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Abstract

Most modern approaches to computing word
embeddings assume the availability of text cor-
pora with billions of words. In this paper,
we explore a setup where only corpora with
millions of words are available, and many
words in any new text are out of vocabu-
lary. This setup is both of practical inter-
est – modeling the situation for specific do-
mains and low-resource languages – and of
psycholinguistic interest, since it corresponds
much more closely to the actual experiences
and challenges of human language learning
and use. We evaluate skip-gram word em-
beddings and two types of character-based
embeddings on word relatedness prediction.
On large corpora, performance of both model
types is equal for frequent words, but character
awareness already helps for infrequent words.
Consistently, on small corpora, the character-
based models perform overall better than skip-
grams. The concatenation of different embed-
dings performs best on small corpora and ro-
bustly on large corpora.

1 Introduction

State-of-the-art word embedding models are rou-
tinely trained on very large corpora. For example,
Mikolov et al. (2013a) train word2vec on a corpus
of 6 billion tokens, and Pennington et al. (2014)
report the best GloVe results on 42 billion tokens.

From a language technology perspective, it is
perfectly reasonable to use large corpora where
available. However, even with large corpora, em-
beddings struggle to accurately model the meaning
of infrequent words (Luong et al., 2013). Moreover,
for the vast majority of languages, substantially
less data is available. For example, there are only
4 languages with Wikipedias larger than 1 billion
words,1 and 25 languages with more than 100 mil-

1https://en.wikipedia.org/wiki/List_
of_Wikipedias#Detailed_list (as of 9 Jan 2018)

lion words. Similarly, specialized domains even
in very high-resource languages are bound to have
much less data available.

From a psycholinguistic point of view, current
models miss the crucial ability of the human lan-
guage faculty to generalize from little data. By
seventh grade, students have only heard about 50
million spoken words, and read about 3.8 million
tokens of text, acquiring a vocabulary of 40,000–
100,000 words (Landauer and Dumais, 1997). This
also means that any new text likely contains out-
of-vocabulary words which students interpret by
generalizing from existing knowledge – an ability
that plain word embedding models lack.

There are some studies that have focused on
modeling infrequent and unseen words by captur-
ing information at the subword and character levels.
Luong et al. (2013) break words into morphemes,
and use recursive neural networks to compose word
meanings from morpheme meanings. Similarly,
Bojanowski et al. (2017) represent words as bags of
character n-grams, allowing morphology to inform
word embeddings without requiring morphological
analysis. However, both models are still typically
applied to large corpora of training data, with the
smallest English corpora used comprising about 1
billion tokens.

Our study investigates how embedding models
fare when applied to much smaller corpora, con-
taining only millions of words. Few studies, except
Sahlgren and Lenci (2016), have considered this
setup in detail. We evaluate one word-based and
two character-based embedding models on word
relatedness tasks for English and German. We find
that that the character-based models mimics hu-
man learning more closely, with both better results
on small datasets and better performance on rare
words. At the same time, a fused representation
that takes both word and character level into ac-
count yields the best results for small corpora.
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WL

Window size 5
Negative samples 15
Word embedding dim. 300
Minimum word count as
inclusion as target

5 for full, 1 for small corpora

Starting learning rate 0.025
Training epochs 5 for full, 15 for 100 MiB, 75

for 10 MiB corpora

FT

Word embedding dim. 300
Training epochs 5
Learning rate 0.05
Minimum n-gram length 3
Maximum n-gram length 6
Negative samples 5

CL

Word length 16 characters
Character embedding dim. 15
Convolution filter widths 〈1, 2, 3, 4, 5, 6, 7〉
Convolution filter units 〈200, 200, 200, 200,

250, 300, 350〉
Word embedding dim. 300
Minimum word count for
inclusion as context

5

Batch size 100
Learning rate 0.05
Training epochs as above

CAT

Word embedding dim. 300 + 300 + 300 = 900

Table 1: Hyperparameters (dim. = dimensionality). For
WL and FT, software defaults were used for all hyper-
parameters unless otherwise specified.

2 Models

We examine four models for generating our word
embeddings. All of the use a skip-gram objective
function but differ in the granularity of linguistic
input that they model: the first model works at the
word level (WL); the second model, fastText (FT),
works at the character n-gram level; the third model
is character-based (CL); the forth model is a fusion
of the first three (CAT). The hyperparameters of
the models are shown in Table 1.

2.1 Word-level Skip-gram Model

As a character-agnostic model, we use a stan-
dard, word-level skip-gram model (WL, Mikolov
et al. 2013a), with negative sampling loss. All
in-vocabulary words are assigned an embedding;
out-of-vocabulary words are assigned the vector
average of all in-vocabulary embeddings. We use
the word2vec software for our WL model2.

2https://code.google.com/archive/p/
word2vec/

2.2 fastText
The fastText (FT) model was introduced in Bo-
janowski et al. (2017). This model is based upon
the word-level skip-gram model. However, while
WL explicitly stores vectors for each word in the
vocabulary, FT learns vector representations for
character n-grams which appear within words. The
embedding for an individual word is then identified
with the sum of that word’s n-gram vectors. As un-
seen words are still composed of familiar n-grams,
this model is capable of assigning embedding vec-
tors to words not seen in the training data. We used
the fastText software package for this model3.

2.3 Character-aware Skip-gram Model
Our character-aware skip-gram model (CL) mod-
els word meaning by learning representations for
individual characters. It consists of two compo-
nents: the embedding subnet generates embeddings
for individual words using a convolutional neural
network (CNN). The NCE loss layer uses a skip-
gram loss function to score the embeddings. This
architecture allows character-level sequence infor-
mation to inform word embeddings, while using a
loss function similar to those of more traditional
embedding architectures.

Embedding Subnet. The embedding subnet is a
CNN that takes as input a character sequence (rep-
resenting a word), and outputs an embedding vector
for that word. The architecture of this network was
adapted from Kim et al. (2016), with modifications
to use a skip-gram loss function and to produce
low-dimensional embedding vectors.

Figure 1 provides a schematic overview of the
embedding subnet. First, input words are normal-
ized to a length of 16 characters, truncating longer
words and appending null characters to the end of
shorter ones. Each character in this input sequence
is then assigned a character-embedding vector. The
values of these character embeddings are trainable
parameters of the model. The resulting sequence
of character embeddings is then used as the input
for a convolution layer, with a sigmoid activation
function. A max-pooling layer is applied to all
outputs of the convolution layer. The results of
this pooling are all concatenated to form a single
vector, which is then passed through two succes-
sive highway networks (Srivastava et al., 2015).
Since highway networks preserve dimensionality,

3https://github.com/facebookresearch/
fastText
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Figure 1: Embedding subnet

the output of the second highway network depends
directly on the number of convolution filters used.
As we would like a word embedding of relatively
small dimensionality, we use a linear projection
layer to yield our final embedding vector.

NCE Loss. In order for the embedding subnet
to produce semantically-meaningful embeddings,
we use it in a skip-gram model (Mikolov et al.,
2013a) using noise-contrastive estimation (NCE)
loss (Gutmann and Hyvärinen, 2012; Mnih and Teh,
2012). This is rather similar to the NEG models
of Mikolov et al. (2013b), but with “input” vectors
coming from our embedding subnet, and with NCE
in the place of negative sampling. As in Mikolov
et al. (2013b), we still depend on a fixed vocabu-
lary of context words for the “output” vectors. All
model parameters are optimized to minimize NCE
loss using stochastic gradient descent.

2.4 Fusion model

CAT assigns each word the concatenation of its
CL, WL, and FT embeddings, i.e., performs late fu-
sion (Bruni et al., 2014). As the individual models
produce vectors of different average magnitudes,
we rescale the embeddings produced by individual
models prior to this concatenation, such that, af-
ter rescaling, each constituent model has the same
average vector magnitude, when averaged over all
words present in the training data. Experiments

Corpus Articles Tokens Vocab Size

en-full 4,280,642 1,699M 8,745K 8.69 GiB
en-100M 48,430 19,211K 468K 100 MiB
en-10M 4,833 1,924K 106K 10.0 MiB

de-full 1,539,077 587M 6,323K 3.50 GiB
de-100M 43,078 16,507K 720K 100 MiB
de-10M 4,362 1,645K 153K 9.99 MiB

Table 2: Statistics for training corpora.

Benchmark Mean
Freq.

Morphemes
per word

Portion
OOV

WS353 44.7K 1.27 0/437
RW 1.91K 1.53 19/2951

WS353-de 8.36K 1.30 2/455
GUR350 3.11K 1.46 13/469

Table 3: Statistics for evaluation benchmarks (com-
puted on full-size corpora). Frequencies averaged geo-
metrically (on lemmas with non-zero frequency); mor-
phemes/word averaged algebraically.

with joint training of the models did not yield supe-
rior results.

3 Experimental Setup

We evaluate our models for two languages, English
and German. These are clearly not low-resource
languages, but the availability of corpora and evalu-
ation datasets makes them suitable for experiments.

Training data. All models were trained on the
standard Wikipedia corpora for English and Ger-
man preprocessed by Al-Rfou et al. (2013).4

In addition, we sampled two (sub)corpora with
10 and 100 million characters to evaluate the mod-
els’ effectiveness on limited training data. To gen-
erate a subcorpus of a particular size, articles were
sampled uniformly at random (without replace-
ment) from that language’s Wikipedia until the tar-
get size was reached. Table 2 presents all corpora
and subcorpora used, and their sizes. Our 100M
corpora account for around 1% (for English) and
3% (for German) of the full Wikipedia corpora, and
10M corpora for .1% and .3%, respectively. We
picked these sizes because they cover the “typical”
Wikipedia sizes for low-resource languages.

Evaluation benchmarks. We evaluate our mod-
els on a standard task in lexical semantics, predict-
ing human word relatedness ratings. Compared to
relation prediction, this task has the advantage of

4https://sites.google.com/site/rmyeid/
projects/polyglot
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Test Benchmark size WL FT CL CAT

[en] WS353 353 .73 .74 .51 .72
[en] RW 2034 .44 .50 .31 .46
[de] WS353 350 .64 .64 .47 .64

al
li

te
m

s

[de] GUR350 350 .61 .72 .52 .65

[en] WS353 353 .73 .73 .51 .72
[en] RW 1977 .45 .50 .32 .47
[de] WS353 348 .64 .64 .47 .64

IV
ite

m
s

[de] GUR350 324 .64 .72 .55 .67

[en] WS353 0 – – – –
[en] RW 57 -.24 .64 -.04 .15
[de] WS353 2 1.00 1.00 -1.00 1.00

O
O

V
ite

m
s

[de] GUR350 26 -.11 .61 .00 .25

Table 4: Spearman correlations of embedding simi-
larity and human judgments (full training sets: en 9G,
de 3.5G). Top: full benchmarks; middle: in-vocabulary
items; bottom: out-of-vocabulary items. Best model
for each benchmark and training bolded.

being graded instead of categorical (Landauer and
Dumais, 1997). We use two relatedness datasets in
both languages. For comparison to prior work, and
for a rough comparison across languages, we utilize
the WordSim353 benchmark (WS353) (Finkelstein
et al., 2001) for English and the German version of
the Multilingual WordSim353 benchmark (WS353-
de) for German (Leviant and Reichart, 2015).

As we are specifically interested in modeling
rare words, we also use the Stanford Rare Word
Dataset (RW, Luong et al. 2013) for English. It
was designed with these goals in mind. While no
parallel to this benchmark exists for German, the
GUR350 benchmark (Zesch et al., 2007) shows
similar properties: As Table 3 shows, the words
in GUR350 are less frequent and longer than in
WS353-de. Thus, many more words are out of
vocabulary in GUR350 even in the full corpus.

4 Results

Tables 4 to 6 show the results for the three different
training corpus sizes. We report results for all items,
just in-vocabulary items, and just out-of-vocabulary
items (i.e., one or both elements of the word pair
unseen in training).

Full corpus results. The results by WL on full
corpora for all items (top part of Table 4) outper-
form results reported in the literature5, indicating
that the word-level embeddings are competitive

5For WordSim, Leviant and Reichart (2015) obtain 0.652
(en) and 0.618 (de) using our “full” corpora. For RW, Sahlgren
and Lenci (2016) report 0.285 on 1G words, and for GUR350,
Utt and Padó (2014) report 0.42 using 3G words.

Test Benchmark size WL FT CL CAT

[en] WS353 353 .65 .66 .42 .67
[en] RW 2034 .22 .43 .29 .40
[de] WS353 350 .49 .50 .30 .52

al
li

te
m

s

[de] GUR350 350 .32 .56 .51 .47

[en] WS353 353 .65 .66 .42 .67
[en] RW 1413 .30 .45 .33 .42
[de] WS353 347 .48 .49 .29 .52

IV
ite

m
s

[de] GUR350 290 .42 .55 .52 .51

[en] WS353 0 – – – –
[en] RW 621 .15 .41 .21 .35
[de] WS353 3 .50 1.00 .50 .50

O
O

V
ite

m
s

[de] GUR350 60 .14 .62 .41 .41

Table 5: Spearman correlations of embedding similar-
ity and human judgments (100M training sets).

Test Benchmark size WL FT CL CAT

[en] WS353 353 .48 .42 .26 .53
[en] RW 2034 .16 .32 .16 .28
[de] WS353 350 .16 .22 .16 .29

al
li

te
m

s
[de] GUR350 350 .11 .34 .42 .38

[en] WS353 333 .52 .44 .29 .56
[en] RW 687 .21 .34 .16 .30
[de] WS353 305 .16 .24 .21 .28

IV
ite

m
s

[de] GUR350 218 .29 .40 .32 .48

[en] WS353 20 .52 .05 -.05 .10
[en] RW 1347 .19 .30 .16 .29
[de] WS353 45 .16 .18 .18 .24

O
O

V
ite

m
s

[de] GUR350 132 .08 .25 .40 .31

Table 6: Spearman correlations of embedding similar-
ity and human judgments (10M training sets).

with the state of the art. FT performs as well or
even better than WL on the full corpora, indicating
that character n-grams can learn well even from
large datasets, while the individual character-based
CL model cannot profit from this situation. Nev-
ertheless, the fusion model CAT is robust: it per-
forms generally on par with WL.

On full corpora, almost all items in all bench-
mark datasets are seen; therefore, the separate re-
sults on IV and OOV items are not particularly
interesting (middle and bottom parts of Table 4).

100M corpora results. The results on the 100M
corpora (Table 5) confirm that model performance
correlates with training set size: Without excep-
tion, the models’ performance decreases for smaller
corpora. However, this effect is much more pro-
nounced for WL than for the character-based mod-
els, FT and CL. For the first time, on these corpora,
the fusion model CAT is able to outperform FT,
indicating that there is some degree of complemen-
tarity between the predictions (and the errors) of
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the individual models.
On the 100M corpora, the RW and GUR350

datasets both have a significant number of pairs
containing OOV words. As expected, WL per-
formed particularly poorly on these pairs. How-
ever, it is notable that FT also outperforms WL
on every IV benchmark. This shows that the ad-
vantage of character-based over word-based mod-
els is not restricted to unseen words. The perfor-
mance gap between FT and WL on IV is small
on the two WS353 datasets (with the highest mean
item frequency, and the lowest morphological com-
plexity – cf. Table 3) but substantial for RW and
GUR350 (which contain low-frequency, morpho-
logically complex words). This indicates that WL
struggles in particular with infrequent, complex
words.

10M corpora results. Finally, Table 6 shows the
results for the 10M corpora. Here, we see a rela-
tively heterogeneous picture regarding the individ-
ual models across benchmarks: WL does best on
WS353-en; FT does best on RW and WS353-de;
CL does best on GUR350. This behavior is consis-
tent with the patterns we found for the 100M cor-
pora, but more marked. Due to the inhomogeneity
among models, the fusion model CAT does particu-
larly well, outperforming FT on 3 of 4 benchmarks,
often substantially so.

As with the 100M corpora, the character aware
models perform much better than WL for OOV
pairs. For 10M, however, FT’s dominance is not
as clear – CL substantially outperforms FT on
GUR350. This may indicate that modeling indi-
vidual character embeddings rather than n-grams
is more suitable for the lowest-data setups.

Model choice recommendations. Based on our
results, we can formulate the following recommen-
dations: (a) FastText is a good choice for both
medium- and large-data situations and is likely to
outperform plain word-based models overall, and
in particular for low-frequency words; (b) for low-
data situations, there is sufficient complementarity
among models that model combination, even by
simple concatenation, can yield further substantial
improvements.

5 Conclusion

This paper argues that it is worthwhile, both from
applied and psycholinguistic perspectives, to evalu-
ate embedding models trained on much smaller cor-

pora than generally considered, and have compared
a standard word-level skip-gram model against
a character n-gram based and a single character-
based embedding model.

Even at corpus sizes of billions of words, we find
that the character n-gram based model performs at
or above the level of the word-level model. This
result is in contrast to the findings of Sahlgren and
Lenci (2016), who found the best performance for
a dimensionality-reduced word embedding model
across all corpus sizes. However, all of the models
they considered were word-based, indicating that
character awareness is what makes the difference.
The success of the character n-gram based model
can also be interpreted as support for a morpheme-
based representation in the mental lexicon (Smolka
et al., 2014) in the sense that character n-gram
appear to be represent a very informative level of
representation for semantic information.

As we move to smaller corpus sizes, we also see
more competitive performance for the model based
on individual character embeddings. Its forte is
to deal with low-data situations, predicting mean-
ings for unfamiliar words by utilizing familiar mor-
phemes and other subword structures, in line with
Landauer et al.’s (1997) claim of “vast numbers of
weak interrelations that, if properly exploited, can
greatly amplify learning by a process of inference”.
In the future, we will evaluate our character-based
model for other languages, and assess other aspects
of its psycholinguistic plausibility, such as match-
ing human behavior in performance and acquisition
speed (Baroni et al., 2007).
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