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Abstract 

We present an algorithm for detecting 

metaphor in sentences which was used in 

Shared Task on Metaphor Detection by 

First Workshop on Figurative Language 

Processing. The algorithm is based on dif-

ferent features and Conditional Random 

Fields. 

1 Introduction 

In this paper, we present a system which predicts 

metaphoricity of the word depending on its neigh-

bors. We used VU Amsterdam corpus (Steen et 

al., 2010) given by competition’s organizers, 10 

features which were also given by competition’s 

organizers and algorithm of Conditional Random 

Fields for predictions that are depending on previ-

ous ones.  

2 Related Work 

A lot of papers describe methods for metaphor de-

tection, but the closest in performance is the arti-

cle by Rai et al. (2016). It proposes to use Condi-

tional Random Fields for metaphor detection. The 

authors also use features based on syntax, con-

cepts, affects, and word embeddings from MRC 

Psycholinguistic Database and coherence and 

analogy between words which are taken from 

word embeddings given by Huang et al. (2012). 

Moreover, they use synonymy from WordNet. 

This work is very similar to our due to some 

similar features and the main algorithm which is 

CRF. 

3 Data 

3.1 Dataset 

As a dataset was used VU Amsterdam corpus 

(Steen et al., 2010). It consists of 117 texts divid-

ed into 4 parts (academic, news, fiction, conversa-

tion).  

It was divided into two parts: train and test. The 

model was trained on the train set and evaluated 

on the test set. 

3.2 Features 

Features were given by competition’s organiz-

ers. Set of features consists of: 

 

• Unigrams: All words from the training data 

without any changes; 

• Unigram lemmas: All words from the train-

ing data in their normal form;  

• Part-of-Speech tags: They were generated 

by Stanford POS tagger 3.3.0 (Toutanova et 

al. 2003); 

• Topical LDA: Latent Dirichlet Allocation 

(Blei et al., 2003) for deriving a 100-topic 

model from the NYT corpus years 2003-

2007 (Sandhaus, 2008) for representing 

common topics of public discussions. The 

NYT data was lemmatized using NLTK 

(Bird, 2006) and the model was built using 

the gensim toolkit (R. Řehůřek and P. 

Sojka,  2010); 

• Concreteness: For this feature was used 

Brysbaert et al. (2013) database of con-

creteness ratings for about 40,000 English 

words. The mean ratings, ranging 1-5, are 

binned in 0.25 increments; each bin is used 

as a binary feature; 
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• WordNet: 15 lexical classes of verbs based 

on their general meanings; 

• VerbNet: Classification based on syntactic 

frames of verbs ; 

• Corpus: 150 clusters of verbs using their 

subcategorization frames and the verb’s 

nominal arguments as features for cluster-

ing.  

All of these features were described in Beig-

man Klebanov et al. (2014), Beigman Kleba-

nov et al. (2015) and Beigman Klebanov et al. 

(2016). 

3.3 Algorithm 

 

As an algorithm for classification was used Con-

ditional Random Fields which was described in 

Lafferty et al. (2001). This algorithm depends on 

previous predictions making the future ones and it 

was crucial because metaphoricity of a word in a   

sentence relies on its neighbors. Also, this classi-

fier can work with a big amount of features, so we  

used a lot of them in this work and it was helpful 

for the further results. 

4 Experiments 

We tried different parameters that were provid-

ed in the crfsuite (Okazaki, 2007). There were five 

training algorithms such as lbfgs (gradient de-

scending using the L-BFGS method), l2sgd (sto-

chastic gradient descend with L2 regularization 

term), Averaged Perceptron, Passive Aggressive, 

Adaptive Regularization Of Weight Vector. The 

best training algorithm was lbfgs.  

Moreover, we used a different amount of itera-

tions, and its amount affects the loss because there 

is no limit to the number of iterations in the lbfgs-

algorithm.  

Furthermore, some experiments with regulari-

zation were conducted. Regularization was used 

for reducing the generalization error and it is im-

portant in CRF. For the selection of the most ap-

propriate parameters for regularization, we used  

RandomizedSearchCV from scikit-learn 

(http://scikit-learn.org). 

We used sklearn-crfsuite that is the special 

wrapper of crfsuite written in C for Python 

(https://github.com/TeamHG-Memex/sklearn-

crfsuite) for computing the algorithm. 

As a metric for evaluating the score was taken 

F-score.  

The best F-score had the algorithm with 200 it-

erations, lbfgs-algorithm, c1 regularization and c2 

regularization that equal to 0.1. 

The result obtained with these parameters was 

evaluated using a held-out set from the train set. 

F-score of this model and other experiments are 

presented in table 1 for All-POS track and for 

Verb track. 

 

Parameters F-score for 

all-POS 

F-score for 

Verbs track 

lbfgs,  

200 iterations, 

c1=c2=0.1 

0.8621 0.7417 

lbfgs,  

100 iterations, 

c1=c2=0.1 

0.8593 0.739 

lbfgs, 

50 iterations, 

c1=c2=0.1 

0.8601 0.7333 

lbfgs, 

100 iterations, 

c1=0.2353, 

c2=0.0329, 

0.8586 0.7528 

l2sgd,  

100 iterations,  

c2=0.1 

0.8455 0.6343 

Averaged Per-

ceptron,  

100 iterations 

0.8303 0.7165 

Passive Ag-

gressive,  

100 iterations 

0.8483 0.7327 

Adaptive Reg-

ularization Of 

Weight Vector, 

100 iterations 

0.8459 0.6973 

5 Results 

   As a result, our best-trained model was based on 

10 features described below and CRF classifier 

with lbfgs and 200 iterations and it has F-score 

equal to 0.8621 for All-POS track. As for the Verb 

track, the best model was also based on lbfgs, had 

100 iterations and c1 equal to 0.2353, c2 equal to 

0.0329 with F-score 0.7528. 

Table 1The results of the experiment for All-POS and 

Verb tracks. 
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These results are obtained using validation with a 

part of the train set, and as for the test set, for All-

POS track, the result measured by F-score is 

0.138 and for Verb track is 0.246.  

The results differ as it is possible that validation 

on a small part of the train set (33%) is not as ac-

curate as validation on the test set which usually 

consists of the larger number of sentences. 

6 Conclusion 

   We used Conditional Random Fields for the 

task of metaphor detection. Due to the large 

number of features, this classifier worked very 

well, and it is assumed that increasing the num-

ber of features will improve the performance of 

the algorithm. 
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