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Abstract

Neural machine translation has achieved im-
pressive results in the last few years, but its
success has been limited to settings with large
amounts of parallel data. One way to improve
NMT for lower-resource settings is to initial-
ize a word-based NMT model with pretrained
word embeddings. However, rare words still
suffer from lower quality word embeddings
when trained with standard word-level objec-
tives. We introduce word embeddings that
utilize morphological resources, and compare
to purely unsupervised alternatives. We work
with Arabic, a morphologically rich language
with available linguistic resources, and per-
form Ar-to-En MT experiments on a small cor-
pus of TED subtitles. We find that word em-
beddings utilizing subword information con-
sistently outperform standard word embed-
dings on a word similarity task and as initial-
ization of the source word embeddings in a
low-resource NMT system.

1 Introduction

Neural machine translation (Bahdanau et al., 2014;
Sutskever et al., 2014) has recently become the
dominant approach to machine translation. How-
ever, the standard encoder-decoder models with
attention have been shown to perform poorly in
low-resource settings (Koehn and Knowles, 2017),
a problem which can be alleviated by initializa-
tion of parameters from an NMT system trained
on higher-resource languages (Zoph et al., 2016).
An alternative way to initialize parameters in a
low-resource NMT setup is to use pretrained mono-
lingual word embeddings, which are quick to train
and readily available for many languages.

There is a large body of work on word
embeddings. Popular approaches include
word2vec (Mikolov et al., 2013a) and
GloVe (Pennington et al., 2014). These

have been shown to perform well in word sim-
ilarity tasks and a variety of downstream tasks.
However, they have been primarily evaluated
on English. The learned representations for rare
words are of low quality due to sparsity. For
morphologically rich languages, we may want
word embeddings that also consider morphological
information, to reduce sparsity in word embedding
training.

Previous work on morphological word embed-
dings has shown improvements on word similarity
tasks, but has not been evaluated on downstream
NMT tasks. Our contribution is two-fold:

1. We adapt word2vec to utilize lemmas from
a morphological analyzer,1 and show improve-
ments on a word similarity task over a state-
of-the-art unsupervised approach to incorpo-
rating morphological information based on
character n-grams (Bojanowski et al., 2017).

2. We experiment with Arabic-to-English NMT
on the TED Talks corpus. Our results demon-
strate that incorporating some form of mor-
phological word embeddings into NMT im-
proves BLEU scores and outperforms the con-
ventional approaches of using standard word
embeddings, random initialization, or byte-
pair encoding (BPE).

2 Neural Machine Translation

We follow recent work in neural machine transla-
tion, using a standard bi-directional LSTM encoder-
decoder model with the attention mechanism from
Luong et al. (2015). We describe below other work
in NMT that has tried to address some of the same
issues dealing with settings with limited parallel
data, improving translation of morphological com-
plexity, and Arabic NMT.

1https://github.com/pamelashapiro/
word2vec_morph
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2.1 Low-Resource Settings

Some success has been achieved applying neural
machine translation to low-resource settings. Zoph
et al. (2016) use transfer learning to improve NMT
from low-resource languages into English. They
initialize parameters in the low-resource setting
with parameters from an NMT model trained on
a high-resource language. Nguyen and Chiang
(2017) extend this by exploiting vocabulary overlap
in related languages. Similarly, Firat et al. (2016)
share parameters between high and low resource
languages via multi-way, multilingual NMT.

Other work aims to exploit monolingual data
via back-translation (Sennrich et al., 2016a).
Imankulova et al. (2017) aim to improve this tech-
nique for low-resource settings by filtering gen-
erated back-translations with quality estimation.
Meanwhile, He et al. (2016) use a reinforcement
learning approach to learn from monolingual data.

Our approach is similar to those utilizing trans-
fer learning, but we initialize on the source side
with monolingual word embeddings, which is rel-
atively simple to implement and low-cost to train.
Di Gangi and Marcello (2017) experiment with
monolingual word embeddings as we do, but they
merge external monolingual word embeddings with
the embeddings learned by an NMT system. We
simply use word embeddings as initialization, and
we instead focus on exploring how morphological
word embeddings can help in this setup.

2.2 Incorporating Morphology

Some research has aimed to incorporate morpho-
logical information into NMT systems. Byte-
Pair Encoding (BPE) segments words into pieces
by merging character sequences based on fre-
quency (Sennrich et al., 2016b), and these se-
quences of word pieces are translated. BPE be-
come standard practice. However, it is unclear how
much data is necessary for it to be beneficial. In our
experiments, BPE performs worse than initializing
with any of the word embeddings for our dataset.

Character-level NMT has recently become pop-
ular as well (Ling et al., 2015b; Costa-jussà and
Fonollosa, 2016; Lee et al., 2017). Their work
aims to implicitly learn morphology by building
neural network architectures over characters. We
also compare to a character-level NMT system in
our experiments.

Additionally, Dalvi et al. (2017) add morpholog-
ical information into the decoder, following work

from Belinkov et al. (2017) that showed that the
encoder already learns more morphological infor-
mation than the decoder. Our work differs in that
we are focusing on incorporating morphological in-
formation into the source side. Moreover, Belinkov
et al. (2017) works with higher-resource datasets.
It is possible that in lower-resource settings, it will
still be helpful to incorporate morphological infor-
mation into the encoder.

2.3 Arabic NMT

Almahairi et al. (2016) produce the first results
of neural machine translation on Arabic. They
find that preprocessing of Arabic as used in sta-
tistical machine translation is helpful. They nor-
malize the text, removing diacritics and normaliz-
ing inconsistently typed characters, and they tok-
enize according the Penn Arabic Treebank (ATB)
scheme (Maamouri et al., 2004), separating all cl-
itics except for definite articles. We normalize as
such, but do not use ATB tokenization, instead us-
ing the default tokenization in Moses (Koehn et al.,
2007). We do this to focus on embeddings for
words and to facilitate generalization to other lan-
guages. Additionally, Sajjad et al. (2017) explore
alternatives to language-specific segmentation in
Arabic, finding that BPE performs the best in their
scenario.

Note that unlike the previously described work,
we are using a dataset of only 2.9 million tokens for
training. This is to assess the use of morphological
word embeddings in settings with limited parallel
data.

3 Morphological Word Embeddings

Morphological word embeddings help improve the
quality of pretrained word embeddings for less
frequent morphological variants, which is impor-
tant for morphologically rich and low-resource lan-
guages. We outline related work in this section and
describe an additional approach of our own.

Some related work has used morphological re-
sources to guide word embeddings. Cotterell and
Schütze (2015) use a multi-task objective to encour-
age word embeddings to reflect morphological tags,
working within the log-bilinear model of Mnih
and Hinton (2007). Cotterell et al. (2016) use a
latent-variable model to adapt existing word em-
beddings to morphemes. Our additional approach
is similar to this vein of work in that it uses mor-
phological resources, but it works within the popu-
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Figure 1: Modified skipgram objective for training morph embeddings. Here, w(t) is the current word,
l(t) is its lemma, and w(t-2), w(t-1),w(t+1),w(t+2) are neighboring words.

lar word2vec skipgram objective (Mikolov et al.,
2013a), adding a simple modification to consider a
lemma in addition to a word form.

Other work uses purely unsupervised techniques.
Luong et al. (2013) segment words using Morfes-
sor (Creutz and Lagus, 2007), and use recursive
neural networks to build word embeddings from
morph embeddings. Instead of explicit segmen-
tation, fastText (Bojanowski et al., 2017) in-
corporates subword information into the skipgram
model by treating a word as a bag of character n-
grams. They represent each n-gram of sizes 3-6
with a vector, and each word as a sum of its n-gram
vectors. While fastText is not explicitly learn-
ing morphology, it can be viewed as potentially
incorporating morpheme-like subwords.

For simplicity and efficiency, we consider only
embeddings in the skipgram family—fastText,
word2vec skipgram, and our modification of the
word2vec skipgram objective, described in 3.1.
There is a large literature on exploiting characters,
morphology, and composition for embedding mod-
els (Chen et al., 2015; Ling et al., 2015a; Qiu et al.,
2014; Wieting et al., 2016; Lazaridou et al., 2013),
and a comparison with these different models may
be interesting future work.

The usefulness of word embeddings in down-
stream applications is a question that often needs
to be revisited. Many types of morphological or
character-level embedding models have been evalu-
ated under various extrinsic metrics, in applications
such as language modeling (Kim et al., 2016; Botha
and Blunsom, 2014; Sperr et al., 2013), parsing
(Ballesteros et al., 2015), part-of-speech tagging
(dos Santos and Zadrozny, 2014), and named-entity
recognition (dos Santos and Guimarães, 2015; Cot-

terell and Duh, 2017). Besides the Arabic word
similarity dataset, here we also focus on evaluat-
ing embeddings at the source side of a machine
translation task.

3.1 Modified Skipgram Objective

We assume the availability of a morphological an-
alyzer or lemmatizer that will output a lemma for
each word token in a text. We modify the skipgram
objective (Mikolov et al., 2013b) to use both word
and lemma to predict context words, as illustrated
in Figure 1. We learn word vectors and lemma vec-
tors, using their concatenation in the dot product
with a context vector in the skipgram objective. So
the modified objective we are approximating with
negative sampling is now

p(wO|wI , lI) =
exp(v

′T
wO

concat(vwI , vlI ))
∑W

w=1 exp(v′T
w concat(vwI , vlI ))

Without the lemma part, this objective corre-
sponds to word2vec.

Because there may be multiple lemmas associ-
ated with a word type, we use a weighted average
over lemma vectors in the final vector:

w∗
I = concat(vwI ,

1

c(wI)

∑

lI

c(wI : lI) ∗ vlI)

where c(·) is the count of a word or word-lemma
pair. When the morphological analyzer cannot pro-
duce a lemma, we use the word form itself. We
output the vectors associated with individual lem-
mas as well, which can be used to handle OOV
words.
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The lemma simplifies a word, removing clitics
and some inflectional morphology. While it re-
duces sparsity of infrequent stems, it also removes
potentially useful information. The hope is that
by using both word and lemma, we can maintain
enough of the benefits of morphology in frequent
words while also reducing sparsity in infrequent
words. We do some preliminary experiments using
just the lemma to predict context words as well, but
in preliminary experiments this performed worse,
possibly because we lose too much information
from morphology.

In future work, we could also try modifying
what is predicted as well (i.e. instead of predicting
context words, predict lemma or both word and
lemma).2

4 Arabic Morphology and Resources

We describe here the morphological analyzer we
use, as well as prominent features of Arabic mor-
phology that we consider in our analysis.

4.1 Morphological Analyzer

We use a morphological analyzer for Arabic called
MADAMIRA (Pasha et al., 2014). MADAMIRA
performs rule-based morphological analysis on the
form of the word and then uses supervised learning
techniques to disambiguate in context. It provides
several types of morphological analysis for Arabic.
In this work we only use the lemma, though future
work could consider utilizing the other morpholog-
ical information provided.

4.2 Arabic Morphology

One prominent feature of Arabic morphology is
that it is rich with clitics, morphemes that syntac-
tically function as words but phonologically func-
tion as affixes. Arabic proclitics (prefixes) include
articles, conjunctions, and prepositions. Arabic
enclitics (suffixes) include object or possessive pro-
nouns. There are also inflectional affixes for num-
ber (singular, plural, and dual) and gender (mas-
culine, feminine), and grammatical case endings -
though only certain indefinite accusative case end-
ings are visible without diacritics.

Semitic languages such as Arabic also have a
substantial amount of non-concatenative morphol-
ogy. Most stems are formed from a 3-consonant

2Our adaptation of word2vec can be used for context-
dependent word tags in general, not just lemmas.

root inserted into a vowelled template, called “tem-
platic morphology.” When we are only consider-
ing inflectional morphology, as we are in the case
of lemmas, we see this most in “broken plurals,”
which are especially productive in Arabic (as com-
pared to other Semitic languages). A broken plural
changes the internal vowelled pattern from the sin-
gular, rather than attaching a suffix.

An example of this is the word for “key,” mf-
tAH �Atf�, and its plural, mfAtyH �y�Af�, where
the root is f-t-H, and the pattern for singular is
mCCAC, and for plural is mCACyC.3 In this case,
MADAMIRA would produce the lemma: 1 �At"fi�
for both forms. We hypothesize that the embed-
dings informed by MADAMIRA will have an ad-
vantage on these words, where the morphemes in-
volved cannot be captured by character n-grams.

5 Experiments

We compare three types of embeddings:

• word2vec: standard skip-gram word embed-
dings that only use word information.

• fastText: skip-gram embeddings that are
sums of vectors representing character n-
grams, implicitly incorporating some form of
morphological information.

• morph: the modified skip-gram word embed-
dings described in Section 3.1, which rely on
a morphological analyzer and lemma embed-
dings.

The word embeddings inserted into the NMT
system are always of dimension 300, and in word
similarity experiments, we experiment with dimen-
sions of different sizes. All word embeddings
are trained with negative sampling (5 samples),
with a window size of 5, a 10−4 rejection thresh-
old for subsampling, and 5 iterations. Additional
fastText parameters are left at the default. We
use OpenNMT-py (Klein et al., 2017) for all NMT
experiments, with a max sentence size of 80. We
use word-level prediction accuracy for model se-
lection. For the BPE baseline, the number of
BPE merge operations is 30,000. The hidden
layer size is 1024, trained with batch size 80, with
Adadelta (Zeiler, 2012) and a dropout rate of 0.2
for 20 epochs with a learning rate of 1.0.

When initializing the encoder with word embed-
dings, we experiment both with locking the word

3We use Buckwalter transliteration (Buckwalter, 2002).
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Normalize Diacritics Full Normalization
Null OOVs Handle OOVs Null OOVs Handle OOVs

word2vec, 150 0.52 NA 0.52 NA
word2vec, 300 0.51 NA 0.53 NA
fastText, 150 0.53 0.55 0.55 0.55
fastText, 300 0.53 0.55 0.54 0.55

morph, 150-150, word 0.15 NA 0.15 NA
morph, 150-150, word+lemma 0.54 0.55 0.54 0.55

morph, 150-150, lemma 0.59 0.60 0.59 0.60

Table 1: Spearman coefficient for Arabic word similarity dataset built off of WS353. We list the
dimension of the word embedding, and in the case of morph, we list the dimensions of the word part and
the lemma part. In the morph system, lemma refers to using just the lemma part of the vector to compare
similarity, word refers to using just the word part, and word+lemma refers to using the whole vector.

embeddings throughout training (“fixed”) and al-
lowing backpropagation through the word embed-
dings (“unfixed”). At test time, words not seen in
the MT training data are also initialized with word
embeddings, if they were seen in the word embed-
ding training data. Words unseen by either corpus
are mapped to the embedding of an <unk> token.

The bitext we use for NMT is a collection of
TED subtitles obtained from WIT3 (Cettolo et al.,
2012).4 This is a collection of monologue speeches
from TED talks, covering a wide range of topics
such technology, design, and social science. We
downloaded the latest XML files (version 2016-
04-08) for Arabic and performed subtitle extrac-
tion and sentence merging using the WIT3 scripts.
The data is then randomly split at the granularity
of talks, with 1939 talks for training, 30 talks for
development, and 30 talks for testing.5 The cor-
responding sentence/token statistics are shown in
Table 2. In this data, 9% of word types and 3% of
tokens in the test data were not seen in train.

The monolingual corpus we use for word embed-
dings is cleaned and tokenized Arabic Wikipedia,
consisting of about 80 million tokens, with a vocab-
ulary of around 350k words. The word embeddings
are trained on both the monolingual corpus and the
source side of the TED training data. The number
of lemma types in the monolingual corpus is 672k,
and in TED training data is 42k.

5.1 Word Similarity Results

Before running NMT, we first experiment on a
word similarity dataset to test the effectiveness of

4https://wit3.fbk.eu
5The data splits are available at http://www.cs.jhu.

edu/˜kevinduh/a/multitarget-tedtalks/.

Corpus Sentences Tokens Types

Wikipedia 1,751k 79,793k 1,263k
TED, train 175k 2,855k 152k
TED, dev 2k 30k 8k
TED, test 2k 29k 8k

Table 2: Size of corpora, the number of tokens for
MT data refers to the source side.

morphology in word embeddings. We compare
word2vec, fastText, and variants of our mor-
phological skip-gram in Section 3.1. We experi-
ment with normalizing only diacritics as well as
additionally normalizing inconsistently typed char-
acters as in Almahairi et al. (2016), referred to
here as “full normalization.” We normalize the
word similarity dataset accordingly. To ensure that
dimensionality is not a major factor, we experi-
ment with various dimensions. We also experiment
with just using lemmas to predict, which performs
slightly worse than using both word and lemma
and taking the lemma part of the vector, though
still better than word2vec and fastText.

We evaluate on an Arabic dataset developed by
Hassan and Mihalcea (2009) based on the classic
WordSim353 (Finkelstein et al., 2001), as is eval-
uated on by Bojanowski et al. (2017). We re-run
on word2vec and fastText and obtain simi-
lar, though not identical, results to Bojanowski
et al. (2017). We suspect the differences are due
to differences in cleaning and tokenizing Arabic
Wikipedia. As is standard for these evaluations, we
report Spearman rank coefficient in Table 1.

There are 3 OOV words when normalizing dia-
critics, and 1 with full normalization, out of 353
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Model Average ∆ 3 Runs
random initialization (word) 26.55 - (26.40, 26.55, 26.70)
random initialization (BPE) 27.80 1.25 (27.64, 27.87, 27.90)
word2vec, fixed 26.97 0.42 (26.79, 27.00, 27.11)
word2vec, unfixed 28.38 1.83 (28.25, 28.38, 28.51)
morph, fixed 28.15 1.60 (27.91, 28.25, 28.29)
morph, unfixed 28.76 2.21 (28.50, 28.81, 28.96)
fastText, fixed 28.66 2.11 (28.62, 28.64, 28.71)
fastText, unfixed 29.10 2.55 (28.91, 29.15, 29.24)

Table 3: Corpus-level BLEU on the test set, averaged over 3 runs, with individual runs. ∆ is the difference
in BLEU between the model vs. random initialization with words as units.

Model Average ∆ 3 Runs
random initialization (word) 22.85 - (22.50, 22.90, 23.14)
word2vec, unfixed 24.89 2.04 (24.76, 24.96, 24.96)
morph, unfixed 25.49 2.64 (25.20, 25.42, 25.85)
fastText, unfixed 25.77 2.92 (25.49, 25.79, 26.02)

Table 4: BLEU on test sentences that have rare morphological variants. ∆ is the difference in BLEU
between the model vs. random initialization with words as units.

word pairs. We report results both using zero vec-
tors for OOV and with an attempt to handle OOVs
when possible, as done by Bojanowski et al. (2017).
To handle OOVs, we run MADAMIRA on the un-
known form alone (without the benefit of a context
sentence) to get a lemma, and use the lemma vector
learned for the corresponding lemma, if it was seen
in training, with zeros for the word part.6

We see that across normalization schemes and
dimensions, fastText performs 1-3 points better
than word2vec in the null OOV setting and 2-4
points better handling OOVs. Using both word and
lemma to predict context words performs about the
same as fastText. However, when we take just
the part of the vector corresponded to a weighted
average of lemma vectors, it performs 4-6 points
better than fastText. 2-4 points of this gain
can be achieved by just using the lemma to predict
context words.

Interestingly, the word part of the morph vector
performs poorly on word similarity, but still pro-
vides some benefit in training. We found that using
just the lemma to predict in training performed
slightly worse than the lemma part of the vector
when using both. It is possible that complementary

6Note that when attempting to handle OOVs, in the case
where we are only normalizing diacritics, we can only recover
a lemma vector for 1 of the 3 OOVs while fastText is
using n-grams to recover something for all 3. In the case of
full normalization, both are able to recover a vector.

features are learned in the word part and lemma
part of the vector, and that the lemma part corre-
sponds much more closely to semantic similarity.

5.2 Neural Machine Translation Results

We run 3 replicates of experiments with random ini-
tializations (re-training word embeddings on each
run as well). Results for corpus-level BLEU, calcu-
lated using the multi bleu.sh script from Moses are
in provided in Table 3.

BPE outperforms using full words by 1.3 BLEU
points (27.80 vs. 26.55). Initializing with
word2vec results in a 1.8 BLEU point gain over
randomly initialized word embeddings. morph re-
sults in a 0.4 BLEU point gain over word2vec,
and fastText a 0.7 BLEU point gain. Fixing
the embeddings consistently performs worse than
allowing backpropagation. However, this gap nar-
rows as the BLEU scores of both improve. We also
compare to running a NMT system with a CNN
over character embeddings in the encoder from
Costa-jussà and Fonollosa (2016), which results in
a BLEU score of 26.46. 7

We also perform statistical significance testing
via bootstrap resampling, using the multeval
tool (Clark et al., 2011). The best BLEU are

7We use the code from https://github.com/
harvardnlp/seq2seq-attn, modifying hyperparame-
ters to match our word-level models as closely as possible and
using character-level default settings.
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28.76 for morph and 29.10 for fastText.
Both morph and fastText improve upon
word2vec (28.38) with p-values < 0.01. The
differences between fastText and morph are
not statistically significant.

To see whether trends in BLEU are stronger for
sentences containing rarer words with more fre-
quent lemmas, we try filtering test sentences by the
ratio of word count to lemma count in the source
side of the MT training data. We take sentences
with at least one word that has a lemma that is
more than 50 times as frequent as the word in train-
ing data. Comparing just the unfixed, normalized,
word-based versions, we show results for BLEU
on filtered sentences in Table 4.

With this heuristic for rare morphological vari-
ants, there are 1,376 rare morphological variants
out of the 7,345 words that are in the intersection
of train and test source data. The heuristic pulls
out 1,038 out of 1,982 test sentences to evaluate
on. morph results in a 0.6 BLEU point gain over
word2vec, and fastText a 0.88 BLEU point
gain.

Because of corpus-level BLEU’s limitations in
characterizing translation quality with respect to
morphological variants at the word level, we also
perform a manual analysis of the sentences from
each system to inspect improvements that may
be due to the various word embeddings. We
use multeval (Clark et al., 2011) to inspect
the sentences that had the biggest sentence-level
BLEU improvement over standard word2vec in
the morph and fastText cases at the sentence
level and see if there are notable trends. We display
the median system’s translation in this analysis,
as recommended by Clark et al. (2011), though
sentences selected here exhibited the phenomena
described consistently across multiple runs. Exam-
ple sentences are shown in Table 5.

In several cases, both morph and fastText
systems consistently successfully translate rare or
unseen words with morphological variants that are
seen more commonly in the word embedding train-
ing data, while the word2vec system does not.
For instance, in example 1, the word �®�dtl�
(lltdxlAt, “of interventions”) is never seen in the
MT training data. It is only seen rarely in the word
embedding training data, 24 times. However, the
word stripped of the definite article and the clitic
corresponding to “of,” i.e. the character n-gram
�®�d� tdxlAt, is seen 657 times in word embed-

ding training data. The lemma, which is shared
between singular and plural as well, occurs 6,887
times.

In some cases, the morph system is consistently
the only system that successfully translates a rare
morphological variant. For instance, in example
2, the morph system translates the word � A`��
(AbEAdA, “dimensions”) correctly, while the other
systems do not. It occurs here in the accusative
case, which does not appear explicitly in many set-
tings in Arabic. This word form occurs 7 times in
the MT training data and 101 times in the monolin-
gual corpus. Meanwhile, the lemma 1 d"`u� occurs
214,297 times in the word embedding data. This is
much more frequent than we’d expect to see vari-
ants of the word “dimension,” because the lemma
is also associated with the very frequent word for
“after.” However, it seems to learn a good repre-
sentation despite this. It is unclear exactly why
fastText does not learn a good representation
in any of the three runs although it is possible that
with character n-grams, there is conflict with other
unrelated words. Note that because the plural is
non-concatenative, none of the character n-grams
in this word corresponds to the singular.

In other cases, the morphological analyzer can-
not provide an analysis for a word, and a rare
morphological variant is only translated correctly
by fastText. In example 3, while sentence-
level BLEU is best in the word2vec version in this
case, we see a word that is translated best with
fastText, and fails to be translated in the other
two systems. The word �®t�� (AbtlAE, “swallow-
ing”) is only seen as a word itself twice in MT train-
ing data and 171 times in the monolingual corpus.
However, the 6-gram corresponding to the word
is seen 444 times in the word embedding training
data as a part of other words. Meanwhile, the mor-
phological analyzer does not provide an analysis.
While fastText translates as “swallow” rather
than “swallowing,” it is better than morph for this
word, which consistently fails to translate the word
at all.

6 Discussion

Overall, morphologically aware word embeddings
(morph and fastText) can help reduce spar-
sity and improve results on both a word similarity
task and a low-resource NMT system when used
as initialization. The improvements over standard
word embeddings is consistent, and implies that
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src 1) .Ty�A�§¯� �®�dtl� Tl��� �lt� �@k¡ ¤
src-Buckwalter w hk*A ftlk Amvlp lltdxlAt AlAyjAbyp.
ref So those are examples of positive interventions.
word2vec And so these are examples of positive feedback.
morph And so these are examples for positive interventions.
fastText And so these are examples of positive interventions.
src 2) CwWtl� ry�� � A`�� �An¡  � ��rb�� A��
src-Buckwalter AnA Axbrkm An hnAk AbEAdA kvyrp lltTwr.
ref I’m telling you that there are many dimensions of development.
word2vec I’m telling you that there’s a lot of implications of evolution.
morph I’m telling you that there are many dimensions for evolution.
fastText I’m telling you there’s a lot of implications to evolution.
src 3) .Tm§dq�� dnh�� �� A� �� w¡ �ys�� �®t��
src-Buckwalter AbtlAE Alsyf hw mn EAdAt Alhnd Alqdymp.
ref Sword swallowing is from ancient India.
word2vec The sword is a tradition of ancient India.
morph The sword of the sword is a traditional Indian tradition.
fastText Swallow the ball is the old Indian habits.

Table 5: Examples of sentences where word embeddings considering subword information are beneficial.

morphology is a useful signal to incorporate.
It is interesting that the word embeddings that

perform best on a word similarity task (morph) do
not line up with what performs best in an NMT sys-
tem (fastText). This reinforces the argument
that word similarity tasks alone are not enough to
evaluate word embeddings (Faruqui et al., 2016),
and that which embeddings we prefer may depend
on the downstream task and the dataset. We discuss
here briefly the potential strengths and weaknesses
of each approach to morphological word embed-
dings, though more conclusive analysis is left to
future work.

One possible reason for the difference in best em-
beddings between the two tasks, is how in-domain
the morphological analyzer is for each task. In the
word similarity task, 434 of the 444 unique words
in the task receive lemmas (about 98%). On the
other hand, in the MT test data, 7,266 out of 8,309
unique words receive lemmas (only about 87%).

It is also possible that function words matter
more in the MT task, and that their translation does
not improve as much with embeddings informed
by lemmas. fastText may help more with these
words, especially when function words in English
correspond to pieces of a word in Arabic.

From these experiments, it appears that if one is
more concerned with semantic similarity or has a
dataset that lines up well with the morphological

analyzer used to produce lemmas, morphological
word embeddings exploiting the morphological re-
sources might be best. On the other hand, for a
downstream task such as MT, and when there is
a substantial number of words not covered by the
analyzer, a method considering character n-grams
may be better.

In both cases, word embeddings considering
subword information consistently perform better
than standard word embeddings on a morphologi-
cally rich language such as Arabic. It is possible
that future gains could be made by combining the
strengths of both models.

7 Conclusion

We extend the skipgram model for word embed-
dings to incorporate lemmas from a morphological
resource in a simple way, maintaining the efficiency
of word2vec, and release the code publicly. We
show that this model outperforms word2vec and
fastText on a word similarity task in Arabic.

We also conduct experiments with these word
embeddings as initialization for a low-resource neu-
ral machine translation system. We find that the
word embeddings utilizing subword information
consistently outperform standard word embeddings
at this task, and that any of the word embeddings
we tried outperformed a random initialization or
BPE. fastText does best at this task, with a 0.7

8



BLEU gain over standard word embeddings and
2.5 BLEU gain over random initialization.

Future work will attempt to combine the
strengths of these multiple approaches to incor-
porating morphological information in word em-
beddings, as well as to explore other sources of
information such as part-of-speech or syntax.
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