus SLC7A is with high
chance the factor of the off-target effect.

4 Discussion

Mechanism of off-target effect is illustrated in this
section. First, literature evidences are shown to ad-
dress the side effect after anti-MM drug usage, and
then the up/down regulatory mRNA-level tendency of
on/off targets are shown.

4.1 Literature evidence
It was reported that a combined usage of melpha-
lan, prednisone, and bortezomib (MPV) is regarded
as common treatment for the high-risk MM patient,
while neutropenia, thrombocytopenia, anemia, and
gastrointestinal symptoms were common after MPV
treatment (Kyle and Rajkumar., 2009).

Meanwhile, SLC7A is a heterotrimeric amino acid

transporter (HAT) y+LAT-1 gene located on chro-
mosome 14q11.2. It was reported that mutation in
SLC7A caused Lysinuric Protein Intolerance. Then,
delayed physical development, intestinal malabsorp-
tion, vomiting, and failure to thrive are the prominent
clinical manifestations (Lawson and Loyd, 2013).

4.2 Up/Down regulation of target/off-target gene

Drug usage of Prednisone is treated as exposure
in comparison analysis, and the connectivity map
(CMAP) is used to unveil the up/down regulation by
analyzing the before/after mRNA level of patience.
We input the target genes as down regulated genes
and the off-target genes as up regulated, and the out-
put off-target gene is Prednisone, with significant P
value, 0.01029.

As shown in figure 4, after taking Prednisone, as
it mentioned above, the expression levels of target
genes are down regulated while the off-target genes
are up, the steady state is broken. In this condition,
more off-target proteins lead to more combination
with Melphalan than usual, which contribute to more
significant side effects.

Here, we infer that the usage of Prednisone lead
to an up regulation of SLC7A, and it arises com-
petition between SLC7A and the drug targets, i.e.,
NR3C1, NR0B1, ANXA1, NOS2, NR1L2. The bind-
ing of SLC7A to Melphalan brings the off-target ef-
fect. Therefore, thrombocytopenia, anemia, and gas-
trointestinal symptoms can be easily observed after
combined usage of Melphalan and Prednisone.

5 Conclusion

Sequence labeling of biomedical entities, e.g., side ef-
fects or phenotypes, was a long-term task in BioNLP
and MedNLP communities. Thanks to effects made
among these communities, adverse reaction NER
has developed dramatically in recent years (Demner-
Fushman et al., 2018). As an illuminative application,
to achieve knowledge discovery via the combination
of the text mining result and bioinformatics idea shed
lights on the pharmacological mechanism research.
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A Supplemental Material

Attached are the supplementary tables.
Table S1. Sixteen anti-MM drugs and their

possible targets, (https://github.com/
kyzhouhzau/crf-lstm-text/blob/
master/Table%20S1.xlsx).

Table S2. Phenotype matching result for specific
gene, (https://github.com/kyzhouhzau/
crf-lstm-text/blob/master/Table%
20S2.xlsx).

Table S3. Positive and negative samples and
their distance, (https://github.com/
kyzhouhzau/crf-lstm-text/blob/
master/Table%20S3.xlsx)
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Abstract 

This study focuses on highly accurate 
prediction of the onset of type-2 diabe-
tes. We investigated whether predic-
tion accuracy can be improved by uti-
lizing lab test data obtained from 
health checkups and incorporating 
health claim text data such as medical-
ly diagnosed diseases with ICD10 
codes and pharmacy information. In a 
previous study, prediction accuracy 
was increased slightly by adding diag-
nosis disease name and independent 
variables such as prescription medi-
cine. Therefore, in the current study 
we explored more suitable models for 
prediction by using state-of-the-art 
techniques such as XGBoost and long 
short-term memory (LSTM) based on 
recurrent neural networks. In the cur-
rent study, text data was vectorized us-
ing word2vec, and the prediction 
model was compared with logistic re-
gression. The results obtained con-
firmed that onset of type-2 diabetes 
can be predicted with a high degree of 
accuracy when the XGBoost model is 
used. 

1 Introduction 

The incidence of lifestyle-related diseases is in-
creasing in many regions (WHO, 2009; Lim SS 
et al., 2012). Predicting the onset of lifestyle-
related diseases and implementing preventive 
measures in advance is important for municipali-
ties and insurers. Particularly in type-2 diabetes 
mellitus, not only medical cost but also indirect 
cost such as reduced productivity present a seri-
ous problem (American Diabetes Association, 
2018), and therefore, it is very important to take 
preventive measures early. 

From reports to date on the prediction of the 
onset of diabetes, it is well known that health 
checkup data items such as HbA1c, BMI, and 
ages are important indicators for estimating the 
onset of type-2 diabetes (Edelstein et al., 1997). 
Many related studies achieved accurate results by 
means of logistic regression and cox hazards 
regression models mainly based on bood test 
results (Droumaguet et al., 2006; Guasch-Ferré et 
al., 2012). These studies are aimed at predicting 
the onset of type-2 diabetes using a simple form. 
However, it is now common for machine learn-
ing and data mining methods to be used due to 
higher computer performance. Several studies 
have reported the effectiveness of using machine 
learning technique to improve classification ac-
curacy (Meng et al., 2013; Tapak et al., 2013; 
Kavakiotis et al., 2017). Another attempt in-
volved using clinical information such as health 
claims or electronic health records (EHRs). 
Health insurance claims data could prove to be a 
rich source of information for the early detection 
of type-2 diabetes as a previous study showed a 
slight improvement in prediction using such data 
(Krishnan et al., 2013; Razavian et al., 2015).  

In this study, we aim to develop and evaluate 
prediction models for the risk of type-2 diabetes 
using health insurance claims data in addition to 
health checkup data. 

2 Related work 

Many related studies are based on conventional 
prediction models for early detection of type-2 di-
abetes (Schulze et al., 2006, Thomas et al., 2006). 
Some research groups use a small number of risk 
factors as variables as their intention is to develop 
a practical method. A simple risk score enables 
healthcare providers to evaluate patients for fur-
ther intervention and treatment (Lindström et al., 
2013; Kengne et al., 2014; Nanri et al., 2015). Lo-
gistic regression is one of the most effective mod-
els in these studies when compared to other ma-
chine learning models. On the other hand, 
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currently, healthcare data management systems in-
tegrate large amounts of medical information, 
such as diagnoses, medical procedures, lab test re-
sults, and more. Health claims and EHRs are two 
examples of this medical information which in-
cludes medical text data. It is suggested that there 
are latent factors that could improve diseases pre-
diction models by including diagnoses and pre-
scribed medicines (Krishnan et al., 2013; Razavi-
an et al., 2015). In addition, some natural lan-
guage processing (NLP) techniques such as 
word2vec have been widely used to discover nov-
el patterns and features (Choi et al., 2017; Jo et al., 
2017). It is expected that data-driven assessment 
of individual patient risk would provide better 
personalized care (Neuvirth et al., 2011). 

 Recently, Razavian et al. (2015) showed that 
using an L1-regularized logistic regression 
(L1LR) model with about 900 variables from 
health insurance claim data resulted in an area un-
der the ROC curve (AUC) of 0.80 compared with 
an AUC of 0.75 when using conventional diabetes 
risk factors. The L1LR model is an effective 
method where there are many independent varia-
bles, although a recent machine learning study has 
suggested that a gradient boosting method 
(XGBoost) could achieve high performance pre-
diction (Wei et al., 2017). Furthermore, long 
short-term memory (LSTM), which is based on a 
recurrent neural networks model, is feasible for 
long-range dependencies in sequential data. 

In this paper, we compare multiple prediction 
models for diabetes incidence using health check-
up and insurance claims data. In the study, three 
classification models (i.e. L1LR, XGBoost and 
LSTM) are developed, and their prediction per-
formance is evaluated as an AUC. 

3 Methods 

In this section, the dataset and variables used for 
the evaluation of the proposed methods are de-
scribed, and three prediction models are also pre-
sented. 

3.1 Dataset 

In the experiments, a collection of anonymized 
yearly health checkup and health claims at a 
health insurance society in Japan is used. The 
health checkup items consist of profile infor-
mation (e.g. age, sex), lab test results (e.g. body 
mass index, blood pressure, HbA1c), and health 
questionnaire (e.g. smoking, alcohol intake, exer-

cise level). We used 33 health checkup items as 
features for further experiments. The data were 
obtained from about 40,000 people aged 20 to 64 
years. From the whole dataset, we selected those 
subjects who had health checkups regularly over a 
period of at least three years. In addition, we ex-
cluded some samples missing blood test data. Af-
ter selection was complete, the final total sample 
size was 31,000. We used 20% of the dataset ran-
domly sampled for test data, and the rest was used 
for training. Subjects were diagnosed with diabe-
tes if they had a measured fasting blood sugar 
(FBS) ≥126 mg/dL, or HbA1c 6.5%, or a diagno-
sis of diabetes on a health insurance claim. Out-
come was evaluated if a subject had onset of dia-
betes in a year in the last of dataset. 

3.2 Health insurance claims 

Patient records of health insurance claims include 
medical cost, laboratory test, medical diagnosed 
disease with ICD10 (International Statistical Clas-
sification of Diseases and Related Health Prob-
lems) codes and pharmacy information related to 
the individuals between the years 2011 and 2016. 
About 5% of subjects had no claim data and had 
never visited clinics or hospitals. We used ICD10 
codes and medicine name data for additional fea-
tures. To build a training data, firstly, we checked 
FBS level and HbA1c of health checkup data, and 
ICD10 codes of diabetes in health insurance 
claims to extract positive examples. 

Our goal is to predict onset of diabetes later 
than next year and the after that. Thus, for training 
and prediction, we did not use health checkup re-
sults and health insurance claims of immediate 1 
year before of diabetes diagnosis.  

Since the health insurance claims are issued in 
monthly unit, there can be more than one ICD10 
codes and medicine names in one health insurance 
claim. We preprocessed them by using word2vec 
(Mikolov et al., 2013; Rehurek R 2014; Choi et al., 
2017). Here, we regarded array of ICD10 codes or 
medicinal ingredients of prescribed medicine as 
one sentence. Then we simply preprocessed by 
word2vec to obtain distributed expression of 
ICD10 codes and medicinal ingredients. In our 
experiments, we set both dimensions of ICD10 
vector and medical ingredient vector to be 200. 
By the aforementioned preprocessing, a health in-
surance claim of one month was converted to 2 
vectors (ICD10 vectors and medical ingredients 
vectors). 
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Figure 1: Diabetes prediction using LSTM. 
 

3.3 Prediction model 

As baseline, a conventional L1LR model was 
used. For L1 regularization hyper-parameter, we 
searched over values of [0.001, 0.01, 0.1, 1, 10], 
and 0.1 was selected as the optimum value. 

In the experiment, we compare two state of 
the art prediction models. One is XGBoost which 
is a scalable machine learning system based on 
tree boosting (Chen T. and Guestrin C. 2016). To 
train the XGBoost model, we used scikit-learn 
API with default parameters. For XGBoost train-
ing and L1LR models training, all features includ-
ing medical checkup results, and distributed ex-
pressions of ICD10 and medical ingredients are 
simply concatenated. 

The other prediction model is Long Short-
term Memory (LSTM). Figure 1 shows the LSTM 
architecture used in our experiments. As shown in 
the figure, the LSTM method consists of two 
training parts. The first part is health checkup, and 
second is the ICD10 code, or/and medicinal in-
gredients of prescribed medicines. 
{𝐱#,⋯ , 𝐱&,⋯ , 𝐱'} are an array of input sequence 
for LSTM. For example, 𝐱&  could be embedded 
insurance claim vector at t-th month. 

LSTM consist of four components comprising 
forget gate (𝐟&), input gate (𝐢&),	 output gate (𝐨&), 
and memory state (𝐜&). These real value vectors 
are calculated using the following formulas: 

𝐟& = 	𝜎	(𝐖2𝐱& + 𝐔2𝐡&6# + 𝐛2),     

 𝐢& = 	𝜎	(𝐖9𝐱& + 𝐔9𝐡&6# + 𝐛9), 

𝐨& = 	𝜎	(𝐖:𝐱& + 𝐔:𝐡&6# + 𝐛:), 

 𝐜&; = tanh	(𝐖@̃𝐱& + 𝐔@̃𝐡&6# + 𝐛@̃), 

𝐜& = 	 𝐟& ⊙ 𝐜&6# + 𝐢& ⊙ 𝐜&;  (1) 

where 𝐖 and U are weight matrices, and b are 
bias vectors. 	𝜎 (·) and tanh (·) are an element-
wise sigmoid function and hyperbolic tangent 
function, respectively.  Using these vectors, the 
hidden layer vector (𝐡&) is calculated as follows: 

𝐡& = 	𝐨& ⊙ tanh(𝐜&)  (2) 

Where ⊙ is an element-wise multiplication. In 
our experiments, we used up to three kinds of fea-
ture sets (shows in Table 1). Each feature set is 
processed by individual LSTM. After processing 
all of feature sets by LSTMs, each of the last hid-
den layer vectors are concatenated as follows: 

𝐡𝒂𝒃𝒄 = 	𝐡𝒂𝐡𝒃𝐡𝒄                                      (3) 

By using 𝐡𝒂𝒃𝒄, the output layer calculates proba-
bilities of diabetes. The output layer calculates 
probability of diabetes. 

4 Results 

Incidence of type 2 diabetes in our dataset was 
4%. The characteristics detailed statistics are 
shown in Table 2. 

We developed three models namely XGBoost, 
LSTM, and L1LR. For each model, we used four 
patterns of health claim variables. Table 3 shows 
the AUC when using the three models. The results 
show that the performance of the XGBoost and 
LSTM models was superior to that of the L1LR 
model without health claim features. In our exper-
iments, the highest performance was obtained 

Characteristic ALL subjects Subjects with 
diabetes 

Average age 41.63 48.23 
Female ratio 0.33 0.15 
Average length of 
data in years 3.04 3.75 
Body mass index 
(kg/m2) 23.07 27.18 

Table 2:  Characteristics of the dataset. 

 
 

Model Health 
Claim LSTMa LSTMb LSTMc 

XGboost 
LSTM 
L1LR 

- 33 N/A N/A 
ICD10 33 200 N/A 
medicine 33 N/A 200 
ICD10  
+ medicine 33 200 200 

 
Table 1:  Input unit of LSTM. 
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when the XGBoost with ICD10 plus medicine 
features was used. On the other hand, the L1LR 
model had the lowest AUC, though a slight im-
provement was obtained by incorporating health 
claim data. 

LSTM with the ICD10 model showed a rela-
tively high performance, however, adding pre-
scribed medicine features did not improve its level 
of prediction. 

5 Discussion 

In this study, we compared the predictive perfor-
mance of a conventional model to that of machine 
learning-based models using health checkup data 
and additional health claim features vectorized by 
word2vec. The results showed that the XGBoost 
and LSTM models achieved better performance 
compared to the L1LR model without using health 
claim information. Adding health claim features 
improved prediction performance in each of the 
three models. This is consistent with a previous 
study in which use of the L1LR model obtained 
slightly improved prediction performance (Ra-
zavian et al. 2015). These results suggest that 
medical information contains latent signals for 
risk factors associated with the onset of diabetes. 

In terms of how to use health claim data, a 
previous study used the data as one-hot vectors. 
However, one-hot encoding cannot express the re-
lationship and meaning between words. On the 
other hand, word2vec makes it possible to give a 
latent meaning to the vector. This effect was con-
sidered to be valid in the case of the XGBoost 
model. 

In recent years, the LSTM model has been 
used to estimate disease name or mortality from 
medical information obtained from medical sys-
tems with a high degree of performance (Ayyar et 
al., 2016; Lipton et al., 2016; Jo et al., 2017). 
LSTM can embed influence over time series data 
across multiple layers. Therefore, although we ex-
pected this effect in our experiments, prediction 
performance was not improved much when 
ICD10 and medicine name were used in combina-
tion, compared with the case when using only 
ICD10. This result can probably be attributed to 
the difference in the quality of the information be-
tween the diagnosis disease name and prescription 
medicine.  

Our study has several limitations. First, the 
vectorization from health claims data was empiri-
cally set to 200 dimensions. However, it is not 
clear what the optimal dimension is. Second, the 
duration in terms of years of the dataset is rela-
tively short. From the standpoint of disease pre-
vention, it may be desirable for predictive purpos-
es to extend this period to three years or more. Fi-
nally, the dataset sample population may have 
been biased because our data collection depended 
on information from one health insurance society. 

6 Conclusion and Future Work 

It would be useful in terms of practicality if risk 
could be estimated easily with noninvasive data.  
However, it is also very important, from the view-
point of personal care, to predict onset of disease 
with a high degree of precision with obtained 
from various types of medical information. In this 
study, we developed and evaluated several predic-
tion models for type-2 diabetes to explore an ef-
fective means of vectorization using health claims. 
We used health claims, ICD10 and prescribed 
medicine name as variables in addition to health 
checkup data by vectorizing via word2vec. The 
results showed that the XGBoost model with 
health claim variables achieved a higher perfor-
mance compared to the LSTM and L1LR models. 
Our study suggests that there are potential factors 
contained in large amounts of medical information 
which may be signals to the onset of diabetes. It is 
possible that the LSTM model may still be able to 
further improve prediction performance as well. 
As future work, we plan to test the effect of di-
mensional compression by parameter tuning. 
 

Model Health Claim  AUC 

XGBoost 

- 0.81 
ICD10 0.86 
medicine 0.87 
ICD10 + medicine 0.87 

LSTM 

- 0.81 
ICD10 0.86 
medicine 0.82 
ICD10 + medicine 0.83 

L1LR 

- 0.72 
ICD10 0.74 
medicine 0.72 
ICD10 + medicine 0.74 

Table 3:  Performance for prediction of diabe-
tes using health claim data 
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Abstract 

High quality word embeddings are of great 
significance to advance applications of bi-
omedical natural language processing. In 
recent years, a surge of interest on how to 
learn good embeddings and evaluate em-
bedding quality based on English medical 
text has become increasing evident, how-
ever a limited number of studies based on 
Chinese medical text, particularly Chinese 
clinical records, were performed. Herein, 
we proposed a novel approach of improv-
ing the quality of learned embeddings us-
ing out-domain data as a supplementary in 
the case of limited Chinese clinical records. 
Moreover, the embedding quality evalua-
tion method was conducted based on Med-
ical Conceptual Similarity Property. The 
experimental results revealed that selecting 
good training samples was necessary, and 
collecting right amount of out-domain data 
and trading off between the quality of em-
beddings and the training time consump-
tion were essential factors for better em-
beddings. 

1 Introduction 

Word embeddings, or embeddings for short, have 
been widely used in various natural language 
processing tasks, such as language modeling 
(Bengio et al., 2003; Sundermeyer, et al. 2012; 
Adams et al., 2017), syntactic parsing (Grefen-
stette et al., 2014; Tu et al., 2017) and part-of-
speech tagging (Yang and Eisenstein, 2016). Ow-
ing to the advantage of embeddings in boosting 
performance, a surge of interest in applying em-
beddings has become increasingly evident with 
numerous encouraging results in the field of bio-
medical applications, e.g. disease prediction 
(Miotto et al., 2016), clinical events prediction 
(Choi et al., 2016a), medical concept disambigua-

tion (Tulkens et al., 2016), and biomedical infor-
mation retrieval (Mohan et al., 2017). 

Learning embeddings from English medical 
texts, as a hot topic in recent years, has been ex-
tensively studied due to the efforts of open da-
tasets, such as UMLS of NLM (Bodenreider, 
2004), medical journal abstracts from PubMed 
(Choi et al., 2016a), and some released clinical da-
ta (Finlayson, et al., 2014; Stubbs and Uzuner, 
2015). These datasets have been widely used as 
gold standards by the biomedical natural language 
processing domain for learning embeddings (De 
Vine et al., 2014; Choi et al., 2016b). 

However, the development of learning embed-
dings from Chinese medical texts has fallen far 
behind, especially from Chinese clinical records. 
Due to the privacy concerns, Chinese clinical rec-
ords that can be used are generally limited. Learn-
ing better embeddings based on neural network 
architectures, for instance the widely used skip-
gram model (Mikolov et al., 2013a), usually needs 
a large number of training data. As a result, the 
learned embeddings from Chinese clinical records 
are not good enough. 

Moreover, to the best of our knowledge, there 
is a limited number of studies focusing on learn-
ing embeddings from Chinese clinical records, not 
to mention the embedding evaluation. Many 
methods have been developed to learn embed-
dings from English medical texts, however, Chi-
nese medical texts, especially clinical records, 
have their particular language features. Therefore, 
adaptions to the approaches of learning embed-
dings from English medical texts are urgently 
needed for learning embeddings from Chinese 
clinical records. 

In this paper, we focused on learning embed-
dings from Chinese clinical records, and our ma-
jor contributions were as follows: 
• We proposed an in-domain and out-domain 

data combination method for learning better 

 
 
 
 
 
 
 
 
 

 

177



embeddings from Chinese clinical records 
by the skip-gram model under the situation 
that we only have limited Chinese clinical 
records. 

• Referring to the evaluation method for med-
ical concept embeddings proposed in (Choi 
et al., 2016b) which is based on medical 
conceptual similarity property, we proposed 
a method for distantly evaluating the 
learned embeddings from Chinese clinical 
records using an additional standard medi-
cal terminology dataset. 

• We found that selecting good training sam-
ples is necessary. Collecting right amount of 
out-domain data, trading off between the 
quality of embeddings and the training time 
consumption are essential factors for better 
embeddings. 

2 Skip-Gram Model for Learning Em-
beddings 

The skip-gram model is one of the most popular 
methods for learning embeddings from texts. The 
training objective of the skip-gram model is to 
find an embedding that is useful for predicting 
context words of one target word in a sequence. 
The sequence usually refers to a sentence in a 
specific task. In the skip-gram model, if two dif-
ferent target words !" and !#$ have (very) simi-
lar context words, then learned embeddings of !" 
and !#$ by the model would be (very) similar, 
because a common output weight matrix is used 
(Mikolov et al., 2013b). In other words, if we 
want to clearly distinguish two target words' em-
beddings, we can provide more informative con-
text words that differentiate the target words. 

The skip-gram model has been used in various 
domain to learn embeddings from different types 
of texts, and there have been also various relevant 
attempts to learn embeddings from medical texts 
by the skip-gram model. Most works directly ap-
plied the model on various medical corpora to 
complete this domain-specific task (Giménez et 
al., 2013; Liu, et al., 2016). In this paper, we con-
tinued the previous work using the skip-gram 
model to learn embeddings from Chinese clinical 
records to further explore a data combination 
method for improving the quality of the learned 
domain-specific embeddings. 

3 Skip-Gram Model for Learning Em-
beddings from Chinese Clinical Rec-
ords 

3.1 Observation 

Content of Chinese clinical records are usually 
brief, the occurrence of symptoms and diseases 
has certain correlation, and doctors have a certain 
habit in inquiring procedures and making records. 
These domain-specific characteristics challenge 
learning embeddings from Chinese clinical rec-
ords, because it gives general domain words a 
high probability of having similar or even identi-
cal context words to those medical words. For ex-
ample, in Figure 1, general domain word “�” 
(sometimes) and medical term “�” (eye, the body 
part) have similar context words with medical 
word “�” (abdomen, the body part), and “�” 
(sometimes) has more common context words 
with “�" (abdomen) than “�" (eye). Moreover, 
it would like to be a fixed pattern to describe cer-
tain medical problems. As a result, learned em-
beddings of “�” (sometimes) and “�” (abdomen) 
would be more similar than embeddings of “�" 
(eye) and “�” (abdomen), although “�” (abdo-
men) and “�” (eye) belong to the same type of 
medical concept (i.e. the body part). 

In summary, the main challenge of learning bet-
ter embeddings from Chinese clinical records is to 
let the skip-gram model make a clearer distinction 
between medical words and general domain 
words. 

3.2 Usage of Out-Domain Data 

As mentioned earlier, making a clearer distinction 
between learned embeddings of two target words 
by skip-gram model requires more evidences, i.e. 
adding diverse context words to illustrate the dif-
ference between the two target words. Therefore, 

 
Figure 1:  An example of training sample gener-

ating process of the skip-gram model. 
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we proposed a hypothesis that adding general do-
main Chinese texts, i.e. the out-domain data, to 
Chinese clinical records, i.e. the in-domain data, 
would facilitate the learning of embeddings from 
Chinese clinical records. The intuition is that the 
medical words in Chinese clinical records have 
domain-specific usage but are not widely used in 
the out-domain data. However, the general do-
main words have a wide range of usage in the out-
domain data, which is the exact opposite of using 
medical words. Combining out-domain data with 
Chinese clinical records can improve the diversity 
of context words of the general domain words, but 
without the side-effect of impairing the contexts 
of the medical words. Better embeddings, in turn, 
can be learned from the combined data. 

3.3 Learning Process and Embedding Qual-
ity Evaluation Method 

Chinese clinical records were segmented into 
words by the latest version of Stanford CoreNLP 
tool1 with default settings, and adjacent words ap-
pearing in our prepared standard medical word da-
taset would not be segmented (Zhang et al., 2016). 
Punctuations were removed. Out-domain data 
went through a similar process but without the 
second process. We assume that in out-domain da-
ta there is no medical words. We directly applied 
skip-gram model implemented by DeepLearn-
ing4J2 to learn embeddings. Hierarchical SoftMax 
is used in training process, and context window 
size and embedding dimensionality are set to 5 
and 200 respectively (Choi et al, 2016b). 

We used an intrinsic evaluation method, named 
Chinese Medical Concept Similarity Measure 
(CMCSM), to distantly measure quality of learned 
embeddings. CMCSM is defined below:  

 %&%'& = )
* ∑

,
-.(-.0))

∑ ∑ 2345, 4"7-.
"859)

-.0)
58)

*
:8)   (1) 

where ; is the number of groups of the medical 
words in the same level of a prepared medical 
word dataset <, %= ∈ < is one group of the medical 
words, and 4? and 4@ are the ?th and @th terms in 
%= . 2345, 4"7 is any commonly used embedding 
similarity measure (Levy et al., 2015). In this pa-
per, we used the cosine measure. 

                                                   
1 URL: https://nlp.stanford.edu/software/segmenter.shtml. 
2 URL: https://deeplearning4j.org/. 

4 Experiments 

4.1 Experimental Data 

To validate performance of the proposed method, 
three experimental datasets were used in this pa-
per, including a Chinese clinical records dataset 
(CCRD) collected from Teaching Hospital of 
Chengdu University of Traditional Chinese Medi-
cine, a large scale out-domain dataset (ODD) ob-
tained from the NLPCC 2018 Shared Task 43, and 
a standard medical terminology dataset (SMTD) 
gotten from WHO4. Medical terms in SMTD are 
organized into a two-layer tree structure. Index of 
the second layer defines the group id for medical 
words. Medical words in the same group are more 
similar. SMTD was used as the prepared medical 
word dataset < mentioned previously. The detailed 
information of these datasets was listed in Table 1. 

4.2 Experimental Data 

Firstly, we applied skip-gram model to learn em-
beddings from CCRD and the learned embeddings 
were evaluated by CMCSM. We sampled 5 sub-
datasets from CCRD in order to assess effect of 
different size of datasets on quality of the learned 
embeddings. The sizes of the sampled datasets 
were 80%, 60%, 40%, 20% and 10% of instances 
in the original CCRD. The sampling process was 
a recursive sampling without replacement. It im-
plied that more data means more stable learning 
results of embeddings. Moreover, we ran the 
above process 10 times to further assess the stabil-
ity of the results. The results were used as the 
baseline, and they were shown in Table 2. 

We found in Table 2 that the more Chinese clin-
ical records were used for learning embeddings, 
the smaller variance of CMCSM tended to be 
achieved. Moreover, an interesting result was that 
the use of all Chinese clinical records did not nec-
                                                   
3 URL: http://tcci.ccf.org.cn/conference/2018/cfpt.php. 
4 We filtered the terminologies which do not appear in 
CCRD. URL: http://www.wpro.who.int/publications/who_i-
strm_file.pdf?ua=1. 

Dataset Size 
CCRD 25056 
ODD 3010739 

SMTD Number of Terms 3617 
Number of Groups 39 

Table 1:  Detailed Information of the Experi-
mental Datasets. 
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essarily result in the highest quality of embed-
dings. It implies that if we only use in-domain da-
ta to learn embeddings, we should collect as much 
training data as possible and also select helpful 
samples from the collected data. 

Secondly, we applied skip-gram model to learn 
embeddings from combinations of CCRD and 
ODD with different combination ratios. Results 
were listed in Table 3, indicating through combin-

ing ODD into CCRD, the qualities of the learned 
embeddings in different conditions were improved 
dramatically. More ODD data is combined into 
CCRD, better embeddings would be learned. In 
the best case (combining the “Time 2-60%” da-
taset with the “ODD-ALL” dataset), CMCSM in-
creased by 3.8 times. 

Notably, the highest quality of the learned em-
beddings in each row of Table 3 was not always 
achieved when all data in ODD was used. This re-
sult was consistent with the result mentioned ear-
lier, indicating that we should collect as much 
training data as possible and also need to pay at-
tention to reasonably choosing training samples. 
In addition, the results showed that when the 
amount of ODD was 1000 times of the basis size 
of CCRD, optimal embeddings would be achieved. 

Moreover, the results suggested that, in practice, 
the trade-off between quality of embeddings and 
training time consumption should be considered. 
Figure 2 displayed that with increasing the 
amount of the combined ODD, the growth rate of 
CMCSM of learned embeddings from basis size 
of CCRD decreased sharply. Furthermore, when 
the amount of the combined ODD was more than 
50 times of the basis size, the growth rate was al-
most converged. While, as we know, more data 
were used for learning embeddings by skip-gram 
model, much more time would be consumed. We 

should consider whether it is worthwhile to spend 
a lot of training time in exchange for very little 
quality improvement. Moreover, little quality im-
provement sometimes may not improve perfor-
mance of downstream biomedical applications. 

5 Discussion 

This paper conducted only intrinsic evaluation and 

requires further research involving results from 
extrinsic evaluations. The high quality embed-
dings from intrinsic evaluations is also essential 
for enhancing performance in downstream appli-
cations. 

Experimental results in this paper casted light 
on the quality improvements of learning embed-
dings from English clinical records. Most of the 
existing studies about how to train good embed-

dings are based on data within the same domain 
(Chiu et al., 2016; Lai et al., 2016). 

Further exploration needs to be continued in 
many aspects. For instance, how to thoroughly 
understand learning embeddings via complicated 
neural networks, which is one of current major re-
search hotspots. Only when the complex back-

 
Figure 2:  An Example of SMTD. 

 10% 20% 40% 60% 80% 100% 
Time 1 0.00218  0.00254  0.00238  0.00259  0.00268  

0.00228 

Time 2 0.00210  0.00238  0.00234  0.00269  0.00248  
Time 3 0.00183  0.00220  0.00255  0.00281  0.00241  
Time 4 0.00188  0.00254  0.00225  0.00235  0.00232  
Time 5 0.00132  0.00218  0.00247  0.00226  0.00226  
Time 6 0.00229  0.00248  0.00297  0.00255  0.00268  
Time 7 0.00134  0.00220  0.00209  0.00264  0.00241  
Time 8 0.00189  0.00256  0.00261  0.00242  0.00263  
Time 9 0.00141  0.00213  0.00228  0.00258  0.00234  
Time 10 0.00199  0.00269  0.00255  0.00248  0.00253  

Mean 0.00182  0.00239  0.00245  0.00254  0.00247  - 
Variance 1.11E-07 3.56E-08 5.32E-08 2.42E-08 2.08E-08 - 

Table 2:  CMCSM Results of the Embeddings Learned from CCRD by the Skip-Gram Model. 
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ground theory is fully interpreted, can we apply 
this invaluable technology in a flexible way. 

6 Conclusions 

This paper presented study on how to learn better 
embeddings from Chinese clinical records with 
the supplement of out-domain data in the context 
of limited in-domain data. Proceeding from the 
Medical Conceptual Similarity Measure (Choi et 
al., 2016b), we applied it to distantly evaluate the 
quality of embeddings. The experimental results 
showed that a combination use of out-domain and 
in-domain data could potentially improve the 
quality of learned embeddings; collecting right 
amount of out-domain data, trading off between 
the quality of embeddings and the training time 
consumption, choosing the good training samples 
were all essential factors for learning better em-
beddings. Our results also proved that more data 
did not necessarily bring more satisfying results, 
which was consistent with results of Chiu et al. 
(2016). 
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Abstract

Existing biomedical coreference resolu-
tion systems depend on features and/or
rules based on syntactic parsers. In this pa-
per, we investigate the utility of the state-
of-the-art general domain neural coref-
erence resolution system on biomedical
texts. The system is an end-to-end sys-
tem without depending on any syntactic
parsers. We also investigate the domain
specific features to enhance the system for
biomedical texts. Experimental results on
the BioNLP Protein Coreference dataset
and the CRAFT corpus show that, with
no parser information, the adapted sys-
tem compared favorably with the systems
that depend on parser information on these
datasets, achieving 51.23% on the BioNLP
dataset and 36.33% on the CRAFT corpus
in F1 score. In-domain embeddings and
domain-specific features helped improve
the performance on the BioNLP dataset,
but they did not on the CRAFT corpus.

1 Introduction

Deep neural systems have recently achieved the
state-of-the-art performance on coreference reso-
lution tasks in the general domain (Clark and Man-
ning, 2016; Wiseman et al., 2016; Lee et al., 2017).
These systems do not heavily rely on manual fea-
tures since the networks automatically build ad-
vanced features from the input. Such an attribute
has made deep neural systems preferable to tradi-
tional manual feature-based systems.

In the biomedical domain, coreference informa-
tion has been shown to enhance the performance
of entity and event extraction (Miwa et al., 2012;
Choi et al., 2016a). Most of work in this domain
use rule-based or hybrid approaches (Nguyen

et al., 2011, 2012; Miwa et al., 2012; D’Souza
and Ng, 2012; Li et al., 2014; Choi et al., 2016b;
Cohen et al., 2017). These systems rely on syn-
tactic parsers to extract hand-crafted features and
rules, e.g., rules based on predicate argument
structure (Nguyen et al., 2012; Miwa et al., 2012)
or features based on syntax trees (D’Souza and
Ng, 2012). These rules are designed specifi-
cally for each type of coreference, such as noun
phrases, relative pronouns, and non-relative pro-
nouns. Moreover, several rules are restricted to
specific entities of the training corpus, e.g., pro-
tein entities for the BioNLP Protein Coreference
dataset (Nguyen et al., 2011).1

Given the fact that deep learning methods can
produce the state-of-the-art performance on gen-
eral texts, we are motivated to apply such methods
to biomedical texts. We therefore raise three re-
search questions in this paper:
• How does a general domain neural sys-

tem with no parser information perform on
biomedical domain?
• How we can incorporate domain-specific in-

formation into the neural system?
• Which performance range the system is in

comparison with existing systems?
In order to address these questions, we directly ap-
ply the end-to-end neural coreference resolution
system by Lee et al. (2017) (Lee2017) to biomed-
ical texts. We then investigate domain specific
features such as domain-specific word embed-
dings, grammatical number agreements between
mentions, i.e., mentions are singular or plural,
and agreements of MetaMap (Aronson and Lang,
2010) entity tags of mentions. These features do
not rely on any syntactic parsers. Moreover, these
features are also general for any biomedical cor-
pora and not restricted to the corpora we use.

1http://2011.bionlp-st.org/home/
protein-gene-coreference-task
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We evaluated the Lee2017 system on two
datasets: the BioNLP Protein Coreference
dataset (Nguyen et al., 2011) and CRAFT (Cohen
et al., 2017). Our experimental results have re-
vealed that the system could achieve reasonable
performance on both corpora. The system out-
performed several systems on the BioNLP dataset
that employed rule-based (Choi et al., 2016b) and
conventional machine learning methods (Nguyen
et al., 2011) using parser information, although
it was not competitive with the state-of-the-art
systems. Integrating in-domain embeddings and
domain-specific features into the deep neural sys-
tem improved the performance of both mention
detection and mention linking on the BioNLP
dataset, but the integration could not enhance the
performance on the CRAFT corpus.

2 Methods

In this section, we briefly introduce the baseline
Lee2017 system (Lee et al., 2017) and present
domain-specific features to adapt the system to
biomedical texts.

2.1 Baseline System
The baseline Lee2017 system treats all spans up to
the maximum length as mention candidates. Each
mention candidate is represented as a concate-
nated vector of the first word, the last word, the
soft head word, and the span length embeddings.
The embeddings for the first and last words are
calculated from the outputs of LSTMs (Hochre-
iter and Schmidhuber, 1997), while those for soft
head word are calculated from the weighted sum
of the embeddings of words in the span using
an attention mechanism (Bahdanau et al., 2014).
These candidates are ranked based on their men-
tion scores sm calculated as follows:

sm(i) = wm · FFNNm(gi), (1)

where wm is a weight vector, FFNN denotes a
feed-forward neural network, and gi is the vector
representation of a mention i.

After mentions are decided, the system resolves
coreference by linking mentions back to their an-
tecedent using antecedent scores sa calculated as:

sa(i, j) = wa·FFNNa([gi, gj , gi◦gj , φ(i, j)]),
(2)

where ◦ denotes an element-wise multiplication
and φ(i, j) represents the feature vector between
the two mentions.

2.2 Domain-specific features

We incorporate the following domain-specific fea-
tures to enhance the baseline system.
In-domain word embeddings: The input word
embeddings play an important role in deep learn-
ing. Instead of using embeddings trained on gen-
eral domains, e.g., word embeddings provided
with the word2vec tool (Mikolov et al., 2013), we
use 200-dimensional embeddings trained on the
whole PubMed and PubMed Central Open Access
subset (PMC) with a window size of 2 (Chiu et al.,
2016).
Grammatical numbers: We check mentions’
grammatical numbers, i.e., whether each mention
is singular or plural. A mention is singular if its
part-of-speech tag is NN or if it is one of the five
singular pronouns: it, its, itself, this, and that. A
mention is plural if its part-of-speech tag is NNS
or if it is one of the seven plural pronouns: they,
their, theirs, them, themselves, these, and those.
MetaMap entity tags: We employ MetaMapLite2

to identify all possible entities according to
the UMLS semantic types.3 In cases that
MetaMapLite assigns multiple semantic types for
each entity, we take into account all of the types.

The grammatical numbers and MetaMap entity
tags are incorporated into the network as follows.
We firstly pre-processed the input and assigned
token-based values for each type of features. For
example, a token may have “singular”, “plural”, or
“unknown” as the number attribute. Meanwhile,
the MetaMap entity tags are distributed to each to-
ken with their position information chosen from
“Begin” and “Inside”. These features are finally
encoded as a binary vector of φ(i, j) in Equa-
tion 2 that shows whether two mentions i and j
has the number agreement and whether they share
the same MetaMap semantic type.

3 Experiments

3.1 Data

We employed two biomedical corpora: BioNLP
Protein Coreference dataset (Nguyen et al., 2011)
and CRAFT (Cohen et al., 2017). The BioNLP
dataset consists of 1,210 PubMed abstracts se-
lected from the GENIA-MedCo coreference cor-
pus. CRAFT (Cohen et al., 2017) provides coref-

2https://metamap.nlm.nih.gov/
MetaMapLite.shtml

3https://metamap.nlm.nih.gov/Docs/
SemanticTypes_2013AA.txt
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BioNLP CRAFT
Training set (docs) 800 54
Development set (docs) 150 6
Test set (docs) 260 7
Avg. sent. per doc 9.15 274.75
Avg. words per doc 258.00 8,060.85
Vocabulary size 15,900 27,405

Table 1: Characteristics of BioNLP and CRAFT.

erence annotations of 67 full papers extracted from
PMC. While BioNLP focusses on protein/gene
coreference, CRAFT covers a wider range of
coreference relations such as events, pronomi-
nal anaphora, noun phrases, verbs, and nominal
premodifiers corefernce. In the CRAFT corpus,
coreference is divided into two types: identity
chains (a set of base noun phrases and/or appos-
itives that refer to the same thing in the world) and
appositive relations (two noun phrases that are ad-
jacent and not linked by a copula). We use only
the identity chains.

The BioNLP dataset was officially divided into
training, development, and test sets. Regarding
CRAFT, we randomly divided it into three subsets
in a ratio of 8:1:1 for training, development, and
test, respectively. Detailed characteristics of the
two corpora as well as these three sets are reported
in Table 1. It is noticeable that CRAFT is a corpus
of full papers, which makes it more challenging
for text mining tools than the BioNLP dataset—a
corpus of abstracts (Cohen et al., 2010).

3.2 Settings

We first directly applied the Lee2017 system to
the corpora. Lee2017 used two pretrained embed-
dings in general domains provided by Pennington
et al. (2014) and Turian et al. (2010), and all de-
fault features such as speaker, genre, and distance.

To train the Lee2017 system, we employed the
same hyper-parameters as reported in Lee et al.
(2017) except for a threshold ratio. Although
Lee2017 used the ratio λ = 0.4 to reduce the
number of mentions from the list of candidates,
we tuned it on the BioNLP development set and
used λ = 0.7.

We then investigate the impact of each feature
on the biomedical texts by preparing the following
four systems:
• Lee2017: general embeddings, speaker,

genre, and distance features

BioNLP Prec. Rec. F1 (%)
Lee2017 81.15 63.81 71.44
PubMed 81.01 66.12 72.81
PubMed-SG 79.23 65.73 71.85
PubMed+MM 80.41 67.17 73.20
PubMed+Num 81.91 66.31 73.29
PubMed+MM+Num 81.04 66.69 73.17
CRAFT Prec. Rec. F1 (%)
Lee2017 70.76 48.71 57.70
PubMed 70.93 46.90 56.46
PubMed-SG 71.98 50.24 59.18
PubMed+MM 71.11 47.91 57.25
PubMed+Num 72.79 42.55 53.70
PubMed+MM+Num 71.60 45.00 55.27

Table 2: Results of mention detection on the de-
velopment set of BioNLP and CRAFT. The high-
est numbers are shown in bold.

• PubMed: biomedical embeddings, same fea-
tures as Lee2017
• PubMed-SG: PubMed with no speaker and

genre features
• PubMed+*: PubMed with the MetaMap fea-

ture (MM) and/or the grammatical number
feature (Num).

For evaluation, we calculated precision, recall,
and F1 on MUC, B3, and CEAFφ4 using the
CoNLL scorer (Pradhan et al., 2014). For the
BioNLP dataset, we also employed the scorer pro-
vided by the shared task organisers to make fair
comparisons with previous work. We reported the
performance on two sub-tasks: (1) mention detec-
tion, i.e., to identify coreferent mentions, such as
named entities, prepositions or noun phrases, and
(2) mention linking, i.e., to link these mentions if
they refer to the same thing. The result of the first
task affects that of the second one.

3.3 Results

Results on the development sets of the two corpora
are presented in Table 2 for mention detection and
Table 3 for mention linking (see Appendix A for
detailed scores in different metrics).

Regarding the BioNLP dataset, the Lee2017
system performed reasonably well even when it
did not use any domain-specific features. Re-
placing general embeddings by the biomedical
ones improved F1 score in general (Lee2017 v.s.
PubMed). Removing speaker and genre fea-
tures (-SG) did not help enhance the performance.
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System BioNLP CRAFT
Lee2017 61.25 33.85
PubMed 62.51 33.92
PubMed-SG 61.47 34.85
PubMed+MM 63.41 33.91
PubMed+Num 63.16 31.28
PubMed+MM+Num 63.12 32.77

Table 3: Average F1 scores (%) of mention linking
on the development set of BioNLP and CRAFT.

Adding MetaMap’s tags (+MM) or the number
feature (+Num) produced slightly better scores in
comparison to PubMed. However, combining the
two features at the same time was not as effective
as expected. Among the proposed features, the
agreement on MetaMap entity tags (+MM) was
the strongest one on the BioNLP dataset.

The impact of the features was quite different on
the CRAFT corpus. As shown in Table 2, intro-
ducing biomedical embeddings (PubMed) show
slightly worse F1 score on mention detection than
Lee2017 but it also show a slight improvement
on mention linking. Removing speaker and genre
features (-SG) boosted the performance. How-
ever, adding domain-specific features all harmed
the performance. As a result, PubMed-SG showed
the best score on the CRAFT development set.

Results in Tables 2 and 3 justify the fact that
the CRAFT corpus is more challenging than the
BioNLP dataset. The scores of the experimented
systems on the CRAFT corpus were always lower
than those on the BioNLP dataset. This is reason-
able because (1) CRAFT consists of full papers
that are significantly longer than abstracts, (2) it
covers a wide range of anaphors, and (3) its iden-
tity chains can be arbitrarily long.

We applied the best performing system on each
development set, i.e., PubMed+MM for BioNLP
and PubMed-SG for CRAFT, to its test set, and
reported the results in Tables 4 and 5 with show-
ing the performance in previous work for compar-
ison. Table 4 reveals that the neural system out-
performed five systems that used SVM and rule-
based approaches including the best system on
the shared task, and the system could compete
with Nguyen et al. (2012)’s. Meanwhile, on the
CRAFT corpus (Table 5), we could only produce
better performance than the general state-of-the-
art system, especially due to the low precision.

System Prec Rec F1 (%)
TEES (BioNLP ST) 67.2 14.4 23.8
ConcordU (BioNLP ST) 63.2 19.4 29.7
UZurich (BioNLP ST) 55.5 21.5 31.0
UUtah (BioNLP ST) 73.3 22.2 34.1
Choi et al. (2016b) 46.3 50.0 48.1
PubMed+MM 55.6 47.5 51.2
Nguyen et al. (2012) 50.2 52.5 51.3
Miwa et al. (2012) 62.7 50.4 55.9
D’Souza and Ng (2012) 55.6 67.2 60.9

Table 4: Results of mention linking on the test set
of the BioNLP dataset. The F-scores are in as-
cending order.

System Prec. Rec. F1
General state-of-the-art 0.93 0.08 0.14
Rule-based 0.78 0.29 0.42
Union of the two output 0.78 0.35 0.46
PubMed-SG 0.44 0.31 0.36

Table 5: B3 scores of mention linking on the
CRAFT test set in comparison with the three sys-
tems by Cohen et al. (2017). This is not a fair
comparison as our system only addressed identity
chains and the test set is different from theirs.

4 Conclusion

We have applied a neural coreference system to
biomedical texts and incorporated domain-specific
features to enhance the performance. Experimen-
tal results on two biomedical corpora, the BioNLP
dataset and the CRAFT corpus, have shown that
(1) the neural system performed reasonably well
with no parser information, (2) the in-domain
embeddings and domain-specific features did not
consistently perform well on the two corpora, and
(3) the system could attain better performance
than several rule-based and traditional machine
learning-based systems on the BioNLP dataset.

As future work, we would like to investigate
feature representations to make input features use-
ful to a target domain. We will also incorporate
rules in the existing systems into the network.
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A Detailed results

We report detailed results of mention linking on
the development set of the two corpora in Table 6
and Table 7. Due to the long running time of the
scorer, we were not able to report CEAFφ4 scores
for CRAFT.
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MUC B3 CEAFφ4 Avg.
System Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 F1 (%)
Baseline 65.31 45.03 53.30 71.50 50.27 59.03 77.06 66.54 71.41 61.25
PubMed 65.44 47.04 54.74 71.12 51.85 59.98 77.25 68.85 72.81 62.51
PubMed-SG 63.02 46.58 53.57 68.72 51.72 59.02 76.11 68.01 71.83 61.47
PubMed+MM 66.17 48.30 55.84 71.62 52.95 60.89 76.70 70.53 73.49 63.41
PubMed+Num 66.81 47.83 55.75 72.27 52.23 60.64 78.15 68.63 73.08 63.16
PubMed+MM+Num 65.73 47.37 55.06 71.68 52.66 60.72 77.53 70.04 73.59 63.12

Table 6: Results of mention linking on the BioNLP development set.

MUC B3

System Prec. Rec. F1 Prec. Rec. F1 Avg. F1 (%)
Baseline 45.46 27.17 34.02 44.29 27.17 33.68 33.85
PubMed 47.36 27.34 34.67 44.89 26.30 33.17 33.92
PubMed-SG 46.04 28.49 35.20 43.33 28.67 34.50 34.85
PubMed+MM 46.22 27.37 34.38 43.70 27.09 33.44 33.91
PubMed+Num 47.31 23.40 31.31 48.70 23.01 31.25 31.28
PubMed+MM+Num 46.85 25.41 32.95 45.78 25.30 32.59 32.77

Table 7: Results of mention linking on the CRAFT development set.
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Abstract

We present a novel annotation task eval-
uating a patient’s engagement with their
health care regimen. The concept of en-
gagement supplements the traditional con-
cept of adherence with a focus on the pa-
tient’s affect, lifestyle choices, and health
goal status. We describe an engagement
annotation task across two patient note
domains: traditional clinical notes and a
novel domain, care manager notes, where
we find engagement to be more common.
The annotation task resulted in a κ of .53,
suggesting strong annotator intuitions re-
garding engagement-bearing language. In
addition, we report the results of a series of
preliminary engagement classification ex-
periments using domain adaptation.

1 Introduction

The recent trend in medicine toward health pro-
motion, rather than disease management, has fore-
fronted the role of patient behavior and lifestyle
choices in positive health outcomes. Social-
cognitive theories of health-promotion (Maes and
Karoly, 2005; Bandura, 2005) stress patient self-
monitoring of life-style choices, goal adoption,
and the enlistment of self-efficacy beliefs as health
promotive. We call this cluster of behavioral
characteristics patient engagement. Traditional
strategies of patient follow-up have also been af-
fected by this trend: healthcare providers increas-
ingly employ “care managers” (CMs) to moni-
tor patient well-being and adherence to physician-
recommended changes in health behavior—i.e.,
engagement. In this paper, we present an annota-
tion schema for (lack of) engagement in CM notes
(CMNs) and generalize the schema to the related

∗work completed at IBM

domain of electronic health records (EHRs). Our
high-level research questions are:

(1) Is the concept of engagement sufficiently well-
defined that annotators can recognize the con-
cept across text domains with an acceptable
level of agreement?

(2) Can the annotations produced in (1) be used to
classify engagement-bearing language across
text domains?

In section 3, we report the results of our explo-
ration of (1), describing an annotation task involv-
ing∼ 6500 CMN and EHR sentences that resulted
in an average κ of .53. In sections 4 and 5 we ad-
dress (2) and report the results of several classifi-
cation experiments that ablate classes of features
and use domain adaptation to adapt these features
to the CM and EHR target domains.

2 Related Work

The notion of patient engagement explored here is
inspired by the self-regulation paradigm of (Ban-
dura, 2005; Leventhal et al., 2012; Mann et al.,
2013), where a patient’s successful completion of
health-related goals is predicated on their ability
to “self-regulate”, i.e., to plan and execute actions
that promote attaining those goals, and their abil-
ity to maintain a positive attitude toward self-care.
We are also aligned with the more recent work of
Higgins et al. (2017) whose definition of engage-
ment includes a “desire and capability to actively
choose to participate in care”.

NLP approaches assessing doctor compliance
include Hazelhurst et al. (2005) who evaluate
notes for doctor compliance to tobacco cessa-
tion guidelines and Mishra et al. (2012) who as-
sess ABCs protocol compliance in discharge sum-
maries.
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Label Description Examples
Engagement
with care

The patient is engaged in their well-being by de-
scribing/exhibiting healthy behavior, positive out-
look, and social ties.

“Patient disappointed by lack of weight loss but is just
beginning exercise regimen”; “Patient joined book
club.”

Engagement
with CM

Adherence to a doctor or CM instruction or under-
standing of CM advice.

“Patient verbalized understanding”; “Patient confided
that she has gaps in nitroglycerin use.”

Lack of engage-
ment with care

Lack of engagement by using language suggestive
of non-adherence to guidelines, health-adverse be-
havior, lack of social ties, or negative impression
of patient self-care.

“White female, disheveled appearance”; “Patient ad-
mits to ‘sedentary’ lifestyle.”

Lack of engage-
ment with CM

Non-adherence to a prescribed instruction or a
negative response to interaction.

“Patient rude during call”; “Patient angrily refused
further outreach.”

CM Advice CM advice or suggestion “I suggested he watch his diet and increase exercise”
Other Default label to be chosen when no other label fits. “Patient has a history of atrial fibrillation on corticos-

teroids”; “Chest is clear with no crackles.”

Table 1: Annotation labels with descriptions and anecdotal examples. We use the term CM to describe
both the para-professionals interacting with patients in CM notes and the physicians in EHRs.

While there exists work dealing with sentiment
in clinical notes, such as positive or negative af-
fect (Ghassemi et al., 2015) and speculative lan-
guage (Cruz Dı́az et al., 2012), (lack of) engage-
ment cannot be reduced to sentiment. Lack-of-
engagement-bearing language, for example, can
also contain positive sentiment, e.g., patient is
feeling better so she has stopped taking her medi-
cation. We include sentiment in our feature set, as
described in Section 4.

The most closely related work is Topaz et al.
(2017) who developed a document-level discharge
note classification model that identifies the adher-
ence of a patient in the discharge note. Their an-
notation task differs from ours, however, as they
focus only on lack of adherence, specifically, to-
wards medication, diet, exercise, and medical ap-
pointments. We also distinguish the targets of both
engagement and lack of engagement by allowing
annotators to identify either the CM or the care it-
self as the target.

3 Annotation Task and Data

The majority of our data consists of CMNs gener-
ated by a care manager service located in Florida,
USA. CMs typically contact patients via phone
to inquire into the patient’s status with respect to
health goals and enter the resulting information
into the structured sections of a reporting tool. In
addition, CMs note their impressions of the pa-
tient in a note as unstructured text, which we use
here. To expand the domain scope of the task,
we included EHR notes from the i2b2 Heart Dis-
ease Risk Factors Challenge Data Set (Stubbs and
Uzuner, 2015; Stubbs et al., 2015), which includes
notes dealing with diabetic patients at risk for
Coronary Artery Disease (CAD). All notes were

annotated in the same manner regardless of source.

3.1 Annotation Guidelines

Table 1 includes descriptions of the annotation la-
bels along with anecdotal examples of each label
type (original sentences are excluded due to pri-
vacy constraints1). Annotators were allowed to
choose more than one label for each sentence, or
no label at all (considered other). Our schema
captures three different label classes: engagement,
lack of engagement, and cm advice. We included
cm advice because it can provide an indication that
the next sentence should be classified as (lack of)
engagement. We initially explored “barrier” lan-
guage (e.g. patient could not get to his appt be-
cause he didn’t have a car) as this can be indica-
tive of lack of engagement, however, we found it
to be too rare to include in the annotation tasks.

3.2 Annotation Challenges

Our first challenge was encoding a distinction be-
tween engagement and the more familiar con-
cept of patient “adherence” (Vermeire et al., 2001;
Topaz et al., 2017) in the annotation guidelines.
While engagement-bearing language can include
adherence-bearing language (e.g., is monitoring
blood sugar, made follow-up appointment), the re-
verse is often not the case: Engagement-bearing
language can include mentions of social ties (e.g.,
discusses struggles to lose weight with sister) and
positive or negative evaluations of health-related
goals (e.g., patient was irritable when asked about
efforts to reduce smoking), neither of which in-
volve adherence per se. By annotating such ex-
amples as engagement-bearing, we capture “self-

1All examples provided throughout the paper are anecto-
dal
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efficacy beliefs,” which theories of patient self-
regulation (Bandura, 1998, 2005) have suggested
are predictive of health goal attainment.

An additional distinction that emerged during
the annotation process involved the target of the
engagement-bearing language: Is the patient (not)
engaged with the CM or with the care itself? This
distinction is evident in sentences that display a
lack of engagement with care but a level of en-
gagement with the CM. For example, in the sen-
tence He appeared cheerful in our interactions
and admitted that he has not been exercising daily,
the patient is confiding in their CM (engagement)
that they are not pursuing their health goals (lack
of engagement). By allowing annotators to an-
notate such sentences as both engaged with the
CM but unengaged with care we were able to ex-
clude sentences that contained internally inconsis-
tent engagement-bearing language from our data.

Another challenge involved the frequent use of
“canned language” in the CM data, or language
that does not report the CM’s interactions with
the patient but is used to meet some reporting cri-
terion recommended by the health-care provider.
For example, Patient is scheduled for follow up
appointment in two weeks, is a frequently occur-
ring canned language. Thus, we excluded com-
mon canned language sentences from the data.

3.3 Data Statistics

After several initial pilot rounds inter-annotator
agreement for our six annotators on a final pi-
lot round of 200 sentences (100 from each
source) ranged from .46 to .66 among the anno-
tators with an overall average of .53 (using Co-
hen’s κ), indicating moderate to substantial agree-
ment (McHugh, 2012).

4011 CMN sentences were annotated, extracted
from∼ 10, 000 unique CMNs. In order to broaden
the range of language in our data, 2561 EHR sen-
tences were annotated, with an equal number of
sentences drawn from the three patient cohorts in-
cluded in the i2b2 data. For each EHR, we re-
stricted our annotation effort to sections that were
more likely to include engagement-bearing lan-
guage, specifically, the social history, family his-
tory, personal medical history, and history of the
present illness sections. Table 2 shows the label
distribution of the annotated data relative to note
source. Although we allowed the annotators to
differentiate between engagement/lack of engage-

Source Engage No Engage Advice Other
EHRs 114 56 15 2376
CMNs 395 172 140 3304
Total 509 228 155 5680

Table 2: Label distribution relative to note type for
all annotated sentence data.

ment with care or the CM, we ultimately conflated
these two categories into one for our experiments.

4 Method

Given the small size of our data we elected to use
a feature-engineering-based approach along with
a discriminative classification algorithm in our ex-
periments. Our features can be divided into five
categories: lexico-syntactic, lexical-count, senti-
ment, medical, and embeddings.

Lexico-syntactic. Standard NLP features for
text-classification such as n-grams and part-of-
speech (POS) tags, along with dependency tuples
(De Marneffe and Manning, 2008) with either the
governor or dependent generalized to its POS.

Lexical-count. Frequency-based features such
as sentence length, min and max word length, and
number of out of vocabulary words.

Sentiment. We ran two sentiment classifiers
over the data (Socher et al., 2013; Hutto and
Gilbert, 2014) and included the resulting tags as
features. In addition, we developed “comply
word” features by inducing a lexicon based on
WordNet- (Fellbaum, 1998) and Unified Med-
ical Language System (UMLS)-based2 synonym
expansion of seed words such as “take” and “de-
cline.”

Medical. Using the MetaMap3 tool, we gen-
erated Concept-Unique Identifiers (CUIs) for any
medical concepts in the sentence. We also in-
cluded both the “preferred names” and semantic
types returned by UMLS for each concept

Embeddings. We extracted term-term, CUI-
CUI and term-CUI co-occurrences pairs from a
large medical corpus and used wordtovecf4

(Levy and Goldberg, 2014) to learn embeddings
from this co-occurrence dataset. We generated the
mean of the embeddings for all content-words and
CUIs in the sentence as a feature.

5 Experiments
All experiments were performed using an SVM
classifier with a linear kernel basis function and

2http://www.nlm.nih.gov/research/umls/
3http://metamap.nlm.nih.gov/
4http://bitbucket.org/yoavgo/word2vecf
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experiment CM EHR
eng lack other eng lack other

ALL

n-grams 18.4 25.1 91.3 7.1 3.3 95.4
+embeddings 18.0 24.9 91.3 7.2 3.3 95.4
+lexico-synt 22.7 20.7 90.2 7.0 3.2 94.6
+lexical counts 21.7 21.9 89.2 9.1 3.1 93.1
+sentiment 19.8 22.9 88.7 9.1 6.1 92.8
+medical 22.3 24.3 89.3 8.4 8.6 93.6
all 24.3 21.7 89.1 9.5 6.2 93.1

CM

n-grams 27.4 26.3 91.2 9.2 12.7 93.7
+embeddings 27.5 26.8 91.3 8.5 12.7 93.7
+lexico-synt 27.9 25.2 88.7 7.4 9.8 91.7
+lexical counts 27.4 27.5 87.5 8.4 12.1 89.6
+sentiment 27.6 29.4 87.4 7.9 11.3 89.4
+medical 28.9 28.6 87.8 10.6 10.4 90.2
all 29.6 25.4 87.1 10.8 13.0 89.6

EHR

n-grams 9.4 0.0 92.1 0.0 0.0 96.3
+embeddings 9.4 0.0 92.1 0.0 0.0 96.3
+lexico-synt 12.7 1.1 91.9 5.5 6.5 96.4
+lexical counts 12.0 3.2 91.9 5.6 6.3 96.3
+sentiment 10.2 3.2 91.9 6.9 6.3 96.5
+medical 15.6 9.6 91.7 17.0 6.1 96.3
all 11.1 7.2 91.7 14.4 6.3 96.2

Table 3: F-score results of ablation experiments
for Engagement (eng) and Lack of Engagement
(lack). Row headers refer to training sets and col-
umn headers refer to test sets. The best F-score for
each test set is shown in bold.

one-vs-rest multiclass classification strategy as
implemented in scikit-learn.5 To deal
with the skew in class distribution we experi-
mented with both over- and under-sampling but
got our best performance by simply adjusting class
weights to be inversely proportional to class fre-
quencies. Given the relatively small size of our
data we used 5-fold cross-validation throughout.
We also conflated cm advice with other to boost
performance. We show F-score results for all three
classes, but our analysis will focus on (lack of) en-
gagement since other is trivially high-performing
due to the massive data skew.

In our first set of experiments we examined the
impact of training and testing on EHRs and CMNs
individually, as well as together, while ablating the
feature classes described in section 4. As shown in
Table 3, all feature classes seem to help the model,
but sentiment helps more for predicting lack of
engagement in the CMNs while medical features
help more for predicting lack of engagement in
the EHRs. These experiments show that a CMN-
trained model can perform well on EHRs. The
best result for lack of engagement occurs when
training on CM notes, with an F-score of 13.0.

The results in Table 3 encouraged us to apply
domain adaptation (DA) to improve the results of

5http://scikit-learn.org

experiment CM EHR
eng lack other eng lack other

n-grams 21.0 25.7 91.6 9.2 3.3 95.8
+embeddings 21.1 25.5 91.6 10.4 3.3 95.8
+lexico-synt 23.0 22.9 89.1 9.2 3.2 93.4
+lexical count 20.2 24.2 89.1 9.9 15.0 91.5
+sentiment 23.0 26.1 88.8 7.8 2.7 93.0
+medical 23.4 22.9 88.8 9.9 5.1 93.2
all 22.3 23.2 89.0 13.3 12.8 91.4

Table 4: F-score results of DA experiments. The
best F-score for each test set is shown in bold.

the smaller dataset (EHRs) while also taking ad-
vantage of the larger dataset (CMNs) by consid-
ering EHRs to be “in-domain” and CMNs to be
“out-of-domain”. As this is still preliminary work,
we started with a simple, yet effective DA strat-
egy: the feature representation transformation pro-
cedure described in Daumé III (2007). Table 4
shows the results using DA. In the EHRs, where
there is less data, on average DA provided an im-
provement, particularly for lack of engagement.

6 Conclusion

In this paper we presented an annotation schema
that captures engagement in CMNs and EHRs. We
described the challenges of developing an annota-
tion schema for a subjective task and show that
annotators achieved moderate to high agreement
in our final task. We annotated 6,572 sentences
for (lack of) engagement and show preliminary re-
sults of a classification experiment on our dataset
using feature ablation and domain adaptation. Our
results are promising, showing that both features
and domain adaptation are useful. However, they
remain preliminary due to the rarity of (lack of)
engagement labels. In future work, we plan to ex-
plore transfer learning to increase the size of our
data, which in turn will allow use to explore deep
learning approaches to this task.
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