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Abstract
We present a novel approach for event extrac-
tion and abstraction from movie descriptions.
Our event frame consists of ‘who”, “did what”
“to whom”, “where”, and “when”. We for-
mulate our problem using a recurrent neural
network, enhanced with structural features ex-
tracted from syntactic parser, and trained using
curriculum learning by progressively increas-
ing the difficulty of the sentences. Our model
serves as an intermediate step towards ques-
tion answering systems, visual storytelling,
and story completion tasks. We evaluate our
approach on MovieQA dataset.

1 Introduction

Understanding events is important to understand-
ing a narrative. Event complexity varies from one
story to another and the ability to extract and ab-
stract them is essential for multiple applications.
For question answering systems, a question nar-
rows the scope of events to examine for an an-
swer. For storytelling, events build an image in
the reader’s mind and constructs a storyline.

For event extraction, we apply Natural Lan-
guage Processing (NLP) techniques to construct
an event frame consisting of: “who”, “did what”
“to whom”, “where”, and “when”. The more
complex questions of “how” and “why” requires
significantly more reasoning and beyond this pa-
per’s scope. Most syntactic NLP parsers, such
as CoreNLP (Manning et al., 2014) and NLTK
(Bird et al., 2009), focused on examining char-
acteristics of the words, grammatical structure,
word order, and meaning (Chomsky, 1957). On
the other hand neural NLP approaches, such as
SLING (Ringgaard et al., 2017) relies on large
corpora to train such models in addition multi-
ple knowledge databases. These approaches per-
form event extraction without context (often vi-
sual) of a movie or a movie script. When per-

forming event extraction in relation to events in
a story, the context can be gleaned from descrip-
tions of the set or characters or prior events in a
sequence. Additionally, we intend to develop an
event extraction framework for a mixed-initiative,
human-computer, system and intend to generate
a human-readable event structure for user interac-
tion.

In departure from syntactic approaches, we
propose a hybrid, neural and symbolic, ap-
proach to address this problem. We benefit from
both neural and symbolic formulations to ex-
tract events from movie text. Neural networks
have been successfully applied to NLP problems,
specifically, sequence-to-sequence or (sequence-
to-vector) models (Sutskever et al., 2014) ap-
plied to machine translation and word-to-vector
(Mikolov et al., 2013a). Here, we combine
those approaches with supplemental structural in-
formation, specifically sentence length. Our ap-
proach models local information and global sen-
tence structure.

For our training paradigm, we explored curricu-
lum learning ((Bengio et al., 2009). To the best of
our knowledge, we are the first to apply it to event
extraction. Curriculum learning proposes a model
can learn to perform better on a difficult task if
it is first presented with easier training examples.
Generally, in prior curriculum learning work, the
final model attains a higher performance than if
it were trained on the most difficult task from the
start. In this work, we base the curriculum on sen-
tence length, reasoning that shorter sentences have
a simpler structure. Other difficulty metrics such
as average word length, longest word length, and
FleschKincaid readability score were not consid-
ered in this experiment, but may be considered for
future work.

Instead of treating the sentence-to-event prob-
lem as a complete black-box putting the burden
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on the deep learning model, we simplify the prob-
lem by adding structure to the output sentence fol-
lowing the event frame structure, where some of
the components could be present or absent. Fur-
thermore, some sentences could contain multiple
events. Weak labels were extracted from each sen-
tence using the predicate as an anchor. We use
structure rather than a bag-of-words because it en-
codes information about the relationships between
words.

Our contributions are three-fold:
• New formulation for event extraction in movie

descriptions.
• A curriculum learning framework for difficulty

based learning.
• Benchmarking symbolic and neural ap-

proaches on MovieQA dataset.
The paper is organized as follows: section 2 re-
views prior work; Section 3 formulates our ap-
proach; Section 4 specifies the learning frame-
work; Section 5 presents our experiments; Sec-
tion 6 describes our future work and conclusion.

2 Prior Work

Event extraction is a well established research
problem in NLP. Parsers have been developed to
extract events and event structures using a variety
of methods both supervised and unsupervised.

(McClosky et al., 2011) uses dependency pars-
ing to extract events from sentences (converted to
a dependency tree by a separate classifier) by iden-
tifying event anchors in a sentence and graphing
relationships to its arguments.

(Chambers and Jurafsky, 2008) and (Cham-
bers and Jurafsky, 2009) develop an unsupervised
method to learn narrative relations between events
that share a co-reference argument and, later, a se-
quence of events over multiple sentences.

(Martin et al., 2017) and (Martin et al., 2018)
present a neural technique for generating a mid-
level event abstraction that retains the semantic
information of the original sentence while mini-
mizing event sparsity. They formulate the prob-
lem as first, the generation of successive events
(event2event in their parlance), then generate nat-
ural language from events (event2sentence). The
authors use a 4-tuple event representation with
subject, verb, object, and a modifier of the sen-
tence including prepositional phrase, indirect ob-
ject, or causal complement. One key concept
is that these events are in generalized Word-

Net forms and are not easily human-readable.
Their event2event network is an encoder-decoder
model. The event2sentence model is similar to
the event2event model with the exception of using
beam search.

(Harrison et al., 2017) introduces a Monte Carlo
approach for story generation, a related applica-
tion of event extraction. Citing RNN’s difficulty in
maintaining coherence across multiple sentences,
they develop a Markov Chain Monte Carlo model
that can generate arbitrarily long sentences. In this
work, they use the same event representation as
(Martin et al., 2018).

Prior work in curriculum learning ((Bengio
et al., 2009)) explored shape recognition and lan-
guage modeling. Specifically for language mod-
eling, they experiment with a model to predict the
best word following a context of prior words in a
correct English sentence. Their language model-
ing experiment expanded the vocabulary, increas-
ing the task difficulty as more words were added
to the corpus. More recent work ((Graves et al.,
2017)) applied curriculum learning to question-
answering problems on the bAbI dataset (Weston
et al., 2015), designed to probe reasoning capabil-
ities of machine learning systems.

The problem with symbolic approaches is the
rigidity of the parsers and only basing the parses
on the encoded knowledge. The neural approaches
are unbounded and produce a huge variety of gen-
erated sentences. However, they are not condi-
tioned on specific text and the results vary, often
producing unrealistic sentences. We propose a hy-
brid of the two approaches to provide structured
events conditioned on realistic content.

3 Approach

Our goal is to extract event frames in movie de-
scription in the format of “who” “did what” “to
whom or what” “when” and “where”. By extract-
ing particular components of an event, it becomes
easier to instantiate an event as an animation us-
ing existing software or present the event object to
a human user for them to instantiate on their own
terms. Once events are extracted in this format,
a sequence of events can be used to animate the
script and generate a short movie. In contrast to
the purely symbolic approach taken by others, we
take a neural approach, applying Recurrent Neu-
ral Networks (RNN). The idea is that an RNN will
learn to output a structure mirroring the symbolic
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Figure 1: The model takes input word2vec vectors of
each word and outputs their labels.

approaches. The input nodes are encoded as a
fixed sequence of identical length and the output
are labels of the provided structure. Figure 1 illus-
trates our model. We first encode each word in the
input sentence to an M-dimensional vector using
word2vec (Mikolov et al., 2013b). The embedding
output vectors input an M-dimensional RNN with
LSTM units. We standardized the length of the
sentence by padding short sentences and capping
the length of the longest sentence to be 25 words.
The hidden state of each unit is defined in (1) for
h(t). The output of each unit is o(t) and is equal to
the hidden state. The internal cell state is defined
by Ct. Intermediate variables f (t). i(t), ĉ(t), and
u(t) facilitate readability and correspond to forget,
input, and candidate gates, respectively. The cell
state and the hidden state are propagated forwards
in time to the next LSTM unit.

f (t) = σ(Wfhh
(t−1) +Wfxx

(t) + bf )

ĉ(t) = tanh(Wchh
(t−1) +Wcxx

(t) + bc)

i(t) = σ(Wihh
(t−1) +Wixx

(t) + bi)

C(t) = C(t−1) � f (t) + i(t) � ĉ(t)

o(t) = σ(Wohh
(t−1) +Woxx

(t) + bo)

h(t) = tanh(C(t))� o(t)

(1)
A significant hurdle in training any of network in
this instance is class imbalance. Here, the model
is trained using standard back-propagation with a
weighted cross-entropy loss function used to avoid
over-fitting to the null class.

4 Curriculum Learning

Sentences vary in difficulty due to structure, con-
text, vocabulary, and more. As part of our experi-
ments, we employed curriculum learning to poten-
tially facilitate the learning processes. We com-
pare the curriculum training to standard batch pro-
cessing.

We divide the training samples into three diffi-
culty groups based on sentence length. We train
the model with the easiest set first for 100 epochs
before advancing to the medium and hard diffi-
culty training samples, training for 100 epochs
each. This results in 300 training epochs total, al-
though the model is only exposed to a third of the
dataset for 100 epochs at a time. We compare this
to models where the training process exposes the
model to the entire corpus for 300 epochs. We use
sentence length, assuming that shorter sentences
are easier as they contain fewer descriptive words,
but other structural and semantic metrics can be
used.

5 Experiments

MovieQA Dataset (Tapaswi et al., 2016): We
use the descriptive video service (DVS) text from
MovieQA. The DVS sentences tend to be sim-
pler and describe the scene explicitly compared to
the plot synopsis sentences. We generate an ini-
tial training corpus of extracted events using de-
pendency parsers and information extraction an-
notators from CoreNLP. A total of 36,898 events
are generated. Analyzing the corpus of extracted
events, we found the longest sentence length con-
tained 62 words. However, by limiting our dataset
to sentences with 25 words or less, we retained
97% of the data (35791 sentences). Figure 3 shows
the sentence length distribution of the DVS data
and the plot synopsis data. We did not experiment
with the plot synopsis data, rather we wish to high-
light the difference in sentence lengths between
the 2 sets of data. The DVS data is heavily skewed
towards shorter sentences, most likely due to re-
quiring concise descriptions about what is hap-
pening on screen at that time. Plot synopsis sen-
tences tend to be longer as they tend to summarize
multiple actions and plot points. Sentences with
multiple predicates generated multiple events and
this manifested itself as duplicate sentences in our
dataset with multiple label sequences. Sentences
with multiple events accounted for about 24% of
the data. This does lead to complications for train-
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Figure 2: (Top, left to right) Easy, Medium, Hard Accuracy vs Learning Rate. (Bottom, left to right) Easy, Medium,
Hard Accuracy vs Embedding Dimension.

Figure 3: Sentence Length Distribution from DVS
(blue) and Plot Synopsis (orange) Data and Cumulative
Distribution (solid lines and right axis)

ing as we did not distinguish between events.
The difficulty classes computed by sentence

length and are as follows: easy sentences are 8
words or less with an average sentence length of
6.5 words, medium sentences are 9-12 words with
an average length of 10.4 words, and hard sen-
tences are 13 words or longer with an average
length of 16.8 words. Each difficulty class is con-
tains one third of the original data set. For training
with and without a curriculum, we used an 80-20
train-test split. For curriculum learning, each diffi-
culty was trained on 80% of each of the respective
difficulty sets and tested on the remaining 20%.

The extracted events provide weak labels gener-
ated by the CoreNLP algorithm approach.

Pre-processing: We tokenized the text assigning
an integer to each word after removing capital-
ization and apostrophes. Sentences are vectorized
using this index. The output format assigns inte-
gers between 1-5 to parts of the sentence based
on which elements of the sentence are part of the
subject (1), predicate (2), object (3), location (4),
or time (5) phrases. Articles, prepositions, con-
junctions, adjectives, and adverbs were often as-
signed the null class (0) although some may be in-
cluded parts of event phrases. Sentences are left-
padded with zeros make all sentence vectors the
same length.

Implementation Details: The trained model is
a basic LSTM model. We employ two different
training approaches. In the first approach, we ig-
nore the sentence length and use random batches
of training data. We train for 300 epochs. Second,
we use a training curriculum based on sentence
length, starting training with shorter sentences and
progressing to longer sentences. The sentences are
divided into easy, medium, and hard difficulty sets
with each set containing roughly one-third of the
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Figure 5: Failure Cases

total data set. We hold out a set of data from each
difficulty level for validation. We train the model
for 100 epochs on each level of difficulty to match
the total of 300 epochs of the random training cur-
riculum. The final approach is to start with shorter
sentence lengths and train with longer sentences
towards the end.

We examine four parameters: the learning rate,
the embedding dimension, the hidden dimension,
and number of training epochs. A grid search was
employed to examine the effects of these parame-
ters on the validation accuracy. We varied learning
rate in powers of 10 from 1e − 5 to 1e − 2. The
embedding dimension was varied from 50-500 in
increments of 50. The hidden dimension was var-
ied from 48-512 in increments of 16. Lastly, we
varied the number of training epochs from 300-
2000 in increments of 200. Below we include a
sample of figures from this search where we fixed
the number of epochs (300) and the hidden layer
dimension (512) while adjusting the learning rate
and the embedding dimension. For these param-
eters, we found an embedding dimension of 350
performs best on the easy and medium difficulty
levels. Additional training is in progress.

We used ADAM (Kingma and Ba, 2014) for

gradient optimization. Our loss function was a
weighted categorical cross entropy function us-
ing the class distribution from the training data as
class weights. Accuracy is calculated by the fre-
quency with which the predicted class matches the
labels. The accuracy is then the total count of ac-
tual matches by the total potential matches.

5.1 Qualitative Results
In this work, we used the symbolic algorithm as
a weak label for the neural network approach.
The symbolic approach appears to work well for
shorter sentences with simple sentence structure.
However, as the sentences become longer and ad-
ditional descriptive phrases, the dependency pars-
ing becomes more complex. We present 3 exam-
ples (1 from each difficulty level) of a simple sen-
tence the symbolic algorithm does well.

Figure 4 shows examples where our approach
was successful. Figure 4(a) illustrates an easy dif-
ficulty sentence. The parser correctly identifies
the he as the subject, gently strokes as the verb
phrase, her cheek as the object, and near the scar
as the location. Figure 4(b) illustrates a medium
difficulty sentence. The parser identifies Caroline
as the subject again, the verb phrase stares down
at, the object diary and the location in the hos-
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pital. Figure 4(b) illustrates a medium difficulty
sentence. Figure 4(c) illustrates a hard difficulty
sentence. The parser identifies recruits as the sub-
ject. The verb phrase identified here is are sitting
at and the object is base of their bunks. Another
verb phrase that could be identified is assembling
with the object their rifles. These examples also
show how the model ignored articles in the sen-
tences. Finally, Figure 4(d) illustrates a challeng-
ing sentence. One pleasantly surprising example
of the model learning multiple events in a single
short sentence. The model correctly identifies 2
subjects (she, Noah) and 2 verb phrases (is dis-
tracted, swims away).

Figure 4 shows examples where our approach
failed. Figure 5(a) illustrates an easy difficulty
sentence. The model incorrectly identifies glass as
a predicate while correctly identifying shuts, sug-
gesting the model does not anchor events around
a predicate phrase. Figure 5(b) illustrates an
medium difficulty sentence. The model identifies
the verb phrase are cheering and the object him,
but fails to recognize the subject Harry’s friends.
This is odd as it would suggest the model doesn’t
recognize possessive apostrophes as part of a noun
phrase, but may be confusing it with a contraction.
However, other situations show the model does not
recognize the contraction either. Figure 5(c) illus-
trates a hard difficulty sentence. The model fails
to identify soldiers as a subject of any predicate,
yet correctly identifies climb into and walks out
of as predicate phrases. It does, however, identify
George as a subject, but not his descriptor of King.

As sentences get longer, the model begins to
breakdown. This may be due to the weak labels
provided by the symbolic algorithm. It may also
be due to the non-linear relationship between sub-
ject, predicate, and object in the sentence. The
neural model also fails when the location is a
generic place such as a cafe or garage. One im-
provement could be to incorporate the WordNet
meaning of each word in the sentence.

5.2 Quantitative Results

We show results from curriculum learning using
the sentence length as a basis for the curricu-
lum. The accuracy is shown in Figure 6 for both
the non-curriculum learning and the length-based
curriculum. We first train with easy data, wit
the easy validation data closely tracking it. Af-
ter 200 epochs, we begin training with medium

difficulty data. At this point, the easy valida-
tion data changes only a little, while medium and
hard difficulty validation data continue to increase
slightly. At 400 epochs, we begin training with
the most difficult data: data containing the longest
set of sentences our dataset. Introducing the hard
training data affects the easy and medium valida-
tion accuracy. The hard difficulty validation accu-
racy continues to increase while easy and medium
drop. Due to the semi-supervised method of label-
ing the data using symbolic methods, we believe
longer sentences tend to be noisier and less accu-
rately labeled compared to shorter sentences. This
introduces noisy labels for the network, confusing
it on previously learned examples leading to de-
graded performance. Descriptive phrases contain-
ing nouns can complicate the network and hinder
identification of subject or object.

6 Conclusions and Future Work

This work presents an initial study of neural event
extraction. We intend to study a bidirectional
LSTMs and encoder-decoder models in future
work. We anticipate bidirectional models and
encoder-decoder models will enable the network
to capture longer-term dependencies between ob-
ject and predicate. We also plan to extend the data
set to additional sources with human annotations
for more accurate ground truth labels.

An additional direction for future work is to in-
corporate graphs as a mechanism to enforce struc-
ture. In addition, we can extract events from visual
information and use it to guide the events extracted
from textual information. Using graphs generated
from both visual and textual information will re-
sult in a more complete, and less noisy event rep-
resentation.

This experiment is a component for our work to-
wards developing a mixed-initiative system for vi-
sual storytelling. Here, we take preliminary steps
towards extracting events from movie descriptions
with the intention of then instantiating events in an
animation module. The simplified event structure
facilitates the mixed system where either the com-
puter or human can suggest events or render the
event in a particular style or genre. Our vision for
the system is to have a human and a computer take
turns suggesting new events in a story or suggest a
story arc and generate pertinent, relevant events to
justify the conclusion.
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Figure 6: (Left) No curriculum learning with all difficulties mixed into training data. Validated against all difficulty
levels at each epoch. (Right) Curriculum learning based on sentence length. Each difficulty trained for 100 epochs
in easy, medium, hard order. Validated against all difficulty levels at each epoch.
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