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Abstract
We introduce a simple method for extract-
ing non-arbitrary form-meaning representa-
tions from a collection of semantic vectors.
We treat the problem as one of feature selec-
tion for a model trained to predict word vec-
tors from subword features. We apply this
model to the problem of automatically discov-
ering phonesthemes, which are submorphemic
sound clusters that appear in words with sim-
ilar meaning. Many of our model-predicted
phonesthemes overlap with those proposed in
the linguistics literature, and we validate our
approach with human judgments.

1 Introduction

Linguists have long held that language is arbi-
trary, or that a word’s phonetic and orthographic
forms have no relation to its meaning (de Saus-
sure, 1916). For example, there is nothing about
an apple that suggests that apple is the proper word
for it—this link between meaning and the repre-
sentation in language is arbitrary. Arbitrariness is
a defining feature of human language, and it is a
key component of the design features of language
proposed by Hockett (1960).

Despite this, work over the last decades has re-
vealed several exceptions to the arbitrariness of
language. One such exception is iconicity, where
the form of a word directly resembles its meaning.
For example, Ohala (1984) showed that speakers
tend to associate vowels with high acoustic fre-
quency with smaller objects, while vowels with
low acoustic frequency are associated with larger
objects. In this case, speakers make a link between
the phonetic form of a word and its perceived
meaning because of an innate belief that smaller
entities emit higher-frequency vowels while larger
entities tend to emit low-frequency vowels.

Similarly, Köhler (1929) and Ramachandran
and Hubbard (2001) observed a non-arbitrary con-

nection between the shapes of objects and speech
sounds. American college undergraduates and
Tamil speakers were presented with a jagged
shape and a rounded shape and asked which is
“kiki” and which is “bouba”. In both groups,
95% to 98% selected the jagged shape as “kiki”
and the rounded shape as “bouba”, demonstrating
that the human brain connects sounds to shapes
in a consistent way. D’Onofrio (2014) posits that
the rounded shape is commonly named “bouba”
since the mouth forms a rounded shape in pro-
ducing the word, whereas pronouncing “kiki” re-
quires a tighter, more angular mouth shape that
seems more apt for the jagged object. In this case,
there is a strong, non-arbitrary link between the
articulatory properties of the sound and their per-
ceived meaning.

Phonesthemes are another exception to the ar-
bitrariness of language. Phonesthemes are non-
compositional, submorphemic phonetic units that
consistently occur in words with similar mean-
ings. For example, the word-initial gl-, occurs at
the beginning of many English words relating to
light or vision, like glint, glitter, gleam, glamour,
etc. (Hutchins, 1998; Bergen, 2004). The work
of Hutchins (1998) includes a compilation of 46
phonesthemes proposed by linguists.

There is a body of previous work suggesting
that phonesthemes are units in the mental lexi-
con of native speakers. For example, the work
of Hutchins (1998), Magnus (2000), and Bergen
(2004) uses priming experiments and other meth-
ods from psycholinguistics to demonstrate that
phonesthemes significantly affect native speaker
reaction times in a range of language processing
tasks. In another line of work, Otis and Sagi
(2008) and Abramova and Fernández (2016) ver-
ify phonesthemes by analyzing whether the words
containing a given phonestheme are more seman-
tically similar than expected by chance, where se-
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mantic similarity is derived from a distributional
semantic model.

While there has been much work in verifying
previously proposed phonesthemes, there has been
little work on automatically discovering new ones.
In this work, our goal is to identify the likely phon-
esthemes of a language from a collection of se-
mantic vectors. We do this by identifying the char-
acter or phoneme sequences that are predictive of
word meaning by training a model to predict word
vectors from subword features. Then, we use stan-
dard feature selection techniques to find a subset
of features that best predict the vectors; this subset
of features contains the model-predicted phones-
themes. Lastly, we validate the model-predicted
English phonesthemes with human judgments and
also find that many of our predicted phonesthemes
overlap with those documented in previous work.

2 Method

To extract phonesthemes from a set of vectors, we
want to find submorphemic units (e.g., character
or phoneme n-grams) that are highly predictive of
word meaning. We approach this problem through
the lens of feature subset selection: given a model
capable of predicting semantic vectors from sub-
morpheme information, our goal is to select the
subset of submorphemes (model features) that are
most predictive. Intuitively, if a submorpheme is
especially predictive of the word vectors, then it
may be a meaning-bearing phonestheme.

We use linear regression to predict word vec-
tors from binary feature vectors that encode the
submorphemes occurring in a surface form. We
use sparse regularization to select relevant features
from this model, which enables it to automatically
choose a subset of the submorpheme features that
predict the vectors (our predicted phonesthemes).

Specifically, we regularize our linear regres-
sion model with the elastic net (Zou and Hastie,
2005). We used scikit-learn (Pedregosa
et al., 2011) to train our models, and we tune the
L1 and L2 regularization strengths on held-out er-
ror in 5-fold cross-validation.

Mitigating the Effect of Morphemes A prin-
cipal concern is that the model will detect mor-
phemes rather phonesthemes. Many past stud-
ies on the relationship between form and mean-
ing in language (Shillcock et al., 2001; Monaghan
et al., 2014; Gutiérrez et al., 2016; Dautriche et al.,
2017) mitigated this concern by only considering

monomorphemic words, discarding a large frac-
tion of the lexicon in the process.

We take a different approach to this problem by
proposing a two-step model designed to mitigate
the effect of morphemes. We begin by training
an unregularized linear regression model to pre-
dict semantic vectors from morpheme-level fea-
tures. Then, we use the residuals of this first stage
morpheme-level model as the new target vectors
for the sparsely regularized phonestheme extrac-
tion model. This removes the components of the
word vector that are predictable from morpheme-
level information, leaving only the aspects of word
meaning not covered by morphology.

We use the the morphological analyses in the
CELEX lexical database (Baayen et al., 1996) to
compile a list of morphemes, which is used to cre-
ate the morpheme-level feature vectors. We also
use this list to remove any morphemes that may
appear in the final model output.

3 Data

For our experiments, we use 300-dimensional
GloVe (Pennington et al., 2014) English word em-
beddings trained on the cased Common Crawl.
Many of the terms in the set of pretrained vectors
are not English words. As a first attempt toward
removing non-English words and named entities,
we discard types that are not alphabetical or not
completely lowercased. In addition, it’s unlikely
that rare words or very common words will con-
tribute to the formation of sound-meaning associ-
ations (Hutchins, 1998). To further filter these rare
or common words (and remove additional non-
English types), we remove types that either occur
less than 1000 times in the Gigaword corpus or in
more than half of all Gigaword documents. Lastly,
we remove types that share the same lemma if the
lemma is also in the set of filtered word vectors.
After this process, we are left with 7889 types out
of the original 2.2 million.

We phonemicize our vectors by associating
each word’s vector to the word’s ARPAbet symbol
sequence, as provided in the CMU Pronouncing
Dictionary (Carnegie Mellon University, 2014). If
multiple types have the same ARPAbet symbol
sequence (and are thus homophones), we discard
them all. We also do not use types that are not in
the CMU Pronouncing Dictionary. Phonemicizing
the filtered set of vectors results in a set of 6633
vectors.
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Note that our model can be applied using ei-
ther orthographic or phonemicized vectors. Phon-
esthemes are an inherently phonetic phenomenon,
which suggests that it is ideal to model the
features at the phoneme level. However, us-
ing character-level features, in some cases, will
be a reasonable approximation, especially since
many of our extracted phonesthemes have a
consistent orthographic representation. We re-
lease code for preprocessing data and train-
ing the models at http://nelsonliu.me/
papers/phonesthemes/.

4 Experiments and Results

The candidate phonesthemes considered by the
model are the word-initial phoneme bigram se-
quences that occur more than five times in our
set of phonemicized vectors; we set a frequency
threshold for feature inclusion since rare prefixes
are unlikely to carry meaning. Each word’s fea-
ture vector is a one-hot encoding of its bigram
phoneme prefix. We choose to focus on word-
initial bigrams since the bulk of prior work in
linguistics has also focused on phonesthemes in
this position. However, our method easily extends
to larger subword units (e.g., trigrams), candi-
date phonesthemes within or at the end of a word,
even other languages; we leave analysis of phon-
esthemes of other sizes, in different positions, and
of different languages for future work.

We train our two-stage model on the phone-
micized vectors; the features that are assigned
a nonzero weight are our model-predicted phon-
esthemes. The features of our morpheme-level
model are binary indicator features correspond-
ing to 181 different morphemes extracted from
the CELEX2 database. In total, our phonestheme
extraction model considers 307 candidate phon-
esthemes; tuning the regularization strength on
held-out error in 5-fold cross-validation results in
a model that selects 123 candidate phonesthemes
as predictive. The phoneme bigrams correspond-
ing to the 30 features with the highest absolute
model weight are in Table 1. Qualitatively, the
words with the lowest error under the model con-
taining each selected phonestheme candidate seem
semantically coherent.

Many of the phonesthemes identified by our
model have been proposed and validated by past
work. 13 of the top 15 model-predicted phones-
themes were in Hutchins’ set of 17 proposed word-

ARPAbet
Sequence

Character
Sequence Model Example Words

† * S N sn- sneaks, snubs, sniffs
* S K sc-/sk- screwing, squelched, scurry
* K R cr- crunched, cringed, crummy
* S P sp- spiffy, splendidly, spunky
B R br- brags, brouhaha, brutish

* G R gr- griping, grumbles, grandly
* T R tr- tryst, trounce, truism
* S T st- stupendous, startlingly, stunner

† * B L bl- blase, blithely, blankly
* F L fl- flaunted, flowered, fluff

† * G L gl- glossed, gleam, glamor
* S L sl- slouch, slogged, slime

† * D R dr- droll, dreamer, drifter
† * S W sw- swoon, swoops, swipes

W IH1 wi- wimpy, willy, wince
K AE1 ca- candied, caffeinated, cataclysm
P AE1 pa- pantry, pathogen, pancake
S IH1 sy-/si- syllable, simulators, synchronize
F R fr- froth, frock, freaks
M AE1 ma- mallet, masts, manor
P EH1 pe- pendant, pelt, petulant
M EH1 me- meld, meditate, memorized
M AH1 mu- mumbled, mummies, mutter

* K L cl- clumsily, clunky, claustrophobic
S EH1 se-/ce sensuous, celibate, celebrants
AH0 B ob- obliterate, abridged, obliquely
B AA1 ba-/bo- barbarous, bogs, barbers
P L pl- pled, pliable, platoons
K AO1 co- corset, coroners, corduroy
F EH1 fe- fairest, fender, feds

Table 1: The 30 model-predicted phonesthemes with
the highest absolute model weight and their typical or-
thographic representation. The model example words
were selected from the 10 phonestheme-bearing words
with the lowest model error. ∗ indicates a phonestheme
identified by Hutchins (1998). † indicates a phon-
esthemes with statistical support from Otis and Sagi
(2008).

initial phoneme bigram phonesthemes. This is an
improvement over past work; Otis and Sagi (2008)
identified 8 as statistically significant, with a hy-
pothesis space restricted to 50 pre-specified word
beginnings and endings. Gutiérrez et al. (2016)
also identified 8, but with a much larger hypoth-
esis space of 225 candidates. Our model consid-
ers an even larger hypothesis space of 307 can-
didate phonesthemes, which are all automatically
extracted from the set of word vectors.

Validating Phonesthemes with Human Judg-
ments Following the method of Hutchins (1998)
and Gutiérrez et al. (2016), we empirically evalu-
ate our phonesthemes by soliciting naı̈ve human
judgments about how well-suited a word’s form is
to its meaning.

We randomly selected 5 words containing each
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of the top 15 model-selected phonesthemes and 5
words containing 15 random phonestheme candi-
dates that were not selected by the model, for a
total of 150 words.

We recruited native English-speaking partici-
pants through Mechanical Turk, and asked them
to judge how well each word fits its meaning on a
Likert scale from 1 to 5. 150 words is too many
judgments for a single HIT (annotators would be-
come fatigued and words might start to lose mean-
ing). As a result, we randomly divided the task
into 10 different HITs, each with 15 of the words
to be tested. We required Amazon Mechanical
Turk Masters status for the crowdworkers and
compensated them $0.20 per HIT; each word re-
ceived 30 ratings.

Following Hutchins (1998), we compute rat-
ings for each candidate phonestheme by averag-
ing the rating of the words that contain it. On av-
erage, model-predicted phonesthemes were rated
0.58 points higher than unselected phonestheme
candidates (3.66 versus 3.08, respectively). To as-
sess whether this difference is statistically signifi-
cant, we use the one-tailed Mann-Whitney U test
(Mann and Whitney, 1947) since the data is or-
dinal and unpaired. Based on the results of the
test, we reject the null hypothesis that the average
rating of words containing model-selected phon-
esthemes is not greater than the average rating of
words that contain phonesthemes not selected by
the model (p < 10−9).

Figure 1 plots the human ratings of the top 15
model-selected phonesthemes against their abso-
lute weight under the model; there is a weak posi-
tive correlation (r = 0.081).

2 of the 15 model-predicted phonesthemes with
the highest absolute weight were not previously
proposed by (Hutchins, 1998): br- and wi-. Both
of these sound clusters seem like plausible phones-
themes. To the authors, the br- cluster evokes the
idea of a raw, almost uncultured force, with words
like “brags,” “brutish,” and “brusque” appearing
among the words with the lowest error under the
model. The types containing the word-initial wi-
cluster with the lowest error under the model seem
to convey fragility: “wimpy,” “wince,” and “weak.”

From Figure 1, we can see that the br- phon-
estheme candidate received a very high model
weight, but received lower ratings on average from
human annotators. On the other hand, the aver-
age human rating of the wi- phonestheme candi-

date seems in line with its assigned model weight.
Future work could further explore whether br- and
wi- have psychological reality to native speakers.

Figure 1: Average human rating versus the absolute
model weight for the 15 selected phonesthemes with
the highest absolute model weight.

5 Related Work

Several psycholinguistic studies have shown that
native speakers associate certain sounds with a
particular meaning, and phonesthemes have been
identified in languages from English (Wallis,
1699; Firth, 1930) to Swedish (Abelin, 1999) and
Japanese (Hamano, 1998). Bergen (2004) ad-
ditionally demonstrates that phonesthemes affect
online implicit language processing, and Parault
and Schwanenflugel (2006) suggest that they play
a role in language acquisition.

In recent years, the work of Otis and Sagi
(2008) and Abramova and Fernández (2016)
used computational methods to automatically de-
tect and validate phonesthemes by examining
whether words that contain a candidate phones-
theme are more semantically similar than pre-
dicted by chance, according to a distributional se-
mantic model. Dautriche et al. (2017) analyze
lexicons of Dutch, English, German, and French
and find that the space of monomorphemic word
forms is clumpier than what would be expected
by chance, according to lexical, phonological, and
network measures.

Most similar to our work is that of Gutiérrez
et al. (2016), who introduce an algorithm for learn-
ing weighted string edit distances that minimize
kernel regression error and use it to detect system-
atic form-meaning relationships within language.
Our model uses linear regression between can-
didate phonestheme features and semantic vec-
tors. In addition, our model directly selects the
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predicted phonesthemes with sparse regulariza-
tion; their model instead provides a systematicity
score for each type, and they extract phonesthemes
by taking the word-beginnings with mean errors
lower than predicted by a random distribution of
errors across the lexicon.

6 Conclusion

In this work, we present a simple model for
extracting non-systematic form-meaning relation-
ships from a collection of word vectors. Our
model is a sparsely regularized linear regression
model that seeks to predict a word’s semantic vec-
tor from a feature vector that encodes information
about the candidate phonesthemes it contains; the
sparse solutions of the regression problem have the
effect of automatically selecting the features that
are most predictive of word meaning, which we
take as predicted phonesthemes.

We also develop a simple and effective two-
stage approach for mitigating the effect of mor-
phemes in the model. We initially train a model to
map from morpheme-level features to word vec-
tors, and then use the residuals of the morpheme-
level model as the targets for the downstream
phonestheme extraction model.

We empirically compare our model’s predicted
phonesthemes and find that many were previously
proposed by linguists. We verified our results
with human judgments of proposed and unse-
lected phonesthemes, and annotators believe that
words with a model-selected phonestheme “fit
their meaning” more than words that contain a
candidate phonestheme that was not selected by
the model.
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Wolfgang Köhler. 1929. Gestalt psychology.

Margaret Magnus. 2000. What’s in a Word? Evi-
dence for Phonosemantics. Ph.D. thesis, University
of Trondheim.

Henry B. Mann and Donald R. Whitney. 1947. On
a test of whether one of two random variables is
stochastically larger than the other. The Annals of
Mathematical Statistics, pages 50–60.

Padraic Monaghan, Richard C Shillcock, Morten H
Christiansen, and Simon Kirby. 2014. How arbi-
trary is language? Philosophical Transactions of
the Royal Society of London B: Biological Sciences,
369(1651).

John J Ohala. 1984. An Ethological Perspective
on Common Cross-Language Utilization of F0 of
Voice. Phonetica, 41(1):1–16.

Katya Otis and Eyal Sagi. 2008. Phonaesthemes: A
corpus-based analysis. In Proc. of CogSci.

Susan J Parault and Paula J Schwanenflugel. 2006.
Sound-symbolism: A piece in the puzzle of word
learning. Journal of psycholinguistic research,
35(4):329.

53



F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine Learn-
ing in Python. Journal of Machine Learning Re-
search, 12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global Vectors for
Word Representation. In Proc. of EMNLP.

Vilayanur S Ramachandran and Edward M Hubbard.
2001. Synaesthesia – A Window into Perception,
Thought and Language. Journal of Consciousness
Studies, 8(12):3–34.

Ferdinand de Saussure. 1916. Course in General Lin-
guistics.

Richard Shillcock, Simon Kirby, Scott McDonald, and
Chris Brew. 2001. Filled pauses and their status in
the mental lexicon. In Proc. of DiSS.

John Wallis. 1699. Grammar of the English Language.
Oxford.

Hui Zou and Trevor Hastie. 2005. Regularization and
variable selection via the Elastic Net. Journal of the
Royal Statistical Society, Series B, 67:301–320.

54


