
Proceedings of the Workshop on Figurative Language Processing, pages 115–120
New Orleans, Louisiana, June 6, 2018. c©2018 Association for Computational Linguistics

Di-LSTM Contrast : A Deep Neural Network for Metaphor Detection

Krishnkant Swarnkar and Anil Kumar Singh
Indian Institute of Technology (BHU), Varanasi, India
{ krishnkant.swarnkar.cse15, aksingh.cse }@iitbhu.ac.in

Abstract
The contrast between the contextual and gen-
eral meaning of a word serves as an important
clue for detecting its metaphoricity. In this pa-
per, we present a deep neural architecture for
metaphor detection which exploits this con-
trast. Additionally, we also use cost-sensitive
learning by re-weighting examples, and base-
line features like concreteness ratings, POS
and WordNet-based features. The best per-
forming system of ours achieves an overall F1
score of 0.570 on All POS category and 0.605
on the Verbs category at the Metaphor Shared
Task 2018.

1 Introduction

Lakoff (1993) defines a metaphorical expression
as a linguistic expression which is the surface real-
ization of a cross-domain mapping in a conceptual
system. On one hand, metaphors play a signifi-
cant role in making a language more creative. On
the other, they also make language understanding
difficult for artificial systems.

Metaphor Shared Task 2018 (Leong et al.,
2018) aims to explore various approaches for
word-level metaphor detection in sentences. The
task is to predict whether the target word in the
given sentence is metaphoric or not. There are
two categories for this shared task. The first one,
All POS, tests the models for content words from
all types of POS among nouns, adjectives, adverbs
and verbs, while the second category, Verbs, tests
the models only for verbs.

2 Related Work

Various attempts have been made for metaphor
detection in recent years, but only a few of
them utilize the power of distributed represen-
tation of words (Bengio et al., 2003) combined
with deep neural networks. Rei et al. (2017) pro-
posed and evaluated the first deep neural network

for metaphor identification on two datasets, Saif
M. Mohammad and Turney (2016) and Tsvetkov
et al. (2014). Do Dinh and Gurevych (2016) ex-
plore MLP classifier with trainable word embed-
dings on VUAMC corpus and achieve comparable
results to other systems which use corpus-based or
based on handcrafted features.

Other attempts which employ supervised
learning approaches for metaphor detection
on VUAMC corpus involve the use of logistic
classifier (Beigman Klebanov et al., 2014) on a
set of features, which include unigrams, topic
models, POS, and concreteness features. Later,
Beigman Klebanov et al. (2015) showed a sig-
nificant improvement by re-weighting examples
for cost sensitive learning and experimenting with
concreteness information. Gargett and Barnden
(2015) focused on utilizing the interactions
between concreteness, imageability, and affective
meaning for metaphor detection. Rai et al. (2016)
explored Conditional Random Fields with syntac-
tic, conceptual, affective, and contextual (word
embeddings) features. Beigman Klebanov et al.
(2016) experimented with unigrams, WordNet
(Miller, 1995) and VerbNet (Schuler, 2006) based
features for detection of verb metaphors.

3 Data

The dataset provided for this task is VU Ams-
terdam Metaphor Corpus (VUAMC). VUAMC is
extracted from the British National Corpus (BNC
Baby) and is annotated using MIPVU Procedure
(Steen, 2010). It contains examples from four gen-
res of text: Academic, News, Fiction and Conver-
sation.

Table 1 and Table 2 summarize the statistics of
the data for this shared task.

115

Content
Tokens

%
Metaphors

Training Set 72611 15.2%
Test Set 22196 17.9%

Table 1: Summary of data statistics for All POS cat-
egory (Content Tokens: nouns, adjectives, adverbs and
verbs)

Content
Tokens

%
Metaphors

Training Set 17240 27.8%
Test Set 5873 29.9%

Table 2: Summary of data statistics for Verbs category
(Content Tokens: verbs)

4 System Description

This section describes our proposed system for
this shared task, which we call Di-LSTM Contrast
(illustrated in Figure 11) and is divided into three
modules trained in an end to end setting. The input
to the model is given as pre-trained word embed-
dings. An encoder uses these word embeddings
to encode the context of the sentence with respect
to the target word using forward and backward
LSTMs (Hochreiter and Schmidhuber, 1997). The
output from the encoder is fed to the feature selec-
tion module (section 4.2) for generating contrast-
based features for the token word. The classifier
module (section 4.3) then predicts the probabili-
ties for the target word being metaphoric.

4.1 Context Encoder
The context encoder is inspired by Bidirec-
tional LSTM (BLSTM, Graves and Schmidhu-
ber (2005)). Given an input sentence S =
{w1, w2, ...wn}, with n as the number of tokens
in a sentence and i as the index of target token,
we make two sets A = {w1, w2, ...wi} and B =
{wn, wn−1, ...wi} and feed them into forward and
backward LSTMs respectively. The motivation for
this split is to produce the context with respect to
the target word (wi).

hf = LSTMf (A)

hb = LSTMb(B)

The hidden states hf ∈ IRd and hb ∈ IRd, so
obtained from forward and backward LSTMs are

1Figure generated using https://www.draw.io/

Figure 1: The Architecture of DiLSTM Contrast Model

combined by concatenation or averaging, followed
by a fully connected layer to produce v ∈ IRd, the
context encoding.

h = [hf ;hb]

v = sigmoid(W(1)h+ b(1))

W(1) ∈ IR(d×2d) is the transformation weight ma-
trix, and b(1) ∈ IRd is bias.

4.2 Feature Selection
A combination of the context encoding (v) and the
word vector of the target word u = wi is then fed
to the classification module as

g = [u; (u− v)]

The intuition behind this feature set g ∈ IR2d is
that the properties of the word and the difference
between the general and contextual meanings play
a major role in determining the metaphoricity of a
word (Steen, 2010).

4.3 Classification
The vector g from the previous module is trans-
formed to a hidden layer and then to the output
layer to obtain the softmax probabilities (p ∈ IR2)
for metaphoricity.

h1 = sigmoid(W(2)g + b(2))

116

Model
Variants

Val. Test All
POS

Test
Verbs

DC (avg) 0.541 0.538 0.572
DC 0.554 0.542 0.584
DC +R 0.570 0.562 0.590
DC +RL 0.575 0.570 0.605
Task Baseline - 0.589 0.600

Table 3: Comparision of F1 scores on Validation, All POS (Test) and Verbs (Test) scores between the various
approaches. DC = DiLSTM Contrast with concatenation, DC (avg) = DiLSTM Contrast with averaging, R = Re-
weighting of Examples, L = Additional Linguistic Features (Baseline), Task Baseline = The baseline system used
by the task organizers

p = softmax(W(4)h1 + b(4))

W(2) ∈ IR(m×2d),W(4) ∈ IR(2×m) are the weight
matrices and b(2) ∈ IRm, b(4) ∈ IR2 are the biases.

To enable the use of some additional binary
baseline features (section 6.3), we modify the
equations as

h1 = sigmoid(W(2)g + b(2))

l2 =W(3)gbaseline + b(3)

l1 =W(4)h1 + b(4)

p = softmax(α l1 + (1− α) l2)
W(2) ∈ IR(m×2d),W(3) ∈ IR(2×k),W(4) ∈
IR(2×m) are the corresponding weight matrices,
b(2) ∈ IRm, b(3) ∈ IR2, b(4) ∈ IR2 are the cor-
responding biases, gbaseline ∈ IRk is the baseline
feature vector and α is a trainable variable which
determines the weights to be given to the baseline
features and the contrast features.

5 Implementation Details

We split the provided training data in 90:10 ra-
tio as training set and development set. We use
this development set to tune our hyperparameters
for the different variations of our model. We use
300-dimensional GloVe vectors (Pennington et al.,
2014) trained on 6B Common Crawl corpus as
word embeddings, setting the embeddings of out-
of-vocabulary words to zero. To prevent overfit-
ting on the training set, we use dropout regular-
ization (Srivastava et al., 2014) and early stopping
(Yao et al., 2007). We set the minibatch size to 50
examples and we zero pad the A and B split sets
(as defined in section 4.1). More details on the
hyperparameter settings can be found in the table
4.

Hyperparameter Value
GloVe dimension (d+) 300
Hidden dimension (m+) 200
Dropout 0.15
Initial learning rate 0.3
epochs 30
Early stopping∗ 2

Table 4: Hyperparameter settings for out best perform-
ing model; +: d, m as indicated in section 4; *: stop
training after loss divergence for 2 consecutive itera-
tions .

We use TensorFlow (Abadi et al., 2015) library
in Python2 to implement our model. AdaGrad
(Duchi et al., 2011) optimizer is used for optimiza-
tion of the model.

We train our models only on the All POS cate-
gory training set, and evaluate it on the test sets of
both All POS and Verb categories, since the train-
ing set for all the verbs is a subset of the ALL POS
category .

6 Experiments and Evaluation

In this section, we present evaluation results for
our model. Table 3 shows their comparison on the
test set using F1 score as the metric for evalua-
tion. Experimental results indicate that our model
generalizes well on the tests for both the task cat-
egories and the performance trends on tests are
consistent with those on validation. Table 3 also
shows the performance comparison of the vari-
ants of our model with the baseline results for the
shares task provided by the organizers. Our best
performing model surpasses the baseline results
on the Verbs category, while it achieves a lesser
but comparable performance with the baseline on

2https://www.python.org/

117

Text Genre All POS Verbs
P R F P R F

Academic 0.641 0.683 0.661 0.736 0.753 0.744
Conversation 0.346 0.724 0.469 0.308 0.729 0.433
Fiction 0.413 0.596 0.488 0.416 0.665 0.512
News 0.566 0.591 0.578 0.643 0.665 0.654
Average 0.491 0.648 0.549 0.525 0.703 0.585
Overall 0.511 0.644 0.570 0.529 0.708 0.605

Table 5: Analysis of our best performing system on the Test Sets (both categories). P = Precision. R = Recall, F
= F1 Score

All POS category.

6.1 Experiment with the Encoder

We experiment with the combining function of
the hidden states of forward and backward LSTM
(in section 4.1) using both averaging and concate-
nation. The validation results on both the cat-
egories show that concatenation performs much
better than averaging. This observation is sup-
ported by the fact that concatenation followed by
a fully connected layer allows more parameterized
interactions between the two states than averaging.

6.2 Re-weighting of Training Examples

We employ cost-sensitive learning (Yang et al.,
2014) by re-weighting examples for our model.
This brings an appreciable improvement in the
performance of our model, 1.6% F1 gain on Val-
idation, 2.0% on All POS category (Test) and
0.6% on verb category (Test). This increment in
the performance agrees with the previous works
on metaphor detection (Beigman Klebanov et al.,
2015, 2016) which show the effectiveness of re-
weighting training examples on VUAMC corpus.

6.3 Additional Baseline Features

The use of baseline features like WordNet (Miller,
1995) features, part-of-speech tags and Concrete-
ness features (Brysbaert et al., 2014) in our model
additionally improves the F1 score by 0.8% on the
All POS category (Test) and 1.5% on verb cate-
gory (Test), though it shows a relatively lesser im-
provement on the Validation set.

To obtain the POS-tag-based features, we en-
code the POS tag of the target tokens into a
one-hot vector. By Wordnet features, we re-
fer to one-hot encoding of the 26 class clas-
sification of the words based on their gen-
eral meaning. The concreteness features repre-

sent the concatenation of the one hot represen-
tation of concreteness-mean-binning-BiasDown,
and concreteness-mean-binning-BiasUp features
(as indicated in Beigman Klebanov et al. (2015,
2016)).

7 Analysis

After the completion of the shared task, we down-
loaded the publicly available labels of the test data
to analyze the results of our best performing model
across all the four genres of text (section 3) on both
the categories (as shown in the Table 5). Our sys-
tem performs comparatively better on academic
and news texts than on conversation and fiction
texts.

8 Conclusion and Future Work

We described a deep neural architecture Di-LSTM
Contrast Network for metaphor detection, which
we submitted for Metaphor Shared Task 2018
(Leong et al., 2018). We showed that our system
achieves appreciable performance solely by using
the contrast features, generated by our model us-
ing pre-trained word embeddings. Additionally,
our model gets a significant performance boost
from the use of extra baseline features, and re-
weighting of examples.

For our future work, we plan to experiment with
CNNs along with LSTM for capturing the context
representation of the sentence in light of the target
word. Another interesting idea is the use of at-
tention mechanism (Mnih et al., 2014), which has
proven to be effective in many NLP tasks.

Acknowledgments

We would like to thank the anonymous reviewers
for their helpful reviews and suggestions.

118

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schus-
ter, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow:
Large-scale machine learning on heterogeneous sys-
tems. Software available from tensorflow.org.

Beata Beigman Klebanov, Ben Leong, Michael Heil-
man, and Michael Flor. 2014. Different texts, same
metaphors: Unigrams and beyond. In Proceedings
of the Second Workshop on Metaphor in NLP, pages
11–17. Association for Computational Linguistics.

Beata Beigman Klebanov, Chee Wee Leong, and
Michael Flor. 2015. Supervised word-level
metaphor detection: Experiments with concreteness
and reweighting of examples. In Proceedings of the
Third Workshop on Metaphor in NLP, pages 11–20.
Association for Computational Linguistics.

Beata Beigman Klebanov, Chee Wee Leong, E. Dario
Gutierrez, Ekaterina Shutova, and Michael Flor.
2016. Semantic classifications for detection of verb
metaphors. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 101–106. Associa-
tion for Computational Linguistics.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. J. Mach. Learn. Res., 3:1137–1155.

Marc Brysbaert, AB Warriner, and V Kuperman.
2014. Concreteness ratings for 40 thousand gener-
ally known english word lemmas. BEHAVIOR RE-
SEARCH METHODS, 46(3):904–911.

Erik-Lân Do Dinh and Iryna Gurevych. 2016. Token-
level metaphor detection using neural networks. In
Proceedings of the Fourth Workshop on Metaphor in
NLP, pages 28–33. Association for Computational
Linguistics.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res.,
12:2121–2159.

Andrew Gargett and John Barnden. 2015. Modeling
the interaction between sensory and affective mean-
ings for detecting metaphor. In Proceedings of the
Third Workshop on Metaphor in NLP, pages 21–30.
Association for Computational Linguistics.

Alex Graves and Jürgen Schmidhuber. 2005. 2005 spe-
cial issue: Framewise phoneme classification with
bidirectional lstm and other neural network architec-
tures. Neural Netw., 18(5-6):602–610.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

George Lakoff. 1993. The contemporary theory of
metaphor, 2 edition. Cambridge University Press.

Chee Wee Leong, Beata Beigman Klebanov, and Eka-
terina Shutova. 2018. A report on the 2018 vua
metaphor detection shared task. In Proceedings of
the Workshop on Figurative Language Processing,
New Orleans, LA.

George A. Miller. 1995. Wordnet: A lexical database
for english. Commun. ACM, 38(11):39–41.

Volodymyr Mnih, Nicolas Heess, Alex Graves, and Ko-
ray Kavukcuoglu. 2014. Recurrent models of visual
attention. CoRR, abs/1406.6247.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Sunny Rai, Shampa Chakraverty, and Devendra K.
Tayal. 2016. Supervised metaphor detection using
conditional random fields. In Proceedings of the
Fourth Workshop on Metaphor in NLP, pages 18–
27. Association for Computational Linguistics.

Marek Rei, Luana Bulat, Douwe Kiela, and Ekaterina
Shutova. 2017. Grasping the finer point: A su-
pervised similarity network for metaphor detection.
CoRR, abs/1709.00575.

Ekaterina Shutova Saif M. Mohammad and Peter D.
Turney. 2016. Metaphor as a medium for emotion:
An empirical study. In Proceedings of the Fifth Joint
Conference on Lexical and Computational Seman-
tics (*Sem), Berlin, Germany.

Karin Kipper Schuler. 2006. VerbNet: A Broad-
Coverage, Comprehensive Verb Lexicon. Ph.D. the-
sis, University of Pennsylvania.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res., 15(1):1929–
1958.

G. Steen. 2010. A Method for Linguistic Metaphor
Identification: From MIP to MIPVU. Converging
evidence in language and communication research.
John Benjamins Publishing Company.

Yulia Tsvetkov, Leonid Boytsov, Anatole Gershman,
Eric Nyberg, and Chris Dyer. 2014. Metaphor detec-
tion with cross-lingual model transfer. In Proceed-
ings of the 52nd Annual Meeting of the Association

119

for Computational Linguistics (Volume 1: Long Pa-
pers), volume 1, pages 248–258.

X. Yang, A. Loukina, and K. Evanini. 2014. Ma-
chine learning approaches to improving pronunci-
ation error detection on an imbalanced corpus. In
2014 IEEE Spoken Language Technology Workshop
(SLT), pages 300–305.

Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto.
2007. On early stopping in gradient descent learn-
ing. Constructive Approximation, 26(2):289–315.

120

