
Proceedings of the Second Workshop on Subword/Character LEvel Models, pages 38–48
New Orleans, Louisiana, June 6, 2018. c©2018 Association for Computational Linguistics

Subword-level Composition Functions for Learning Word Embeddings

Bofang Li1, Aleksandr Drozd2, Tao Liu3, and Xiaoyong Du4

1,2School of Computing, Department of Mathematical and Computing Science,
Tokyo Institute of Technology, Tokyo, Japan

1,3,4School of Information, Renmin University of China, Beijing, China
1,3,4Key laboratory of Data Engineering and Knowledge Engineering, MOE, Beijing, China

1libofang@ruc.edu.cn
2alex@smg.is.titech.ac.jp

3tliu@ruc.edu.cn
4duyong@ruc.edu.cn

Abstract

Subword-level information is crucial for cap-
turing the meaning and morphology of words,
especially for out-of-vocabulary entries. We
propose CNN- and RNN-based subword-level
composition functions for learning word em-
beddings, and systematically compare them
with popular word-level and subword-level
models (Skip-Gram and FastText). Addition-
ally, we propose a hybrid training scheme in
which a pure subword-level model is trained
jointly with a conventional word-level embed-
ding model based on lookup-tables. This in-
creases the fitness of all types of subword-
level word embeddings; the word-level em-
beddings can be discarded after training, leav-
ing only compact subword-level representa-
tion with much smaller data volume. We
evaluate these embeddings on a set of intrin-
sic and extrinsic tasks, showing that subword-
level models have advantage on tasks related
to morphology and datasets with high OOV
rate, and can be combined with other types of
embeddings.

1 Introduction

Word embeddings are used in many natural lan-
guage processing tasks (Collobert et al., 2011;
Socher et al., 2013; Kim, 2014). In word em-
bedding models, words are mapped or “embed-
ded” into low-dimensional real-valued vectors.
Such mapping is based, implicitly or explicitly, on
word co-occurrence statistics (Levy and Goldberg,
2014b).

Naturally, frequent words provide a better rep-
resentation of their distributional properties; thus

the quality of word embeddings is in direct rela-
tion to the frequency of words (Drozd et al., 2015).
However, even in large corpora, most words oc-
cur very few times. For example, Baroni (2009)
shows that the words occurring 3 times or less
constitute almost 70% of the vocabulary. Conse-
quently, most of the in-vocabulary words (for a
given task/corpora) have to be discarded or em-
bedded into low-quality vectors. Therefore, word-
level models suffer from data sparsity.

Another issue with word-level models is that
they do not make use of morphological infor-
mation. Different forms of the same word are
treated as completely unrelated entities. For ex-
ample, as shown in Section 4.2, we find that the
word “physicist” and “physicists” are not close to
each other in a well-know word embedding model
Skip-Gram (Mikolov et al., 2013).

These two issues are addressed by the emerging
methodology of subword-level representations, as
discussed in Section 2. The most notable example
of such representations is FastText (Bojanowski
et al., 2017). It represents each word as a bag-
of-character n-grams. Representations for charac-
ter n-grams, once they are learned, can be com-
bined (via simple summation) to represent out-of-
vocabulary (OOV) words.

This paper contributes to the discussion of com-
position functions for constructing subword-level
embeddings and their evaluation. We propose
and evaluate several models (including convolu-
tional and recurrent neural networks) that can em-
bed arbitrary character sequences into vectors.
Our models do not rely on any external resource.
We also propose a hybrid training scheme, which
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makes these neural networks directly integrated
into Skip-Gram model. We train two sets of word
embeddings simultaneously: one is from a lookup
table as in traditional Skip-Gram, and another is
from convolutional or recurrent neural network.
The former is better at capturing semantic similar-
ity. The latter is more focused on morphology and
can learn embeddings for OOV words. We con-
duct experiments on five tasks, and compare our
models with original Skip-Gram and the state-of-
the-art performer FastText.

2 Related Work

2.1 Morphology-based Models

Morphology has long been considered as an im-
portant feature for word representations. For ex-
ample, Lazaridou et al. (2013) investigate sev-
eral algebraic composition functions (e.g. addition
or multiplication) for morphologically complex
words, which generate better representations com-
pared to traditional distributional semantic mod-
els. Luong et al. (2013) train a recursive neural
network for morphological composition, and show
its effectiveness on (rare) word similarity task.
Qiu et al. (2014) propose Morpheme CBOWs for
word similarity and word analogy tasks, which im-
proves on CBOW model (Mikolov et al., 2013)
by learning morphology embeddings and word
embeddings simultaneously. Alexandrescu and
Kirchhoff (2006) take morphological tags as fea-
tures (one-hot representation) for training a lan-
guage model, which reduce the perplexity on rare
word language modeling scenarios.

For both language modeling and machine trans-
lation tasks, LBL++ Botha and Blunsom (2014)
show the effectiveness of summing morphology
vectors in log-bilinear model (Mnih and Hinton,
2007) on 6 morphologically rich languages. Sim-
ilarly, Morph-LBL (Cotterell and Schütze, 2015)
improves on LBL model by predicting both con-
text words and words’ morphological tags in a
semi-supervised fashion, which outperforms both
Word2Vec and LBL on German morphological
analysis.

However, all the above models rely on prior
morphological knowledge, which is obtained by
morphology analysis tools such as Morfessor
(Creutz and Lagus, 2007), or an annotated mor-
phology corpus such as CELEX (Baayen et al.,
1995) and TIGER (Brants et al., 2004).

2.2 Subword-level Word Embeddings
Another line of work is focused on end-to-end
word embedding learning based on subword-level
information. FastText (Bojanowski et al., 2017)
is probably the most influential and effective re-
cent model. It represents each word as a bag-of-
character n-grams. The models proposed in this
paper are conceptually derived from FastText, i.e.
we also operate on character n-grams level and
predict context words from the target word, as in
Skip-Gram approach.

Similarly to our proposed RNN, Cao and Rei
(2016) train a bi-directional LSTM based on sub-
word information. Instead of using character
ngrams, their model feeds the word’s prefixes and
suffixes into each direction of LSTM respectively.
This model is mainly designed to solve morpho-
logical boundary recovery task, it performs com-
parably with dedicated morphological analyzers.
Pinter et al. (2017) also utilize BiLSTM to con-
struct word embeddings. However, their model re-
lies on pre-trained word embeddings by minimiz-
ing the squared Euclidean distance. In contrast,
our proposed RNN requires only a plain text cor-
pus.

2.3 Other Subword-level Models
There are also various task-specific NLP models
that utilize character-level information for train-
ing deep neural networks in an end-to-end fash-
ion. They often surpass the word-level baselines
on language modeling (Mikolov et al., 2012; Sperr
et al., 2013; Bojanowski et al., 2015; Kim et al.,
2016), part-of-speech tagging (Ling et al., 2015;
dos Santos and Zadrozny, 2014), text classifica-
tion (Zhang et al., 2015), and machine translation
(Sennrich et al., 2016; Luong and Manning, 2016),
etc. However, these models do not produce repre-
sentations that could be used in other tasks.

3 Models

3.1 Skip-Gram
Due to its popularity, simplicity, and state-of-the-
art performance on a range of linguistic tasks,
Skip-Gram (Mikolov et al., 2013) has been widely
used as baseline in the word embedding literature
(Levy and Goldberg, 2014a; Faruqui et al., 2015;
Bojanowski et al., 2017; Zhao et al., 2017). In
particular, we use Skip-Gram with negative sam-
pling technique (Figure 1-a). For a vocabulary V
of size |V |, Skip-Gram learns two set of vectors
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Figure 1: Illustration of original Skip-Gram and subword-level models.

W,C ∈ R|V |∗N , namely word vectors and con-
textual word vectors. N is the dimension of vec-
tors. Given a training corpus, Skip-Gram iterates
through all words w and their contexts c, and max-
imizes the objective function p(c|~w), which is de-
fined as:

log σ (~w · ~c) +
K∑

k=1

Eci∼Nw,c [log σ (−~w · ~ci)]

(1)

where σ is the sigmoid function. ~w ∈ W and
~c ∈ C are the vectors for word w and context c re-
spectively. K is the negative sampling size. Nw,c

is the negative example that sampled from the vo-
cabulary V . The negative sampling probability is
empirically defined as the unigram probability of

a word raised to the power of 3/4.

3.2 Utilizing Subword Information
In order to make use of subword information,
we first generalize the objective function of Skip-
Gram by replacing word vector ~w with a compo-
sition function f(w). f(w) takes word w as an
input and outputs a vector of length N . Overall,
the objective function of generalized Skip-Gram
is defined as:

p(c|f(w)) = log σ (f(w) · ~c)

+

K∑

k=1

Eci∼Nw,c [log σ (−f(w) · ~ci)]
(2)

In the original Skip-Gram model, the function
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f(w) is simply a lookup table, which projects
word w to its corresponding vector ~w in the ta-
ble. Depending on the definition, f(w) could also
take the subword information of w into considera-
tion. Naturally, composition functions, especially
neural networks, can be considered.

3.2.1 A Hybrid Training scheme for
Subword-level Models

Intuitively, compared to Skip-Gram, subword-
level models should be better suited for capturing
morphology instead of similarity. In order to take
advantage of both representations, we incorporate
Skip-Gram into subword-level models. Formally,
in our hybrid training scheme we define the objec-
tive function of subword-level models as:

p(c|~w + f(w)) (3)

In this case, each word will have two embed-
dings: one from the lookup table (the same as
Skip-Gram), and another from the composition
function f . These two types of embeddings are
learned simultaneously. We denote the embed-
ding model from the word-level lookup table as
Modelword, and the one from composition func-
tion as Modelsubword. As a baseline we addition-
ally train embeddings using only subword-level
composition function; these models will be re-
ferred to as Modelvanilla.

3.2.2 FastText (Summation)
Probably the most simple and intuitive way of uti-
lizing subword information is to sum all vectors
of characters and character ngrams belonging to
a word (Figure 1-b), which is pioneered by Bo-
janowski et al. (2017). Formally, the composition
function is defined as f(w) =

∑
g∈Gw ~g, where g

is the character n-gram, and ~g is its correspond-
ing n-gram vector with length N . Gw is the set
of character n-grams for word w. For example,
when n = 3, Gw for word “bigger” is defined
as <bi, big, igg, gge, ger, er>. The
angle brackets are padding at the start and end of
the word.

Note that the original FastText (FastTextvanilla)
does not have the hybrid training scheme. As
later shown in our experiments, FastTextword

from the hybrid training scheme works better
than FastTextvanilla in some semantic relatedness
datasets. Moreover, hybrid training scheme is es-
sential for other types of composition functions.

For fair comparison, in the following models,
we use the same padding and the same length of
character n-grams’ vector.

3.2.3 Convolutional Neural Network

Despite its simplicity and efficiency, there is no
clear evidence that simple summation as in Fast-
Text is the best choice for composing subword in-
formation.

This paper investigate two neural network. We
first consider the Convolutional Neural Network
(CNN) as composition function f(w). CNN (Le-
Cun, 1998) is able to capture local features auto-
matically, and has been applied to a wide range of
NLP tasks (Kim et al., 2016; Zhang et al., 2015;
Luong and Manning, 2016).

The CNN architecture introduced in this paper
is inspired by the model used for language model-
ing in Kim et al. (2016). As illustrated in Figure 1-
c, similarly to FastText, the vectors of characters
are first extracted from a lookup table. Those vec-
tors form a matrix with size N ∗ L, where L is
the number of characters. The 1D convolution fil-
ters are used to extract local features. We apply
1D convolutions of size ranging from 1 to 7 in
parallel, perform max-pooling and concatenate the
output. Each of the convolutions uses 200 filters.
The output of this model is a fully-connected layer
with the number of units corresponding to the de-
sired size of embeddings. The resulting vector is
used for predicting contextual words using nega-
tive sampling, the same as the negative sampling
in Skip-Gram.

3.2.4 Recurrent Neural Network

Another neural network that is worth considering
is Recurrent Neural Network (RNN). It takes a se-
quence of arbitrary length as an input, and out-
puts a vector that represents this sequence. Among
all the different variations, the Long Short-Term
Memory based recurrent neural network (LSTM)
(Hochreiter and Schmidhuber, 1997) and its bi-
direction version (Schuster and Paliwal, 1997) are
easier to train, and better capture long-distance in-
formation. As illustrated in Figure 1-d, for each
direction, an LSTM runs over all the vectors of
characters in the word w. The hidden layers at
each position are then summed together, and the
resulting vector is fed into a fully connected layer
to form the final vector w. We empirically set the
hidden layer size of LSTM to N ∗ 2.
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Skip-Gram FastTextsubword RNNsubword CNNsubword

geneticists cosmologists musicologists classicists psychologists physiologist protists physicians
logicians historians biophysicist physicians trombonists pharmacists cryonicists physician

humanists geographers physicalism physicist aerodynamicists physiocrats artists physicality
zoologists philosophers mathematicians publicists physicist microeconomists physiocrats publicists
astrologers astronomers ethicists eugenicists physicality physicians physics physicist

Table 1: Illustration of the top-10 most similar words of target word “physicists”.

4 Experiments

4.1 Implementation Details

We implemented all models described in section
3 using Chainer deep learning framework (Tokui
et al., 2015). Since the proposed CNN and RNN
architectures significantly increase computational
requirements for training, we choose a relatively
small TEXT81 corpus for this evaluation. This
corpus contains the first 109 bytes of the English
Wikipedia dump from Mar. 3, 2006. The word
embedding size N is set to 300. The batch size
is fixed to 1000. The negative sampling size is
set to 5, and the window size is set to 2. Follow-
ing Chainer’s original word2vec implementation,
we use Adam (Kingma and Ba, 2014) as the opti-
mization function. Words which appear fewer than
five times are directly discarded, which results in
vocabulary size of 71290. For character ngrams,
we follow the FastText’s best configuration and
use 5-grams for FastText. We also discard char-
acter ngrams which appear fewer than five times,
which results in character ngrams vocabulary size
of 143207. Word embedding models are trained
for 5 epochs on Nvidia Tesla K80 or P100 GPU.

We also download the state-of-the-art FastText
embeddings (denoted as FastTextexternal) 2, which
are trained on a much larger full Wikipedia corpus.
Note that since CNN and RNN require approxi-
mate 45 and 65 days of training on K80, we didn’t
train on this corpus.

For the fair comparison, we ensure that all em-
beddings used in evaluations use exactly same vo-
cabulary. Unlike most of the benchmarks, where
only embeddings of encountered words affect re-
sulting accuracy, analogical reasoning benchmark
is sensitive to the entire vocabulary in terms of size
and embeddings of individual words. For exam-

1http://mattmahoney.net/dc/textdata.
html

2https://github.com/facebookresearch/
fastText

ple it is hard to make a mistake when looking for
”Paris” as the pair for ”France” if the whole vocab-
ulary contains only these two words. Furthermore,
accuracy depends on how close the target word is
to the source words (Rogers et al., 2017), which
could also be affected by a larger vocabulary.

This issue is especially pronounced for embed-
dings with dynamic vocabulary, such as subword-
level models evaluated in this study. In our pi-
lot experiments, models with large vocabulary
like FastTextexternal result in poor performance
on word analogy tasks since large vocabulary in-
creases the number of options.

Skip-Gram FastTextvanilla FastTextexternal
85.6M 171.9M 8493.6M

CNNvanilla RNNvanilla

7.5M 19.1M

Table 2: Memory footprint of different models (For
Skip-Gram and FastText, it will increase on larger
vocabulary. For CNN- and RNN-based models, it
is constant.

Note that the sizes of these models are different,
as shown in Table 2. Due to the large number of
character ngrams, FastText requires the most data
among these models, while CNN needs only a few
megabytes of data.

4.2 Qualitative Analysis

Before looking into the performance of mod-
els on specific tasks, we first conduct qualita-
tive analysis. We choose several target words
and analyze their nearest neighbors in Skip-Gram,
FastTextsubword, CNNsubword, and RNNsubword.
We find that subword-level models, especially
CNN- and RNN-based models, tend to cluster
words with the same morpheme together. Taking
target word “physicists” as an example (Table 1),
the word “physicist” is within the top-10 near-
est neighbors in subword-level models, but not in
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Model
Word Similarity Word Analogy

Rare WS WS Sim
MEN

Mech BATS Google
Words sem. rel. 999 Turk inf. der. enc. lex. sem. syn.

Skip-Gram .059 .658 .586 .285 .555 .577 .652 .096 .280 .098 .427 .534
FastTextword .065 .708 .619 .285 .610 .596 .622 .102 .274 .078 .424 .530

CNNword .058 .670 .584 .245 .554 .584 .628 .108 .250 .074 .416 .489
LSTMword .063 .697 .623 .284 .600 .599 .666 .134 .264 .080 .427 .597
Concatword .712 .184 .316 .130 .492 .649

FastTextsubword .085 .707 .566 .273 .620 .582 .790 .580 .290 .082 .374 .812
CNNsubword .051 .581 .417 .190 .478 .509 .758 .682 .076 .028 .019 .789
RNNsubword .063 .664 .532 .282 .566 .579 .798 .672 .114 .028 .061 .786

Concatsubword .846 .696 .326 .078 .290 .914
FastTextword+subword .792 .578 .350 .104 .439 .856

CNNword+subword .832 .638 .242 .084 .160 .859
RNNword+subword .832 .606 .244 .086 .240 .875

FastTextsubword+OOV .344 .715 .575 .277 .619 .599 .842 .824 .254 .096 .340 .776
CNNsubword+OOV .234 .564 .409 .224 .490 .497 .880 .948 .094 .044 .023 .786
RNNsubword+OOV .299 .670 .540 .286 .566 .587 .908 .906 .134 .040 .061 .796

Concatsubword+OOV .962 .960 .328 .116 .298 .917
FastTextvanilla+OOV .348 .717 .579 .283 .630 .624 .840 .834 .252 .116 .347 .799

CNNvanilla+OOV .212 .535 .400 .185 .474 .556 .874 .918 .104 .042 .015 .773
RNNvanilla+OOV .273 .638 .542 .250 .576 .568 .856 .866 .112 .034 .050 .748

Concatvanilla+OOV .958 .958 .314 .126 .275 .895
FastTextexternal .096 .674 .604 .332 .600 .574 .746 .446 .528 .194 .779 .872

FastTextexternal+OOV .431 .682 .607 .341 .600 .587 .834 .672 .562 .214 .798 .879

Table 3: Results on word similarity and word analogy datasets. For hybrid training scheme, we denote
the embeddings that come from word vector lookup table as “Modelword”, and the embeddings which
come from the composition function as “Modelsubword”. We denote the vanilla (non-hybrid) models as
“Modelvanilla”. The “FastTextexternal” is the public available FastText embeddings, which are trained
on the full Wikipedia corpus. We also test the version where OOV words are expanded, and denote as
“Model+OOV ”. Model combinations are denoted as gray rows , and best results among them are marked

bold. Rare words dataset in blue column have 43.3% OOV rate, while other word similarity datasets
have maximum 4.6% OOV rate. Morphology related categories are denoted as almond columns . The
results of model combination for word similarity task are simply the average of results from each single
models, which are not listed in this table.

Skip-Gram. Moreover, subword models tend to
cluster words with the same morphology form (af-
fix) together, especially for RNN and CNN.

4.3 Quantitative Analysis

4.3.1 Word Similarity

Word similarity task aims at producing semantic
similarity scores of word pairs, which are com-
pared with the human scores using Spearman’s
correlation. The cosine distance is used for gen-
erating similarity scores between two word vec-
tors. In order to test the effectiveness of captur-
ing word similarity for rare word, we choose the

Rare Words dataset (Luong et al., 2013). For sys-
tematical comparison, we also test our models on
the WordSim353 (WS) (Finkelstein et al., 2001)
dataset, divided into similarity (sem.) and related-
ness (rel.) categories (Zesch et al., 2008; Agirre
et al., 2009), Sim 999 dataset (Hill et al., 2016),
MEN dataset (Bruni et al., 2012), and Mech Turk
dataset (Radinsky et al., 2011).

Table 3 shows that on word similarity tasks
FastText models perform the best in all datasets
except Sim 999. CNNsubword and RNNsubword

are more focused on word morphology, and thus
do not perform well on word similarity task.
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Figure 3: Visualization of learned word embeddings, each dot represents a word, different colors represent
different affixes.

However, compared to Skip-Gram, CNNword and
RNNword (the versions with word vector lookup
table) achieve comparable or even better results.
Their word vector lookup tables in these models
are affected by the composition function, which
results in better performance.

Note that the Rare Words dataset has 43.3% of
words which are OOV. In this dataset, the vocab-
ulary expanded models (FastTextsubword+OOV ,
CNNsubword+OOV , and RNNsubword+OOV ) per-
form a lot better than others. This highlights the
necessity of expanding vocabulary and the effec-
tiveness of subword-level models.

4.3.2 Word Analogy
The word analogy task aims at answering ques-
tions generalize as “a is to a’ as b is to ?”, such
as “London is to Britain as Tokyo is to Japan”.
We follow the evaluation protocol by Drozd et al.
(2016) who proposed the LRCos method of solv-
ing word analogies, which significantly improves
on the traditional vector offset method. We use
Google analogy dataset (Mikolov et al., 2013)
along with a much bigger and balanced BATS
analogy dataset (Gladkova et al., 2016).

On word analogy datasets (Table 3), the in-
flectional and derivational morphology categories
demonstrate the effectiveness of subword-level
word models. It is especially obvious on deriva-
tion morphology category, where Skip-Gram only
achieves 9.6% accuracy and subword-level mod-
els achieve minimal 57.8% accuracy (excluding
the lookup table versions). Furthermore, when the
vocabulary is expanded, the minimal accuracy of
subword-level models reaches 82.4%.

Morphology-related analogy questions also
benefit a lot from the model combination. No-

tably, Concatsubowrd+OOV achieves an accuracy
of 96.2% and 96.0% on inflection and derivation
morphology, which is by far the highest accuracies
on this two categories. We also observe that CNN
is less sensitive to semantic word analogy, while
performing the best on derivational word analogy.

4.3.3 Affix Prediction
In this section we test the ability of subword-
level embeddings to predict what affix is present
in a morphologically complex word. We use
the dataset gathered by (Lazaridou et al., 2013),
which contains 6549 stems and derived word
pairs, such as “name”-“rename” and “sparse”-
“sparsity”. There are 18 affixes, such as “re-”
and “-ity”, and the task is to predict which one is
present in a given word. We use the embeddings
of derived words as input, and feed them to a lo-
gistic regression classifier for predicting their af-
fixes. The accuracy, recall, and F1-score are used
for measurement. We also follow Lazaridou et al.
(2013) in using the default training/test data split.

Figure 3 shows a t-SNE projection of the words
with different affixes in the dataset. It is clear that
both CNN and RNN are able to distinguish differ-
ent derivation types, with the advantage of the for-
mer. This also confirms the good performance of
CNN on derivational analogy task. Note that Fast-
Text does not fare much better than Skip-Gram,
although it is a subword-level model. This par-
tially explains its low accuracy compared to other
subword-level models on morphological analogy
categories.

The prediction results in Table 4 reflect the clus-
ter visualization in Figure 3. Moreover, as in the
word analogy task, the concatenation (especially
with the expanded vocabulary version) performs
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Model
AP SL

P R F1 POS Chunk NER
Skip-Gram .324 .270 .251 .878 .881 .915

FastTextword .346 .267 .250 .880 .883 .917
CNNword .344 .289 .270 .877 .882 .912

LSTMword .354 .298 .280 .878 .882 .915
Concatword .359 .301 .298 .890 .891 .921

FastTextsubword .527 .430 .433 .830 .822 .910
CNNsubword .878 .622 .694 .845 .850 .870
RNNsubword .864 .614 .684 .866 .872 .897

Concatsubword .900 .628 .705 .892 .890 .919
FastTextword+subword .520 .426 .428 .886 .887 .920

CNNword+subword .886 .621 .696 .890 .888 .913
RNNword+subword .839 .607 .670 .890 .888 .919

FastTextsubword+OOV .564 .481 .493 .834 .804 .929
CNNsubword+OOV .912 .687 .765 .909 .895 .909
RNNsubword+OOV .890 .674 .751 .925 .912 .929

Concatsubword+OOV .928 .694 .777 .945 .925 .948
FastTextvanilla+OOV .574 .489 .502 .833 .803 .929

CNNvanilla+OOV .920 .689 .770 .907 .894 .906
RNNvanilla+OOV .897 .683 .757 .924 .912 .926

Concatvanilla+OOV .914 .701 .768 .945 .926 .948
FastTextexternal .521 .411 .414 .888 .882 .929
FastTextexternal .636 .707 .659 .941 .919 .940

Table 4: Results on affix prediction (AP) and sequence labeling (SL) tasks. Sequence labeling tasks have
16.5%, 27.1%, 28.5% OOV rate respectively.

the best among all the other models.

4.3.4 Sequence Labeling
Sequence labeling task consists in assigning labels
to elements of texts. We evaluate word embedding
models on Part-of-Speech Tagging (POS), Chunk-
ing3 and Named Entity Recognition (NER) tasks
4. Following the evaluation protocol used in Kiros
et al. (2015); Li et al. (2017), we restrict the pre-
dicting model to Logistic Regression Classifier 5.
The classifier’s input for predicting the label of
word wi is simply the concatenation of word vec-
tors ~wi−2, ~wi−1, ~wi, ~wi+1, ~wi+2. This ensures that
the quality of the embedding models is directly
evaluated, and their strengths and weaknesses are
easily observed.

Subword-level models on sequence labeling
tasks clearly demonstrate the effectiveness of ex-
panding OOV words. As shown in Table 4,

3CoNLL 2000 shared task http://www.cnts.ua.
ac.be/conll2000/chunking

4CoNLL 2003 shared task http://www.cnts.ua.
ac.be/conll2003/ner

5http://scikit-learn.org/

expanding vocabulary boosts the performance
by a large margin. For example, on NER
task, FastTextsubword+OOV , CNNsubword+OOV ,
and RNNsubword+OOV achieve 1.9%, 2.1%, 3.2%
absolute gains over the versions of the same mod-
els without expanded vocabulary.

4.3.5 Text Classification

For text classification task, we choose the
movie review sentiment (MR) (Pang and Lee,
2005), customer product reviews (CR) (Nakagawa
et al., 2010), subjectivity/objectivity classification
(SUBJ) (Pang and Lee, 2004), and IMDB movie
review (IMDB) (Maas et al., 2011) datasets. The
classification is performed by Logistic Regression
Classifier. The input of this classifier is the sum of
word embeddings that belonging to the text.

As shown in Table 5, the input word embed-
dings do not considerably affect the final accu-
racy. This is especially obvious when compar-
ing subword and subword + OOV models. It’s
hard to draw any insightful conclusion from this
experiment. This is in line with the observations

45



of Li et al. (2017), who showed that Skip-Gram,
CBOW, and GloVe trained with different context
types perform similarly on text classification task.

5 Discussion

The evaluation showed that despite being trained
on a relatively small corpus, CNN- and RNN-
based (model-based) approaches outperform con-
ventional (trained on word-level) embeddings as
well as FastText embeddings, which are claimed
to better capture morphological information (Bo-
janowski et al., 2017). In some cases, the perfor-
mance of model-based embeddings is even higher
than that of FastText embeddings that were trained
on much larger corpus.

Moreover, such performance is achieved with
very compact representations: it is possible to gen-
erate an embedding for any given word on demand
with only network weights, and these weights re-
quire an order of mere kilobytes of data (Table 2).
Naturally, these compact representations do not
have enough capacity to capture semantic infor-
mation well. However, besides merely indicat-
ing a possibility for improvement/limitations of
more “heavy-weight” models (like original Skip-
Gram or FastText), model-based embeddings can
be used together with other approaches to improve
their sensitivity to morphological information.

One such approach is to combine embed-
dings from different models after training, as
demonstrated in our experiments (“concat” lines
in Table 3). Simple concatenation of lookup-
table-based and model-based embeddings main-
tain high accuracy on morphology-related bench-
marks, while elevating performance on semantic
tasks to comparable level.

Additionally, subword-level models can be
trained jointly with models based on lookup-
tables, which improves their performance on dif-
ferent tasks. After training, either part can be used
independently or jointly (e.g. by concatenation) in
down-stream tasks.

6 Conclusion

We have implemented and evaluated several types
of composition functions for subword-level ele-
ments (characters and character n-grams) in the
context of training word embeddings in Skip-
Gram-like model.

We have shown that morphological information
can be captured efficiently by extremely compact

Model Text Classification
MR CR SUBJ IMDB

Skip-Gram .688 .765 .881 .797
FastTextword .690 .756 .878 .796

CNNword .690 .764 .876 .796
LSTMword .687 .752 .881 .794

FastTextsubword .691 .758 .867 .798
CNNsubword .670 .759 .857 .784
RNNsubword .689 .758 .872 .796

FastTextsubword+OOV .693 .759 .869 .797
CNNsubword+OOV .675 .763 .858 .785
RNNsubword+OOV .692 .760 .872 .795

FastTextword+subword .693 .759 .869 .797
CNNword+subword .675 .763 .858 .785
RNNword+subword .692 .760 .872 .795

Table 5: Results on text classification datasets.

models. Embeddings generated dynamically from
just a few megabytes of parameters significantly
outperform conventional (word2vec and FastText)
models on morphology related tasks. Addition-
ally, this indicates the vast limitation of the ability
of conventional models to capture morphological
information.

To model both morphological and semantic in-
formation, we propose two methods for combining
strength of compact subword-level- and lookup-
table based models: merging trained embeddings
and training jointly. The resulting embeddings
achieved high accuracy on a range of benchmarks
and are particularly promising for datasets with
high OOV rate.

The source code of those models, along with the
pretrained word embeddings, has been integrated
into an open-source project, and will be publicly
available.
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