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Introduction

The SpLU-2018 is the first international workshop on spatial language understanding. One of the
essential functions of natural language is to express spatial relationships between objects. Linguistic
constructs can encode highly complex, relational structures of objects, spatial relations between them,
and patterns of motion through space relative to some reference point. Spatial language understanding
is useful in many areas of research endeavors relating to and/or making use of human language,
including robotics, navigation, geographic information systems, traffic management, natural language
understanding and translation, and query answering systems. Compared to other semantically specialized
linguistic tasks, standardizing tasks related to spatial language seems to be more challenging as it
is harder to obtain an agreeable set of concepts and relationships and a formal spatial meaning
representation that is domain independent, as an example this could be compared to temporal relations.
This has made research results on spatial language learning and reasoning diverse, task-specific and, to
some extent, not comparable. While formal meaning representation is a general issue for language
understanding, formalizing spatial concepts and building formal reasoning models based on those
constitute challenging research problems with a wealth of prior foundational research that can be
exploited and linked to language understanding. Existing qualitative and quantitative representation
and reasoning models can be used for investigation of interoperability of machine learning and reasoning
over spatial semantics. Research endeavors in this area could provide insights into many challenges
of language understanding in general. Spatial semantics is also very well-connected and relevant to
visualization of natural language, central to dealing with configurations in the physical world and
motivating a combination of vision and language for richer spatial understanding. This workshop aims
to highlight some of the above aspects of computational spatial language understanding including the
following four areas: 1)Spatial Language Meaning Representation (Continuous, Symbolic) 2) Spatial
Language Learning 3) Spatial Language Reasoning 4) Combining Vision and Language for Spatial
Understanding.

This year we accepted eight papers covering various aspects of spatial language understanding, including
semantic analysis of the usage of spatial language, metaphorical usage of spatial language, how spatial
concepts are formalized in FrameNet, understanding spatial language for environments like block world
and spatial description generation in a dialogue system given a multi-modal setting, generation of
large-scale annotated corpora with spatial concepts and primitives, machine learning models for spatial
information extraction and resolving anaphora in spatial relations. We have invited two internationally
recognized speakers and organized a panel including the senior members of our organizing and program
committee to discuss the key-points and issues raised during the workshop.

Finally, we would like to thank all programming committee members, speakers, and authors. We are
looking forward to seeing you in New Orleans.
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Abstract

The challenge for computational models of
spatial descriptions for situated dialogue sys-
tems is the integration of information from
different modalities. The semantics of spa-
tial descriptions are grounded in at least two
sources of information: (i) a geometric repre-
sentation of space and (ii) the functional inter-
action of related objects that. We train sev-
eral neural language models on descriptions of
scenes from a dataset of image captions and
examine whether the functional or geometric
bias of spatial descriptions reported in the liter-
ature is reflected in the estimated perplexity of
these models. The results of these experiments
have implications for the creation of models of
spatial lexical semantics for human-robot di-
alogue systems. Furthermore, they also pro-
vide an insight into the kinds of the semantic
knowledge captured by neural language mod-
els trained on spatial descriptions, which has
implications for image captioning systems.

1 Introduction

Spatial language understanding is fundamental re-
quirement for human-robot interaction through di-
alogue. A natural task for a human to request a
robot to fulfil is to retrieve or replace an object for
them. Consequently, a particularly frequent form
of spatial description within human-robot interac-
tion is a locative expression. A locative expression
is a noun phrase that describes the location of one
object (the target object) relative to another object
(the landmark). The relative location of the target
object is specified through a prepositional phrase:

Bring me the big red book︸ ︷︷ ︸
Target

on the table︸ ︷︷ ︸
Landmark︸ ︷︷ ︸

Prepositional
Phrase︸ ︷︷ ︸

Locative Expression

.

In order to understand these forms of spatial de-
scriptions a robot must be equipped with compu-
tational models of the spatial semantics of prepo-
sitions that enable them to ground the semantics
of the locative expression relative to the context of
the situated dialogue.

A natural approach to developing these compu-
tational models is to define them in terms of scene
geometry. And, indeed, there is a tradition of re-
search that follows this path, see for example (Lo-
gan and Sadler, 1996; Kelleher and Costello, 2005,
2009). However, there is also a body of experi-
mental and computational research that has high-
lighted that the semantics of spatial descriptions
are dependent on several sources of information
beyond scene geometry, including functional se-
mantics (which encompasses a range of factors
such as world knowledge about the typical inter-
actions between objects, and object affordances)
(Coventry and Garrod, 2004). We can illustrate
this distinction between geometric and function-
ally defined semantics using a number of exam-
ples. To illustrate a geometric semantics: assum-
ing a spatial meaning, anything can be described
as to left of anything else so long the spatial con-
figuration of the two objects is geometrically cor-
rect. However, as (Coventry et al., 2001) has
shown the spatial description the umbrella is over
the man is sensitive to the protective affordances
of the umbrella to stop rain, and is appropriate in
contexts where, the umbrella is not in a geometri-
cally prototypical position above the man, so long
as the umbrella is protecting the man from the rain.

A further complication with regard to modelling
the semantics of spatial descriptions is that experi-
mental results indicate that the contribution of ge-
ometrical and functional factors is not the same for
every spatial relation (Garrod et al., 1999; Coven-
try et al., 2001). This experimental work shows
that there is an interplay between function and ge-
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ometry in the definition of spatial semantics and
therefore the spatial meaning of given spatial rela-
tion is neither fully functional nor fully geometric.
Rather, spatial terms can be ordered on a spectrum
based on the sensitivity of their semantics to geo-
metric or functional factors.

Given the distinction between geometric and
functional factors in shaping spatial semantics,
a useful analysis that would inform the design
and creation of computational models of spa-
tial semantics is to identify the particular seman-
tic bias (geometric/functional) that each spatial
term evinces. However, such an analysis is dif-
ficult. Native speakers do not have strong in-
tuitions about the bias of prepositions and such
bias had to be established experimentally (Coven-
try et al., 2001; Garrod et al., 1999) or through
linguistic analysis (Herskovits, 1986, p.55).1 Re-
viewing the literature on this experimental and an-
alytic work reveals that prepositions such as in,
on, at, over, under have been identified as being
functionally biased, whereas above, below, left of
and right of are geometrically biased. Other spa-
tial relations may be somewhere in between. In
this paper we will use these relations as ground-
truth pointers against which our methods will be
evaluated. If the method is successful, then we
are able to make predictions about those relations
that have not been verified for their bias experi-
mentally. Knowing the bias of a spatial relation
is useful both theoretically and practically. The-
oretically, it informs us about the complexity of
grounded semantics of spatial relations. In par-
ticular, it engages with the “what” and “where”
debate where it has been argued that spatial rela-
tions are not only spatial (i.e. geometric) (Landau
and Jackendoff, 1993; Coventry and Garrod, 2004;
Landau, 2016). Practically, the procedure to esti-
mate the bias is useful for natural language genera-
tion systems, for example in situated robotic appli-
cations that cannot be trained end-to-end. Given
that a particular pair of objects can be described
geometrically with several spatial relations, the
knowledge of functional bias may be used as a fil-
ter, prioritising those relations that are more likely
for a particular pair of objects, thereby incorporat-

1The discussion of Herskovits focuses on interaction of
objects conceptualised as geometric shapes, for example on:
contiguity with line or surface. The fact that the inter-
acting objects can be conceptualised as different geometric
shapes points and therefore related by a particular preposi-
tions points to their functional nature as discussed here.

ing functional knowledge. This approach to gen-
eration of spatial descriptions is therefore similar
to the approach that introduces a cognitive load
based hierarchy of spatial relations (Kelleher and
Kruijff, 2006) or a classification-based approach
that combines geometric (related to the bounding
box), textual (word2vec embeddings) and visual
features (final layer of a convolutional network)
(Ramisa et al., 2015). The functional geometric
bias of spatial relations could also be used to in-
form semantic parsing, for example in preposi-
tional phrase attachment resolution (Christie et al.,
2016; Delecraz et al., 2017).

Previous work has investigated metrics of the
semantic bias of spatial prepositions, see (Dobnik
and Kelleher, 2013, 2014). (Dobnik and Kelle-
her, 2013) uses (i) normalised entropy of target-
landmark pairs to estimate variation of targets and
landmarks per relation and (ii) log likelihood ra-
tio to predict the strength of association of target-
landmark pairs with a spatial relation and presents
ranked lists of relations by the degree of argu-
ment variation or strength of the association re-
spectively. The approach hypothesises that func-
tionally biased relations are more selective in the
kind of targets and landmarks they co-occur with.
The reasoning behind this is that geometrically it
is possible to relate a wider range of objects than in
the case where additional functional constrains be-
tween objects are also applied. (Dobnik and Kelle-
her, 2014) generalises over landmarks and targets
in WordNet hierarchy and estimates the generality
of the types of landmark. Again, the work hypoth-
esises that functional relations are more restricted
in their choice of target and landmark objects and
therefore are generally more specific in terms of
the WordNet hierarchy. Both papers present re-
sults compatible with the hypotheses where the
functional or geometric nature of prepositions is
predicted in line with the experimental studies
(Garrod et al., 1999; Coventry et al., 2001).

Sensitive to the fact that relations such as in and
on not only have spatial usage but also usages that
may be considered metaphoric (Steen et al., 2010),
both (Dobnik and Kelleher, 2013) and (Dobnik
and Kelleher, 2014) were based on an analysis of
a corpus of image captions. The idea being that
descriptions of images are more likely to contain
spatial descriptions grounded in the image. For
similar reasons, we also employ a corpus of image
descriptions (larger than in the previous work).
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This paper adopts a similar research hypothe-
sis to (Dobnik and Kelleher, 2014, 2013), namely
that: it is possible to distinguish between function-
ally biased and geometrically biased spatial rela-
tions by examining the diversity of the contexts in
which they occur. Defining the concept of context
in terms of the target and landmark object pairs
that a relation occurs within, the rationale of this
hypothesis is that: geometrically biased relations
are more likely to be observed in a more diverse set
of contexts, compared to functionally biased rela-
tions, because the use of a geometrically biased
relation only presupposes the appropriate geomet-
ric configuration whereas the use of a functionally
biased relation is also constrained by object affor-
dances or typical interactions.

However, the work presented in this paper pro-
vides a more general analytical technique based
on a neural language model (Bengio et al., 2003;
Mikolov et al., 2010) which is applied to a larger
dataset of spatial descriptions. We use neural lan-
guage models as the basic tool for our analysis
because they are already commonly used to learn
the syntax and semantics of words in an unsu-
pervised way. The contribution of this paper in
relation to (i) the previous analyses of geomet-
ric and functional aspects of spatial relations is
that it examines whether similar predictions can
be made using these more general tools of repre-
senting meaning of words and phrases; the contri-
bution to (ii) deep learning of language and vision
is that it examines to what extent highly specific
world-knowledge can be extracted from a neural
language model. The paper proceeds as follows:
in Section 2 we describe the datasets and their pro-
cessing, in Section 3 we describe the basics behind
language models and the notion of perplexity, in
Section 4 and 5 we present and discuss our results.
We conclude in Section 6.

The code that was used to produce the
datasets and results discussed in this paper can
be found at: https://github.com/GU-CLASP/
functional-geometric-lm.

2 Datasets

The Amsterdam Metaphor Corpus (Steen et al.,
2010) which is based on a subsection of a BNC
reveals that the spatial sense of prepositions are
very rare in genres such as news, fiction and aca-
demic texts. For example, below only has two
instances that are not labelled as a metaphor and

more than 60% of fragments with in, on, and
over are not used in their spatial sense. For
this reason Dobnik and Kelleher (2013) use two
image description corpora (IAPR TC-12 (Grub-
inger et al., 2006) and Flickr8k (Rashtchian et al.,
2010)) where spatial uses of prepositions are com-
mon. They apply a dependency parser and a set
of post-processing rules to extract spatial relations,
target and landmark object triplets. The size of this
extracted dataset is 96,749 instances and is rela-
tively small for training a neural language model.
(Kordjamshidi et al., 2017) released CLEF 2017
multimodal spatial role labelling dataset (mSpRL)
which is a human annotated subset of the IAPR
TC-12 Benchmark corpus for spatial relations, tar-
gets and landmarks (Kordjamshidi et al., 2011)
containing 613 text files and 1,213 sentences.
While this dataset could not be used to train a lan-
guage model directly, a spatial role labelling clas-
sifier could be trained on it to identify spatial rela-
tions and arguments which would then be used to
produce a bootstrapped dataset for training a neu-
ral language model.

Recently, Visual Genome (Krishna et al., 2017)
has been released which is a crowd-source an-
notated corpus of 108K images which also in-
cludes annotations of relationships between (pre-
viously annotated) bounding boxes. Relation-
ships are predicates that relate objects which in-
clude spatial relations (2404639, “cup on table”),
verbs (2367163, “girl holding on to bear”) as
well as combinations of verbs and spatial relations
(2317920, “woman standing on snow”) and oth-
ers. We use this dataset in the work reported here.
Its advantage is that it contains a large number
of annotated relationships but the disadvantage is
that these are collected in a crowd-sourced setting
and are therefore sometimes noisy but we assume
these are still of better quality than those from a
bootstrapped machine annotated dataset.

To extract spatial relations from the annotated
relationships, we created a dictionary of their syn-
tactic forms based on the lists of English spatial
relations in Landau (1996) and Herskovits (1986).
For the training data we preserve all items an-
notated as relationships as single tokens (“jump-
ing over”) and we simplify some of the composite
spatial relations based on our dictionary, e.g. “left
of” and “to the left of” become “left” to increase
the frequency of instances. This choice could have
affected our results if done without careful consid-
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eration. While compound variants of spatial re-
lations have slightly different meanings, we only
collapsed those relations for which we assumed
this would not affect their geometric or functional
bias. Furthermore, Dobnik and Kelleher (2013)
show that compound relations cluster with their
non-compound variants using normalised entropy
of target-landmark pairs as a metric. Finally, some
variation was due to the shorthand notation used
by the annotators, e.g. “to left of”. The reason be-
hind keeping all relation(ships) in the training set
is to train the language model on as many targets
and landmarks as possible and to learn paradig-
matic relations between them. We normalise all
words to lowercase and remove the duplicate de-
scriptions per image (created by different anno-
tators). We also check for and remove instances
where a spatial relation is used as an object, e.g.
“chair on left”. We remove instances where one of
the words has fewer than 100 occurrences in the
whole dataset which reduces the dataset size by
10%. We add start and end tokens to the triplets
(〈s〉 target relation landmark 〈/s〉) as required for
training and testing a language model. The dataset
is shuffled and split into 10 folds that are later used
in cross-validation. In the evaluation, we take 20
samples per spatial relation from the held out data
of those relations that are members of the dictio-
nary created previously. This way the average per-
plexity is always calculated on the same number
of samples per each relation.2

3 Language model and perplexity

3.1 Language model
Probabilistic language models capture the sequen-
tial properties of language or paradigmatic rela-
tions between sequences of words. Using the
chain rules of probabilities they estimate the like-
lihood of a sequence of words:

P(w1:T ) =
T

∑
t=1

P(wt+1|w1:t) (1)

Neural language models estimate probabilities by
optimising parameters of a function represented in
a neural architecture (Bengio et al., 2003):

P̂(wt+1|w1:t = vk1:t ) = f (vt−1;Θ) = ŷt (2)
2The reason we use 20 sample is that this is also the size

of the 10% test folds in the down-sampled dataset described
later. In selecting 20 items for the test-set we also ensure that
it contains the vocabulary in the down-sampled training folds.

where Θ represents parameters of the model, f be-
ing the composition of functions within the neu-
ral network architecture, and vk1:t the words up to
time t in the sequence. The output of the function
is ŷt ∈ Rn, a vector of probabilities, with each di-
mension representing the probability of a word in
the vocabulary. The loss of a recurrent language
model is the average surprisal for each batch of
data (Graves et al., 2013; Mikolov et al., 2010):

loss(S) =−∑
s∈S

|s|
∑
t=0

log(ŷt(vkt+1))

|S|× |s| (3)

Note that our architecture is deliberately simple as
we apply it in an experimental setting with con-
strained descriptions3. We use a Keras implemen-
tation (Chollet et al., 2015), and fit the model pa-
rameters with Adam (Kingma and Ba, 2014) with
a batch size of 32 and iterations of 20 epochs. On
each iteration the language model is optimised on
the loss which is related to perplexity as described
in the following section.

3.2 Perplexity
Instead of calculating the averages of likelihoods
from Equation 1, which might get very low on
long sequences of text, we use perplexity which
is an exponential measure for average negative log
likelihoods of the model. This solves the repre-
sentation problem with floating points and large
samples of data.

Perplexity(S,P) = 2ES[−log2(P(w1:T ))] (4)

where w1:T is an instance in a sample collection
S. Perplexity is often used for evaluating language
models on test sets. Since language models are
optimised for low perplexities4, the perplexity of
a trained model can be used as a measure of fit of
the model with the samples.

4 Varying targets and landmarks

4.1 Hypotheses
As a language model encodes semantic relations
between words in a sequence we therefore expect
that the distinction between functional and geo-
metric spatial relations will also be captured by

3For more details on the architecture see Section A.1 in
the supplementary material, in particular Figure 6 and Equa-
tion 5.

4Equation 4 is related to Equation 3 as perplexity is 2Loss

given a neural model as the likelihood model.
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it. As functionally biased spatial relations are used
in different situational contexts than geometrically
biased spatial relations, we expect that a language
model will capture this bias in different distribu-
tions of target and landmark objects in the forms
of the perplexity of phrases. Our weak hypothesis
is that the perplexity of phrases on the test set re-
flects the functional-geometric bias of a spatial re-
lation (Hypothesis 1). We take the assumption that
functionally-biased relations are more selective in
terms of their target and landmark choice (Sec-
tion 1) and consequently sequences such as <s>
target relation landmark </s>with func-
tional relations have a higher predictability in the
dataset resulting in a lower perplexity in the lan-
guage model (Hypothesis 2). Related to this hy-
pothesis, there is a stronger hypothesis that target
and landmark are predictable with a given func-
tional spatial relation (Hypothesis 3).

4.2 Method
We train two language models as described in
Section 3.1. For training and evaluation 10-fold
cross-validation is used and average results are re-
ported. We ensure that the evaluation sets con-
tain no vocabulary not seen during the training.
The language model 1 (LM1) is trained on unre-
stricted frequencies of instances. In training the
language model 2 (LM2) we down-sample rela-
tions so that they are represented with equal fre-
quencies. The dataset to train LM2 contains 200
instances of each possible relations while the eval-
uation set contains 20 instances for each spatial
relation. Note that using this method some tar-
geted spatial relations might disappear from the
evaluation set as their frequency in the held-out
data is too low. In addition to the requirement that
the evaluation set contains no out-of-vocabulary
items, the target and landmarks are included with-
out restriction on their frequency, as they occur
with these spatial relations.

4.3 Results
Figure 1 shows the estimated average perplexi-
ties of a subset of spatial relations, those that sat-
isfy the sampling frequency requirement described
in Section 4.2. Functionally and geometrically
biased spatial relations as identified experimen-
tally in the literature (Section 1) are represented
with orange and blue bars respectively. There is
a tendency that functionally biased relations lead
to lower mean perplexity of phrases (Hypothesis

(a) test-set

(b) training set

Figure 1: Mean perplexities of spatial descriptions of
LM1 (orange: functionally biased, blue: geometrically
biased relations).

2 is confirmed) and also that there is a tendency
that spatial relations of a particular bias cluster to-
gether (Hypothesis 1 is also confirmed). We re-
port results both on the training set and the test set
which show the same tendencies. This means that
our model generalises well on the test set and that
the latter is representative.

However, in the language model the perplexities
are biased by the frequency of individual words:
more frequent words are more likely and therefore
they are associated with lower LM perplexity. The
results show high Spearman’s rank correlation co-
efficient ρ = 0.90 between frequencies of spatial
relation in the dataset and the perplexity of the
model on the test set: on (329,529) > in (108,880)
> under (11,631) > above (8,952) > over (5,714)
> at (4,890) > below (2,290) > across (1,230) >
left (996) > right (891). For the purposes of our
investigation in predictability of target-landmark
pairs (Hypothesis 3) we should avoid the bias in
the training set. In order to exclude the bias of
frequencies of relations, we evaluate LM2 where
spatial relations are presented with equal frequen-
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(a) test-set

(b) training set

Figure 2: Mean perplexities of LM2 by spatial rela-
tion (orange: functionally biased, blue: geometrically
biased).

cies in training. Figure 2 shows the ranking of spa-
tial relations by the perplexities when the language
model was trained with balanced frequencies. The
two kinds of spatial relations are less clearly sep-
arable as the colours overlap (Hypothesis 3 is not
confirmed). In comparison to Figure 1 there is an
observable trend that all instances lead to lower
perplexities in the training set which is the effect of
down-sampling on vocabulary size. Figure 2 also
shows that phrases with geometrically biased spa-
tial relations have a higher change towards lower
perplexities.

Noting that the frequency of using functionally-
biased spatial relations are higher in English, this
bias and our strong hypothesis for predictability
of target-landmark pairs can be expressed with
simple joint probabilities which we are estimating
with the language model:

P(target,relation, landmark) =

P(relation)P(target, landmark|relation)

It is possible that targets and landmarks that occur
with these relations are very specific to these rela-

tions but infrequent with other relations. When we
remove their frequency support provided by the
frequency of relations these targets and landmarks
become infrequent in the dataset and therefore less
probable which on overall results in higher per-
plexities of phrases with functionally-biased rela-
tions. Specificity of targets and landmarks can be
a source of these results.

To provide (some) evidence for this assump-
tion, Figure 3 shows the average ratios of unique
types over total types of targets and landmarks in
the balanced dataset over 10-folds on which LM2
was trained. There is a very clear division be-
tween functionally and geometrically biased spa-
tial relations in terms of the uniqueness of tar-
gets, functionally-biased relations are occurring
with more unique ones which contributes to higher
perplexity of LM2. There is less clear distinction
between the two kinds of spatial relations in terms
of uniqueness of landmarks. Some functional re-
lations such as on occur with fewer unique land-
marks than targets (from .11 to .06), some ge-
ometric relations such as right occur with more
unique landmarks than targets (from .07 to .11).
The asymmetry between targets and landmarks is
expected since the choice of landmarks in the im-
age description task is restricted by the choice
of the targets (as well as other contextual factors
such as visual salience). They have to be “good
landmarks” to relate the targets to. A functional
relation-landmark pair is more related to the target
through the landmark’s affordances whereas a ge-
ometric relation-landmark pair is more related to
the target through geometry. This might explain
for example, why on has fewer, but right has more
unique landmarks than targets. On the other hand
there are also relations where the ratio of unique
targets and landmarks is very similar, for example
at (.14 and .14). Overall, it appears that if unique-
ness of objects is contributing to the perplexity of
the language model of phrases which functionally-
biased relations (which in this balanced dataset is
the case) then this is more contributed by targets
rather than the landmarks.

To further explore the idea of asymmetry be-
tween targets and landmarks we re-arranged the
targets and landmarks in the descriptions from
the balanced dataset that LM2 was trained to
<s> landmark relation target </s> and
trained LM2′. The average perplexities over 10-
folds of cross-validation are shown in Figure 4.
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(a) targets (b) landmarks

Figure 3: Ratio between unique types and all types per spatial relation in the balanced dataset for LM2.

Comparing Figure 4 with Figure 2 we first observe
that the perplexity of LM2′ on the descriptions is
overall several magnitudes lower than the perplex-
ity of LM2 (max 0.06, max 140). Secondly, we
observe that the perplexities of phrases containing
different relations are very similar and that there is
no separation of phrases by perplexity depending
on the relation bias. The results are in line with
our argument above. Knowing the landmark, it is
much easier for the language model to predict the
relation (of either kinds) and the target.

Figure 4: Mean perplexities of LM2′ by spatial rela-
tion (orange: functionally biased, blue: geometrically
biased)

In conclusion, the explanation why descriptions
with functionally-biased relations have a higher
perplexity than descriptions with geometrically-
biased descriptions appears to be twofold: (i)
functionally-biased relations are more selective
of their targets as expressed by the uniqueness
counts, and (ii) functional relations are also more
selective of their landmarks but this fact works
against the performance of the language model.

As it is trained on the sequence left to right, it
has to learn to predict relations only on the basis
of targets which in the case of functionally-biased
relations are represented by more unique tokens
than geometrically-biased relations. The more in-
formative words, the landmarks, that would enable
the language model to predict a functional rela-
tion, comes last, after the relation has already been
seen. The possible reason why geometrically-
biased relations lead to lower perplexities of a lan-
guage model on descriptions is because they have
fewer unique targets. Hence, our Hypothesis 1
which linked selectivity of functionally-biased re-
lations to low perplexity of phrases can be refuted.
In spatial relations the order of the semantic in-
terpretation of tokens (that we want to capture in
these experiments) is different from the linear syn-
tactic order of order which can be captured by the
language model. When this order is changed as in
LM2′ our predictions come closer to the hypothe-
sis (Figure 4).5

By removing the frequency bias on spatial re-
lations in LM2 we fix the distribution of spatial
relations and examine the effect of distribution of
targets and landmarks on perplexities of phrases
(spatial relation as fixed context). In the follow-
ing section, we fix the distributions of targets and
landmarks of each spatial relation and examine the
perplexity of phrases when another spatial relation
is projected in this context (targets-landmarks as
fixed context).

5Modulo that landmarks are, as discussed above, well-
predictive of relations of both kinds.
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5 Varying spatial relations

5.1 Hypotheses
Given a particular spatial relation, the distribu-
tion of targets and landmarks that occur with it
creates a particular signature of targets and land-
marks, the target-landmark context of a spatial re-
lation. In this experiment, we investigate the effect
on perplexity of phrases when another spatial rela-
tion is projected in such a target-landmark context.
Given different selectivity of functionally- and
geometrically-biased spatial relations, namely the
functionally-based spatial relations are more se-
lective of their targets and landmarks and therefore
create more specific contexts, we should observe
differences in perplexities of phrases when other
spatial relations are projected in these contexts.
In particular, we hypothesise that geometrically-
biased spatial relations are more easily swap-
pable than functionally-biased spatial relations as
measured by the perplexity of a language model
trained on the original, non-swapped phrases (Hy-
pothesis 4).

5.2 Method
We use LM2 from Section 4 (trained on the bal-
anced frequencies of spatial relations) with no ad-
ditional training from the previous experiment.
We group descriptions in the evaluation set by spa-
tial relation. For each phrase containing a par-
ticular spatial relation, we replace it with every
other spatial relation and estimate the perplexity of
the resulting phrase using a language model. Fi-
nally, we calculate the mean of perplexities over
all phrases. We use 10-fold cross-validation and
report the final means across the 10 folds.

5.3 Results
Figure 5 shows a %-increase in mean complex-
ities from those in Figure 2 when LM2 is ap-
plied on phrases with swapped relations in the
contexts of the original relations. Hence, the
column “at” shows the %-increase in perplexi-
ties of phrases that originally contained at in the
validation dataset but this was replaced by all
other spatial relations. Comparing with Figure 2
the estimated perplexities are higher across all
cases which is predictable. There is a weak ten-
dency that replacing functionally-biased relations
with other relations leads to higher perplexities of
spatial descriptions than replacing geometrically-
biased relations, but the distinction is not clear cut

Figure 5: %-increase in perplexities of LM2 shown per
context of the original preposition when swapped with
another one.

(Hypothesis 4 partially confirmed). The lack of a
clear distinction between two classes of descrip-
tions confirms our previous observations about
landmarks and targets: the LM has learned par-
ticular contexts for both kinds of descriptions.

6 Discussion and conclusion

We explored the degree that the functional and ge-
ometric character of spatial relations can be iden-
tified by a neural language model by focusing on
spatial descriptions of controlled length and con-
taining normalised relations. Our first question
was about the implications of using a neural lan-
guage model for this task. The previous research
(Dobnik and Kelleher, 2013) used normalised en-
tropy of target-landmarks per relation and log like-
lihood ratio between target-landmarks and rela-
tions to test this. These are focused measures that
estimate the variation and the strength of associa-
tion of words in a corpus. On the other hand, a lan-
guage model provides a more general probabilistic
representation of the entire description. As such it
captures any kind of associations between words
in a sequence. The other important observation is
that it captures sequential relations in the direction
left to right and as we have seen the sequential na-
ture of the language model does not correspond
precisely with the order in which semantic argu-
ments of spatial relations are interpreted. How-
ever, nonetheless we can say that language models
are able to capture a distinction between functional
and geometric spatial relations (plus other seman-
tic distinctions) to a similar degree of success as
previously reported measures. Our initial hypothe-
sis about the greater selectivity of spatial relations
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for its arguments is correct but it is exemplified in a
greater perplexity of a language model in the con-
text of balanced spatial relations. We argued that
this has to do with the fact that the targets are more
unique to these relations (which is consequence of
a greater specificity for arguments of functionally
biased relations) and is also related to the way a se-
quential language model works. In the unbalanced
dataset, the perplexity of the language model is re-
versed (it is lower with functionally biased rela-
tions) because the specificity of targets to relations
is boosted with greater frequency of functionally-
biased relations. The fact that functionally-biased
relations are more frequent is probably related to
the fact that such descriptions are more informa-
tive than purely geometric ones if available for a
particular pair of objects.

We can only report tendencies based on the per-
plexities of our language models as our conclu-
sions. This is because the functional-geometric
bias is graded, because the predictions are highly
dependent on the quality and the size of the
dataset, and because other semantic relations
might also be expressed by this measure. We
chose a large contemporary dataset of image de-
scriptions because we hope that it contains a high
proportion of prepositions used as spatial rela-
tions. However, there is no guarantee that all
prepositions in this dataset are used this way.
We observe that there is considerable variation
of obtained values across the 10-folds of cross-
validation and we report the mean values over all
folds. As an illustration, in the supplementary ma-
terial (Section A.2) we give an example of graphs
from two intermediary folds.

Using a language model in this task we have
also learned new insights about the way language
models encode spatial relations in image descrip-
tions. It has been pointed out (cf. (Kelleher and
Dobnik, 2017) among others) that convolutional
neural networks with an attention model are de-
signed to detect objects whereas spatial relations
between objects are likely to be predicted by the
language model. In this work we show that lan-
guage models are not only predicting the rela-
tion (which is expected) but are able to distin-
guish between different classes of relations thus
encoding finer semantic distinctions. This tells us
that language models are able to encode a surpris-
ing amount of information about world knowledge
with a usual caveat that it is difficult to separate

several strands of this knowledge.
The work can be extended in several ways. One

way is to study dataset effects on the predicted re-
sults. Datasets with descriptions of robotic actions
and instructions may be particularly promising as
they focus on spatial uses. Different normalisa-
tions of spatial relations have a significant effect
on the results. In this work composite spatial rela-
tions such on the left side of are normalised to sim-
ple spatial relations such as left. However, these
could be treated as separate relations as difference
between may exist. A more systematic examina-
tion of clusters of spatial relations would eventu-
ally tell us what other spatial relations not yet iden-
tified as functionally or geometrically biased have
similar properties to those that have identified as
such experimentally.
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A Supplementary material

A.1 Language Model Architecture

Figure 6: The recurrent language model diagram with
LSTM recurrent unit.

The neural language model architecture with
the Long-Short Terms Memory (LSTM) function
and its parameters, similar to tied weights in (Gal
and Ghahramani, 2016):

• We ∈ Rn×d for word embeddings,

• WLST M ∈ R2d×4d for parameters of the Long-
Short Term Memory function,

• WFinal ∈ Rd×n of the final dense layer with
softmax.

where n is the vocabulary size for V =
{v1,v2, ...,vn} and d is both the embeddings size
and the memory size in LSTM. For mini-batches
from training data, these parameters are being up-
dated using a stochastic gradient descent to min-
imise the loss.

xt = δvkt
·We (5)
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ht−1

)
·WLST M

)
(6)

ct = f◦ ct−1 + i◦g (7)

ht = o◦ tanh(ct) (8)

ŷt = softmax(ht ·W f inal +b) (9)

where δvkt
represents the one-hot encoding of the

t-th word in the sequence. The xt is the word em-
bedding for this word, and two vectors ct and ht

represent the states of the recurrent unit. Figure 6
illustrates the same equation.

A.2 Evaluation

(a)

(b)

Figure 7: Mean perplexities of LM2 by spatial relation
for (a) folds 1 and (b) 2 (orange: functionally biased,
blue: geometrically biased).
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Abstract

We demonstrate a system for understanding
natural language utterances for structure de-
scription and placement in a situated blocks
world context. By relying on a rich, domain-
specific adaptation of a generic ontology and
a logical form structure produced by a seman-
tic parser, we obviate the need for an interme-
diate, domain-specific representation and can
produce a reasoner that grounds and reasons
over concepts and constraints with real-valued
data. This linguistic base enables more flexi-
bility in interpreting natural language expres-
sions invoking intrinsic concepts and features
of structures and space. We demonstrate some
of the capabilities of a system grounded in
deep language understanding and present ini-
tial results in a structure learning task.

1 Introduction

Even as early as one of the first Blocks World
natural language interaction systems, SHRDLU
(Winograd, 1971), discussions about structures
and space have been viewed as the foundation
for future language understanding systems deal-
ing with more abstract and higher-level concepts.
Since then, the field has advanced in the task of
learning how to understand utterances in Blocks
World and other situated environments by using
statistical methods grounding syntactic trees to en-
tities and actions in the world to learn placement
descriptions (Bisk et al., 2016), predicates (Kol-
lar et al., 2013), actions (Kim and Mooney, 2012;
She et al., 2014) or a combination of paths and ac-
tions (Tellex et al., 2011). However, rather than
considering grounding solely as a mapping to ac-
tions and objects in the world, we use the deep
language understanding capabilities of the TRIPS
parser (Allen et al., 2008) to find deeper concep-
tual connections to primitive, composable, and of-
ten recursive aspects of structures, and use this

knowledge to better understand conceptually-rich
utterances without the need for training data. In-
spired by the cognitive linguistic theory of con-
ceptual mappings (Fauconnier, 1997), we focus
on projection mappings between structure and set
features and demonstrate instances of common sit-
uated language that makes use of such mappings.
With these concepts grounded in a situated space,
we believe we will be poised to extend the con-
cepts in Blocks World into more abstract reason-
ing and language through grounded metaphor.

We also demonstrate the ability of our sys-
tem to build up a model of a class of structures
through natural language dialogue. Rather than
constructing a new domain-specific representation
for storing such knowledge, as in work by Hixon
et al. (2015), we retain the semantic logical form
structure as our base representation, using onto-
logical concepts of comparison and semantic argu-
ment structures to ground concepts and predicates
in the situated environment. We therefore aim to
show that a linguistic structures from a semantic
parser can serve as a strong base for reasoning and
model-building in a situated context.

2 Capabilities and Tasks

We evaluate our system in a situated blocks world
environment with 6-inch cubes placed on a table.
Aside from unique identifiers for tracking, each
cube is considered identical. Our physical appara-
tus consists of two Kinect 2.0’s aimed at the table,
with the multiple Kinects helping to avoid issues
with block occlusion. The depth information is
used to recognize and process position and rota-
tion information that is then relayed to the system.
Currently only block position is used, but orienta-
tion information is also recorded.

For user-system interaction, there is a screen at
the end of the table across from the user which dis-
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plays an avatar that can speaks system-generated
utterances and display it on-screen. The avatar
can also point to blocks or locations on the ta-
ble, although we do not use this functionality in
our dialogues. When the system wants to place a
block or provide an example structure, it generates
a 3D image of the blocks overlaid with the exist-
ing scene that can be presented to the user or an
assistant that will then place the blocks in the ap-
propriate location. An image of the apparatus is
shown in Figure 1.

Figure 1: The apparatus used to interact with the
system.

We focus on two tasks for evaluating our system
within the context of a natural language dialogue
system. The first is correctly understanding a va-
riety of natural placement utterances and generat-
ing the expected placement of blocks that satisfies
the command. There has been significant previous
work on learning to interpret typical placement in-
structions (Bisk et al., 2016; Misra et al., 2017;
Wang et al., 2016) or descriptions of block scenes
(Bisk et al., 2018). While we have limited capabil-
ities for understanding such instructions, this prior
work is better suited for more robust and precise
placement interaction that does not utilize concep-
tual composition. Therefore, rather than solely un-
derstanding simple phrases such as “Place a block
on top of the leftmost block”, we focus our efforts
towards understanding more complex phrases that
utilize context, such as “Add another one,” and lin-
guistic/semantic composition, as in, “Place three
towers in a row with increasing height”.

The second task is teaching the system to learn
a class of structures by providing it with a set of
constraints. The user is provided with a number
of positive and negative visual examples of a class
of structures to learn (akin to resolving a Bongard
problem (Bongard et al., 1970)), and once they

have determined the underlying constraints of the
structures, they must engage in a dialogue with
the system to teach it the structure class so that
it will be able to recognize structures belonging to
that class. This task importantly differs from the
first task and prior situated language understand-
ing work in that the user is not communicating a
specific goal structure to be achieved by the user
through placement actions, but instead providing
a set of general constraints and concepts that ad-
mit a number of possible structures.

3 System Architecture

We build upon the TRIPS architecture (Allen
et al., 2001), which connects a number of com-
ponents through message passing, with each com-
ponent able to be tailored to a particular domain.

3.1 Semantic Extraction

The first component that sees user language input
is the domain-general, rules-based TRIPS parser
that is backed by a domain-generic ontology aug-
mented with domain-specific concepts, such as
blocks, rows, and columns. The output from the
parser is a logical form semantic graph with a
number of possible speech acts. This output is
then passed to the Interpretation Manager (IM),
which determines the appropriate speech act given
dialogue context and further refines roles and in-
terpretations according to domain-specific rules
and ontological constraints.

3.2 Problem Solving Act Generation

Next, the output of the IM is processed by the Col-
laborative Problem Solving Agent, a central mod-
ule that facilitates the acts that make up collabora-
tive problem solving (i.e. the joint task actions car-
ried out by the user and system). It passes the out-
put to the Collaborative State Manager (CSM) to
generate and store a new goal, query, or assertion.
The appropriate act is then sent to the Behavioral
Agent (BA), tasked with reasoning and acting in
the environment. If the system has a query or goal
proposal for the user, the message passing works
in reverse, with the goal or query added to the goal
hierarchy stored in the CSM. The current goal or
query provides a context for resolving future ut-
terances, providing additional information to aid
in choosing the appropriate speech act.
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3.3 Application to Tasks

In the structure building task, we primarily make
use of the goal and sub-goal mechanisms to pro-
vide actions to the BA so that it can act in the en-
vironment towards the desired structure. The user
can also provide assertions containing definitions
of substructures to be used in the building process.
In the structure learning task, we primarily pro-
cess assertions that describe the general properties
of the structure type, and queries to ask the user
about properties or ask for an example. The task
to be completed is determined by the user speci-
fying the goal as the first utterance (e.g., “I want
to build a staircase” versus “I want to teach you
what a staircase is”). This top-level goal provides
additional context for utterance resolution. For ex-
ample, the utterance “The left-most block must be
on top” would be processed as a proposed goal in
the structure building task (as it describes a dif-
ference between the current and desired state), but
as an assertion in the structure learning task (as it
describes a property that should generally hold).

4 Semantic Logical Form Backing

Rather than convert semantic information from the
semantic output of a domain-general parser, we di-
rectly use the semantic output of the TRIPS parser
(backed by a combination of a domain-general and
domain-specific ontology) as the underlying logi-
cal representation for assertions, constraints, and
commands. This backing is enabled by a num-
ber of features specific to the output of the TRIPS
parser. First, the ontology provides a method
to generalize multiple related utterances or frag-
ments to a single interpretation to be conveyed to
the reasoning agent and handled similarly. Sec-
ond, the semantic output of the TRIPS parser in-
cludes an ontology and tree-based representation
of scales, which makes feature comparisons ex-
plicit and provides units for evaluating scales us-
ing the appropriate metric. Finally, the semantic
roles (figure for head properties, and ground for
reference properties) provide a more nuanced level
of comparison among object and structure features
than typical semantic parsers focused on events
and higher-level interactions among people. For
example, the sentence, “The left column is taller
than the rightmost column,” taller resolves to a
concept ONT::MORE-VAL (enabling a simple op-
erator extraction), with a scale of ONT::HEIGHT-
SCALE, a figure of “the left column”, and a

ground of “the rightmost column”.
Developing and relying on the semantic struc-

ture for reasoning provides a long-term advan-
tage for extending the physical domain to handle
reasoning in different domains or at a more ab-
stract level. Currently, the structures used to tie
the semantic structures to the domain could eas-
ily be extended to other domains simply by mod-
ifying the interpretation of predicates and gen-
erating new features, while referring expression
and dialogue processing can remain largely un-
changed. A metaphorical reasoning system, for
example, could make use of the same semantic
structures and simply modify the reasoning envi-
ronment and generate inference from a physical
simulation or concrete projection of abstract con-
cepts, and could borrow predicates and features
from Blocks World.

5 Predicates

Predicates describe binary positional aspects re-
lating a block or structure to a particular context.
All predicates have at least one argument, the sub-
ject, but typically also admit a context (e.g., other
blocks, or the rest of the scene). For example, even
though the top predicate may seem to take only
one argument, we resolve it using a second argu-
ment that contains the complement of the scene (in
the case of “the top block”) or a contrast set (in the
case of “the top block of the left column”). Pred-
icates are used both for referring expressions to
choose a particular group of blocks and for apply-
ing constraints to structure properties and place-
ment instructions. For example, the command “the
top block must be on the left” uses a predicate for
both the referring expression (the top block) and a
constraint on its location (on the left).

Rather than defining logical formulas for evalu-
ating predicates, our predicates are designed pro-
grammatically using real-valued coordinates in 3D
space with an emphasis on relations dealing with
a vertical 2D plane between the user and the
system’s viewpoint. They are evaluated either
by comparing positions and dimensions over the
quantification of the blocks in the structures or
over axis-aligned bounding boxes encapsulating
the blocks. For example, the predicate above(a,b)
requires that the x- and y-coordinate extents of the
bounding boxes of the a and b intersect and that
the minimum z-coordinate value of a is greater
than the maximum z-value of b (with z being the
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vertical dimension). Each predicate is mapped to
one or more TRIPS ontological concepts for eval-
uating when such a predicate appears in the logi-
cal form. The ontology is specific enough that no
concept could yield more than one predicate inter-
pretation. All predicates also include tolerances to
account for real-world variations in the input data,
but because of the nature of the depth data and the
known size of the blocks, there is little noise in the
positions of the blocks.

6 Features

The term “features” in the context of Blocks World
refers to all quantifiable aspects of blocks and
block arrangements. However, we also extend this
definition to include potential ways of perceiv-
ing, discussing, or processing blocks and groups
of blocks. For example, a set of blocks could be
considered as a column, a row with or without a
particular ordering, or simply a set of blocks with
no relation to each other. The values of such fea-
tures can be integers, real numbers, vectors, or an
arrangement. Furthermore, arrangements can have
multiple features assigned to them forming a fea-
ture group. For example, a sequence arrangement
can generate a row feature, a column feature, the
count of the number of blocks or structures within,
an origin as a vector, and a direction as a vector.

6.1 Feature Mention Extraction

Given the semantic parser output, the reasoning
agent parses the features described in multiple
passes. First, referring expressions are extracted
by finding mentions of objects that the reason-
ing agent knows how to recognize or instantiate in
the environment (i.e., blocks, rows, columns, and
spaces), and then storing constraints according to
modifiers on its location (represented using pred-
icates). Next, the features are extracted from the
same parse tree, which typically contains a feature
name as an arrangement name (e.g., a column),
a scale (e.g., width-scale), or a number (e.g., the
number of blocks in the specified set). Finally, the
relevant operator (e.g., less than, at least, equal to)
is extracted and sets up the constraint on the values
or referenced features mentioned. In certain cases,
the TRIPS parser explicitly provides the compara-
tor (e.g., providing an ONT::MIN concept and ap-
propriate arguments for “at least”), and in other
cases, the comparator and its arguments must be
inferred by the appearance of sets with a specified

size parameter.
While certain features, like the size of a set,

have an explicitly defined value, we also generate
features that have an implicit value that may not
be meaningful to the user. For example, linearity
can take a value from 0-1 based on the deviation
of the elements from a line of best fit. If the user
states, “The bottom blocks must be in a line”, we
calculate the value and compare against a thresh-
old to determine whether the constraint holds, or
can compare using an operator against the linearity
of another set of blocks. Features of this type are
often difficult to explain linguistically or symbol-
ically, and thus lean more on specific visual pro-
cessing and could be tied to statistical computer
vision models in the future.

6.2 Structure Models and Constraint
Satisfaction

In the structure learning task, the system learns a
set of constraints that describes a structure. As
the goal is to teach the system a general concept
rather than describe one particular instance, the
learned constraints apply as rules that will apply
in various configurations, rather than applying to
particular blocks currently on the table. There-
fore, referring expressions in the constraints for
a model are reevaluated each time a particular in-
stance is tested. We currently process four types of
constraints: feature, predicate, structure, and exis-
tential constraints. Feature constraints, describe a
property (such as width or height) that generally
holds for the structure as a whole, such as “The
height is at least 3 blocks”. Predicate constraints
enforce that a particular set of blocks satisfy a
particular predicate (e.g., “The leftmost column is
next to the center column”). Structural constraints
enforce that the blocks referred to by a referring
expression obeys a feature constraint (e.g., “The
leftmost column has at least 3 blocks”). Predi-
cate and structure constraints can also be modified
to be satisfied if they are exclusively satisfied by
only one grounding of an object type in a referring
expression (e.g., “Only the leftmost column has a
height greater than 2”).

7 Recursive and Compositional Feature
Understanding

Recursive and composition representations of fea-
tures are essential for deep language understand-
ing even in the simplified environment of Blocks
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Ontological Concept Lemmas # of Arguments
ONT::ABOVE above 2
W::HIGHER higher 2
ONT::BELOW below, beneath, under, underneath 2
W::LOWER lower 2
ONT::ADJACENT adjacent (to), next to, beside, by, 2

contiguous (with), flush
ONT::CONNECTED abut, adjoin, connect, touch 1,2
W::TOGETHER together 1,2
ONT::ON on, on top of 2
ONT::LEVEL level with 1,2
ONT::TOP-LOC... top 1,2
ONT::MIDDLE-LOC... middle (1),2
ONT::BOTTOM-LOC... bottom 1,2
ONT::BETWEEN (in) between 2
ONT::CENTER center (1),2
ONT::LEFT-LOC left, lefthand, leftmost (1),2
ONT::RIGHT-LOC right, righthand, rightmost (1),2
W::ANYWHERE anywhere 1

Table 1: The list of predicates understood by the system, with their concept in the TRIPS ontology, the
matching lemmas that can resolve to that concept during parsing (designated by hand or from WordNet
mappings (Miller, 1995)), and the number of arguments each predicate can take. An argument number
in parentheses indicates that the second argument, the reference, is inferred to be the scene complement
of the first argument. Predicates like ONT::CONNECTED admit sets of blocks as their single argument.

Ontological Concept Data Type
ONT::WIDTH-SCALE real+, count
ONT::HEIGHT-SCALE real+, count
ONT::LENGTH-SCALE real+, count
ONT::CENTER point
ONT::LOCATION point
ONT::STARTPOINT point
ONT::ENDPOINT point
ONT::TOP-LOC... point
ONT::BOTTOM-LOC... point
ONT::NUMBER count
ONT::COL-FORMATION column
ONT::ROW-FORMATION row
ONT::DIRECTION vector
ONT::HORIZONTAL (real+)
ONT::VERTICAL (real+)
ONT::LINE (real+)

Table 2: The features generated by the system for
blocks, sets of blocks, and sequences, listed by
their concept in the TRIPS ontology and the result-
ing data type. A data type in parentheses indicates
the value is not presented to the user but is com-
pared against thresholds or other sets of blocks.

World. Take for example the utterance “lengthen
the first column of the row by 2”. Such an utter-
ance refers to multiple features both for identify-
ing the relevant set of blocks and for the desired
action. However, beyond identifying the set of rel-
evant blocks, it also enforces a conceptual model
on the blocks that is necessary for the interpre-
tation of “lengthen”, which requires a sequence
rather than a set. Similarly, the notion of “first”
implies an ordering of the row, taken in reading or-
der (left-to-right) unless another context, such as a
specified placement order, overwrites it.

The fact that these representations arise from
simple interactions and often without explicit def-
inition motivates our notion of such concepts as
“features”. Thus in the above example, the place-
ment of the blocks admits a “row” feature group
consisting of a direction, a length, and a sequence
of “column” features, each also having a sequence
of blocks (which itself has a length feature) and an
upward direction, as well as a “height”.

We also represent the composition of these fea-
tures for utterances such as “place the columns in a
row with increasing height”. Our main method for
composition is projection, which in this context
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we take to mean the reduction of features (with
the number of features being the dimensionality
of the concept) to enable composition with other
features of the appropriate type. In this case, the
phrase “increasing height” generates an increasing
sequence of integers which is then projected onto
the row to replace the individual height features of
each of its constituent columns, generating the de-
sired structure. Note that while the row itself could
have a height as a structure as a whole, this single
value would not be compatible with the sequence.
This process is illustrated in Figure 2.

The example in Figure 2 also illustrates the ad-
vantage of such a technique in providing robust-
ness in the face of linguistic ambiguity. For ex-
ample, the “increasing height” could be modify-
ing the placement of the columns, the columns
themselves, or, as the TRIPS parser outputs, the
row. Because of the restrictions on projection, we
can correctly apply the modification to the rele-
vant features even when the target of the modifica-
tion is not directly modifiable in a way that paral-
lels the semantic interpretation. In some cases, the
ontological interpretation of projection-indicating
terms differ from our interpretation, and such in-
formation must be discarded. For example, while
the parser may extract the ONT::IN-LOC con-
cept from the word “in”, in the above example
the ONT::MANNER concept is more appropriate.
The projection restrictions allow us to determine
the correct sense regardless of the specific concept
while not being strictly dependent on the lemma.

7.1 Conceptual Features and Context

Moving away from the notion of sets as the only
output of a referring expression confers an addi-
tional benefit in providing context for placement
actions. Take, for example, the utterance “add an-
other one”. Treating the current set of blocks as
a set of blocks would not provide the intended lo-
cation of the next block (or group of blocks). To
interpret such an utterance, we make use of dis-
course context, goal context, and the conceptual
context of the last command. If the previous com-
mand involved an ordered sequence of some type
of structure, “add another one” would make use
of the conceptual context of the sequence which
should be appended. In the case of a row, for
example, we would pick the last element in the
sequence, and place a duplicate in the next point
when the direction vector is extended.

In certain cases, the conceptual context may not
be available or sufficient. If the last utterance was
“Place a block on top of the row”, then “another
one” might refer to either another block on top of
the row or a block on top of the just placed block.
In this case, we can make use of the overarching
goal context. If the system is aware that the user is
building a tower, increasing the height of the struc-
ture would be the expected next step. The system
can make use of this context even without explic-
itly knowing the process for building a tower if
the user provides a definition of the structure (e.g.,
“A tower is a structure taller than its diameter”),
by choosing actions which bring the constraints
closer to satisfaction.

8 Simulation and Querying Capabilities

While our system does not include a planner, we
can nevertheless create a structure according to a
set of constraints provided that the structure con-
forms to a grid-based structure. We generate a
set of multiple iterations with blocks randomly
dropped in a grid with the size determined either
by default dimensions or constrained by global
features of width and height. Once we find an
arrangement that satisfies the constraints, we re-
turn the structure to the user to ask if the exam-
ple is correct. In the 2D plane, the number of
possible structures is constrained enough to gen-
erate an example satisfying the constraints in real-
time. While we can then provide this structure to
the user or assistant in the 3D view, we currently
do not support generation of natural language de-
scriptions for the placement of each block.

The system is also able to generate questions
about structures when learning, in order to extract
clear constraints from the user. When appropri-
ate in dialogue, the system generates a random un-
derspecified constraint that has not yet been men-
tioned, typically concerning general features (e.g.,
width or height), or more specific constraints (e.g.,
the placement restrictions of the top block). Spe-
cific constraints dealing with specific structures
are generated based on user examples. For exam-
ple, the system would ask about the placement of
the top block only if there was a single top block in
a previously shown example. In our architecture,
we are then able to interpret a response fragment,
fill the constraint parameters, and add the con-
straint to the model. We find that such questions
greatly increase the quality of the user’s given con-
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Figure 2: An example of the projection processing for the utterance “Place three columns in a row with
increasing height.” The features (boxed in the parse tree) are extracted and used to generate new individ-
ual instances with appropriate features. The columns are then projected into the appropriate feature of
the row, and the height sequence projects onto the row of columns to create the final structure.

straints, as the questions provide an example of the
types of constraints the system is most capable of
handling and provide guidance for the user in or-
ganizing their conception of the structure class.

9 Evaluation

Currently evaluation is in preliminary stages, with
an emphasis on expanding capabilities in terms of
the variety of structures able to be built and rec-
ognized. A comprehensive evaluation task can be
difficult for this system, given its symbolic back-
ing. As there is no statistical learning, the useful-
ness of the system is primarily determined by the
coverage of understood linguistic constructions at
two levels – at the semantic parser level and at
the level of interpretation given a correct seman-
tic parse. One challenge faced in accurately eval-
uating the system is that users in a dialogue can
be biased to choose language that the system un-
derstands, thereby reducing the average expressiv-
ity and linguistic complexity of their utterances.
To partially address this, we have begun evalua-
tions of our structure learning task, as we believe
this task better illustrates the variety of language
used to describe spatial concepts and structures,
compared to the structure building task, which of-
ten consists solely of simple “place a block 〈loca-
tion〉” utterances. Users are provided with positive
and negative examples of a structure class (Figure
3) and must teach the system the concept.

Our initial evaluation to determine possible ar-
eas of improvement before actual trials began with

Figure 3: In the structure learning task, the user
must determine the patterns followed by the pos-
itive examples that do not match the negative ex-
amples and explain these constraints to the system.

Wizard of Oz experiments. An advantage of a
Wizard of Oz task is that the user maintains the
complexity of their utterances as they see posi-
tive results from their descriptions, providing us
with valuable insight into the various types of ut-
terances our system must understand. We con-
ducted 3 tasks with each of the 3 participants who
were unaware of the details of the project, yielding
90 user utterances. A researcher took the place
of the system by asking questions and present-
ing examples. By using a tablet that generated
common questions and responses to be spoken by
the avatar, these experiments could be carried out
without the participants aware of the researcher’s
role as a stand-in for the system. To evaluate the
system’s performance at the semantic parser level,
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we ran the parser on the users’ utterances in these
experiments and correctly parsed 89% of the utter-
ances. In evaluating the grounded interpretation
level, we determine which of the correct parsed
trees yield the desired constraint. Of the correctly
parsed utterances, 90% yielded the desired con-
straint in the current state of the system with some
development occurring after these trials. Further
testing is required once the system’s capabilities
are finalized to see the performance of the system
in an unrestricted setting with new users. Typi-
cal failures of the grounded interpretation level of
the system involve utterances containing ordinal
references (e.g., the second column), multiple val-
ues for constraints, ranges for feature values, or
negative examples. All of these system abilities
are near-future work. During this evaluation we
also found that dialogue actions such as asking
about features greatly simplified user utterances
and therefore improved performance.

We also have begun trials of the complete dia-
logue system with promising results. The system
is able to understand a number of different struc-
ture classes through dialogue, such as a staircase,
an L shape, and a U shape. An example dialogue
is shown in Figure 4, where the user was presented
with the visual examples in Figure 3.

User: I want to teach you a shape.
System: Okay. Can you tell me something
about the structure?
User: The bottom row must be at least 2.
System: Hmm, I didn’t quite get that.
User: The bottom row has at least 2 blocks.
System: Okay. What is the greatest the width
can be?
User: 5.
System: Okay, got it. Can you show me an
example?
User: Yes. This is an example. 〈user shows
example〉
System: Okay. Where can the top block be?
User: The top block is always on the left.
System: Okay.
User: 〈user builds example〉 Is this right?
System: I think so, because the bottom row’s
number is greater than or equal to 2 and the
width is less than or equal to 5 and the top
block is on the left.

Figure 4: A user dialogue taken from initial runs
of the evaluation.

10 Future Work

We plan to continue working towards improving
robustness in evaluations, implementing new ways
of discussing structure building and structural con-
straints, and providing more dialogue actions to
guide the user through their explanation and deal
with errors or misunderstood assertions. In addi-
tion, we will be creating a database of predicate
and feature definitions with multimodal ground-
ings to begin our long-term goal of extending
these physical groundings of concepts into ab-
stract domains. Currently the TRIPS architecture
is used as a base for a number of domains involv-
ing dialogue-assisted creation, such as biological
models, music composition, and automated movie
direction, and therefore provides a strong base for
extending such concepts.
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Abstract

Developing computational models of spatial
prepositions (such as on, in, above, etc.) is
crucial for such tasks as human-machine col-
laboration, story understanding, and 3D model
generation from descriptions. However, these
prepositions are notoriously vague and am-
biguous, with meanings depending on the
types, shapes and sizes of entities in the ar-
gument positions, the physical and task con-
text, and other factors. As a result truth value
judgments for prepositional relations are of-
ten uncertain and variable. In this paper we
treat the modeling task as calling for assign-
ment of probabilities to such relations as a
function of multiple factors, where such prob-
abilities can be viewed as estimates of whether
humans would judge the relations to hold in
given circumstances. We implemented our
models in a 3D blocks world and a room world
in a computer graphics setting, and found that
true/false judgments based on these models
do not differ much more from human judg-
ments that the latter differ from one another.
However, what really matters pragmatically
is not the accuracy of truth value judgments
but whether, for instance, the computer mod-
els suffice for identifying objects described in
terms of prepositional relations, (e.g., the box
to the left of the table, where there are multiple
boxes). For such tasks, our models achieved
accuracies above 90% for most relations.

1 Introduction

Spatial prepositions are pervasive in natural lan-
guages and, therefore, interpretation and under-
standing of their meaning is critical to tasks in-
volving NLP. The computational challenges are
aggravated by the versatility and vagueness of
these prepositions, and their sensitivity to miscel-
laneous factors such as shapes, sizes and salience
of the relata, part-of relations, typicality, etc. On
provides a good example of such semantically rich

prepositions. When we say that one object is on
another one, we strongly imply the relation of
physical support between them. But support rela-
tions can be quite subtle, and can occur in diverse
physical configurations:

Example 1

a. a book on a shelf,
b. a picture on a wall,
c. a shirt on a person,
d. a lamp on a post,
e. a paragraph on a printed page,
f. a fish on a hook,
g. a sail on a ship,
h. a fly on the ceiling.

In and over provide additional examples of se-
mantically subtle, versatile prepositions. While
it is conceivable that the diverse meanings of
these prepositions are unrelated and arose from
disparate communicative and historical pressures,
there are strong arguments that this is not the case
(Tyler and Evans, 2003). In fact, it is very likely
that all or most of the different meanings asso-
ciated with a preposition are based on some un-
derlying primary meaning from which they all
originated. In the case of on, it seems plausi-
ble that the initial meaning was essentially sup-
port by a more or less horizontal surface, which
was then extended to further support relations, and
metaphorized to nonspatial relations during the
evolution of language. Because of this richness,
it seems that no single criterion can capture all the
instances where relations such as on, in, over, etc.,
hold.

However, there are three considerations that
prompted us to proceed with the design of intu-
itive computational models of some of the most
prevalent spatial prepositions: First, while no sim-
ple mathematical criterion can characterize any
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one of these relations, we can identify prototyp-
ical cases where the relations hold, and by con-
sidering such cases one by one, we can also zero
in on non-geometrical factors that affect “truth”
judgments in these cases. Second, people’s judg-
ments about whether a prepositional relation holds
in a given case can be quite variable; therefore
it should suffice to provide models that estimate
the probability that arbitrary judges would con-
sider the relation to hold. This approach is aligned
with a view of predicate vagueness as variabil-
ity in applicability judgments (Kyburg, 2000; Las-
siter and Goodman, 2017), enabling Bayesian in-
terpretation. And third, the ultimate success cri-
terion in assessing models of prepositional predi-
cates should be pragmatic; i.e, in physical settings
we often use such predicates to identify a referent
(the blue book in front of the laptop) or to specify
a goal (put the laptop on the table), so our models
should allow a natural language system to inter-
pret such usages as a human would. Our results
for referent identification suggest that our current
models are nearly good enough for such purposes
in various “blocks world” and “room world” con-
figurations.

In developing a conceptual framework for mod-
eling several common prepositional relations, we
tried to achieve a trade-off: On one hand, we tried
to avoid overcomplicating the model, keeping the
number of primitive concepts used in the frame-
work to a minimum. On the other, we strove to
make the framework general enough to cover a
wide range of objects and configurations.

In the following sections, we discuss related
work, and then outline our modeling framework
by examining the primitive concepts that are used
as building blocks, and showing how these con-
cepts come together in modeling a specific prepo-
sition. We then evaluate our approach in two
test domains, a blocks world and a “room world”,
making use of Blender graphics software. We
show that our computational models judge the
chosen prepositional relations accurately enough
in both worlds to enable rather good referent iden-
tification in relation to independent human judg-
ments. We summarize our contributions, and di-
rections for future work, in the concluding section.

2 Related work

Understanding the essence of the spatial prepo-
sitions is a major, long-standing task from NLP,

linguistic and cognitive science perspectives. At-
tempts to develop a computational model for spa-
tial prepositions date back to the late 60s. The
earliest attempts followed mainly geometric intu-
itions, relying on the concepts of contiguity, sur-
face, etc. (Cooper, 1968). However, an impres-
sively thorough study emerged in the 80s (Her-
skovits, 1985). Herskovits’ analysis identified a
variety of important factors that influence correct-
ness judgments in the application of spatial prepo-
sitions, illustrating these factors with many strik-
ing examples (e.g., the role of object types and
typicality in contrasts such as the house on the
lake vs. *the truck on the lake, or the role of
the Figure/Ground distinction and object size and
type in contrasts like The bicycle is near Mary’s
house vs. *Mary’s house is near the bicycle). Her-
skovits also proposed various abstract principles
constraining the meaning and use of spatial prepo-
sitions. Compared to her study, our work is more
narrowly focused on a few prepositions and two
kinds of “worlds”, but is distinguished by our em-
phasis on developing a computational model capa-
ble of actually evaluating the truth of prepositional
relations in the chosen worlds.

A quite distinctive approach based on topology
arose in 90s. A number of methodologies rooted
in this idea were aimed at spatial reasoning using
abstract qualitative primitives to encode relations
between objects (Cohn and Renz, 2008; Cohn,
1997). One example of such an approach is the
Region Connection Calculus (RCC) and its modi-
fications (Chen et al., 2015; Li and Ying, 2004). At
the heart of RCC lies the notion of connectedness.
Two nonempty regions are connected if and only
if their topological closures have a nonempty inter-
section. Starting with this primitive, one may pro-
ceed to define more useful spatial relations such as
part-of (x is a part of y if every object that is con-
nected to x is also connected to y) and overlapping
(x and y overlap if there is a z that is a part of both
x and y). Continuing in the same fashion one can
define several other topological notions and then
use them to describe spatial configurations objects.
While mathematically appealing and facilitating
rigorous inference, these qualitative methods are
too strict and unable to capture the semantic rich-
ness of natural language descriptions of spatial
configurations of objects, since they neglect as-
pects such as orientation, size, shape, and argu-
ment types.
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It is no surprise that a significant amount of re-
search on locative expressions and spatial relations
has been conducted in modern robotics. Using
natural language is the most efficient way to issue
a command to robots, and since they have to op-
erate in the physical world, understanding the way
humans describe space is crucial. Current state-of-
the-art approaches to grounding natural language
commands in general, and spatial commands in
particular, are based on probabilistic graphical
models (PGM) such as Generalized Grounding
Graphs (G3) (Tellex et al., 2011) and Distributed
Correspondence Graphs (DCG) (Howard et al.,
2014) and their modifications (Broad et al., 2016;
Paul et al., 2016; Boteanu et al., 2016; Chung
et al., 2015).

Conceptually, the way we define the spatial re-
lations in our model is similar to the spatial tem-
plate approach, discussed in Logan and Sadler
(1996). This approach is based on the idea of
defining a region of acceptability around the ref-
erence object that captures the typical locations of
the relatum for this relation and determining how
well the actual relatum fits this region. Our work
is also similar in spirit and goals to the work by
Bigelow et al. (2015), which combined the imag-
istic space representations with spatial templates
and applied it to a story understanding task. In
their approach, the authors used explicit graphics
modeling of a scene using Blender to represent
the objects in question and their relative configu-
rations. In their model, each region of acceptabil-
ity is a three dimensional rectangular region (more
precisely, a prism with a rectangular base) repre-
senting the set of points for which the given spa-
tial relation holds. For example if one has a pair
of two objects, A and B, and wants to determine
whether A is on top of B, A is checked to deter-
mine whether it is in the region of acceptability
located directly above B. Probabilistic reasoning
is supported by using values from 0 to 1 to rep-
resent the portion of the relatum that falls into a
particular region of acceptability.

In recent years, attempts have been made to use
statistical learning models, especially deep neural
networks, to learn spatial relations. Noteworthy
examples are Bisk et al. (2017) and Chang et al.
(2014). The first study was dedicated to learning
spatial prepositions from images with accompany-
ing textual annotation data within a blocks world
domain. The experimental task was based on a se-

ries of images showing step-by-step construction
of various structures on a table. Any two consec-
utive images differed in one block movement, and
each image was paired with a textual description
of that change. A deep neural architecture was
used to pair the spatial descriptions with move-
ments and positions of blocks in the images. The
second study in a sense inverted the learning prob-
lem; the task was not to learn how to describe ob-
ject relationships, but rather to automatically gen-
erate a scene based on a textual description. As
such the work revisits well-studied terrain (Coyne
and Sproat, 2001). Another recent study in this
area is Yu and Siskind (2017), wherein spatial re-
lation models are used to locate and identify sim-
ilar objects in several video streams. We should
separately mention the spatial modelling studies
by Malinowski and Fritz (2014) and, especially,
Collell et al. (2017), which apply deep neural net-
works to learning spatial templates for triplets of
form (relatum, relation, referent). The latter work
does this in an implicit setting, that is, it uses rela-
tions that indirectly suggests certain spatial config-
urations, e.g., (person, rides, horse). Their model
is capable not only of learning a spatial template
for specific arguments but also of generalizing that
template to previously unseen objects; e.g., it can
infer the template for (person, rides, elephant).
These approaches, however, rely on the analysis
of 2D images rather than attempting to model re-
lations in an explicitly represented 3D world.

3 Proposed Model1

Here we describe an example of our models for
spatial prepositions as well as some of the under-
lying concepts and intuitions. The factors that con-
tribute to the semantics of the prepositions can be
divided into geometric and non-geometric ones.
Geometric factors are relatively straightforward;
they include locations, sizes and distances. Non-
geometric factors include background knowledge
about the relata—their physical properties, roles,
the way we interact with them—as well as the per-
ceived “frame” and the presence and characteris-
tics of other objects within that frame.

We use a 3D modeling approach in our work.
Thus geometric factors can be directly inferred
from the coordinates of the polygonal meshes

1The implementation and all the ac-
companying data can be found at
https://github.com/gplatono/SRP/tree/master/blender project
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comprising the object’s model. We add additional
geometric and non-geometric knowledge about
the objects by manually attaching labels or tags
to the meshes. Our approach is a rule-based one.
Each spatial relation takes two (or three, in case
of between) arguments and applies a sequence of
metrics evaluating various criteria, such as dis-
tance, whether the objects are in contact, whether
they possess certain properties, etc. Each metric
returns a real number from [0, 1]. Where these
metrics represent contributing factors to a relation,
they are usually combined linearly into a normal-
ized compound metric, with weights representing
the importance of the factors. In some cases two
factors are multiplied together, so that each scales
the other. For relations with multiple prototypes,
the final metric is just the maximum, i.e., we pick
the best match.

Whenever possible we rely on approximations
to the real 3D meshes of objects, using centroids
and bounding boxes (smallest rectangular regions
encompassing the objects). There are two main
reasons for that. First, we are trying to achieve
near real-time performance. Second, in many cir-
cumstances, given the object shapes and distances
between them, the approximations yield accept-
able results. Among the basic geometric prim-
itives used in our models are various distances,
scaled by object dimensions, e.g., scaled centroid
distance (SCD):

SCD(A,B) = d(Centroid(A),Centroid(B))
Radius(A)+Radius(B) .

Here d is just the Euclidean distance and
Radius gives the radius of the sphere, circum-
scribed around the object. Given two ideally-
shaped objects (cubes or spheres) the scaled dis-
tance between them will be equal to 1 exactly
when they are touching each other. This is a useful
measure if the objects are convex or located rela-
tively far apart.

We also introduce similar metrics for certain
types of objects that are not compact, i.e., poorly
approximated by a sphere. For example, “the
chair is near the wall” doesn’t mean that the chair
is close to the geometric center of the wall. In
this case it makes more sense to measure the
distance between the center of the chair and the
plane of the wall. We use the labels “planar” and
“rod” to mark regularly shaped non-compact ob-
jects such as walls and pencils, and introduce spe-
cial distance metrics for these categories. In cer-

tain cases, when an object is very irregular or if
high precision is required (e.g., when determining
if two objects are touching each other) we com-
pute pairwise vertex-to-vertex distances between
two meshes.

Another important geometric primitive is an
infinite conic region, defined at a vertex by an
orientation vector and the angular width of the
cone. This primitive is used in computing so-
called projective prepositions, such as above, etc.
This is similar to the idea of an acceptance area
in (Bigelow et al., 2015). Also, for prepositions
like to the left/right of, whose value depends on
the observer’s vantage point, we project the ar-
guments’ meshes onto the observer’s visual plane
(orthogonal to its frontal or “view” vector) and
then work with 2D data, either bounding boxes or
entire mesh projections.

One example of non-geometric knowledge that
we use is meronymy (part-whole relationships).
This knowledge is crucial for dealing with synech-
doche, as in “the book is on a bookshelf”. In such
a case we don’t usually mean that the book is di-
rectly on the bookshelf (however, this might be the
case in certain contexts), but rather that it is lo-
cated on one the shelves of the bookshelf. Also,
knowing about parts is not enough since many
real-life objects have multiple parts but we usu-
ally interact with just some of them. For example
“a magnet on the frigde” will probably be used
to designate a situation where the magnet is at-
tached to the fridge’s door rather than stuck on the
fridge’s top surface. Thus, typical interactions af-
fect the salience of different parts and aspects of
objects. In our models we mark such salient parts
of an object with a special tag.

As noted earlier, the semantics of spatial prepo-
sitions does not just depend on their arguments;
the perceived frame or scale and the statistics
of objects in the vicinity are additional impor-
tant factors. For some prepositions we first com-
pute the raw value (between 0 and 1) represent-
ing the context-independent value of that prepo-
sition’s metric. That metric is then modified by
scaling it up or down depending on the values of
this same metric for other objects in the scene.
For example, suppose that the raw nearness met-
ric near raw(A,B) for two objects A and B is
0.55 out of 1.0. This reflects the fact that with-
out further context, this is an ambiguous situa-
tion. However, if B is the closest object to A, i.e.,
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near raw(C,A) < 0.55,∀C(C 6= B), we can
say that B is relatively near A. In this case the fi-
nal score near(A,B) will be boosted by a small
amount (depending on the distribution of the ob-
jects in the scene), which will make a more defi-
nite judgment possible.

Finally, let’s consider the relation on as an ex-
ample, where multiple simple metrics come to-
gether. As noted in Example 1, there are many
possible configurations that can be described using
on. Based on these configurations we can discern
several stereotypical scenarios, or prototypes, and
introduce special rules, each covering one such
prototype. For on such prototypes include cases
where one object is in contact with the upper sur-
face of another; where it is attached to the salient
surface of another; where it is part of a group of
objects (i.e., stack), such that this whole group is
on the second object; etc. We can describe on as
(partially) depicted in algorithm 1 below.

Algorithm 1 On (The notation <3D-vector>.z
refers to the vertical component)

1: procedure ON(A,B)
2: on← 0.5 * ((Above(A, B) + Touching(A, B))
3: if Planar(B) and Larger(B,A) and
centroid(A).z > 0.5 ∗ dimensions(A).z
then

4: on← max(on, Touching(A,B))

5: . . .
6: for C in B do
7: if WorkingPart(C) then
8: on← max(on, On(A, C))
9: for C in Scene \ {A,B} do

10: if On(C,B) > 0.5 and ¬Salient(C)
then

11: on← max(on, 0.95∗On(A,C)∗
On(C,B))

As can be seen, we compute on by consecu-
tively applying different rules, corresponding to
the aforementioned prototypes, and taking the best
fit, i.e., the one whose metric has the maximum
value. The first rule captures the canonical sce-
nario where an object is directly above another
and in contact with it. The next rule applies to
situations where an object is in contact with an-
other, bigger, planar object, such as a wall. In ad-
dition, the object should be well above the ground,
so we require its centroid to be located higher
than half of the object’s height (centroid(A).z >

0.5 ∗ dimensions(A).z). We next apply a few
more rules covering such standard scenarios. We
also check for the possibility of synechdoche by
iterating through an object’s interactive parts and
checking if the relatum can be said to be on one
of them. Finally, we check for transitivity: if A is
on B and B is on C, then A is likely to be on C.
However, the transitivity of on is limited. Salient
objects break transitivity; e.g., if a book is on the
table and the table on the floor, the book cannot be
said to be on the floor. (Salience, as used here, is a
static, context-independent property of an object.)
Also, if there are too many intermediaries between
two objects (a book on top of the stack of books,
which is, in turn, on the table), the applicability of
on decreases. This is probably due to the fact that
a pile of objects becomes an increasingly salient,
composite object the bigger it grows.

4 Testing domains and the annotation
effort for spatial prepositions

We now describe the domains in which we tested
our models as well as the experimental setup for
annotating spatial configurations of objects. The
annotated data serve two purposes. First, in order
to measure the performance of our rule-based sys-
tem, in terms of how well it captures the range of
meanings of several spatial prepositions, we need
to collect actual instances of human spatial judg-
ments. Second, the collected dataset can be used
in the future to teach a machine learning model
the spatial relations.2 We chose to study the spa-
tial relations in two domains: a blocks world and
a “room world”. The first domain consists of a
square plane with multiple colored cubical blocks
on it, while the second domain represents a typical
room interior, containing various everyday items,
e.g., furniture, books, food, appliances, etc. The
relatively simple blocks world allows us to iso-
late and investigate the geometric components of
the meaning of a particular preposition, while the
more complex room domain adds pragmatic con-
siderations to the mix. Both domains are repre-
sented as a set of 3D scenes modeled in Blender
(Blender Online Community, 2018). 3D models
for the scenes were mostly created ad hoc, di-
rectly in Blender, using its standard visual model-
ing tools. The reason behind this is that most pub-

2However, while our dataset suffices for evaluating our
rule-based model, it will require expansion, perhaps via
crowdsourcing, for ML purposes
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licly available models are designed with different
purposes in mind and their part structure in incom-
patible with our needs. However, several models
were borrowed from the public collection of mod-
els on Blend Swap (BlendSwap.com, 2018), avail-
able under the Creative Commons licence.

(a)

(b)

Figure 1: An example configuration for the the
blocks world domain (a) and the room world do-
main (b)

We set up two different annotation tasks – a
truth-judgment task and a description task. In
the truth-judgment task, the annotator is presented
with a screenshot of a scene from either do-
main and asked whether the particular relation
holds between the given objects (“Is block 1 to
the right of block 2?”). The possible qualitative
response options form a Likert scale, with five
items: “YES”, “RATHER YES”, “UNCERTAIN”,
“RATHER NO”, “NO”. In the description task, the
annotator is given a screenshot of a scene from ei-
ther domain and an object from that scene. The
annotator is then asked to describe the object’s lo-
cation, in terms of a single prepositional relation
to another object in the scene (or two objects, in
exceptional cases like between or straddling two
objects), so as to identify it uniquely. The annota-
tor is encouraged to provide multiple descriptions,
if there are several natural ways to pick out the ob-
ject uniquely. The list of acceptable prepositions
includes the following: above, below, to the right,

to the left, in front of, behind, near, at, in, over,
under, between, on, and touching.3

The objects present in the scenes were selected
so as to allow for sufficiently varied configura-
tions, combining large immovable items of fur-
niture with multiple portable items. There was
no specific plan behind the object placement in
any scene, except to ensure that the target object
can be uniquely described, and the overall con-
figuration does not look unnatural or anomalous.
To make unique descriptive identification of ob-
jects nontrivial, some of the objects, such as chairs
or books, were presented in the scenes in several
identical copies. Annotators were not allowed to
directly refer to the objects by their name (every
object in the scene was accompanied by a unique
identifier to make it easier for the participant to lo-
cate it), but, instead, the participants were asked
to use only the type and/or color of the objects
when referring to them. Examples of acceptable
descriptions include “to the left of another black
block”, “between a table and a bookshelf”, “at the
bed”, and “on two blue blocks”. In order to au-
tomate the process and facilitate gathering of the
dataset, an annotation tool was deployed online
and about a dozen volunteers (grad and undergrad
students from the computer science department)
were asked to participate in the preliminary data
collection (Fig. 2). Since the task is straightfor-
ward they received minimal training; only the re-
strictions on the response format (only one prepo-
sition, unique identifiability, etc.) were made clear
to them.

A number of scenes were created for the pro-
posed annotation tasks. For the description task,
151 scenes were created. For the blocks world,
each scene was designed to allow three questions
(identification of three different blocks), while the
more context-rich room world scenes supported 7-
8 questions on average. For the truth-judgment
task, 192 scenes were designed, with one ques-
tion per scene. These 192 scenes are comprised
of four variations of 48 basic scenes. The vari-
ations are: basic scene (with just the relation ar-
gument objects present in the scene), basic scene
with bigger frame size (zoomed out), basic scene

3These particular prepositions were chosen in part be-
cause of their naturalness for describing configurations of
objects in the original domain (the blocks world) – unlike
across, around, throughout, with, etc., and in part by the prac-
tical need to limit the number of prepositions to be modeled
while still including the most widely used ones.
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Figure 2: The annotation website. The instructions
say ”Where is Blue Chair 1 in the presented scene?
Please describe its location relative to other ob-
jects.” The instructions are followed by the list of
the fourteen admissible prepositions.

with context (additional objects added), and basic
scene with context and bigger frame size. The col-
lected dataset contains approximately 3500 anno-
tations in total, with about 1500 annotations for the
truth-judgment task and 2000 for the description
task. It was split into a parameter tuning part and
a disjoint test set with the latter containing about
800 annotations, split approximately equally be-
tween the description and truth-judgment tasks.

5 Evaluation

The model was evaluated as follows. For the truth-
judgment task, the model was used to evaluate the
given relation and its arguments. Both the numeri-
cal answer provided by the model and the annota-
tor’s answer were then transformed to the ordinal
scale to compute the agreement coefficient. The
human responses were converted from the Likert
scale “YES”, “RATHER YES”, “UNCERTAIN”,
“RATHER NO”, “NO” into integers 5 to 1, respec-
tively. The metric value generated by the model
was transformed as follows: Values in [0, 0.2) cor-
respond to 1, those in [0.2, 0.4) to 2, ..., those in
[0.8, 1] to 5. For the description task, given a hu-
man description of a target object in relation to a
reference object, the model was given the refer-
ence object and relation, and was required to iden-
tify the object being described.

We used both standard and weighted versions
of Cohen’s Kappa as an inter-annotator agreement
metric with the weighting penalty w(i, j) = ‖i −
j‖, where i and j are the ordinal conversions of
the responses of human annotators and our system.

The agreement values were computed as follows.
First, all pairwise agreement values between an-
notators and between each annotator and the sys-
tem were computed. Next, the corresponding av-
erages (of human-human and human-system pairs,
respectively) were found.

For the initial data set (the part used to some
extent to tune the model parameters), the accu-
racy breakdown was as follows. For weighed
Kappa, the average pairwise human-human inter-
annotator agreement value was 0.717, whereas the
average pairwise system-human agreement metric
was 0.682. For standard Kappa, the respective val-
ues were 0.536 and 0.479.

For an independent data set used for final evalu-
ation, the values were: human-human agreement,
weighted Kappa - 0.76, human-system agreement,
weighted Kappa - 0.71, human-human agreement,
standard Kappa - 0.52, human-system agreement,
standard Kappa - 0.49. Again, all these num-
bers are pairwise averages. As expected, inter-
annotator agreement was not very high.4 The
somewhat lower system-human agreement is still
close enough to human-human agreement to indi-
cate the plausibility of our models. Since humans
manage to identify referents perfectly well using
spatial relations, despite the vagueness of these re-
lations, the key question then was how well our
models would do for such usages.

relation total occurrences accuracy
to the right of 210 89%
to the left of 212 94%
in front of 118 92%

behind 104 96%
above 81 99%
below 43 98%
over 29 96%

under 135 95%
between 168 93%

at 17 94%
touching 71 93%

near 196 82%
in 31 100%
on 166 90%

Table 1: Fourteen relations, together with the to-
tal occurrences within the dataset used for tuning
(different annotation) and accuracy per relation.

4This is not a flaw to be remedied, but simply a reflection
of the vagueness of the prepositional relations.
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For the description task we computed the accu-
racy in terms of the percentage of tests with cor-
rectly identified objects. The overall system ac-
curacy on the testing data was about 93%; while
imperfect, this is an encouraging result. The de-
tailed breakdown for separate relations is provided
in Table 1.

relation total occurrences accuracy
to the right of 33 88%
to the left of 30 87%
in front of 24 96%

behind 25 92%
above 12 100%
below 11 100%
over 0 0%

under 33 97%
between 37 86%

at 4 100%
touching 30 93%

near 55 93%
in 7 100%
on 75 89%

Table 2: Fourteen relations, together with the total
occurrences within the dataset used for final test-
ing (different annotation) and accuracy per rela-
tion.

6 Discussion and Conclusion

We considered the problem of designing intuitive
computational models of spatial prepositions that
combine geometrical information as well as some
pieces of commonsense knowledge and contex-
tual information about the arguments. In our ex-
periments in a blocks world and a room world,
we achieved reasonable agreement with human
“truth” judgments and quite good agreement in a
referential description task. We are not aware of
other models that achieved this level of success in
comparably diverse environments.

All of the existing methods we mentioned have
significant limitations; typically they deal ade-
quately with some aspects but fall short on oth-
ers. The lexical semantics models in linguistics
provide the most comprehensive theory of spa-
tial relations as they are used in language. As
such they are particularly relevant to natural lan-
guage processing applications. However, their
biggest drawbacks (at least when they attempt to

address the polysemy of the prepositions) is that
they are hardly formalizable and make reference
to large amounts of background knowledge about
how people interact with the world. Neither hand-
crafting that background knowledge nor learning it
automatically from data seems feasible at present.
On the other hand, research aimed at precise qual-
itative spatial models typically puts the emphasis
on providing formal frameworks that enable rig-
orous inference, rather than on approximating hu-
man spatial representations and judgments. Un-
surprisingly, this bias results in models that are
suitable for certain applications, such as naviga-
tion and autonomous problem solving, but not for
human-machine interaction. A separate problem
is that of reconciling qualitative and quantitative
spatial models.

Computational approaches popular today
mostly rely on learning the meaning of preposi-
tions from data. While they are closer to capturing
their natural usage patterns, such models are
trained on limited datasets in toy tasks. The
generalization capabilities of such models are
questionable. In our opinion the path towards
comprehensive models of spatial prepositions lies
at the intersection of these two major paradigms.
The core meanings can be captured by meticulous
analysis of the behaviour of the prepositions,
while machine learning methods can be applied to
adjust the weights of various a priori significant
factors and ultimately to learn diverse additional
pragmatic factors that influence human judgments
in context, but are very hard to describe explicitly.

A couple of further insights we gained are worth
noting. First, as indicated by the disparity we ob-
served between judgments of truth and identifica-
tion of referents, experimental design is of utmost
importance in this area. Special attention needs to
be paid to ensure that the experimental task is nat-
ural and sufficiently varied; at the same time, the
task should enable isolating the specific meaning
aspects of particular prepositions, so that they can
be modeled individually. These desiderata are not
easily achieved.

Second, physics plays an important role in our
understanding of spatial relations. For example,
as noted at the outset, on is closely connected with
the support relation; thus, a cable or a rope hang-
ing from the ceiling and touching the table under it
will probably not be considered to be on the table.
This example breaks the rule-based definition of

28



on that we presented above. We did not address the
physical aspects of the meaning of spatial preposi-
tions in our work. This deficiency will have to be
rectified if our models of spatial prepositions are to
correspond more fully to our everyday intuition.
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Abstract

Prior methodologies for understanding spatial
language have treated literal expressions such
as Mary pushed the car over the edge dif-
ferently from metaphorical extensions such as
Mary’s job pushed her over the edge. We
demonstrate a methodology for standardizing
literal and metaphorical meanings, by build-
ing on work in Lexical Conceptual Struc-
ture (LCS), a general-purpose representational
component used in machine translation. We
argue that spatial predicates naturally extend
into other fields (e.g., circumstantial or tempo-
ral), and that LCS provides both a framework
for distinguishing spatial from non-spatial, and
a system for finding metaphorical meaning ex-
tensions. We start with MetaNet (MN), a large
repository of conceptual metaphors, condens-
ing 197 spatial entries into sixteen top-level
categories of motion frames. Using naturally
occurring instances of English push, and ex-
pansions of MN frames, we demonstrate that
literal and metaphorical extensions exhibit pat-
terns predicted and represented by the LCS
model.

1 Introduction

This paper explores representation and distribu-
tion of spatial metaphoric language, by identifying
instances from the MetaNet (MN) repository of
metaphors (David and Lakoff, 2013; Dodge et al.,
2015; Stickles et al., 2015), clustering them ac-
cording to common expressions (e.g., “change of
location”), and representing both the literal and
metaphorical senses of these expressions as com-
binations of primitives from Lexical Conceptual
Structure (LCS) (Jackendoff, 1983, 1990; Dorr,
1993; Dowty, 1979; Guerssel et al., 1985).

We leverage the LCS Verb Database (Dorr et al.,
2001), taking LCS as the underlying spatial lan-
guage meaning representation for literal senses,
and aligning these with representations for their
corresponding metaphorical representations. For

example, the expression push over the edge has
a literal (spatial) MN sense, “change of location,”
that is represented as CAUSE GO Loc in the LCS,
but its metaphorical MN sense, “change of state,”
is represented as CAUSE GO Ident. As an illustra-
tion of this contrast, the expanded LCS representa-
tions that include these primitive combinations are
shown below:
• Literal (spatial): Mary pushed the car over

the edge
[Cause MARY

[Go Loc CAR

[Toward Over <location>]]],
<location>=EDGE]

• Figurative (metaphorical): Mary’s job
pushed her over the edge
[Cause JOB

[Go Ident MARY

[Toward At <result(property)>]]],
<result(property)>=CRAZY]

The focus here is not on the processes necessary
for distinguishing between literal and metaphor-
ical senses, but rather on the representational for-
malism and organizing principles underlying both.
The intention is to lay the foundation for subse-
quent application of additional context and higher
order processes for disambiguation, such as visual
grounding (Wilks, 1995) or beliefs and inference
(Ballim et al., 2007). The main lesson of this study
is that there are similarities between the literal and
metaphorical expressions, and that these can be
seen through analysis into LCS primitives without
extra visual/reasoning evidence.

As a starting point for exploring metaphoric
language, 197 spatially grounded metaphors were
identified in MN from the total collection of 684
MN entries. These were organized into a smaller
set of classes (139) through automatic identifi-
cation of duplicated phrases (e.g.,“change of lo-
cation”), and then further reduced to 16 classes
of metaphorical LCS representations, paired with
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their corresponding spatially grounded counter-
parts in the Loc(ational) field.

To explore the diversity in naturally occurring
texts, we used a corpus of around 30k Word doc-
uments from the Microsoft language resource li-
brary, and available for research. The docu-
ments had been harvested from an approved in-
dex of websites (excluding sites that are copy-
righted, marked do not crawl, adult content, and
other restrictions)1 and targeted specific English
locale settings,2 as represented by properties of the
file format.

An initial search with text processing tools for
Windows (public and proprietary) yielded more
than 10k en-us sentences for the following spatial
and motion strings: extend, span, contain, come,
go, push, pull, enter, exit, rise, fall, skyrocket,
plummet, turn back, forge ahead, headway, get out
of, get into, drive, be down, be up, be in, be out,
guide, follow, sprint, creep, drain, move along, ad-
vance. We scoped this to just under 2k “Push Sen-
tences” – small enough to review, but large enough
to present an interesting distribution of forms.

The availability of these two resources enabled
the systematic division into LCS classes based
on common pairs, and the exploration of natu-
rally occurring instances of them, without requir-
ing a large-scale manual annotation effort. The
16 resulting LCS classes correspond to group-
ings based on common pairs of metaphorical and
spatial LCS’s, as extracted from the LCS Verb
Database, as in the example above: CAUSE GO
Loc (literal)↔ CAUSE BE Ident (metaphorical).

Examples of derived classes are shown here:

• Class 1 (Being at a Location)

– Spatial/Literal: The ice pushed away
from the Arctic and into the Atlantic
(GO LOC TOWARD).

– Metaphorical: My mind pushed away
all the frustration (GO IDENT STATE)

• Class 4 (Manner of Motion)

– Spatial/Literal: The woman pushed
aside the book and fell asleep (CAUSE
GO LOC MANNER)

1Nevertheless we may not share the extracted sentence
corpus without seeking permission from the document au-
thors. We do not think this negates the conclusions of this
paper, as the corpus is referential, and the examples not un-
usual.

2English locales include US, Australia, Canada, New
Zealand, Great Britain, and others.

– Metaphorical: The team should push
aside thoughts of failure (CAUSE GO
PERC MANNER)

• Class 5 (Movement along a path)

– Spatial/Literal: Mary pushed the car
over the edge (CAUSE GO LOC PATH)

– Metaphorical: Mary’s job pushed her
over the edge (CAUSE GO IDENT
STATE)

We used the Push Sentences to examine these
derived classes systematically, analyzing their spa-
tial/metaphorical distribution, as well as the cov-
erage of the spatially based derived metaphor
classes. This systematic comparison identified
missing metaphor entries in MN, as well as
metaphorical instances of push not occurring in
the corpus, that we found attested in a general web
search of the pattern.

The pairing of MN entries with their LCS rep-
resentations has enabled identification and repre-
sentation of literal/metaphorical pairs that can be
used for downstream natural language understand-
ing. Our corpus-based research both supports
the derived classes, and suggests expansion of
them. This treatment of both literal and metaphor-
ical extensions of the predicates also provides a
framework for a structured search of both possi-
ble gaps in the metaphor inventory, and possible
metaphoric extensions of individual predicates.

Prior work (Jackendoff, 1996; Levin, 1993;
Olsen, 1994; Kipper et al., 2007; Palmer et al.,
2017) has suggested that there is a close relation
between underlying lexical-semantic structures of
predicates and their syntactic argument structure.
It has been claimed that prepositional argument
constraints on motion predicates need not dis-
tinguish between literal and metaphorical senses
(Chang et al., 2007, 2010). We take this earlier
work a step further by examining generalizations
of systematicity at the syntax-semantics interface
between literal and metaphorical senses of spatial
and motion predicates.

Section 2 provides background on metaphor
and how it has been represented, generally and
for computational applications. We introduce the
LCS representation and MN resource, and de-
scribe how we extracted spatial metaphors from
the latter and represented them by the former.
We illustrate the work with an excerpt of a ta-
ble provided in the supplemental material. Sec-
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tion 3 describes the mapping of spatial metaphors
to LCS. Section 4 discusses the Push Sentences.
We show how to represent push metaphors in LCS
according to the derived spatial metaphor classes,
extend the classes to address cases of push ab-
sent from MN examples, and the converse: ex-
amples predicted to occur that were absent from
the corpus. We conclude that the richness of
the syntactic patterns available to Spatial (literal)
uses of verbs and related nominals are also avail-
able to their metaphorical counterparts, thus pro-
viding a structured way to investigate and repre-
sent metaphorical data, including future work ex-
ploring whether and why distributional differences
may occur. In Section 5 we discuss related work
(Cascades (David et al., 2016)) and future ex-
plorations (multilingual representation, for which
LCS was originally designed).

2 Background

Lexical Conceptual Structure (LCS) (Jackendoff,
1983, 1990; Dorr, 1993; Dowty, 1979; Guerssel
et al., 1985) has been used for a range of different
applications, including interlingual machine trans-
lation (Habash and Dorr, 2002), lexical acquisition
(Habash et al., 2006), cross-language information
retrieval (Levow et al., 2000), language generation
(Traum and Habash, 2000), and intelligent lan-
guage tutoring (Dorr, 1997).

LCS primitives are defined so that their combi-
nation captures syntactic generalities: actions and
entities must be systematically related to a syntac-
tic structure. Constraints operate on three dimen-
sions: (1) spatial, (2) causal, and (3) field. The
primitive building blocks include GO, STAY, BE,
GO-EXT, ORIENT, and also an ACT primitive de-
veloped by Dorr and Olsen, (1997). These prim-
itives come from the spatial dimension and have
the following syntactic and semantic argument se-
lection constraints:
Events (Argument1, Argument2):

GO(Thing, Path) Jen ran home
STAY(Thing, Position) Jen remained home
ACT(Thing, Thing) Jen ate dinner

States (Argument1, Argument2):
BE(Thing, Position) Jen was home
ORIENT(Thing, Path) The sign points to the exit
GO-EXT(Thing, Path) The highway runs
through Montana

In the Causal dimension, predicates CAUSE
and LET have two arguments: a Thing or Event,

and a State or Event. The Field dimension de-
scribes Argument relations as:

(Loc)ational (pertaining to space/motion)
(Poss)essional (ownership)
(Temp)oral (time)
(Ident)ificational (state)
(Circ)umstantial (situation)
(Exist)ential (existence)
(Perc)eptual (perception)
(Comm)unicational (communication)

The latter two fields (Perceptual and Communica-
tional) correspond to two domains added by Olsen
et al. (1997) beyond the original LCS conceptual-
ization of Jackendoff (1983; 1990), enabling cov-
erage of a wider range of metaphorical extensions.

Within the LCS framework, both literal (spatial)
and figurative (metaphorical) meanings are cap-
tured for a wide range of verbal constructions. The
spatial dimension of the LCS representation (i.e.,
the (Loc)ational field) serves as the basis of the lit-
eral meaning, thus enabling straightforward exten-
sion to the other fields to represent the metaphor-
ical meaning. This extension supports a system-
atic mapping of spatial meaning to surface realiza-
tions. This systematicity correspondingly carries
over to metaphorical counterparts and a system-
atic surface realization is available for both types
of meanings.

For example, the GO primitive in the Loc field
projects a prepositional phrase containing a loca-
tion, such as over the edge, whereas the GO prim-
itive in the Ident field projects an adjectival phrase
containing a property, such as crazy. Additional
examples of the three dimensions above are dis-
cussed in Section 3.

This paradigm is consistent with that of Neu-
man et al., (2013) in large-scale metaphor identifi-
cation, which takes meanings of the word as literal
(or non-metaphorical) based on “how close the
word’s sense is to its embodied origins,” vs. de-
termining the same by frequency, commonsense,
or selectional preference strategies.3

Representations of spatial relations and their
metaphorical extensions to other domains have
been the subject of numerous studies (Talmy,
1985; Gentner, 2001). The benefit of this LCS-
based grounding of metaphorical expressions in
their spatial counterparts is that it is possible to
leverage a set of principled mappings from LCS to

3Even so they acknowledge that identifying metaphors is
difficult even for humans.
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Class 1: Be at Location (MN: EXPERIENCED STATE IS PROXIMATE OBJECT)
Examples: ...a headache approaching (MN); ...migraine pushed itself through skull (Push Sentences)
Spatial/Literal: Metaphorical:

LCS: go loc [state] toward y
RED: GO LOC TOWARD

LCS: go ident y toward [state]
RED: GO IDENT STATE

Class 4: Manner of Motion (MN: GUIDED ACTION IS GUIDED MOTION ALONG PATH)
Examples: ...guided through the task (MN); ...pushed products to marketplace (Push Sentences)
Spatial/Literal: Metaphorical:

LCS: cause x go loc y toward z [manner]
RED: CAUSE GO LOC MANNER

LCS: cause x go perc y toward z [manner]
RED: CAUSE GO PERC MANNER

Class 5: Change of Location (MN: CHANGE OF STATE IS CHANGE OF LOCATION)
Examples: ...fell into depression (MN); ...pushed her over the edge (Push Sentences)
Spatial/Literal: Metaphorical:

LCS: cause x go loc toward y [location]
RED: CAUSE GO LOC PATH

LCS: cause x go ident y toward [state]
RED: CAUSE GO IDENT STATE

Table 1: Sample of LCS-Based Classification for Literal (Spatial) and Metaphorical Senses with Examples from
MN and ‘Push’ Sentences

syntactic realizations for a wide range of verb se-
mantics within 192 verb classes of (Levin, 1993),
augmented by 44 additional classes that were
subsequently added (Dorr, 1997) and further en-
hanced for aspectual composition (Olsen, 1994;
Dorr and Olsen, 1997; Dorr et al., 2001).

For a rich source of metaphoric constructions,
we leveraged MetaNet (MN), a repository of
metaphors represented in accordance with princi-
ples of conceptual metaphor theory, introduced by
Lakoff and Johnson (1980). The metaphors each
map a Source domain (e.g. “life”) to a Target
domain (e.g. “journey”), yielding metaphors like
Life is a journey.

Both Source and Target domains are themselves
represented as rich conceptual frames in MN. For
example, someone lives a life, with a span, possi-
bly with a companion, and a goal, etc. These map
to elements of the ‘journey’ frame as, respectively,
journey-er, the journey event and companion, and
the destination.

Additional MN mappings in the network of con-
cepts include stops, paths, locations along the way,
vehicles, etc. Examples of surface realizations are
also included with the metaphor, e.g. His life has
taken a good course and He has changed his direc-
tion in life, and taken a more spiritual path. (Neu-
man et al., 2018; David and Lakoff, 2013; Dodge
et al., 2015; Stickles et al., 2015)

In addition, frames can be linked to frames, and
metaphors to metaphors, defining larger networks.
For example, “CAUSED CHANGE OF STATE”
is subcase of “CAUSATION”, and makes use of
“CHANGE OF STATE” (Neuman et al., 2018).

We look at metaphors comprised of a mapping
between a concept for a literal expression typi-

cally related to space or motion like “CHANGE
OF LOCATION,” and the corresponding concept
for the metaphorical sense, e.g., “CHANGE OF
STATE.” So, for example, the surface realization
pushed him over the edge is an (adapted) exam-
ple associated with a mapping between the literal
meaning of push (CHANGE OF LOCATION) and
the metaphorical meaning of push (CHANGE OF
STATE) which, in this case, could be paraphrased
as go crazy.

3 Spatial Language Metaphors:
Mapping to Lexical Semantic
Representations

Understanding how spatial expressions relate to
objects and situations in the real world can enable
an understanding of abstract notions that “inherit”
properties of their spatial analogues. Even with-
out the context of a visual stream (Wilks, 1995)
or access to beliefs and inferential processes (Bal-
lim et al., 2007), it is possible to support sentence-
processing applications (e.g., grammar checking)
by relying on a lexical-semantic representation
that enables uniform syntactic analysis, within a
framework that supports downstream processing
for disambiguation.

We conducted an analysis of the MN metaphor
repository, identifying 197 spatially grounded
metaphors and collapsing these into 139 unique
spatial expressions. We then categorized these into
16 semantically motivated classes based on pair-
ings between LCS primitives for the spatial/literal
sense and LCS primitives for the metaphorical
sense. Table 1 shows representative spatial and
metaphorical cases for the three derived classes
introduced in Section 1, together with examples
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Table 2: Excerpt of Derived Classes for Literal (Spatial) and Metaphorical Senses with MN and ‘Push’ Examples

from MN and Push Sentences. Each class has one
of 16 labels (e.g., “Be at Location” or “Manner of
Motion”). A single MN entry is shown in the ta-
ble for each class, e.g., “EXPERIENCED STATE
IS PROXIMATE OBJECT”, although, in general,
each class may be associated with multiple MN
entries.

In each class, an LCS representation is provided
for the Spatial/Literal sense and another LCS
is provided for the Metaphorical sense. These
LCS’s are indexed by a set of “reduced” primi-
tives (RED), such as “GO LOC TOWARD,” that
represent the salient components of the full LCS.
The coupling of the reduced primitives for the lit-
eral sense with those of the metaphorical sense
are what enabled the development of each of the
16 classes. For example, the “Be at Location”
class emerged from the coupling of “GO LOC TO-
WARD” with “GO IDENT STATE,” as well as ad-
ditional couplings that are further fleshed out in a
supplemental resource described in Section A. The
16 derived classes were named once they emerged
from these couplings.

It is interesting to note that the three Push ex-
amples in Table 1 (one per each of Class 1, 4, and
5) were not available in MN, but were mined from
the Push Sentences. Out of all 16 classes, only
Class 2 (Force Acting on Motion) contained MN
sentences with the word push. These were in fact

the only sentences in the entire MN inventory that
contained the word push:
• ...her parents kept pushing her [into an ar-

ranged marriage]4

• ...Democrats push through historic, contro-
versial healthcare legislation5

• ...Bloomberg goes to Washington to push gun
laws6

As such, this study has revealed several cases
of Metaphors containing the word push that were
not found in MN, but were systematically iden-
tified and accordingly classified. More specifi-
cally, with the exception of the derived classes 7,
8, and 13, examples were extracted anew from
Push Sentences and assigned to the appropriate
derived classes per LCS-based predictions (e.g.,
migraine pushed itself through her skull).7 We
therefore systematize the MN representation of
Space/Motion and extend its coverage. Coupled
with the LCS Verb Database this extended MN
provides a framework for future research in En-
glish and other languages.

4from MN entry “CAUSED CHANGE OF STATE IS
CAUSED CHANGE OF LOCATION”

5from MN entry “ENACTING LEGISLATION IS CAUS-
ING MOTION ALONG A PATH”

6from MN entry “INCITING GOVERNING ACTION IS
FORCED MOVEMENT”

7For Classes 7, 8, and 13, no example was found in the
Push sentences.
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Table 2 shows an excerpt of a table provided in
the supplemental material. The first column pro-
vides the name of the newly emerged class from
this study. The next two columns contain the
LCS’s and corresponding reduced primitives for
the Literal (Spatial) and Metaphorical senses, re-
spectively. The “Examples” column contains ex-
amples from MN. The “PUSH EXAMPLE” col-
umn contains additional metaphorical expressions
extracted from the Push Sentences—a representa-
tive sample of the total number of 1655 sentences
containing the word push. The supplemental ma-
terial also includes hyperlinked MN entries for
each example associated with each class, enabling
the addition of new metaphors to MN.

Note that metaphorical extensions of spatial no-
tions such as up, down, into, from, to, over to ab-
stract notions in MN such as go crazy, become
depressed, feel badly can enable realizations of
metaphorical expressions that mirror those of their
literal (spatial) counterparts. Motion frames are
systematically realized in language with motion
syntax. Metaphorical extensions of spatial lan-
guage analogously would similarly permit a vari-
ety of motion expression forms.

This observation has been leveraged for nat-
ural language analysis in writing assistance ap-
plications (Chang et al., 2007, 2010), relying on
the subcategorization frame parallels in literal and
metaphoric language. For example, consider the
derived Manner of Motion class 4 (guide, lead,
launch, shove, roll, walk, run, climb, hike,...).
Verbs in this class describe translational motion of
a particular type, in the spatial (literal) meaning.
In the spatial domain, these verbs may also have
complements that signify the PATH of the mo-
tion, as well as the beginning and ending points of
the Path (SOURCE, GOAL). If the motion is self-
propelled, the verbs appear in intransitive con-
structions8 with various verb-phrase arguments
expressing the beginning, extent, and end of the
motion:

• We’re running.

• We’re walking on the Burke-Gilman Trail.

• We’re rolling on the Burke-Gilman Trail
from Golden Gardens Park.

• We’re hiking to the Ballard Locks on the
Burke-Gilman Trail.

8(Levin, 1993)’s class of Roll Verbs has finer-grained clas-
sifications.

Similarly, verbs like push/pull inherently en-
code an exertion of force,9 patterning like motion
verbs with all the predicted complements (gener-
ally appearing transitively).

• We’re pushing (the stroller).

• We’re pushing the stroller on the trail

• We’re pushing the stroller on the trail from
the park.

• We’re pushing the stroller to the locks from
the park.

Additionally, these verbs can have temporal ad-
juncts, e.g. on Tuesday, this summer. Therefore
we expect (and see) a wide variety of preposi-
tional phrases associated with verbs, and natural
language understanding needs to be appropriately
constrained. Chang et al. (2007; 2010) observed
that complements of motion verbs appeared in the
same constructions, whether the meanings were
literal or metaphorical, and therefore attachment
in parsing of prepositional phrases could be guided
by similar constraints, permitting (but not requir-
ing) a beginning, extent, and end of the motion.

• He’s just walking through life. [PATH]

• We’re running the conference from Friday,
June 1, through weekend, to Monday June 4.

• The responsibility drove her over the edge.

• We’re pushing the meeting back to next Fri-
day.

In the Push Sentences we see similar variety
in the derived classes that employ these verbs.
For example, Push your way through finals is un-
derstood by metaphorical extension of spatially-
related motion examples such as Push your way
through the crowd. More generally, organizing
metaphors into LCS-based classes enables the pre-
diction of possible syntactic realizations on the
surface.

An important contribution of this work de-
rives from the LCS-based organizational structure,
which enables enrichment and expansion of MN,
as discussed further in Section 5.

4 Case Study: push

Prior work (Chang et al., 2007, 2010) was de-
signed to enable writing assistance (e.g. grammar

9(Levin, 1993)’s Verbs of Exerting Force
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Part of Speech Spatial Metaphorical Unknown
Verbs: 998 46% (459) 52% (514) 2% (25)
Nouns: 637 70.6% (450) 26.5% (169) 2.8% (18)
Adjectives: 20 45% (9) 55% (11) (0)

Table 3: Summary of Spatial and Metaphorical Usages
for push in 1655 sentences/lines of the Corpus

checking) as an application for deep understand-
ing of lexical conceptual structure, including di-
rectional and spatial language. This earlier work
proposed that spatial expressions enable structural
realizations across both literal and metaphorical
usages across languages, with examples from En-
glish, Spanish, German, French, and Japanese. In
this section we illustrate the validity of this as-
sumption for spatial expressions involving push,
exploring both spatial and metaphorical usages de-
rived from the Push Sentences.

In our analysis, we found that 52% of the verb
occurrences of in the Push Sentences were used in
their metaphorical sense. So, although only 28%
of metaphors in MN had spatial origins, spatial
expressions involving push were prevalent in the
form of metaphorical extensions and, moreover,
even in these extended senses adhered to syntactic
structures and complements of their spatial coun-
terparts. Therefore, it is important to capture the
cross-field units of meaning (something akin to ex-
ert force against some form of resistance) while
also supporting predictable cross-field surface re-
alizations.

After discarding 71 instances from the 1726
sentences with the string push as irrelevant (lines
of code, Pushkin, etc.), we categorized the remain-
ing 1655 instances by part of speech, and identi-
fied, context permitting, whether the use was spa-
tial or metaphorical.

The results in Table 3 show almost 40% of the
uses across parts of speech were metaphorical,
with 52% of the 998 Verbs and 55% of the Adjec-
tives (20). Of the 998 verbs, the metaphorical uses
included technical terms (push notifications (to
someone)), political advocacy (e.g. push legisla-
tion, a referendum, an agenda),10 marketing (push
a brand, Christmas specials), and motivation
(push into college, push through AP classes). Spa-
tial uses included push a button/laundry cart/box.
Sentences with Unknown verb uses did not pro-
vide enough context to identify whether they re-
ferred to spatial or metaphorical pushing, for ex-

10See (David et al., 2016) for extensive discussion of ad-
vocacy pertaining to gun rights.

Noun type Spatial Metaphorical Unknown
Simple: 118 36.4% (43) 54.2% (64) 9.3% (11)
Agentive: 7 0% (0) 57% (4) 43% (3)
Compound: 512 79.3% (406) 18.5% (100) 1.2% (6)

Table 4: Noun Spatial and Metaphorical Usages for
push by Subtype

ample (you push through and nature sings; always
push and do not pull, the work done in pushing
back the atmosphere).

We note, in particular, that both the verbal
and nominal uses exhibit similar syntactic struc-
tures to both the literal (spatial) and figura-
tive (metaphorical) usages. For example, as
shown in Table 4, the 637 nouns included sim-
ple spatial/metaphorical examples terms (a push
into college/the door) and metaphorical agentives
(drug/token/domino pusher).11 Compounds in-
cluded spatial phrases (push button, push-button,
pushbutton, push/pull handle, pushpin, push-ups,
push piers) and metaphorical phrases (push factor,
push-notification, push web services, push promo-
tion strategies, push-in class services, push sub-
scription).12,13

In LCS, these would be treated as conflational
variants or divergences (Dorr, 1993). The nominal
would express a conflated EVENT that could be
the subject of a predicate, for example A push into
college gave Mary her start.

Finally, we discovered that push can appear in
most spatial/motion metaphor categories, as indi-
cated in italicized examples inserted into Table 2,
and also into supplemental material. We show ex-
amples in English, and suggest meanings that may
not be idiomatic in English, but could be predicted
in other languages (e.g. based on fields). In each
of these cases, the meaning of push was consistent
with its role as a verb of exerting force, potentially
causing motion. With the addition of these exam-
ples, it is clear that our LCS-based structuring of
MN has allowed us to systematically predict and
find Metaphors not found in MN.

We do not claim that the categorization is
ready to be standardized, or that the distribution
is representative—be it across texts, across spa-
tial/motion predicates, across languages for verbs
meaning ‘push’, of all the metaphors involving

11The other examples toolpusher, pedal pusher cannot be
analyzed with confidence given the short contexts.

12Unknown again had limited context, e.g. “short re-
sponse plyo push-up.”

13Hyphenated, closed, and open compounds were included
in each case.
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‘push’ in English, or in any other way. We offer
the numbers and text examples14 as qualitative ev-
idence of the breadth and variety of metaphorical
extensions in naturally occurring texts.

5 Discussion and Future Work

The work presented in this paper is complemen-
tary to, and not incompatible with, downstream vi-
sual grounding for disambiguation (Wilks, 1995)
or belief ascription for metaphor identification
(Ballim et al., 2007). The LCS framework aims to
provide a systematic mapping to surface realiza-
tions, without requiring disambiguation, but still
enabling further distinctions to be made between
literal and metaphorical meanings through addi-
tional context such as visual inputs or higher order
beliefs and reasoning and others, including selec-
tional restrictions and word embeddings (Dinh and
Gurevych, 2016).

Collapsing the spatially-motivated metaphors
into semantic classes is similar to the Cascade ap-
proach (David et al., 2016) that uses the MN foun-
dation as a starting point. Both LCS and Cas-
cades provide a framework within which to bring
order to the collection of observations: hierarchi-
cal concepts in the case of Cascades and lexical-
conceptual structure in the case of the framework
described in this paper. The lexical conceptual
structure focuses on how the semantics of lit-
eral and metaphorical verbs projects into syntax,
whereas Cascades describe how the semantics of
individual metaphors organize hierarchically, and
how they relate to grammatical constructions.

The LCS framework offers consistent structure
across literal and metaphoric domains within and
between languages. It may be that the variation we
see in which lexical elements are used in languages
can be attributed to the different perspectives on
the events they name, similar to the particulars in
the two perspectives on gun rights. For example,
are there meaningful differences in the use of push
in English, mirroring Spanish uses of promover,
impulsar, inculcar, esforzar in Table 5?

The Cascades approach suggests there is a con-
tinuum from literal to metaphorical—that the di-
viding line is not clear. Our data analysis of spa-
tially motivated metaphors revealed the validity
of this continuum. This suggests future research
on adding a continuous dimension beyond what

14Examples have been truncated or otherwise adapted in
accordance with Microsoft company policy

E: The NRA pushed the pro-gun legislation (through
congress).

S: La NRA promovió / impulsó la legislación pro-
armas (en el congreso).

E: My parents pushed me to succeed.
S: Mis padres me inculcaron el tratar de ser exitoso.
E: I pushed myself through my AP classes.
S: Me esforcé mucho con las clases avanzadas.
E: The ice cream shop pushed peppermint for the holi-

days. (as in encouraged sales).
S: La heladerı́a promovió / intentó / colocó / insistió

mucho con el helado de menta en las fiestas.

Table 5: Spanish Usages of English push

is provided in the LCS framework. For example,
when one army pushes another back to a posi-
tion, or the US pushes the indigenous peoples to
a reservation, there is no contact involved, but the
pushing seems more direct (and probably would
involve contact if challenged) than pushing some-
one over the (metaphorical) edge or pushing a bill
through congress.

Another promising avenue for future research
would be the identification of multilingual equiv-
alents of the 139 unique spatial expressions that
were extracted from MN in this study. Such an
endeavor would involve the construction of anal-
ogous representations of these 139 cases for other
languages–thus enabling a cross-lingual mapping
that would yield potential metaphorical exten-
sions. Testing these metaphorical extensions
would proceed in each language by examining
cross-field analogues, as in the English case. Ulti-
mately, it would be critical to demonstrate the mul-
tilingual relevance of this representational map-
ping for processes such as PP attachment.
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A Supplemental Material: Metaphor
Classes, Examples, LCSs

A supplemental resource (spreadsheet) has been
provided in .zip format at:
https://www.dropbox.com/s/
4vm0ddulemcbnoa/NAACL-2018_Camera_
Ready_Metaphor_Classes.zip?dl=0

The top level file inside of the .zip file above is:
20180314-Final Metaphor Classes&Examples&
LCSs(NAACL-18).htm

This is a worksheet that contains two tabs, cover-
ing both Spatial Classes and Mappings into LCS
structures for literal and metaphorical meanings:

• Tab 1: Spatial Classes - 16 spatial classes, di-
vided according to 139 unique spatial expres-
sions, with members corresponding to 197
hyperlinked MN metaphors. MN Metaphor
categories that have been mapped into LCS
structures in Tab 2 are listed at the top of each
class in column B and highlighted in orange.
• Tab 2: LCS Mappings - Mappings from

16 spatial classes into LCS structures for
both the physical/literal meaning and the
metaphorical meaning. Includes examples,
variables and constants, sample verbs, and

hyperlinks to the relevant MN metaphor
cases. Examples in Column I are either found
on the web (links provided) or adapted from
the Push sentences.
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Abstract

While humans use natural language to express
spatial relations between and across entities
in the world with great facility, natural lan-
guage systems have a facility that depends
on that human facility. This position paper
presents FrameNet’s1 approach to represent-
ing spatial relations in language, and advocates
its adoption for representing the meaning of
spatial language. This work shows the impor-
tance of axis-orientation systems for captur-
ing the complexity of spatial relations, which
FrameNet encodes with semantic types.

1 Introduction

While humans use natural language to express
spatial relations across entities in the world with
great facility, natural language systems have a fa-
cility that depends on that human facility. (See
(Mikolov et al., 2013) for a different perspective.)
Natural Language Processing (NLP) applications
such as robotic systems responding to commands
about objects in a scene require accurate infor-
mation on the spatial relations among those ob-
jects. In addition to determining what information
to provide is the challenge of determining how to
represent such information. This work presents
the Frame Semantics view on representing spatial
language, specifically as given in FrameNet (FN).

The rest of this position paper is organized
as follows; Section 2 presents basic information
about FN, including its current status; Section 3
provides a brief overview of related work; Section
4 covers the different kinds of spatial information
that FN has recorded, including semantic types
for characterizing spatial relation language, two
of which constitute innovations over prior work;
Section 5 shows how employing FN’s spatial in-
formation can benefit NLP; and Section 6 briefly

1http://framenet.icsi.berkeley.edu

discusses FrameNet’s plans for future work on the
language of spatial relations. Importantly, expand-
ing FN’s coverage for representing spatial rela-
tions is possible given existing FN infrastructure,
i.e. frames, frame elements, and frame-to-frame
relations, as well as semantic types.

2 Background to FrameNet

This section provides a very brief overview of FN,
with information about its foundational principles
and its relatively recent attention to basic linguistic
phenomena that pose challenges to NLP, including
the language of spatial relations, as well as details
about its current status.

2.1 Frame Semantics and FrameNet

Frame Semantics (Fillmore, 1985) is the theoreti-
cal basis of FrameNet (Ruppenhofer et al., 2016),
a knowledge base building effort, whose product,
the FN database, is useful in NLP applications.

Central to the theory is the semantic frame
(Fillmore, 1975), a schematic representation of a
scene, whose frame elements (FEs), or semantic
roles, identify participants and other conceptual
entities, and whose underlying conceptual struc-
ture humans access for both encoding and decod-
ing purposes. FrameNet adopted the lexical unit
(LU) as the focus of analysis, defining an LU as a
pairing of a lemma and a frame (Cruse, 1986).

FrameNet also distinguishes core and non-core
frame elements. Thus, core FEs uniquely de-
fine a frame: BUYER, SELLER, MONEY, and
GOODS2 uniquely define frames that constitute
the Commercial transaction3 family of
frames. In contrast, non-core FEs are relevant to
events or situations in general; all events and situ-
ations occur at a time and in a place. The non-core

2Frame Element names appear in SMALL CAPS.
3Frame names appear in typewriter font.
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FE PLACE is of particular importance for spatial
relations (and is discussed further below).

FrameNet defines Spatial contact as a
scene in which a FIGURE is located in contact
with a GROUND. With some words, the FIGURE

is also asserted as fully or partially supported by
the GROUND (e.g. on), while in others a support
relation is denied (e.g., TO, as in She put her hand
TO the wall), or unspecified (e.g. against). Some
LUs assert a direction in which to find the FIGURE

from the GROUND (e.g., atop).
Consider the two example sentences below that

instantiate the Spatial contact frame, where
each realizes the FIGURE and the GROUND FEs.

1. Then [Maria FIGURE] fell and lay ON [the
floor GROUND].

2. There were [a hat and feathers FIGURE]
ATOP [the lid GROUND].

Contrast on and atop: on allows any direction of
contact (on the {ceiling, wall, ground}), while
atop specifies a particular direction of contact, i.e.,
above the GROUND. FN encodes such differences
in a set of semantic types that specify axis systems
and directions, based on these axis systems.

2.2 Current Status of FrameNet
At the time of this writing, the FN database
holds over 1,220 frames, 13,640 LUs, and nearly
202,230 annotated sentences. Of importance
here, FrameNet has defined 29 spatial language
frames, covering 409 LUs that describe spatial re-
lations, and approximately 4,200 annotated sen-
tences, along with six semantic types for distin-
guishing spatial relation LUs.

3 Related Work

Linguists, computational linguists, and NLP re-
searchers in particular, have studied spatial rela-
tions in language, and for the sake of develop-
ing annotation schema and NLP systems that take
such information into consideration.

For example, (Dorr and Voss, 1993), addressed
spatial relations for defining the relation between
an interlingua and a system for representing
knowledge in machine translation. Pursuing ma-
chine translation (Voss et al., 1998) investigaged
how the semantics of a spatial expression is allo-
cated lexically.

(Jackendoff, 1996) considered how language
users talk about what they see, addressing how

the mind might encode spatial information and lin-
guistic information, as well how it might commu-
nicate between the two. That work also laid out
some of the ”boundary conditions for a satisfac-
tory answer to these questions” (1996:3), and de-
fined an approach to spatial representation. In a
somewhat similar vein (as a contributiton to cog-
nitive semantic theory of conceptual structure), al-
beit from a different perspective, (Talmy, 2003)
presented an approach to spatial representation
that encompasses spoken and signed language.

More practically-oriented recent work (Kipper
et al., 2004) expanded a verb lexicon (Kipper et al.,
2000) using prepositions, i.e., linguistic material
that encodes spatial information, extrapolating in-
formation about classes of verbs and their syntac-
tic frames from (Levin, 1993). The annotation of
spatial relations in language (Pustejovsky et al.,
2011) constituted the focus of a workshop on inter-
operable semantic annotation, and included work
on spatial role labeling with an eye toward ex-
tracting spatial information from corpora (Kord-
jamshidi et al., 2011) that also led to multimodal
spatial role labeling (Kordjamshidi et al., 2017).

4 Spatial Information in FrameNet

This section describes the kind of information that
FN provides about spatial relations, i.e., frames
that characterize spatial relations, non-core FEs
that indicate location of an event or an entity,
frame-to-frame relations that link the relevant
frames, and semantic types that give specific se-
mantic information beyond a frame description or
a LU definition.

4.1 Non-Core Frame Elements

An advantage of FrameNet as a resource for spa-
tial language is that FN also models non-spatial
language. This feature is especially important
since spatial and non-spatial language are not
completely separable. Most frames in FrameNet
include one or more spatial FEs, the most com-
mon of which are PLACE, present in all frames
that inherit from Event, as in # 3, and LOCA-
TION OF PROTAGONIST, available in all frames
with a causal entity (e.g. CAUSE) as in # 4, or a
perceiver (e.g. EXPERIENCER).

3. The hiker DIED [in Antarctica PLACE].

4. She TESTED the bomb [from a safe distance

LOCATION OF PROTAGONIST].
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4.2 Frames and Frame Relations

Frames represent situations and states of affairs
at a level of generalization that recognizes the
commonalities within and across sets of seman-
tically related lexical items. FN records several
frame-to-frame relations to indicate how frames
relate to each other in its hierarchy of frames;
Inheritance and Using are the relevant ones for
spatial relations language. Frames that inherit
Locative relation capture the lexical mate-
rial for spatial relations in English.4

Inheritance exists between a parent frame and
a child frame under specific circumstances: for
each FE, frame relation, and semantic charac-
teristic in the parent, the same or a more spe-
cific corresponding entity in the child exists, as in
the relationship between Locative relation
and Interior profile relation. Using is
a relationship between a child frame and parent
frame in which only some of the FEs in the par-
ent have a corresponding entity in the child; if
such exist, they are more specific. Using holds
between Interior profile relation and
Bounded region.

Figure 1: Inheritance and Using Relations

Figure 1 depicts some frames related to the
Locative relation frame via Inheritance,
some of which also employ the Using relationship.
Note that a frame may inherit one frame and use
another: Goal inherits Locative relation
and uses Source path goal.5

The static spatial relations frames inherit from
Locative relation, which defines the basic
situation where the FIGURE entity has a location
that is determined by means of a relation to the

4https://tinyurl.com/y7jpt9hd. FN team
members are well-aware that the work has only begun.

5The careful reader will note the ”incorrect” direction
of the arrows in Figure 1, which follows conventions that
FrameNet uses.

GROUND, another entity. These static spatial rela-
tions all share this basic structure; moreover, each
specific frame also holds a Using relation to an im-
age schema6 that defines the relation between the
FIGURE and the GROUND.

FrameNet models the lexical unit in as a mem-
ber of the Interior profile relation
frame (which inherits Locative relation).
Its frame elements include FIGURE, the located
entity and GROUND, the basis of the loca-
tion. Interior profile relation uses the
Bounded region image schema, which defines
a boundary, an inside, and an outside. Part of
Using specifies that the FIGURE identifies the in-
side region, and the GROUND identifies the bound-
ary. FN distinguishes among other LUs by defin-
ing them in different related frames in this family
(of frames) and via semantic types that cross-cut
frame distinctions.

4.3 Semantic Types
Linguists, anthropologists, and computer scien-
tists have studied the cognitive, cultural, linguis-
tic, and computational aspects of space and spa-
tial relations for decades (Herskovitz, 1987; Bow-
erman and Pederson, 1992; Regier, 1996; Levin-
son, 2003). FrameNet has defined a cognitively-
inspired set of semantic types for spatial LUs to
indicate (1) with respect to which axis-system(s)
(Talmy, 2000) a given LU is defined, and (2)
which direction(s) from these axes the active zone
a given LU selects.

Semantic Type Example
Basic absolute to the east of Pam
Axis viewpoint-based to the left of Sue
System motion-based ahead of Paul

ground-based to Chuck’s left
FN Near absolute atop the tree
Added Flexible in front of her

Table 1: Semantic Types for Spatial Relations

As Table 1 shows, the basic axis systems in-
clude four types: absolute (to the east of X);
viewpoint-based (to the left of X); motion-based
(ahead of X); and ground-based (to X’s left).
FrameNet has defined a semantic type for each of
these four possibilities. Besides semantic types

6Image schemas (Lakoff and Johnson, 1980) are cognitive
models, such as of containment, oppositional forces, and ver-
ticality, which language users apply to understand and reason
about the world. FN characterized image schemas as frames.
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named with the terminology of the basic axis
systems, FN has defined two other new seman-
tic types: Near absolute (atop) and Flexible (in
front). These two semantic types innovate on pre-
vious work (Talmy, 2000), and derive from FN’s
fairly recent work on spatial relations.

Using semantic types for each direction in each
axis system would seem like a simple enough
modeling choice. However, LUs exhibit patterns
whereby a default axis system is overridden un-
der specific conditions. Thus, for example, some
LUs inflexibly select an absolute direction (e.g.,
east); some normally select an absolute direc-
tion, but allow a ground-based one (atop); and
some default to a ground-based direction, but al-
low viewpoint-based or motion-based direction (in
front). FrameNet’s semantic types specify the pat-
tern of axis ambiguity a LU exhibits.

5 Operationalization

FrameNet’s models of spatial language consist of
frames, frame relations, and semantic types, all
static and abstract. However, using FrameNet’s
models for visual scene understanding requires
grounded and flexible implementations. As such,
the machinery needed to match a spatial descrip-
tion like the cow IN FRONT of the train to an im-
age requires the following: (1) object recognition
of the GROUND (train); (2) image parsing for each
axis system centered on the train (since in front is
a flexible lexical unit); and (3) recognition of the
FIGURE (cow) in the forward-pointing vector for
each axis system.

Figure 2: the cow in front of the train

FrameNet contributes in three critical ways to
this matching process, by providing the following:

1. training data showing the manifestation of the
FIGURE and GROUND roles in language;

2. an inventory of frames for spatial situa-
tions that any system must recognize (e.g.
Containment, Contact);

3. an inventory of semantic types for axis sys-
tems and their vectors.

Crucially, FrameNet’s semantic types distinguish
the flexible LU in front from a Motion based LU
(ahead), where only the motion-based forward
zone of the train is scanned.

6 Future Work

This position paper has described FrameNet’s
work on static spatial relations. It has shown that
FN provides critical information for certain NLP
applications that require input for the processing
of spatial relations language.

Going forward and with sufficient resources,
FrameNet plans to analyze other types of spatial
relations language, including the following:

• Dynamic spatial relations language, e.g. to,
from, as in:

She went TO the lake FROM the house.

Pseudo-dynamic spatial relations, e.g. across,
as in:

She lives ACROSS the bridge.

• Constructions (Kay and Fillmore, 1999; Fill-
more, 2013) that license static spatial rela-
tions to be construed as GOALs, as in:

I went UNDER the bridge.

Preliminary studies of the other types of spatial
language indicate that FN’s existing system of
frames, frame elements, frame-to-frame relations,
and semantic types will serve as a solid foundation
for future work.
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Abstract

Spatial language understanding is important
for practical applications and as a building
block for better abstract language understand-
ing. Much progress has been made through
work on understanding spatial relations and
values in images and texts as well as on giv-
ing and following navigation instructions in
restricted domains. We argue that the next
big advances in spatial language understand-
ing can be best supported by creating large-
scale datasets that focus on points and paths
based in the real world, and then extending
these to create online, persistent playscapes
that mix human and bot players, where the bot
players must learn, evolve, and survive accord-
ing to their depth of understanding of scenes,
navigation, and interactions.

1 Introduction

Language is not sealed in a textual medium dis-
connected from the world. People use language to
talk about people, places and things that exist both
in time and space. Abstract ideas are typically
conveyed through metaphors that are grounded
in embodied concepts from the domains of spa-
tial movement, forces, and manipulation (Naray-
nan, 1999). Mental simulation involving motor
and perceptual content likely plays a crucial role
in sentence comprehension (Bergen et al., 2010).
Natural language understanding thus requires the
ability to analyze complex descriptions that re-
late referents spatially and temporally and connect
them to grounded locations and times.

One of the richest domains for encountering
such language is that of providing and following
navigational instructions involving both named
and vague references and relationships in both in-
door and outdoor contexts. Spatial navigation it-
self is one of the better understood aspects of cog-
nitive function, including extensive research into

cells that encode grids, boundaries and directions
(Chersi and Burgess, 2015; Moser et al., 2017).
This indicates that work on spatial tasks in lan-
guage has the potential to lead to a virtuous cycle
between modeling of language and understanding
of the brain and cognition.

No current systems adequately support natural
language interactions for spatial tasks. Geospa-
tial mapping applications (such as Google Maps)
provide algorithmic, route-based instruction at a
global scale. However, they rely on explicitly
named roads, paths, and addresses, and they as-
sume a large database as a model of the world,
which includes mappings between names and geo
locations. Such systems give instructions but can-
not interpret them, much less interact with a hu-
man user. They also typically do poorly at provid-
ing contextual descriptions, especially for build-
ings, bridges, and other salient landmarks.

Understanding spatial references from natural
language must handle inherent spatial vagueness
and other features of the figure, and ground ob-
jects or trajectories in a coordinate system. Spatial
grounding is relative—it depends on size, shape,
and function of the figure and ground objects. Fur-
thermore, it is identified by transforming loca-
tion with respect to reference frames in language
(Levinson, 2003; Tenbrink and Kuhn, 2011) to a
ground. Languages have many options for de-
scribing the spatial relationships between different
participants and objects and these must be recon-
ciled with the ground- truth scene or map.

We argue that the next big advances in spa-
tial language understanding can be best enabled
by first creating large-scale datasets (hundreds of
thousand to millions of examples) that require spa-
tial understanding of real world points and paths,
and next, building on these to create persistent, on-
line playscapes that enable both automated agents
and people to interact in virtual and augmented re-
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ality environments.
Navigation involves traversal through a series of

points, and each point can involve detailed scene
understanding needs. Navigation is also an excel-
lent link between the local (e.g., within a building)
and the global (e.g., across a continent) variants of
spatial tasks. Scene understanding—in both im-
ages and texts—is needed at both ends of this scale
and in between. We expect that such a project
provides challenges of high complexity, while also
linking in to rich, already-available resources that
connect both text and images to each other and to
key metadata, including coordinates in both space
and time.

2 Pillars and Principles

Here are some considerations as we begin a multi-
year effort to create these resources.

2.1 Data and annotation
Our goal is to create large-scale resources that en-
compass natural spatially oriented tasks that ordi-
nary people accomplish every day.

Scale To be able to work with diverse locations
(e.g., cities, theme parks, natural settings) across
the world, we need large datasets associating lan-
guage with spatially relevant points and paths—on
the scale of at least hundreds of thousands.

Multilinguality For both theoretical and prac-
tical reasons, we cannot focus on just one lan-
guage. Different languages have different spa-
tial relations, often involving the three different
frames of reference—relative, intrinsic, and abso-
lute (Levinson, 2003)—in different ways. Naviga-
tional systems supporting vague reference off the
grid are needed even more in locations where En-
glish and other majority languages are not spoken.

One way we already target multilinguality is via
community-driven crowd-sourcing (Funk et al.,
2018). In our approach, we intentionally cycle our
iterations throughout the world and we involve de-
velopers from each locale because they have in-
sights into how the local context affects how lan-
guage is used and how the task is performed.

User-driven annotation We seek to comple-
ment previous efforts that have focused on fine-
grained linguistic annotation, such as Iso-Space
(Pustejovsky, 2017). We will obtain scale through
both crowd-sourcing and gaming environments—
that is, annotations that can be derived from com-

petent language speakers (Chang et al., 2016).
This places an emphasis on task evaluations with
implicit feedback rather than prediction and evalu-
ation of labels on text and images. Spatial tasks are
natural fits for this strategy, since both evaluation
metrics and reward functions (in reinforcement
learning) can use spatial proximity to an end loca-
tion (MacMahon et al., 2006; Chen and Mooney,
2011; Vogel and Jurafsky, 2010; Artzi and Zettle-
moyer, 2013) or spatial configuration (Bisk et al.,
2018; Misra et al., 2017; Tan and Bansal, 2018).

There are trade-offs between model-driven and
user-driven corpus building. The former de-
fines inventories of spatial relations and generat-
ing assignments that will cover them. This may
omit phenomena or distinctions not covered in
the model and requires considerable expertise and
tooling—both of which increase cost and limit
scale. User-driven annotation is more exploratory
and may be limited by the preferences and tenden-
cies of contributors. We will mitigate such effects
by composing diverse crowds from various locales
(Funk et al., 2018). Ultimately, we seek to create
resources that contain language grounded in spa-
tial relations that, by construction, include extra-
linguistic factors like vantage point, shared con-
text, and other location-dependent world knowl-
edge. We also expect this setting to support
complementary non-linguistic spatial understand-
ing approaches, such as Simultaneous Localiza-
tion and Mapping (Cadena et al., 2016).

Sharing and privacy To facilitate accessibility
and reproducibility, the source material used for
building resources should be, wherever possible,
unencumbered by copyright and be acquired with
full permission from content creators. Location
information brings with it significant privacy and
ethical considerations. We will thus focus on loca-
tions in shared public spaces that avoid close con-
nections to any person who helps create the data.
We will develop our datasets using open resources
such as Wikipedia and Open Street Maps com-
bined with materials produced by (both paid and
volunteer) crowd contributors who have granted
permission in advance. Overall, our datasets and
environments will be built—from start to finish—
to be compliant with the European Union’s Gen-
eral Data Protection Regulation (Council of Euro-
pean Union, 2016).1

1https://www.eugdpr.org/
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2.2 Task considerations

We emphasize the real world as the basis for spa-
tial language understanding tasks, while allow-
ing for a spectrum of resources from digitized
real world artifacts to virtual environments to aug-
mented real world interactions.

Real world emphasis. The natural starting point
for building spatial language understanding capa-
bilities is the real world itself. For example, spo-
ken interfaces to mobile robots necessarily inte-
grate vague reference and learning a local map
through exploration (Thomason et al., 2015; Han-
heide et al., 2017; Arkin et al., 2017). Unfortu-
nately, working with physical robots brings addi-
tional challenges such as dealing with hardware
calibration and failure. Thus, many researchers
have opted instead to work with simulated envi-
ronments that enable faster iteration on modeling
and learning (Jänner et al., 2017; Hermann et al.,
2017; Bisk et al., 2018), and some support both
movement and manipulation (Yan et al., 2018).

Simulated environments, however, do not rep-
resent full real world messiness. It is thus inter-
esting to consider a middle ground: working with
high-fidelity simulations of the real world. For ex-
ample, Anderson et al. (2017) introduce a visually
grounded navigation task set in 3D simulations of
actual houses. This requires both rich scene under-
standing and difficult language interpretation. We
intend to work in this same mode, gathering dig-
itized artifacts relating to real world locations—
including databases, texts, images, and more—to
support complex and compelling tasks that can im-
pact real world applications. In particular, we ex-
pect to achieve considerable scale on navigational
tasks for walking through a campus or park.

First-person perspective. For at least some of
the tasks we envision, human and machine agents
will not have access to a God’s eye view, like that
available to mapping applications (with access to
full geographic features via databases). Instead,
such tasks must be solvable by interpreting vi-
sual and textual stimuli relevant to the locations.
This should put a greater emphasis on challenging
spatial descriptions and relationships rather than
known and named routes. Nonetheless, maps as
visual artifacts (e.g., PDFs) may be incorporated
in some cases, giving automated agents the ability
to use them as a hiker might use a paper map with-
out access to a GPS-based mapping application.

Mirowski et al. (2018) is a recent example that
takes a first-person perspective in a real world sim-
ulation, though one that does not incorporate lan-
guage. They learn a model for navigating the
Google Street View graph via reinforcement learn-
ing, where the goal location is specified via its dis-
tance to several other landmark locations and no
explicit maps are used. Two especially interest-
ing aspects of their approach are their use of cur-
riculum learning (start with nearby goals and then
tackle more distant ones) and showing successful
adaptation from one city to another. These ideas
are complementary to those that use language as
a component in learning to navigate, so it should
be possible to effectively integrate linguistic inputs
(e.g., directions and descriptions of the goal) into
the approach.

Human–machine interaction Thomason et al.
(2015) demonstrate a robot that interacts with peo-
ple and incrementally expands its language under-
standing capabilities. In this vein, we seek to cre-
ate simulated (real world) environments that sup-
port spatial language tasks in which bots and hu-
mans mix, collaborate, and compete. In such set-
tings, there is no annotation: instead, players–both
bot and human–gain points, status, and bounty
(e.g., compute credits) by accomplishing goals.

This approach opens up opportunities to transi-
tion from static tasks such as following a particu-
lar set of navigational instructions to dynamic in-
teractions such as following instructions made in
the moment and in context by another player. If
successful, this dynamism could create far greater
scale for iterating on modeling ideas—with the
evaluation measure (success in the game) as a
built-in feature. This approach not only frees us
from the need for costly, one-off annotation ef-
forts, but also creates an ecologically compelling
environment where progress is forced on and by
the bots: they must perform well to get rewards
to stay alive and maintain their status in the
playscape (such as compute credits). As impor-
tantly, this survival criterion also entails the need
to attend to representational and computational ef-
ficiency (FLOPS) on top of overall ability.

Building playscapes also plots a path from vir-
tual real world to augmented reality applications
and games that include linguistic interactions be-
tween human and bot players, and manipulation of
virtual objects that have real world locations. Cap-
turing Pokémon characters and interacting with

48



gyms in Pokémon Go are examples of such ma-
nipulations.

3 Tasks

Our focus on real world spatial language artifacts
provides a natural and mutually reinforcing pro-
gression from points to paths to playscapes.

Points Scene understanding—building a model
for a point in space—is the bedrock of real world
spatial language tasks. We must be able to ob-
serve and describe visible objects and the spatial
relationships between them. Before addressing
paths and navigation tasks, we can make consid-
erable progress by improving our data and mod-
eling for spatial relations in tasks like image seg-
mentation and image captioning (Hall et al., 2011;
Hürlimann and Bos, 2016), grounding referential
expressions (Kazemzadeh et al., 2014; Mao et al.,
2016; Hu et al., 2017), relative positioning of ob-
jects (Kitaev and Klein, 2017) and image geolo-
cation (Hays and Efros, 2008; Zamir et al., 2016).
We will create collaborative image identification
and description tasks that emphasize spatial rela-
tions and geographically salient landmarks.

There has also been much work on annotat-
ing and calculating spatial relations in text (Puste-
jovsky et al., 2015; Pustejovsky, 2017), resolv-
ing toponyms (Leidner, 2007; DeLozier et al.,
2015), and text geolocation (Wing and Baldridge,
2014; Rahimi et al., 2017). There are further
opportunities for building or exploiting annota-
tions on spatially focused texts—e.g., identifying
vague regions (DeLozier et al., 2016) or writing a
WikiVoyage page for a city given all available in-
formation in Wikipedia, akin to Liu et al. (2018).

Most importantly, the extensive mappings we
have between texts and images and their corre-
sponding locations motivate a focus on simula-
tions of the real world. Learning spatial relations
within massive amounts of images and texts can
serve as a pretraining step to building components
of models that solve real world navigation tasks.

Paths Understanding salient features and spa-
tial relations in images and text naturally extends
into navigation tasks that connect such points. To
avoid biases, we will create navigation challenges
through several different means, with an emphasis
on domains that require a mix of named features,
salient landmarks, and general features that neces-
sitate relational, imprecise reference.

Harvesting and extending: There are numerous,
extensive walking tours of public spaces. For ex-
ample, universities typically provide self-guided
campus tours that include text, images, and maps.
Considerable work is required to standardize the
specification and formatting of the tours, organize
the associated artifacts (such as pictures), and con-
vert the analog paths to digital ones (or create
them) so that they could be used in experiments.

Descriptions to paths: In other cases, we have
human descriptions of journeys in resources like
WikiVoyage, such as from airports to city centers
or how to get into Grand Canyon by car from dif-
ferent directions. We can have multiple people fol-
low the directions in a resource like Google Street
View to establish both ground truth and capture
variation in human performance.

Paths to descriptions: Many volunteers on
OpenStreetMaps produce GPS traces,2 and we can
elicit navigational instructions covering them.

Points to paths and descriptions: Given points,
we can generate random paths, elicit navigational
instructions for them, and then have others gener-
ate paths following instructions. This setup does
not depend on existing data and gives more con-
trol over variables such as the number of points,
length of the descriptions, and more. It can also tie
into existing point-based data, such as the Google
Landmarks,3 so that point and path models that re-
inforce each other can be explored.

This is the strategy we are beginning with: fo-
cusing on collecting navigational instructions in
city centers, resorts and college campuses for
itineraries that include three to ten points of in-
terest. Itineraries will be generated both by sam-
pling paths connecting waypoints drawn from
gazeeteers and Wikipedia and by generating travel
itineraries from real world trips (Friggstad et al.,
2018). We will collect instructions given both by
people who are physically on the ground as well
as others visiting the points virtually via Google
Street View. We expect that this effort will go
through several iterations as we discover the pain
points and better understand which approaches
work best.

Playscapes Collecting datasets with paths and
corresponding navigation instructions can pro-
vide a valuable source for learning and evalu-

2https://www.openstreetmap.org/traces
3https://research.googleblog.com/2018/

03/google-landmarks-new-dataset-and.html
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ating models. The HCRC MapTask (Anderson
et al., 1991) is a launching-off point for creating
collaborative games where participants help each
other complete a virtual road rally. This natu-
rally extends the path-oriented efforts discussed
above, but mixes in collaboration and competi-
tion while providing motivation through in-game
rewards (e.g., status, points, and compute cred-
its). Such games could take a variety of forms:
one possibility is to provide a series of waypoints
drawn from a WikiVoyage page to one player
who then uses the page and resources like Google
Street View to write instructions. Another player
(or players) must then follow the instructions and
possibly solve additional puzzles or tasks along
the way.

It would be even more powerful to create on-
line, persistent games in which human and bot
players need to understand multi-step natural lan-
guage cues in order to find target locations and ac-
complish other in-game objectives. This moves us
from creating datasets to establishing ecologically
interesting playscapes, such as ones in which bots
must solve navigation tasks in order to gain the re-
wards needed for their survival.

Here we focus on spatial motion and relations
necessary for navigation and scene understanding.
By embedding our tasks and playscapes in digi-
tized versions of the real world, however, we pro-
vide a natural launching-off point for eventually
adding manipulation via augmented reality appli-
cations. The recently released Google Maps gam-
ing API4 can be a significant enabling technol-
ogy for creating such playscapes. A tantalizing
prospect would be to create games akin to Ingress
and Pokémon Go that furthermore involve lan-
guage. The key would be to design them to be
relevant, compelling and fun while ensuring pri-
vacy and safety.

Gamification also makes the playscape more
compelling and fun for human participants. It
gives a reason for participants to engage more with
with other players and negotiate the spatial envi-
ronment to achieve their in-game goals. We will
likely assign asymmetric capabilities for both hu-
man and machine players. That is, players will
take on different roles with different abilities—
e.g., some could be scouts who have a wider range
of (augmented) perception, while others could be

4https://developers.google.com/maps/
gaming/

manipulators who can acquire objects and solve
puzzles requiring interaction with virtual objects
at game-relevant real world locations. Machine
agents could play many different roles, such as fast
virtual scouts, helpful carriers of virtual objects,
and translators who help interactions between hu-
man players who speak different languages. Such
an environment should also provide a rich sub-
strate for exploring approaches that incorporate
pragmatic inference for giving and following in-
structions (Fried et al., 2018).

In designing such playscapes, we will avoid vi-
olent themes and combatitive gameplay. Instead,
we seek to design them in the mold of collobo-
rative board games like Forbidden Island. Play-
ers may still compete for overall higher individual
rankings with respect to status and points, but we
envision that they will do this by individually con-
tributing to collaborative group efforts.

4 Conclusion

We seek to create large-scale datasets that thread
together tasks that present challenges from points
to paths and ultimately provide the basis upon
which we create playscapes that incorporate real
world data and interactions. The annotations for
these will be in the form of language and behav-
iors rather than detailed formal linguistic represen-
tations. However, we believe it is likely that suc-
cessful models will avail themselves of structured
information around ideas like reference frames,
structural biases in planning and navigation, and
more. We also would welcome additional layers
of analysis on the data we release.

In sum, we seek to produce richly associated
data that ties text and images to locations at lo-
cal, global, and scene-level resolutions. We hope
to get feedback from the community and build col-
laborations as we begin this endeavor.
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Abstract

Spatial relation extraction from generic text is
a challenging problem due to the ambiguity of
the prepositions spatial meaning as well as the
nesting structure of the spatial descriptions. In
this work, we highlight the difficulties that the
anaphora can make in the extraction of spa-
tial relations. We use external multi-modal
(here visual) resources to find the most proba-
ble candidates for resolving the anaphoras that
refer to the landmarks of the spatial relations.
We then use global inference to decide jointly
on resolving the anaphora and extraction of the
spatial relations. Our preliminary results show
that resolving anaphora improves the state-of-
the-art results on spatial relation extraction.

1 Introduction

Spatial relation extraction is the task of determin-
ing the relations that can exist among the spatial
roles extracted from the text (D’Souza and Ng,
2015). In the recent years, significant progress has
been made in spatial language understanding (i.e.
mapping natural language text to a formal spa-
tial meaning representation) (Kordjamshidi et al.,
2017a; Kordjamshidi and Moens, 2015a). As a
basic example consider the sentence, ”A car is
parked in front of a house.” In this sentence car
is a trajector, house is a landmark and in front of
is a spatial indicator. Spatial indicators indicate
the existence of spatial information in a sentence.
Trajector is an entity whose location is described
and landmark is a reference object for describing
the location of a trajector.

Extraction of the spatial relations with a good
accuracy is still challenging (Pustejovsky et al.,
2015). Particularly, our investigation on the er-
rors of the previous models shows that when in
a sentence the landmark is expressed as a pro-
noun like (”it”, ”them”, ”him”,..), the extrac-
tion of spatial relations becomes more difficult.

For example, in the sentence, ”A narrow, rising
street with colourful houses on both sides, among
them a green house with balconies and a white
car parked in front of it, and a blue-and-white
church on the right”, some of the spatial relations
for this sentence will contain a landmark which
is a pronoun such as 〈R1 ←[a green house]tr,
[among]sp, [them]lm〉 and 〈R2 ←[a white car]tr,
[in front of ]sp, [it]lm〉. This issue is related to the
well-known anaphora resolution problem which
is also problematic for our goal of spatial relation
extraction.

Anaphora Resolution which mostly appears as
pronoun resolution, is the linguistic phenomenon
by which the given pronoun is interpreted with
the help of earlier or later items in the dis-
course (Mitkov, 2005). The pronoun word/phrase
is referred as anaphor whereas the word/phrase
to which it is referring is called antecedent, as
both anaphor and antecedent are referring to the
same object in the real world, they are termed co-
referential (Mitkov et al., 2007). It might be pos-
sible that for some anaphor, the antecedent is not
mentioned in the same sentence, for example, con-
sider a sentence, ”there are a couple of trees in
front of it”, here ”it” is referring to some object
which is not mentioned in the sentence, however,
the referring object might have been mentioned in
another sentence of the document. Anaphora Res-
olution generally is recognized as a difficult prob-
lem in Natural Language Processing (Lee et al.,
2017a; Marasovic et al., 2017).

The main research questions that we aim to
address in this paper are, 1) whether the exter-
nal knowledge from multimodal resources can
help anaphora resolution in text. 2) whether the
anaphora resolution can help in the spatial relation
extraction from text (especially the relations in the
form of triplet - Trajector, Spatial Indicator, Land-
mark). To answer these questions, we incorpo-
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Figure 1: Image Textual Description: ”A narrow, rising street with colourful houses on both sides, among them a
green house with balconies and a white car parked in front of it, and a blue-and-white church on the right”

rated anaphora resolution for the pronouns in the
sentence and proposed a global machine learning
model to exploit the resolved pronouns. In the first
step, we find the list of possible landmarks that can
replace a pronoun in a relation (under considera-
tion) with a specific candidate trajector and can-
didate spatial indicator. We used Visual Genome
(Krishna et al., 2017) (an external) dataset for this
purpose.

Visual genome dataset provides us a list of pos-
sible landmarks which can be used to resolve the
anaphora by filtering them based on their similar-
ity with the candidate landmarks that appear in the
sentence. This information is used in the global
inference model for joint prediction. We improve
the spatial relation extraction from text by incor-
porating anaphora resolution to recognize land-
marks in spatial relations which distinguishes our
work from other works on anaphora resolution.
The contribution of this paper includes a) exploit-
ing external visual relation datasets to inject exter-
nal knowledge into our models b) forming a joint
model that imposes the consistency between the
decisions made by separate relation classifiers that
decide on a candidate spatial relation with pronoun
landmark and candidate spatial relations with that
pronoun replaced by candidate noun resolvants. c)
obtaining state-of-the-art results on spatial infor-
mation extraction by exploiting the anaphora res-
olution. This paper shows our preliminary efforts
in the sense that we have not applied the existing
work on anaphora resolution. We do not aim at im-
proving the current techniques in that area but only
show that such resolutions using visual resources
can help spatial relation extraction.

The rest of this paper is organized as follows,

first we describe the problem setting in Section 2;
our proposed model for this problem is described
in Section 3. The dataset used in tests, and evalu-
ation results, are presented in Section 4. In Sec-
tion 5, we briefly point to the related work in this
area. Finally, Section 6 summarizes the conclu-
sions and outlines directions for future work.

2 Problem Definition

The goal is to improve the extraction of spatial
information from text by incorporating anaphora
resolution for landmark candidates. We briefly de-
fine the spatial role labeling (SpRL) task which
is based on a previous formalization of (Kord-
jamshidi et al., 2017b, 2011; Kordjamshidi and
Moens, 2015b). Given a sentence S, segmented
into phrases P = [P1, P2, P3, ...Pn] where Pi is
the identifier of ith phrase in the sentence, the
goal of spatial role labeling is to find the phrases
which carry spatial roles (i.e. trajector (Tr),
spatial indicator (Sp), landmark (Lm)), as intro-
duced in Section 1 and identify the links between
them to form spatial realtion, R = [Tr, Sp, Lm].
Moreover, each Spatial relation is further clas-
sified into coarse-grained type - (region, direc-
tion, distance) and fine-grained types based on
their coarse-grained types (e.g. (region,EC), (re-
gion,DC), (direction,left), (direction,right)).

Figure 2 shows an example of spatial roles, spa-
tial relations and spatial relation type extracted
from a given text. In this example, the loca-
tion of statue (trajector) is described with re-
spect to the hill (landmark) using the preposition
on (spatial indicator). In Figure 1, the caption
shows the textual description of an image, fea-
turing multiple spatial relations (〈R1 ←[a green
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Figure 2: An Example of Spatial Roles and Relation Types.

house]tr, [among]sp, [them]lm〉, 〈R2 ←[a white
car]tr, [in front of ]sp, [it]lm〉, 〈R3 ←[a blue-and-
white church]tr, [on the right]sp, [None]lm〉 and
〈R4 ←[colorful houses]tr, [on]sp, [both sides]lm〉)
where R1, R2 have pronoun landmark, and R3,
R4 have implicit landmarks (i.e. not men-
tioned in the given sentence). R1→landmark
([it]lm), andR2→landmark ([them]lm) are referring
to [colorful houses], and [a green house] respec-
tively. R1, R2 belongs to a well known anaphora
resolution problem where the given pronoun is in-
terpreted with the help of earlier or later items
in the discourse whereas R3, R4 belongs to co-
reference resolution problem (Lee et al., 2017b;
Ng, 2010; Martschat and Strube, 2015) that aims
at finding all expressions in the document that re-
fer to the same entity.

The hypothesis of this paper is that how
anaphora resolution for landmark candidates
might help the inference for the extraction of roles
as well as the relations from sentences. In this
work, we proposed a model to address anaphora
resolution for landmark candidates with the aim
of improving the spatial relation extraction. In
this paper, we assume that the antecedent (if
any) of the anaphora (landmark here) is men-
tioned within the same sentence, therefore, cross-
sentence anaphora resolution is not performed in
this work.

3 Architecture

Depending on the description of the sentence,
the spatial relations can contain pronoun land-

marks (such as ”it”, ”them”, ”him”, ”her”). Con-
sider the aforementioned spatial relations R1 and
R2 extracted from sentence T , R1→landmark
([them]lm) and R2→landmark ([it]lm) are referring
to [colorful houses] and [a green house] phrases of
the sentence T respectively. The components of
computing the anaphora resolution for pronoun
landmark spatial relations is described in the fol-
lowing subsections.

3.1 Exploiting External Knowledge

Given a candidate spatial relation R with a pro-
noun landmark, we are interested in finding the
possible landmark objects which can occur with
the given trajector and spatial indicator. For this
purpose, we used an external resource, that is
Visual Genome relationship dataset (VG). This
dataset contains the relation (preposition) between
various subjects and objects – for details see sec-
tion 4.1. Given R, similar relations are extracted
from visual genome dataset V by matching prepo-
sition and subject with R → spatialIndicator
andR→ trajector−headword respectively, that
is the candidate words for the sp and tr roles.

In this way, we obtain the list of possible
landmark objects and their frequencies in the
VG dataset. We compute the frequency ratio
per object and this ratio is interpreted as the
possibility score of a relation containing that
landmark. In other words, the score RS is
computed as RS ← ORi/TVR where ORi is
the frequency of having object i with the given
trajector-spatial indicator pair, and TVR is the
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Figure 3: Probable landmark extraction model

total relations frequency for given trajector-
spatial indicator pair in VG dataset. This
will yield the set of possible triplets given the
trajector-indicator pair with a score assigned
to each triplet. We denote this set as, UR =
[(UR1 , SUR1

), (UR2 , SUR2
), ..., (URn , SURn)]

where URi and SURi is the ith unique relation and
its score respectively.

3.2 Scoring Landmark Candidate Resolvants
For each sentence we perform a pre-processing
step based on the previous works and obtain a set
of noun phrases that serve as the landmark can-
didates denoted by SL. The aforementioned re-
trieved triplets from visual genome, UR, can con-
tain many landmarks which don’t exist in our land-
marks candidates set, therefore, in this step, we
compute the similarity (using Google Word2Vec)
score between each landmark in SL with all UR
landmarks. The final score for each candidate
landmark in the sentence will be the maximum
score that is computed by averaging the similarity
score and occurrence score of that landmark with
respect to all UR candidates. In this way we obtain
a score for each candidate landmark in SL.

3.3 Learning Model
We formulate this problem as a structured out-
put prediction problem where given a set of input-
output pairs as training examples,E = {(xi, yi) ∈
X × Y : i = 1..N}, an objective function
g(x, y;W ) = 〈W, f(x, y)〉 is learned. This func-
tion is a linear discriminant function defined over
combined feature representation of inputs and out-
puts denoted by f(x, y). However, in this work,

independent classifiers are trained per role and
relations and only the predication is performed
based on the global inference as in (Kordjamshidi
et al., 2017a; Rahgooy et al., 2018) .

We construct a graph using the phrases
{p1, ..., pn} (i.e. each phrase is a node in the
graph) and link these nodes to make composed
concepts such as relations. A classifier is asso-
ciated with each concept in the graph and the do-
main knowledge is encoded over these concepts
by global constraints. Global reasoning is im-
posed over these classifiers to produce the final
outputs by using these constraints. Furthermore,
we used binary classifiers to classify the spatial
roles and relations where trajector, landmark, spa-
tial indicator are denoted by tr, sp, lm respec-
tively and sp.tr.lm, sp.tr.lm.γ, sp.tr.lm.λ de-
notes spatial relations, coarse-grained relations,
and fine-grained relations. Additionally, we de-
note the new-relation-classifier described in sec-
tion 3.5 by sp.tr.lmNRC .

Each phrase in the sentence is described
by a vector of linguistic features denoted by:
ψphrase(pi) (e.g. word form, POS tag, headword
POS tag, dependencyRelation, subCategorization,
etc), these features are used by spatial role clas-
sifiers. The spatial relation is composed of three
phrases (pi, pj , pk), therefore, the combination of
these phrases along with their descriptive vectors
are used in the spatial relation feature set referred
as: φtexttriplet(pi, pj , pk) (e.g. distance between tra-
jector and spatial indicator, concatenation of tra-
jector, spatial indicator, and landmark). These fea-
tures are proposed by (Roberts and Harabagiu,
2012) and (Kordjamshidi et al., 2017a).
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1
∑

i

∑
k spitrjlmk ≥ trj Each tr candidate at least should appear in one relation

2
∑

i

∑
j spitrjlmk ≥ lmk Each lm candidate at least should appear in one relation

3
∑

j

∑
k spitrjlmk = spi Each sp candidate should appear in one relation

4
∑

j trj ≥ spi For each sp we should have at-least one tr

5
∑

k lmk ≥ spi For each sp we should have at-least one lm

6 spitrjlmkγ ≤ spitrjlmk is-a constraints between relations and coarse-grained types

7 spitrjlmkλ ≤ spitrjlmkγ
λ∈Λγ

is-a constraints between coarse-grained and corresponding
fine-grained types where Λγ denotes the candidate fine-
grained types related to coarse-grained type γ.

8 spitrjlmkNRC ≤ spitrjlmk Spatial relation with pronoun candidate should be classified
as true if anyone in top N of the anaphora-resolved triplets is
classified as true.

Table 1: Model Constraints.

3.4 Constraints
The global constraints used in our proposed model
is combination of previously proposed constraints
(1-7) (Rahgooy et al., 2018) and new one (con-
straint 8) described in Table 3.3. In fact, the global
inference is performed using integer linear pro-
gramming techniques subject to these constraints.

3.5 Global Prediction Model
We obtain the output of each classifier in the
model holistically by global reasoning that is by
considering global correlations among classifiers,
when calculating outputs. This goal is achieved by
optimizing an objective function that is the sum-
mation of classifiers’ discriminant functions. The
global objective function for our model is on the
basis of our previous work as follows,

∑

i∈Csp
〈Wsp, φspi〉.spi +

∑

i∈Ctr
〈Wtr, φtri〉.tri+

∑

i∈Clm

〈Wlm, φlmi〉.lmi+

∑

i∈Csp

∑

j∈Ctr

∑

k∈Clm

〈Wsptrlm, φspitrj lmk 〉.spitrj lmk+

∑

γ∈Γ

∑

i∈Csp

∑

j∈Ctr

∑

k∈Clm

〈Wsptrlm, φspitrj lmkγ〉.spitrj lmkγ+

∑

λ∈Λ

∑

i∈Csp

∑

j∈Ctr

∑

k∈Clm

〈Wsptrlm, φspitrj lmkλ〉.spitrj lmkλ+

∑

τ∈Υ

∑

i∈Csp

∑

j∈Ctr

∑

k∈Clm

〈Wsptrlm, φspitrj lmkNRCγ 〉.spitrj lmkNRC .

Each classifier is shown as a binary variable
and Λ, Γ, Υ are the candidates for fine-grained
relations, coarse-grained relations, and pronoun-
landmark spatial relations respectively. The fol-
lowing model variations are designed to evalu-
ate the performance of the proposed model. Fur-
thermore, in all model variations, the CLEF 2017
mSprl dataset described in 4.1 is used for the train-
ing and evaluation of the classifiers.

• Anaphora-Replacement (A-Replacement):
In this model, we replace the landmark
phrase text of spatial relation where the land-
mark is a pronoun with the highest scored
probable landmark (see 3.2), this approach
is used for both training and testing. Fur-
thermore, we train independent classifiers for
spatial roles and relations classification. This
is a learning only model where each classifier
makes independent predictions. This model
doesn’t use any constraints, and is compared
with similar (Rahgooy et al., 2018) baseline
model in section 4.

• Anaphora-Inference (A-Inference): In this
model, 1) we create an additional triplet clas-
sifier for classifying the relations that con-
tain pronoun landmarks and we name it new-
relation-classifier (NRC) and use it at the
inference time, 2) joint prediction is per-
formed using the constraints described in
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A-Replacement M0
Precision Recall F1 Precision Recall F1

Trajector 53.24 67.66 59.59 54.22 62.05 57.87
Landmark 73.49 81.23 77.17 74.29 78.60 76.38

SpatialIndicator 94.60 96.98 95.78 94.60 96.98 95.78

Table 2: Spatial Roles - Comparison of A-Replacement with M0

A-Inference M0+C
Precision Recall F1 Precision Recall F1

Trajector 65.79 65.39 65.59 64.20 60.98 62.55
Landmark 84.69 78.60 81.53 79.09 82.28 80.65

SpatialIndicator 94.70 96.60 95.64 95.08 94.84 94.96

Table 3: Spatial Roles - Comparison of A-Inference with M0+C

3.4 to optimize the global objective func-
tion explained in section 3.5 which includes
the new-relation-classifier. This implies that
both relation classifier and the new-relation-
classifier are assigned values jointly and
should agree. For training the new-relation-
classifier, we generate additional examples
by replacing the pronoun landmarks in the
ground-truth with the highest scored land-
mark from our candidate set, SL. The orig-
inal spatial relations with pronoun landmarks
are also retained in the training. The training
mechanism of remaining classifiers remains
unchanged (i.e. trained on original spatial re-
lations). In testing phase, we take the top N
candidates from the scored landmarks gener-
ated in 3.2 for spatial relations with pronoun
landmarks. In this way, we regenerate a set
of candidate triplets by replacing the pronoun
with the top probable landmarks. Our global
inference decides jointly with using the orig-
inal triplet classifier in a way that it satisfies
the constraint that if anyone of these triplets is
predicted as true, spatial relation classifier is
forced at inference time to predict the spatial
relation with the anaphora as true. See con-
straint number 8 in section 3.4. The experi-
ments show that this simple idea can promote
the relation extraction when anaphora occurs
in the triplet candidates.

4 Experiments

4.1 Datasets

CLEF 2017 mSpRL dataset: Our model is eval-
uated on this dataset which is a subset of IAPR

TC-121 Benchmark and annotated specifically for
the SpRL task. The training set contains 761 and
whereas test set contains 939 spatial relations re-
spectively (Kordjamshidi et al., 2017b). The to-
tal number of spatial relations containing pronoun
landmark in train and test is 44 and 129 respec-
tively.
Visual Genome dataset (VG): Visual Genome
dataset has seven main components (Krishna
et al., 2017), one of it is ‘relationships‘ which
contains the relationships between pairs of objects
in the images. Each relation has two arguments,
the first one is referred as subject whereas the lat-
ter one is referred as object. These relationships
can be actions, spatial, prepositions, verbs, com-
parative or prepositional phrases. Visual genome
dataset contains 108077 images whereas its rela-
tionships part contains 2316104 relation instances.
This dataset is used to obtain the possible land-
marks that can occur in a relationship with a given
subject.

4.2 Experimental Results

In this section, we experimentally show the effec-
tiveness of our proposed model in improving the
spatial role/relation extraction. We use Saul (Ko-
rdjamshidi et al., 2015, 2016) to implement the
models and solve the global inference of Section
3.5. The code is publicly available here2.

We compare our approach with the state-of-the-
art (Rahgooy et al., 2018). However, in the men-
tioned paper, the authors use visual data from the
accompanying images to improve the models. In

1http://www.imageclef.org/SIAPRdata
2https://github.com/HetML/SpRL/tree/

paper3
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Precision Recall F1
M0 65.64 60.23 62.82
M0 + C 70.04 66.55 68.25
A-Replacement 78.47 56.84 65.92
A-Inference 70.23 68.25 69.23

Table 4: Model Comparison - Spatial Relation Extraction

A-Replacement M0
Precision Recall F1 Precision Recall F1

Region 70.90 54.24 61.52 78.37 47.83 59.41
Direction 79.22 43.57 56.22 83.56 43.57 57.28

Table 5: Coarse-grained Spatial Relations - Comparison of A-Replacement with M0.

this paper, we use their best model (referred here
as M0 -Baseline and M0 +C -Baseline plus con-
straints) which is trained on text only and we ig-
nore the visual information which is aligned with
the text. The experimental results in Table 4 show
that our baseline model (A-Replacement) is sig-
nificantly better as compared to the state-of-the-
art baseline model (M0). This shows that re-
placing the pronoun landmark candidates with our
proposed model probable landmark has positive
impact on extraction of spatial roles (as shown
in Table 2) and relations. The improvement in
the results is because the spatial roles predication
is improved, which gives a more confidence to
the model to classify the triplets as spatial rela-
tions which leads to more positive predictions and
higher recall of the relations.

Furthermore, our second model (A-Inference)
in which we train an additional new-relation-
classifier by generating additional examples and
perform joint inference further improves the re-
sults over the state-of-the-art model with con-
straints (M0+C). The experimental results in Ta-
ble 3 show that adding constraints to our sec-
ond model (A+Inference) significantly improves
the classification of spatial roles (i.e. trajectors
and landmarks), although the spatial indicators is
slightly improved. Also these constraints help
improving the coarse-grained spatial relations as
shown in table 6, although it doesn’t have any im-
pact on distance category because the number of
examples in test set is very small (i.e. three in-
stances only).

Our results improve the state-of-the-art mod-
els for spatial relation extraction. Both proposed
models significantly improves the extraction of
spatial roles and relations (when compared with

independent learning and with constrained mod-
els). However, the results of some of the cate-
gories in the fine-grained relations drops which are
not reported here. These results are at the prelimi-
nary stage and we further analyze our models. Par-
ticularly, we will use existing anaphora resolution
models to see how those could help and provide a
more reasonable baseline. This baseline will help
us to evaluate the advantage of the external visual
knowledge more clearly. It will be interesting to
investigate what caused this drop in fine-grained
relation types. In addition to such further analysis,
this work can be extended into two possible direc-
tions, 1) incorporate cross-sentence anaphora res-
olution for landmark candidates, and 2) incorpo-
rate co-reference resolution in general for all spa-
tial relations.

5 Related Work

Our proposed model is a joint model for consider-
ing anaphora resolution to help spatial information
extraction. Anaphora resolution is a fundamental
problem in natural language processing and exist-
ing techniques can broadly be categorized into two
types 1) Rule based models: apply rules to reduce
candidate antecedents and resolve anaphora and 2)
statistical models: use probabilistic models for the
resolution of anaphora (Lee et al., 2017a). Early
work (Hobbs, 1978; Asher and Wada, 1988; Lap-
pin and Leass, 1994; Morton, 2000) focused on
designing rule-based systems for anaphora reso-
lution (the target was finding antecedents of pro-
nouns only), however, these systems relied heavily
on handcraft rules/weights. In early 2000, (Soon
et al., 2001; Yang et al., 2003; Ng and Cardie,
2002) used statistical machine learning methods to
resolve co-reference, these methods used a com-
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A-Inference M0+C
Precision Recall F1 Precision Recall F1

Region 72.99 60.82 66.35 76.07 57.79 65.68
Direction 76.26 46.67 57.90 75.75 48.33 59.01

Table 6: Coarse-grained Spatial Relations - Comparison of A-Inference with M0+C.

mon strategy, that is, train a statistical model to
measure the likeness of a pair as corefer. How-
ever, each candidate is resolved independently of
the others which means how good a candidate an-
tecedent is relative to others is not considered. To
address this problem, (Denis and Baldridge, 2009)
proposed a model by combining machine learning
with global inference for performing the resolu-
tion jointly. Recently, (Park et al., 2016) proposed
an mention pair model using deep learning and
a system that combines both rule-based and deep
learning-based systems using a guided MP model
for co-reference resolution.

According to (Lee et al., 2017a), machine learn-
ing based models for anaphora resolution are rel-
atively easy to build as compared to rule based
models, however, a huge amount of handcrafted
feature design is required in order to build a suc-
cessful anaphora resolution model. Furthermore,
the authors highlighted four key features of a ideal
anaphora resolution system one of which is an-
tecedent features should be learned automatically
(i.e. minimum human design effort should be re-
quired). The proposed model doesn’t require any
handcrafting features or rules to implement the
anaphora resolvers.

Join models have been proposed for resolving
co-references with mention head detection using
underlying integer linear programming as we do
here (Peng et al., 2015). The main difference
of our work compared to the above mentioned
research works is that here we do not directly
solve the anaphora resolution problem, but we use
a kind of indirect supervision from an external
multi-modal resource to help anaphora resolution
and by means of that we solve our specific tar-
get problem. Our target problem of spatial infor-
mation extraction has not been jointly performed
with neither anaphora nor co-reference resolution
tasks before. However, resolving co-references in
the multi-modal setting has been investigated re-
cently (Huang et al., 2017) in which text and video
refer to the same scene and help each other in the
resolution. As pointed above, this is different from

using the vision modality as a source of distant su-
pervision which is our aim in this work.

6 Conclusion

In this paper, we investigated the challenging is-
sues of the extraction of spatial relations, that is,
the triplets of (spatial indicator, trajector, land-
mark) from generic text. Particularly, We high-
lighted one important problem that is the issue of
anaphoras accruing in the text that make recogniz-
ing landmarks and consequently recognizing the
spatial relations difficult. In the presence of the
anaphora recognizing the right link between the
described objects in the text and extracting the re-
lations correctly for any arbitrary pair of object be-
comes more challenging. Our proposed solution
has been to use the external visual resources that
can help to find out the most probable landmarks
for a specific object and obtain the possible reso-
lutions with a score. Using the scored resolutions
we perform global inference to decide on both the
anaphora resolution and spatial relation extraction
jointly. Our best model improves the state-of-the-
art results in all precision, recall and F1 metrics
while having a more positive (about +2%) influ-
ence on the recall of the spatial relations extrac-
tion. While our preliminary experimental results
show the advantage of anaphora resolution in spa-
tial relation extraction, we will investigate more
sophisticated baselines in the future to evaluate the
advantage of external knowledge resources (that
we used in this work) versus using the existing ap-
proaches for anaphora resolution in our models.
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Abstract

This position paper argues that, while prior
work in spatial language understanding for
tasks such as robot navigation focuses on map-
ping natural language into deep conceptual
or non-linguistic representations, it is possi-
ble to systematically derive regular patterns of
spatial language usage from existing lexical-
semantic resources. Furthermore, even with
access to such resources, effective solutions
to many application areas such as robot nav-
igation and narrative generation also require
additional knowledge at the syntax-semantics
interface to cover the wide range of spatial
expressions observed and available to natu-
ral language speakers. We ground our in-
sights in, and present our extensions to, an ex-
isting lexico-semantic resource, covering 500
semantic classes of verbs, of which 219 fall
within a spatial subset. We demonstrate that
these extensions enable systematic derivation
of regular patterns of spatial language without
requiring manual annotation.

1 Introduction
While prior work in spatial language understand-
ing for tasks such as robot navigation focuses
on mapping natural language into deep concep-
tual or non-linguistic representations—for further
reasoning or embodied cognition (Perera et al.,
2017; Pastra et al., 2011)—we argue that it is pos-
sible to systematically derive regular patterns of
language usage from existing lexical-semantic re-
sources (Dorr et al., 2001). Furthermore, even
with access to such resources, effective solutions
to many application areas such as robot naviga-
tion and narrative generation require additional
knowledge at the syntax-semantics interface to
capture the range of spatial expressions observed
and available to natural language speakers.

The emphasis of this position paper is on the
representational underpinnings of spatial expres-

sions for problems such as natural-language medi-
ated two-way human-robot dialogue. Such com-
munication may ultimately take place over low
bandwidth networks where, for example, an au-
tonomous robot will navigate and report back from
a remote site on what it sees in cooperation with its
distant human teammate who directs and responds
to the robot as needed. We focus on the use and
modification of existing resources to address this
problem, making certain linguistically-motivated,
working assumptions about:

• layers within our lexical representations,
• levels for distinct language-based modules

with syntactic, semantic, and conceptual
knowledge (each with primitives and oper-
ations for that level), and
• a shared computational model of an environ-

ment that includes representations of objects,
agents, their relations to each other, events–
thus enabling navigation information to be
accessible to both robot and human.

That is, we assume first that there exist lexical-
internal semantic structures with layers, and those
semantic structures contain primitives that are
grounded at a conceptual level (not discussed
herein). We leverage Lexical Conceptual Struc-
ture (LCS) (Jackendoff, 1983; Dorr, 1993), a log-
ical representation with compositional properties,
to guide development of semantics for spatial lan-
guage in language understanding and generation.1

We note that other logical representations may
also be adequate for this study, e.g., Abstract
Meaning Representation (Banarescu et al., 2014),
Prague Dependency Trees (Hajič et al., 2018),
and descendants of such representations (Vander-
wende et al., 2015). LCS has been selected due

1We take these structures to capture language-bound
meanings, that is semantic forms. In our framework, these do
not, despite their name, capture language-independent, con-
ceptual knowledge.
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to its compositional, lexicon-based formalism and
its potential for follow-on work in other language
processing applications for which cross-lingual
LCS mappings have already been devised (e.g.,
machine translation (Habash and Dorr, 2002)).

We assume second, that for human-robot
natural-language mediated communication, a
number of constraints at the syntax-semantics in-
terface are crucial for interpreting the wide rang-
ing flexibility of real utterances and the context of
the system is central to dialogue management. We
leverage previously collected dialogue data with
naturally occurring spoken Bot Language (Marge
et al., 2017) that provides transcripts and dialog
analyses (Traum et al., 2018), but without any
form of lexical semantics.

We assume third, that we will test and validate
our approach by augmenting an implemented di-
alogue system for understanding and generation
of Bot Language. The application of our founda-
tional paradigm to this problem is a future direc-
tion outside of the scope of this position paper.

The layered lexical representations referred to
in the first assumption above form the basis for
this discussion. Specifically, we posit that the de-
velopment of an application such as robot navi-
gation (Bonial et al., 2018; Moolchandani et al.,
2018) or generation of narrative explanations (Ko-
rpan et al., 2017; Lukin et al., 2018) requires a
layered representation scheme to include a set of
spatial primitives (the basis for the LCS represen-
tation) coupled with a representation of constraints
at the syntax-semantics interface. Additional lay-
ers include prepositional collocates2 and spatial
semantics that are crucial for understanding and
production of unconstrained spatial expressions.

We describe our extensions to an LCS resource
covering 500 semantic classes of verbs, of which
219 fall within a spatial subset. We demonstrate
that this resource is designed to systematically ac-
count for certain types of spatial expressions based
on lexical-semantic constraints of spatial verbs in
those expressions.

At the heart of the position presented herein is a
representational framework that supports the abil-
ity to “read off” such constraints from lexical en-
tries without requiring laborious manual annota-

2Prepositions that, when tested in collocations with oth-
erwise non-spatial expressions, add spatial information. For
example, in The hawk screeched across the sky., the preposi-
tional phrase headed by across introduces motion not present
in the intransitive The hawk screeched (Talmy, 2014).

tion. Similarly, when subsequent lexicon updates
occur, the ability to “read off” constraints is still
available without manual annotation. This differ-
entiates our approach from others, e.g., feature-
based annotation (for a cogent review of natural
language annotation approaches, see (Stubbs and
Pustejovsky, 2012)). Our LCS-based approach is
described next, followed by related work and con-
cluding remarks.

2 Approach
This section introduces the notion of LCS and
describes an LCS-based approach to systematic
derivation of usage patterns for understanding and
generation. We extend an LCS resource to include
constraints (blocks, overlaps, and fills) and present
the upshot of these extensions.

2.1 Lexical Conceptual Structure
Lexical Conceptual Structure (LCS) (Jackendoff,
1983, 1990; Dorr, 1993; Dowty, 1979; Guerssel
et al., 1985) has been used for a range of different
applications, including interlingual machine trans-
lation (Habash and Dorr, 2002), lexical acquisition
(Habash et al., 2006), cross-language information
retrieval (Levow et al., 2000), language generation
(Traum and Habash, 2000), and intelligent lan-
guage tutoring (Dorr, 1997).

The LCS representation was introduced by
Jackendoff as based in the spatial domain and nat-
urally extended to non-spatial domains, as spec-
ified by fields.3 For example, the spatial dimen-
sion of the LCS representation corresponds to the
(Loc)ational field, which underlies the meaning of
John traveled from Chicago to Boston in the LCS
[John GOLoc [From Chicago] [To Boston]]. This
is straightforwardly extended to the (Temp)oral
field to represent analogous meanings such as The
meeting went from 7pm to 9pm in the LCS [Meet-
ing GOTemp [From 7pm] [To 9pm]].

An “LCS Verb Database” (LVD) developed in
prior work (Dorr et al., 2001) includes a set of LCS
templates classified according to an extension of
(Levin, 1993)’s 192 classes, totaling 500 classes.
The first 44 classes were added beyond the origi-
nal set of semantic classes (Dorr and Jones, 1996).
Additional classes were derived through aspectual
distinctions to yield LCS classes that were finer-
grained than the original Levin classes (Olsen

3For a more extensive, non-LCS-based analysis and ac-
counting of the relation of spatial and temporal concepts, see
(Tenbrink, 2011).
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et al., 1997). Each LCS class consists of a set
of verbs and, in several cases, the classes include
non-Levin words (those not in (Levin, 1993)), de-
rived semi-automatically (Dorr, 1997). LVD is
foundational for the position adopted in this pa-
per, as it provides a mapping from LCS-based verb
classes to their surface realizations.

The representational framework provided by the
LVD has many similarities with others such as
FrameNet (Ruppenhofer et al., 2016) and Verb-
Net (Palmer et al., 2017), both of which also in-
clude classes and mappings to surface realizations.
Whereas FrameNet has a richer semantics, e.g.,
finer grained classes than those of Levin (1993),
VerbNet has a clearer mapping to surface realiza-
tions with specific mappings from thematic roles
to syntactic realizations.The LVD differs from
both of these in that its compositional represen-
tations support the ability to “read off”different
types of lexical-semantic constraints without re-
quiring manual annotation. For example, con-
straints on the mapping between semantics and
syntax, e.g., blocks, overlaps, and fills, can be
“read off” LVD entries, as described below.

2.2 Syntax-Semantics Interface
Prior work (Jackendoff, 1996; Levin, 1993; Dorr
and Voss, 1993; Voss and Dorr, 1995; Kipper
et al., 2007; Palmer et al., 2017) suggests that there
is a close relation between underlying lexical-
semantic structures of verbs and nominal predi-
cates and their syntactic argument structure. The
work of Voss et al. (1998) supports that the gener-
ation of a preposition (in English) as dependent on
both the semantics of the predicate and structural
idiosyncracies at the syntax-semantics interface.

Three notions introduced in this earlier work
are relevant to spatial language understanding:
BLOCK (where a LCS predicate preempts or
blocks the composition into one of its argument
positions by another LCS), OVERLAPS (where
a LCS predicate allows the composition of an-
other LCS into one of its already-occupied argu-
ments), and FILLS (where a LCS predicate allows
the composition of another correctly typed LCS
into one of its empty arguments).

To investigate the systematic derivation of lan-
guage usage patterns for both understanding and
generation of spatial language, we first sim-
plify and adapt the LVD to include mappings to
both lexically implicit and lexically explicit direc-
tional components of meaning. We focus specifi-

LCS Primitives: GO, BE, STAY, CAUSE, etc.

Spatial Semantics: upward, downward, etc. 

Prepositional collocates: up, down, in, into, 
out of, across, to, from, etc.. 

Blocks
Overlaps
Fills

Figure 1: Layered Representation Scheme: Spatial
primitives (bottom layer) are coupled with spatial se-
mantics (middle layer) and spatial semantics (top layer)
for spatial language understanding and generation

cally on directional verbs coupled with these im-
plicit/explicit directional components of meaning.

We posit that the development of a framework
for both understanding and generation of spatial
language requires a layered representation scheme
illustrated in Figure 1. The top two layers rely
heavily on the notions of BLOCKS, OVERLAPS,
and FILLS. More specifically:

• BLOCKS refers to lexically implicit di-
rectional components of meaning (such as
upward) that cannot be lexically realized on
the surface, as happens when a predicate al-
ready includes the corresponding directional
component of meaning, e.g., elevate and as-
cend do not collocate with the preposition up.
• OVERLAPS refers to lexically implicit and

optionally explicit directional components of
meaning (such as upward) that may or may
not be lexically realized on the surface even
though the semantics of the predicate in-
cludes the corresponding directional compo-
nent of meaning, e.g., lift and raise optionally
collocate with up.
• FILLS refers to lexically explicit directional

components of meanings that fall into one of
two categories: (1) obligatory components
of meaning (such as upward) that must be
lexically realized, as the semantics of the
predicate does not include the correspond-
ing directional component of meaning, e.g.,
put always collocates with a preposition such
as up. (2) optional components of mean-
ing (such as upward) that may or may not
be lexically realized, as the semantics of the
predicate does not include directional com-
ponent of meaning, e.g., move optionally col-
locates with a preposition, such as up.

The LVD described in Section 2.1 includes
compositional structures based on primitives such
as GO, BE, STAY, CAUSE. These structures,
which form the foundation for the bottom layer,
are outside of the scope of this paper.
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2.3 Upshot of Lexico-Semantic Extensions
for Spatial Language Understanding

An adapted form of the LVD has been developed
for the purpose of illustrating the position taken in
this paper. This derivative resource contains sim-
plified LCS classes, omitting the full LCS struc-
tures and thematic roles from prior work, and aug-
menting LCS classes to include prepositional col-
locations (the top layer of Figure 1), coupled with
a new spatial component of meaning (the middle
layer of Figure 1).

The spatial component of meaning may or may
not be overtly realized on the surface. For exam-
ple, in the LCS Class of Verbs of inherently di-
rected motion (corresponding to Class 51.1.a in
(Levin, 1993)), the verb leave can take a NP com-
plement (as in leave the room) and the verb depart
can take a PP complement (as in departed from the
room). For either case, the spatial component of
meaning is uniformly move to a position
outside of the room.

Whereas the collocations were derived from
thematic roles in the original LVD, the spatial
components of meaning were derived from verb-
prepositions pairs associated with a subset of
the “Categorial Variation” database (Habash and
Dorr, 2003). Representative members of LCS
classes were then paired with prepositions that
were propagated to other members of the class.

Table 1 summarizes the number of LCS classes
associated with the lexical notions introduced
above (Blocks, Overlaps, Fills-Oblig, Fills-Opt).4

Not all LCS classes are spatial in nature; thus,
the second column provides a tally for the full set
of LCS classes, and the third column provides a
tally for just the spatial subset. The fourth column
presents the number of spatial verbs included in
the corresponding spatial classes. Representative
spatial examples are provided in the fifth column.
Lexical
Notions

LCS
Classes

Spatial
Subset

#Spatial
verbs

Spatial Examples

Blocks 7 7 297 elevate, face, pocket
Overlaps 17 10 84 advance, lower, lift
Fills-Oblig 310 128 2783 drive, rotate, put
Fills-Opt 87 59 1280 remove, slide
Intrans 6 3 34 float, part, squirm
N/A 73 12 162 bend, break, carry
Total 500 219 4640

Table 1: Summary of number of classes associated with
Blocks, Overlaps, Fills-Oblig, Fills-Opt, and Intrans in
LCS Classes and Spatial Subset

4N/A refers to verb classes whose members take bare NP
or S arguments. Intrans refers to Intransitive verbs.

Interestingly, the spatial subset of classes is
sizeable (44% of the entire set of 500 classes).
The percentage of verb entries in the spatial sub-
set is also quite high (42% of the 11K total num-
ber of verb entries). Several verbs in the Spatial
Subset are relevant to those used in robot naviga-
tion, e.g., move, go, advance, drive, return, rotate,
and turn. Others are easily accommodated by ex-
tending classes—without modification to the spa-
tial notions described above. For example, back up
matches the class containing advance, and pivot
matches the class containing rotate.

Note that the BLOCKS, OVERLAPS, AND
FILLS notions are generalizable to a high num-
ber of LCS classes that are non-spatial as well.
These typically correspond to metaphorical exten-
sions of spatial components of meaning to other
domains, e.g., lifted her spirits up, elevated her
spirits. Thus, these notions are more broadly ap-
plicable than just to the spatial dimension.

Ultimately, surface realizations of verbs with
collocations include lexically explicit prepositions
as in lift up, whereas no such collocates are avail-
able when spatial components of meaning are in-
ternally conveyed as in elevate and thus are lex-
ically implicit. Adding this information to the
derivative resource supports a refined formulation
of BLOCKS, OVERLAPS, and FILLS notions–
which are central to a range of important prob-
lems, e.g., dialogue management in robot naviga-
tion (Bonial et al., 2017) and generation of narra-
tive explanations (Korpan et al., 2017).

3 Related Work
The ever-growing number of interdisciplinary re-
search programs that now involve natural language
processing but are published outside of computa-
tional linguistics, provides both challenges and op-
portunities to all communities seeking to leverage
emerging insights from beyond their own areas of
expertise. In this short position paper, we high-
light but two areas pertinent to our work, while
acknowledging there exists much other research
in situated dialogue for robots (e.g., (Mavridis and
Roy, 2006; Kruiff et al., 2007)) and spatial cog-
nition (e.g., publications of the Spatial Cognition
collaborative research center in Germany) that is
not as central to our focus.

3.1 Spatial Language Understanding
Spatial language understanding has made great
strides in recent years, with the emergence of lan-
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guage resources and standards for capturing spa-
tial information. For example, the ISO 24617
standard provides guidelines for annotating spa-
tial information in English language texts (24617-
7, 2014) that continues to evolve (Pustejovsky and
Lee, 2017). This Semantic Annotation Framework
(semAF) identifies places, paths, spatial entities,
and spatial relations that can be used to associate
sequences of processes and events in news articles
(Pustejovsky et al., 2011). Spatial prepositions
and particles (such as near, off ) and verbs of po-
sition and movement (such as lean, swim) in text
have corresponding spatial components of mean-
ings, collocations, and classes of spatial verbs in
the perspective adopted in this paper.

Spatial role labeling using holistic spatial se-
mantics (i.e., analysis at the level of the full ut-
terance) has been used for identifying spatial rela-
tions between objects (Kordjamshidi et al., 2010).
The association between thematic roles and their
corresponding surface realizations has been inves-
tigated previously, including in the LCS formal-
ism (described next), but Kordjamshidi et al’s ap-
proach also ties into deeper notions such as region
of space and frame of reference. Their work dif-
fers from the perspective adopted in this paper in
that they provide annotation guidelines for train-
ing systems that do spatial information extraction,
and so do not focus on generalized mappings at
the syntax-semantics interface to predict possible
linguistic constructs for spatial relations.

3.2 Embodied Cognition
Another research area relevant to the position
adopted herein is that of embodied cognition for
the development of language processing tools
(Pastra et al., 2011). A European-funded project
(POETICON) has resulted in a suite of embodied
language processing tools relating symbolic and
sensorimotor representation spaces. This work
sheds light on the nature of the relationship be-
tween language and action, enabling exploration
of a range of different projects concerning lan-
guage learning and human-robot interaction.

Other researchers have focused on natural lan-
guage grounding for embodied interaction (Al-
Omari et al., 2017) to learn components of lan-
guage and the meanings of each word. The ac-
quired knowledge that emerges from this approach
is used to parse commands involving previously
unseen objects. Thus, that work assumes no prior
knowledge of the structure of language; rather,

word meanings are learned from scratch. In con-
trast, the perspective put forward in this paper is
one in which this knowledge already exists and
can be leveraged for support of both language un-
derstanding and generation.

The work of Spranger et al. (2016) is the clos-
est to our perspective, particularly in its use of
spatial relations such as across and in front of,
both for hearing and for producing utterances for
robot-robot communication. However, the posi-
tion adopted here is one in which generalizations
about language structure are assumed and avail-
able in natural language generation for both use
(“lift up”) and suppression (“elevate”) of spatial
prepositions in phrases containing motion and di-
rection verbs, depending on the context.

4 Conclusions and Future Work
We have made a case for the systematic deriva-
tion of regular patterns of spatial language us-
age from an existing lexical semantic resource
(LCS Verb Lexicon). We have focused on a re-
fined formulation of BLOCKS, OVERLAPS, and
FILLS, lexical-semantic notions that are central to
problems dialogue management in robot naviga-
tion and generation of narrative explanations. We
demonstrated that these extensions enable system-
atic derivation of regular patterns of spatial lan-
guage without requiring manual annotation.

Future work motivated by the position set forth
in this paper is investigation of systematic deriva-
tion of mappings at the syntax-semantics inter-
face for other parts of speech involving access to a
“Categorial Variation” database (CatVar) (Habash
and Dorr, 2003) to map verbs in the LCS classes
to their nominalized and adjectivalized forms. For
example, the CatVar entry for depart includes
the nominalized form departure, which takes a
prepositional-phrase complement (e.g., from the
room)—analogous to the verbal counterpart spec-
ified in the simplified LCS classes.

Another future direction is one where these gen-
eralized mappings are used in conjunction with
data collected within an ongoing Bot Language
project (Marge et al., 2017) to enable spatial lan-
guage understanding in robot navigation. That
project has heretofore focused on dialogue anno-
tation (Traum et al., 2018) and has not yet incor-
porated deeper semantics necessary for automati-
cally detecting incomplete, vague, or implicit nav-
igation commands within dialogues in the spatial
domain—issues addressed by our extensions.
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plied Linguistics (ÚFAL), Faculty of Mathematics
and Physics, Charles University. http://hdl.
handle.net/11234/1-2621.

Ray Jackendoff. 1983. Semantics and Cognition. MIT
Press, Cambridge, MA.

Ray Jackendoff. 1990. Semantic Structures. MIT
Press, Cambridge, MA.

Ray Jackendoff. 1996. The Proper Treatment of Mea-
suring Out, Telicity, and Perhaps Even Quantifica-
tion in English. Natural Language and Linguistic
Theory 14:305–354.

Karin Kipper, Anna Korhonen, Neville Ryant, and
Martha Palmer. 2007. A Large-scale Classification
of English Verbs. In Language Resources and Eval-
uation.

P. Kordjamshidi, M. Van Otterlo, and Marie-Francine
Moens. 2010. Spatial Role Labeling: Task Defi-
nition and Annotation Scheme. In Proceedings of
Language Resources and Evaluation Conference.

Raj Korpan, Susan L. Epstein, Anoop Aroor, and Gil
Dekel. 2017. WHY: Natural Explanations from a
Robot Navigator. In AAAI 2017 Fall Symposium on
Natural Communication for Human-Robot Collabo-
ration.

Geert-Jan Kruiff, Hendrik Zender, Patric Jensfelt, and
Henrik Christensen. 2007. Situated dialogue and
spatial organization: What, where ... and why? In
International Journal of Advanced Robotic Systems.

Beth Levin. 1993. English Verb Classes and Alterna-
tions: A Preliminary Investigation. The University
of Chicago Press.

Gina Levow, Bonnie J. Dorr, and Dekang Lin. 2000.
Construction of Chinese-English Semantic Hierar-
chy for Cross-language Retrieval. In ICCLC’2000
International Conference on Chinese Language
Computing.

Stephanie Lukin, Reginald Hobbs, and Clare Voss.
2018. A pipeline for creative visual storytelling. In
NAACL 2018 StoryNLP.

M Marge, C Bonial, A Foots, C Hayes, C Henry, K Pol-
lard, R Artstein, C Voss, and D Traum. 2017. Ex-
ploring Variation of Natural Human Commands to
a Robot in a Collaborative Navigation Task. In
ACL2017 RoboNLP workshop.

Nikolaos Mavridis and Deb Roy. 2006. Grounded situ-
ation models for robots: Where words and percepts
meet. In Proceedings of the IEEE/RSJ Conference
on Intelligent Robots and Systems.

Pooja Moolchandani, Cory Hayes, and Matthew
Marge. 2018. Evaluating robot behavior in re-
sponse to natural language. In HRI ’18 Companion:
ACM/IEEE International Conference on Human-
Robot Interaction Companion.

Mari Broman Olsen, Bonnie J. Dorr, and Scott Thomas.
1997. Toward Compact Monotonically Composi-
tional Interlingua Using Lexical Aspect. In Pro-
ceedings of the Workshop on Interlinguas in MT .
San Diego, CA, pages 33–44.

Martha Palmer, Claire Bonial, and Jena D. Hwang.
2017. VerbNet: Capturing English Verb behavior,
Meaning and Usage. In Susan Chipman, editor, The
Oxford Handbook of Cognitive Science, Oxford Uni-
versity Press.

Katerina Pastra, Eirini Balta, Panagiotis Dimitrakis,
and Giorgos Karakatsiotis. 2011. Embodied Lan-
guage Processing: A New Generation of Language
Technology. In Language-Action Tools for Cogni-
tive Artificial Agents: Papers from the 2011 AAAI
Workshop (WS-11-14).

Ian E. Perera, James F. Allen, Lucian Galescu,
Choh Man Teng, Mark H. Burstein, Scott E. Fried-
man, David D. McDonald, and Jeffrey M. Rye.
2017. Natural Language Dialogue for Building and
Learning Models and Structures. In Proceedings of
the Thirty-First AAAI Conference on Artificial Intel-
ligence, February 4-9, 2017, San Francisco, Cali-
fornia, USA.. pages 5103–5104.

J. Pustejovsky, J. L. Moszkowicz, and M. Ver-
hagen. 2011. Using ISO-Space for An-
notating Spatial Information. http:
//www2.denizyuret.com/bib/
pustejovsky/pustejovsky2011cosit/
COSIT-ISO-Space.final.pdf.

James Pustejovsky and Kiyong Lee. 2017. Enriching
the Notion of Path in ISOspace. In Proceedings of
the 13th Joint ISO-ACL Workshop on Interoperable
Semantic Annotation (ISA-13).

Josef Ruppenhofer, Michael Ellsworth, Miriam
R. L Petruck, Christopher R. Johnson,
Collin F. Bakerand, and Jan Scheffczyk. 2016.
Framenet ii: Extended theory and practice.
https://framenet.icsi.berkeley.
edu/fndrupal/the_book.

Michael Spranger, Jakob Suchan, and Mehul Bhatt.
2016. Robust Natural Language Processing Com-
bining Reasoning, Cognitive Semantics, and Con-
struction Grammar for Spatial Language. In Pro-
ceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence.

69



Amber Stubbs and James Pustejovsky. 2012. Nat-
ural Language Annotation for Machine Learning.
O’Reilly Media.

Leonard Talmy. 2014. Foreward: Past, present, and
future of motion research. In Iraide Ibarretxe-
Antugano, editor, Motion and Space across Lan-
guages: Theory and Applications. HCP (Human
Cognitive Processing) Series, John Benjamins.

Thora Tenbrink. 2011. Reference frames of space and
time in language. In Journal of Pragmatics. vol-
ume 43, pages 704–722.

D Traum, C Henry, S Lukin, R Artstein, F Gervitz,
K Pollard, C Bonial, S Lei, C Voss, M Marge,
C Hayes, and S Hill. 2018. Dialogue Structure An-
notation for Multi-Floor Interaction. In LREC.

David Traum and Nizar Habash. 2000. Generation
from Lexical Conceptual Structures. In Proceed-
ings of the Workshop on Applied Interlinguas, North
American Association for Computational Linguis-
tics / Applied NLP Conference. pages 34–41.

Lucy Vanderwende, Arul Menezes, and Chris Quirk.
2015. An amr parser for english, french, german,
spanish and japanese and a new amr-annotated cor-
pus. In HLT-NAACL.

Clare Voss and Bonnie J. Dorr. 1995. Toward a Lex-
icalized Grammar for Interlinguas. J. of Machine
Translation 10:14–3.

Clare R. Voss, Bonnie J. Dorr, and M. U. Şencan.
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