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Introduction

Figurative language processing is a rapidly growing area in Natural Language Processing (NLP),
including processing of metaphors, idioms, puns, irony, sarcasm, as well as other figures. Characteristic
to all areas of human activity (from poetic to ordinary to scientific) and, thus, to all types of discourse,
figurative language becomes an important problem for NLP systems. Its ubiquity in language has
been established in a number of corpus studies and the role it plays in human reasoning has been
confirmed in psychological experiments. This makes figurative language an important research area for
computational and cognitive linguistics, and its automatic identification and interpretation indispensable
for any semantics-oriented NLP applications.

This workshop builds upon the successful start of the Metaphor in NLP workshop series (at NAACL–
HLT 2013, ACL 2014, NAACL–HLT 2015, NAACL–HLT 2016), expanding its scope to incorporate
the rapidly growing body of research on various types of figurative language such as sarcasm, irony and
puns, with the aim of maintaining and nourishing a community of NLP researchers interested in this
topic. The workshop features both regular research papers and a shared task on metaphor detection. We
received 22 research paper submissions and accepted 10 (6 oral presentations and 4 posters). The papers
cover a range of aspects of figurative language processing such as metaphor identification (Bizzoni and
Ghanimifard; Mykowiecka, Marciniak and Wawer; Pramanick and Mitra; Stowe and Palmer; Zayed,
McCrae and Buitelaar), metaphor interpretation (Bizzoni and Lappin; Rosen), identification of idiomatic
expressions in essays written by non-native speakers (Flor and Beigman Klebanov), crowdsourcing for
generating figurative language (Gero and Chilton) and linguistic features for estimating metaphor and
sarcasm quality (Skalicky and Crossley).

A novel feature of this workshop is the shared task on token-level metaphor detection. The shared
task attracted 11 teams, of whom 8 submitted a paper describing their system; these system papers
appear in the proceedings of this workshop. The best performing systems showed improvement over
strong baselines from recent published work. Almost all participants experimented with deep learning
architectures; some of these incorporated linguistic information as well. Analysis of the results is
presented in the summary paper by Leong, Beigman Klebanov, and Shutova; consistently across
participating systems performance was best for verbs, and there were large differences in performance
across texts from different genres.

Two distinguished researchers working on figurative language will give the invited talks at the workshop.
Tony Veale, Department of Computer Science at the University College Dublin, will talk about metaphor
generation “When You Come To A Fork In The Road, Take It: Complementary Approaches to Metaphor
Generation", and Marilyn Walker, Department of Computer Science, University of California Santa Cruz,
will talk about sarcasm detection “Hyperbole, Rhetorical Questions and Sarcasm: Figurative Language
in Social Media”.

We wish to thank everyone who showed interest and submitted a paper, all of the authors for their
contributions, the members of the Program Committee for their thoughtful reviews, the invited speakers
for sharing their perspectives on the topic, and all the attendees of the workshop. All of these factors
contribute to a truly enriching event!

Workshop co–chairs:
Beata Beigman Klebanov, Educational Testing Service, USA
Ekaterina Shutova, University of Amsterdam, Netherlands
Patricia Lichtenstein, University of California, Merced, USA
Smaranda Muresan, Columbia University, USA
Chee Wee (Ben) Leong, Educational Testing Service, USA
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Abstract

Poetry is known for its novel expression us-
ing figurative language. We introduce a writ-
ing task that contains the essential challenges
of generating meaningful figurative language
and can be evaluated. We investigate how
to find metaphorical connections between ab-
stract themes and concrete domains by ask-
ing people to write four-line poems on a given
metaphor, such as “death is a rose” or “anger
is wood”. We find that only 24% of poems
successfully make a metaphorical connection.
We present five alternate ways people respond
to the prompt and release our dataset of 186
categorized poems. We suggest opportunities
for computational approaches.

1 Introduction

Poetry expresses the feelings or emotions of an
experience, often relying on figurative language
to communicate an otherwise elusive idea. This
makes poetry an exciting genre for those interested
in generating figurative language.

Recently, researchers have made progress in
computationally generating poetry (Ghazvinine-
jad et al., 2016; Veale, 2013). However, in a sur-
vey of computer generated poetry, Oliviera (2017)
notes that while poetic text must convey a concep-
tual message, this requirement is “often only softly
satisfied”.

We focus on creating intentionally meaningful
lines of poetry. Poems generated from a single
theme such as “love” can rely on language related
to the theme, but are often ambiguous and have
no clear meaning. Although ambiguity can be a
desirable property in poetry, it makes it difficult
to evaluate whether the meaning is intentional, or
being attributed by the reader. We propose gen-
erating poetry from a metaphor such as “love is a
rock”. These poems can still have some ambigu-
ity, but we can evaluate whether readers can detect

Surrender is a book
it’s pages contain paragraphs of regret
chapters of inaction
an epilogue of defeat

Figure 1: Example poem for “surrender is a book”.

their metaphorical meaning or not.
In this paper, we introduce a short poetry writ-

ing task that contains the essential challenges of
generating meaningful figurative language. We
establish a baseline for how well amateur writ-
ers perform and show that evaluators achieve high
agreement.

The task is to write a four-line poem contain-
ing a given metaphor such as “love is a rock”
or “death is a stream.” Although these poems
leave room for interpretation and novelty, we can
evaluate whether or not they successfully express
the given metaphor. An example poem from our
dataset is shown in Figure 1.

Our study generates a dataset that includes suc-
cessful poems, which generative computers sys-
tems may model or use as inspiration, as well as
unsuccessful ones, which let us better understand
the task and discover common failure points.

This paper makes the following contributions:

• Introducing a writing task that is short and
contains the essential challenges of meaning-
ful figurative language.

• A dataset of 186 poems, and their associated
meta-data, annotated with their coherence to
the prompt metaphor. 1

• A categorization of common failure cases in
how a poem relates to its prompt.

1http://github.com/kgero/metaphorical-connections
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2 Related Work

Procedural poetry, in which poets use algorithmic
processes to create their work, has a long history
preceding the invention of modern computers and
continues strong today (Parrish, 2018; Montfort,
2017). In computer science, the generation of po-
etry represents a challenge to generate emotional,
creative, and meaningful text.

Some work analyzes the stylistic features of
contemporary poetry (Kao and Jurafsky, 2012;
Kaplan and Blei, 2007) and others build gener-
ative systems that output poems (Netzer et al.,
2009; Colton et al., 2012; Manurung et al., 2000).
A recent neural-network based system, Hafez
(Ghazvininejad et al., 2016), produces rich sound-
ing sonnets. This is a promising computational ap-
proach to achieve the stylistic aspects of poetry.
However, it is an open problem whether compu-
tational approaches can produce the structural or
meaningful aspects of poetry.

Generating metaphors is a challenge in artifi-
cial intelligence (Veale et al., 2016). Gagliano
et al. (2016) use word embeddings to find con-
nector words between two conceptual domains to
aid in making metaphorical connections. Veale
and Hao (2007) mine metaphorical relations using
Google search results for adjectives that describe
both terms. Later work (Veale, 2013) generates
one line expressions from conceptual metaphors.
It remains a challenge to expand a metaphor into a
poem that expresses the feelings or emotions of an
experience.

3 Experiment and Methodology

In this experiment, we ask 200 amateur writers to
write four-line poems that use a given metaphor.
Each writer is given one metaphorical prompt.

We base this poetry-writing task on expressing
a metaphor because metaphors are a common but
challenging aspect of poetry, and we can evaluate
whether the poem expresses the given metaphor.

The metaphorical prompts are created by ran-
domly combining one concrete noun and one po-
etic theme, a technique introduced by Gagliano et
al. (2016). We use their lists of concrete nouns
and poetic themes, a subset of which are shown in
Table 1. Because the concrete and poetic words
are paired randomly, we expect this task to be
difficult—people may struggle to find a metaphor-
ical connection between the words.

concrete nouns poetic themes
bed loss

horse confusion
bell faith
book freedom
ship grace
wing hate
wood jealousy
room love

Table 1: Example words in the concrete noun and po-
etic theme lists, from (Gagliano et al., 2016). An ex-
ample prompt metaphor, created by randomly drawing
one word from each list, could be “faith is a horse”.

We recruit 200 people from Amazon Mechani-
cal Turk. Each writer is given one of the following
10 randomly generated metaphorical prompts:

• “Anger is wood”

• “Compassion is blood”

• “Death is a rose”

• “God is a breath”

• “Grace is a garden”

• “Hate is a mist”

• “Hope is a ship”

• “Immortality is a room”

• “Peace is a rock”

• “Surrender is a book”

We ask them each to write a four-line poem co-
herent with the prompt metaphor. They are told
to not use the exact words of the metaphor as
given but rather express the idea the metaphor rep-
resents. They are also told to use stylistic ele-
ments of poetry such as rhyme, alliteration, and
line breaks. We collect 20 poems on each of the
10 metaphors. Workers are only allowed to write
one poem and are paid $1 for the task.

The authors of the paper independently evaluate
the poems. We analyze the success of the poems
by indicating whether or not a poem contained
its given metaphor. For poems that did not con-
tain the given metaphor, we used grounded theory
(Strauss and Corbin, 1990) to develop categories
of how they failed. These categories include: not
related at all, containing only one of the concepts,
and three non-metaphorical connections. Example
poems for each category are found in Figure 2.

2



A. NO CONNECTION: JUST ABOUT ANGER
My anger is solid and vast
The ghosts of my present, the ghosts of my past
I can’t break through the tunnel of time
My anger is vicious, my anger is mine

B. ATTRIBUTIONAL CONNECTION: WOOD IS ANGRY
The bench of pine wood planks
Held up peoples glutes
Till the people went home for the night
leaving the bench, angry, in abandonment

C. OFFSET CONNECTION: ANGER IS A FIRE
Wood is a place where a fire of anger

can be lit like a sparrow.
Both anger and fire work to light up a room.
Wood is the conductor of rage, the spite that turns heads.
Like ants marching through its hollow shell,

wood is a source of fury.

D. INCOHERENT CONNECTION
Thoughts of breeze, my anger is teaming,
of rapture I freeze, my boiling pot is steaming,
tired of despair, my wood is drying,
once so full of anger & rage, now I feel like I am dying.

E. METAPHORICAL CONNECTION
the anger grew, like a tree
this large, immovable object had taken root
casting shade on even the happiest parts of my life
I could let it consume me, or cut it down

Figure 2: Example poems for the given metaphor
“anger is wood”. We show one example for each of the
four failure cases and one for a successful metaphorical
connection.

4 Results

On average people take 13.6 minutes on this writ-
ing task. 14 poems were plagiarized and removed
from consideration, leaving 186 poems for the re-
sulting analysis. The two evaluators had 97%
observed agreement on whether the poem suc-
cessfully made the given metaphorical connection.
24% of poems, or 45 poems, were found to be suc-
cessful by at least one of the evaluators. 7% of po-
ems were off-topic. Similarly the evaluators had
97% observed agreement on whether the poems
were off-topic or not.

In the remaining poems, the poem used the
words in the metaphor but did not make a
metaphorical connection between the words. Our
grounded theory found four alternate ways of re-
lating the given concepts in the poem: no connec-
tion, attributional connection, offset connection,
and incoherent connection.

Raters had a 69% agreement on these cate-
gories, indicating that it is sometimes ambiguous

which error is made. Sometimes this is due to dif-
ferent interpretations of the poem and sometimes
this is due to evaluators determining that a given
poem didn’t cleanly sit into a single category. For
the remaining analysis, if evaluators disagreed on
which category to place a poem in, a poem is con-
sidered to be in both categories.

The fraction of poems in each category is re-
ported in Table 2. By looking at the other ways
poems relate to the prompt, we learn the tactics
people use when attempting to complete this task.

4.1 Categorization of Poems

We categorize six distinct ways poems relate to the
prompt. We define and discuss the categories be-
low. Figure 2 provides example poems for each
category, while Table 2 reports the fraction of po-
ems in each category.

4.1.1 Off-Topic
A poem is off-topic if it fails to include aspects of
either word in the metaphor. For the prompt “sur-
render is a book” a poem might be about the loss
of a lover, which has no relation to “surrender” or
“book”. 7% of poems are off topic. Although peo-
ple write a poem, this is a case when the worker
does not truly attempt to do the task.

4.1.2 No Connection
A poem has no connection if it explores the con-
ceptual domain of only one word in the metaphor
or does not relate the two conceptual domains.
In Figure 1A, the poem talks only about feeling
angry, “My anger is vicious”, with no reference
or connection to wood. There is only a vague
attempt to connect anger with wood in the line
“my anger is solid”; although wood is solid, many
things are solid and this is not enough to establish
a metaphorical connection.

This is the most common failure case for po-
ems, with 41% of all poems placed in this cate-
gory. Possibly these poems intended to express a
connection, but the result was too vague and evalu-
ators couldn’t detect one. Alternatively, the writer
couldn’t find a metaphorical connection and sim-
ply wrote what they could about one of the words.

4.1.3 Attributional Connection
A poem has an attributional connection if it at-
tributes the abstract concept directly to the con-
crete noun. In Figure 1B, the poem says the
“[wooden] bench, [is] angry”. Although this

3



prompt metaphor off-topic no connection attributional offset incoherent metaphorical
surrender is a book 0.11 0.53 0.47 0.11 0.05 0.05

death is a rose 0.00 0.30 0.55 0.40 0.20 0.10
god is a breath 0.00 0.26 0.21 0.11 0.47 0.11

grace is a garden 0.00 0.67 0.11 0.22 0.39 0.17
immortality is a room 0.05 0.58 0.05 0.11 0.47 0.21

compassion is blood 0.11 0.37 0.05 0.05 0.21 0.26
peace is a rock 0.10 0.45 0.10 0.10 0.05 0.35
hope is a ship 0.07 0.36 0.14 0.14 0.36 0.36
anger is wood 0.05 0.37 0.00 0.32 0.21 0.37
hate is a mist 0.11 0.26 0.05 0.00 0.26 0.47

all 0.07 0.41 0.17 0.15 0.26 0.24

Table 2: Success rates of the 10 metaphorical prompts. The fraction of successful poems is highlighted in blue.
The bold number represents the most common connection for each prompt. Because poems can be placed in two
categories if evaluators disagree, numbers do not add to 1 horizontally.

poem uses figurative language by personifying the
bench, it is not coherent with the given metaphor.

This category is an especially common error for
poems about the prompts “death is a rose” (55%)
and “surrender is a book” (53%). Many poems
said “the rose died” or “I surrender to the book”.
We posit that these connections are easier than
metaphorical connections because they do not re-
quire a shared third aspect which writers have to
generate themselves.

4.1.4 Offset Connection
A poem has an offset connection if it expresses a
shared feature between one word in the metaphor
and another word very related to the other word in
the metaphor. In Figure 1C, the poem talks about
the “fire of anger” for which “wood is a source
of fury”; the poem is about the offset metaphor
“anger is fire”. “Death is a rose” had 40% of
poems categorized as an offset connection; most
commonly these poems talk about “life is a rose”
and note that life, like roses, must end in death.

We suggest that writers make this error because
they are looking for any connection they can find,
even if the connections are not directly linked
to the given metaphor. An offset connection in-
creases the search space by allowing for connec-
tions within a broader set of domains.

4.1.5 Incoherent Connection
A poem has an incoherent connection if it relates
the two words in the metaphor but in an unclear
way. In Figure 1D, the poem says “anger is team-
ing, ... my wood is drying” with no supporting text
to explain how these two concepts are related.

In this case writers acknowledge both words in
the prompts but either do not attempt to connect
them or connect them in an incoherent way.

4.1.6 Metaphorical Connection
A poem has a successful metaphorical connection
if it relates the two words metaphorically in the
way provided by the given metaphor and under-
stood by the evaluators. In Figure 1E, the poem
says that “anger grew, like a tree ... it had taken
root”. This poem takes several aspects of wood
and coherently applies them to anger. Although
this poem talks primarily about a tree, we do not
consider this an offset connection because trees
are the only source of wood.

Each of the given metaphors had at least one
successful poem. All of our successful poems
made creative connections, like “Immortality lies
just down the hall / The path to it is not easy to
find”. Failed poems tended to repeat the same con-
nections, like “I am surrounded by four walls in-
definitely”.

5 Discussion

The rate of success between different prompts
varies greatly, from 5% for “surrender is a book”
to 47% for “hate is a mist”. Some prompts are
more likely to result in different kinds of connec-
tions, like offset connections, than others. What
explains these varying success rates?

We first explore whether word similarity be-
tween the two words in the prompt could ac-
count for this variability. In Figure 3, we plot
WORD2VEC2 word similarity against success rate
for our 10 prompts. Based on these 10 data points,
it seems that word similarity is not a strong pre-
dictor of users making a metaphorical connection.
This suggests that people are not picking up on ex-
isting connections but finding new, creative ways
to relate the words.

2https://code.google.com/archive/p/word2vec/
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Figure 3: Fraction of successful poems as a function of
the similarity between the words in the prompt.

Although we see no correlation between word
similarity and success rate, it could be that
WORD2VEC is not accurately modeling previous
associations people may bring to the task. Other
models of semantic relatedness may be able to bet-
ter predict the success of people in the task.

Looking at the least successful prompts, we
note that they use sensible but not metaphorical
connections. The prompt “death is a rose” has
many attributional connections saying “the rose
died”. Though sensible, it is not a metaphor. Sim-
ilarly, the prompt “surrender is a book” often re-
sulted in poems saying “I surrendered to the book”
which is a connection, but does not express the tar-
get metaphor. In contrast, “anger is wood” had
a high success rate. These words could also be
connected by saying “the wood is angry” but this
rarely happened, possibly because this phrase is
not as sensible as “the rose died.”

We hypothesize that if two words can be sen-
sibly connected, people are likely to write a poem
with this connection without checking whether the
connection meets the target metaphor. If this does
explain the varying success rates, it is likely that
computational systems will have similar problems.

6 Future Work

We believe this task is a good candidate to test the
ability of computers to automatically generate co-
herent poetry or to see how computational tech-
niques could help novices better complete the task.

Further work could explore how computational
techniques can aid in the evaluation of this task.
This feedback could help people write success-
ful poems, particularly if told which error they

are making. Can metaphor detection techniques,
such as those based on conceptual metaphor the-
ory (Shutova and Sun, 2013), evaluate whether a
poem expresses its given metaphor? Can we de-
tect what connections are being made?

Computer evaluation would also help further
computer generation. Can the work of Veale
(2013), which generates poetic metaphorical ex-
pressions, be extended to produce poems similar
to the successful ones found in the paper? If we
could express the target metaphor as a constraint,
can computational techniques like those used in
Hafez (2016) write poems based on metaphors,
not just themes?

There is high potential for computational tools
to aid people in this task. Given that only 24% of
writers successfully wrote poems to a metaphori-
cal prompt, there is an open problem of how to im-
prove on this baseline. Future work could design
computational aids, like those in (Gagliano et al.,
2016), to suggest possible metaphorical connec-
tions that writers could accept or reject, similar to
other creative writing aids (Clark et al., 2018).

Beyond poetry, helping people find connections
between two domains has far-reaching applica-
tions from science education (Glynn, 1991) to
product design (Hope et al., 2017). This is a hall-
mark of human intelligence that can be computa-
tionally supported.

7 Conclusion

In this paper we introduce a short poetry writing
task that gets at the heart of meaningful figurative
language. We collect 186 amateur examples and
find that only 24% of poems successfully make
the metaphorical connection, indicating that this
task is hard but possible. The most common fail-
ure case is when poems make no connection be-
tween the words (41%). Other poems may fail by
making a non-metaphorical connection or a con-
nection with the wrong word.

We see potential in this task as a demonstra-
tion of computational creativity and figurative lan-
guage generation. By analyzing the common er-
rors we show ways in which improvements can be
made. We believe that computational systems can
improve upon this baseline.
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Abstract 

Using linguistic features to detect figura-

tive language has provided a deeper in-

sight into figurative language. The purpose 

of this study is to assess whether linguistic 

features can help explain differences in 

quality of figurative language. In this study 

a large corpus of metaphors and sarcastic 

responses are collected from human sub-

jects and rated for figurative language 

quality based on theoretical components of 

metaphor, sarcasm, and creativity. Using 

natural language processing tools, specific 

linguistic features related to lexical sophis-

tication and semantic cohesion were used 

to predict the human ratings of figurative 

language quality. Results demonstrate lin-

guistic features were able to predict small 

amounts of variance in metaphor and sar-

casm production quality. 

1 Introduction 

Computational approaches to figurative language 

identification and classification are becoming in-

creasingly more sophisticated (e.g., Khodak et al., 

2017). While these studies have produced compu-

tational models capable of predicting figurative 

from non-figurative language, these models typi-

cally have little to say regarding the quality of 

figurative language. However, it is important to 

consider the potential ways that linguistic features 

differ based on higher or lower quality examples 

of figurative language to better understand the 

linguistic nature of figurative language. Thus, the 

purpose of this study is to test whether linguistic 

features can be used to predict the quality of met-

aphor and sarcasm production, which are two 

types of figurative language. Specifically, this 

study investigates whether linguistic features re-

lated to lexical sophistication and semantic cohe-

sion are predictive of human ratings of metaphor 

and sarcasm production quality.  Because our 

purpose is not to develop models capable of dif-

ferentiating between figurative and non-figurative 

language, we do not take a traditional classifica-

tion approach that is commonly seen in computa-

tional figurative language research. 

Creativity and Figurative Language. Creativ-

ity can be operationalized as an effective and orig-

inal solution to a problem (Runco and Jaeger 

2012), and figurative language is an example of 

linguistic creativity (Gerrig and Gibbs 1988). One 

method to operationalize the quality of figurative 

language is to consider the creativity of individual 

examples of figurative language. Because lan-

guage associated with more creative ideas has 

been linked to greater conceptual distance via se-

mantic network modeling (Acar and Runco 2014; 

Dumas and Dunbar 2014), as well as greater lexi-

cal sophistication via more diverse vocabulary and 

lower word frequency (Skalicky et al., 2017), it 

follows that figurative language (e.g., metaphors 

and sarcasm) quality may also be predicted using 

linguistic measures related to lexical sophistica-

tion and semantic cohesion.  

Metaphor Quality. Although conceptual met-

aphors are defined as the mapping of one concep-

tual domain onto another, this mapping must also 

be apt and meaningful (Gibbs 1994; Glucksberg 

2001). Moreover, metaphors do not need to in-

clude large gaps in conceptual domains in order to 

be defined as a metaphor. Indeed, the ability to 

create descriptive links between seemingly dis-

parate concepts is fundamental to metaphor pro-

duction (Kintsch 2008; Kintsch and Bowles 

2002), and therefore metaphors with greater con-

ceptual distance may also be more effective. 

Sarcasm Quality. Sarcasm is best defined as 

specific instances of verbal irony which serve to 

provide ironic criticism or praise that is somehow 

contrary to reality (Colston 2017). Sarcasm natu-

rally involves some sort of incongruity between 

what is said and the situation in which sarcasm is 

used. 
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Thus, one way to measure the effectiveness of 

sarcasm is to determine how incongruent a sarcas-

tic statement is within a respective context. 

Participants. A total of 61 participants were 

recruited for this study (46 females and 15 males). 

Participant age ranged from 17 to 63 (M = 25.56, 

SD = 8.341). The participants were recruited from 

the undergraduate and graduate student population 

at a large public university in the southeastern 

United States. Participants were compensated for 

their participation in the experiment. 

We opted to recruit our own set of participants 

and create a new corpus of sarcasm and metaphor 

for several reasons. First, doing so allowed us to 

gather additional measures from the participants, 

including measures of individual differences, lin-

guistic features, and language background. Sec-

ondly, we were also able to capture behavioral in-

formation, such as how long it took participants to 

produce their metaphorical and sarcastic answers. 

Finally, we were able to ensure the participants 

were aware that their task was to provide meta-

phor and sarcasm, and provided definitions for do-

ing so, which in turn allowed us to focus on the 

main purpose of this investigation (i.e., measuring 

differences in figurative language quality). 

Metaphor Production Items. Two different 

metaphor production tasks were developed from 

previously used metaphor stimuli (Beaty and 

Silvia 2013; Chiappe and Chiappe 2007). First, a 

conventional metaphor task was designed contain-

ing 22 different items. Each item consisted of a 

Topic and a Description. All of the Topics were 

nouns (e.g., her family), and all of the Descrip-

tions were descriptions or properties of those 

nouns (e.g., something that keeps her stable and 

prevents her from drifting into danger). Partici-

pants were instructed to use the Description of the 

Topic to write a metaphor reflective of the same 

meaning in the Description, but without reusing 

any of the words from the Description. In addi-

tion, a novel metaphor task was used, where par-

ticipants were presented with two scenarios: the 

most boring class they have attended, and the 

most disgusting item they have ever eaten or 

drunk. For each scenario, participants were in-

structed to produce a metaphor that described 

their feelings during that scenario and were also 

provided with an example of how to start their 

metaphors (e.g., Being in that class was like 

____). 

Sarcasm Production Items. Twelve different 

drawn cartoons were adapted or created to serve 

as sarcasm production prompts. Four of these 

items were black and white cartoons used by 

Huang et al. (2015) to prompt sarcastic responses, 

each taken from the Rosenzweig Picture Frustra-

tion Study, originally designed to assess patient 

responses to frustrating situations in order to diag-

nose aggression (Rosenzweig 1945). Each of the 

black and white cartoons is a single-panel cartoon 

which depicts a frustrating situation with more 

than one speaker (e.g., one person’s car breaks 

down and thus two people missed their train). The 

person responsible for the frustration is shown 

saying something, whereas the victim of the frus-

tration is presented with a blank speech bubble. 

Four additional items were created by revising 

four single-panel Bizarro! comics. Bizarro! is a 

single-panel comic strip created by Dan Piraro 

that is syndicated daily in print newspapers across 

the United States. Bizarro! comics typically depict 

absurd or otherwise unlikely situations for the 

purpose of humor, social commentary, or both 

(www.bizzaro.com). The specific Bizarro! comics 

used in this study were four desert island comics, 

which each depicted two people stranded on a 

small desert island in the middle of an ocean. The 

original cartoons all contained a single speech 

bubble for one of the speakers, which was made 

blank for the purposes of this study. Finally, an 

additional four sarcasm production items were de-

veloped by creating original comics each com-

prised of three panels with two speakers. In each 

comic, the first two panels set up an initial situa-

tion (e.g., a young man is recruited to join the ar-

my and is guaranteed to travel the world in an ex-

citing manner by a military recruiter), while the 

final panel includes one of the speakers with an 

empty speech bubble in a situation designed to 

prompt a sarcastic response (e.g., the young man 

ends up peeling potatoes instead of traveling the 

world). For each of the twelve comics, partici-

pants were instructed to imagine they were the 

speaker with the empty speech bubble and to write 

something sarcastic they would say if they were in 

that situation. 

1.1 Procedure 

Participants were recruited to complete the meta-

phor and sarcasm production tasks in a single la-

boratory session. The researcher briefly described 

the procedure of the experiment. Participants then 
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began the production test and were randomly as-

signed to take the metaphor or the sarcasm pro-

duction task first. 

Metaphor Production. During the metaphor 

production task session, participants were first 

provided with a definition of metaphor: A meta-

phor is a comparison between two things in order 

to help describe something. Then, during each tri-

al, the screen displayed the Topic and Description 

in clearly marked areas, with a blank text box for 

the participants to type their metaphor using the 

keyboard. After completing all 22 conventional 

metaphor prompts, participants then completed 

the two novel metaphor situations in a randomized 

order. 

Sarcasm Production. During the sarcasm pro-

duction task, participants were provided with a 

definition of sarcasm: Sarcasm is a form of indi-

rect language. When someone is being sarcastic, 

they mean something different than what they lit-

erally said. Each trial involved one of the 12 com-

ics randomly displayed above a text box, with a 

reminder asking participants to supply a sarcastic 

comment for the situation depicted in the comic. 

After typing their sarcastic statement into the an-

swer box, participants pressed the Enter key to 

move on to the next comic until they completed 

all 12 comics (in a random order). 

Each participant completed all of the metaphor 

and all of the sarcasm prompts in a random order 

within each block. Any answers that were indica-

tive of a lack of attention or were not direct re-

sponses to the prompt (e.g., the participant did not 

attempt to create a metaphor) were discarded, 

leaving a total of 1304 metaphors and 716 sarcas-

tic responses. 

 

 
Figure 1. Example sarcasm production item 

 

Human Ratings. An analytic rubric was creat-

ed in order to obtain measures of figurative lan-

guage production quality for the metaphors and 

sarcastic responses provided by the participants. 

The rubric contained separate sections for meta-

phor and sarcasm, and was comprised of three 

separate subscales designed to capture metaphor 

or sarcasm quality based on participants’ ability to 

develop accurate, effective, and original examples 

of metaphor and sarcasm. Accuracy was related to 

theoretical definitions of metaphor (conceptual 

distance) and sarcasm (incongruity), while effec-

tiveness and originality were related to theoretical 

definitions of creativity (i.e., novelty and mirth). 

Accordingly, the metaphor section included the 

subscales Conceptual Distance, Novelty, and 

Mirth, and the sarcasm section included the sub-

scales Incongruity, Novelty, and Mirth. Novelty 

refers to originality. Mirth is an emotional reaction 

typically associated with humor, wherein one can 

experience slight amusement to intense hilarity 

arising from humorous or playful stimuli (Martin 

2007). 

Each subscale was measured using a range of 

one through six, with a score of one meaning the 

example of figurative language did not meet the 

criterion in any way and a score of six meaning 

the answer met the criterion in every way. Two 

human raters were recruited to provide ratings of 

the participants’ metaphor and sarcastic responses 

using this analytic rubric. After initial ratings, a 

third rater (i.e., the first author) adjudicated any 

disagreements of two points or greater for all of 

the subscales, resulting in the following adjudicat-

ed kappa levels of .872 for metaphor conceptual 

distance scores, .854 and .855 for metaphor novel-

ty and metaphor mirth, .835 for sarcasm incongru-

ity, and .783 and .777 for sarcasm novelty and 

sarcasm mirth. After adjudication, the raters’ 

scores were averaged to provide a single score per 

subscale per item. 

1.2 Linguistic Features 

The metaphors and sarcastic responses pro-

duced by the participants were analyzed for lexi-

cal sophistication and semantic cohesion using 

two text analysis tools: The Tool for the Automat-

ic Analysis of LExical Sophistication (TAALES; 

Kyle et al., 2017) and the Tool for the Automatic 

Analysis of Cohesion (TAACO; Crossley et al.,  

2016), respectively. These tools read in raw text 

files and use existing taggers (e.g. Stanford 
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CoreNLP) and dictionaries (e.g., Corpus of Con-

temporary American English frequency values, 

MRC Psycholinguistic Database, WordNet Lexi-

cal Database) to provide a comprehensive output 

for a broad range of NLP features. Details regard-

ing the construction and validation of these tools 

can be found in their respective citations. 

Lexical Sophistication. Lexical sophistication 

is a measure of how complex a text is. For in-

stance, texts with more diverse vocabulary, lower 

frequency words, and words that take longer to 

process in the mental lexical all contribute to a 

text’s level of lexical sophistication. To date, very 

few studies have investigated lexical sophistica-

tion in the context of figurative language, aside 

from one study reporting that satirical product re-

views were less concrete than non-satirical prod-

uct reviews (Skalicky and Crossley 2015). Thus, 

there is a need to perform more investigation into 

lexical sophistication and figurative language in 

order to better determine if these features interact 

with perceptions of figurative language quality. 

This study includes broad measures of lexical so-

phistication related to lexical frequency, psycho-

linguistic properties of words, and word exposure 

in order to investigate and report any initial links 

between figurative language production quality 

and lexical sophistication. 

From TAALES, several indices representative 

of lexical sophistication were calculated. First, 

measures of psycholinguistic properties of words 

were gathered because these measures represent 

cognitive representations of lexical items and can 

be used to assess the relative sophistication of lex-

ical items (Kyle and Crossley 2015). Specifically, 

these measures were word Familiarity, Concrete-

ness, Imageability, and Meaningfulness. Word 

Familiarity represents how familiar one is with a 

specific word, with more familiar words being 

words that are also more commonly encountered, 

making familiarity similar to word frequency. 

Word Concreteness refers how perceptible an enti-

ty associated with a particular word is (Brysbaert 

et al., 2014). For example, the word dog is more 

concrete than the word music. Word Imageability 

represents the ease of conjuring a mental image of 

a word, with words like tree being more 

imageable than words such as abatement 

(Salsbury et al., 2011). Word Meaningfulness rep-

resents how many different associations to other 

words a particular word has. For example, a word 

such as tree has more associations (e.g., branch, 

leaf, wood) than a word such as savant, which ac-

tivates fewer associations (Salsbury et al., 2011). 

Measures of word Imageability, Familiarity, and 

Meaningfulness were all calculated based on the 

MRC Psycholinguistics Database norms 

(Coltheart 1981), which is a curated compilation 

of previous rating studies for these features. Word 

Concreteness values were calculated using the 

Brysbaert Concreteness norms (Brysbaert et al., 

2014), which were derived from human ratings of 

word concreteness using online crowdsourcing. 

In addition to those indices, linguistic features 

related to word exposure and use were also col-

lected, as these represent the relative frequency of 

occurrence and use for certain words. These indi-

ces were spoken word frequency, semantic diver-

sity, and age of acquisition. Spoken word frequen-

cy was calculated using counts from the spoken 

portion of the Corpus of Contemporary American 

English (COCA; Davies 2008). Semantic Diversi-

ty represents the number of different words con-

texts a particular word typically occurs in, and 

thus represents specificity of word meanings. Se-

mantic Diversity was calculated for each word us-

ing the norms published by Hoffman et al. (2013). 

To calculate Semantic Diversity, Hoffman et al. 

(2013) separated the British National Corpus into 

chunks of 1,000 words, and then analyzed the to-

tal number of these 1,000 word contexts any par-

ticular word occurred in, as well as the  semantic 

similarity of each word to all of the other words in 

those contexts. The end result is that words with 

higher Semantic Diversity can be used in more 

contexts and have more variable meanings than 

those with lower Semantic Diversity. Finally, Age 

of Acquisition (AoA) values represent human in-

tuition regarding the age when they first learned a 

particular word. AoA values based on Kuperman 

et al., (2012) were used, which were collected us-

ing a large number of human raters via online 

crowdsourcing. All of these linguistic indices 

were calculated based on content words only. 

Cohesion. TAACO was used in order to calcu-

late semantic overlap between prompts and partic-

ipant answers for the metaphors only. Distance be-

tween concepts used in metaphors has been accu-

rately modeled using measures of semantic asso-

ciation, such as Latent Semantic Analysis 

(Kintsch 2008; Kintsch and Bowles 2002), and 

therefore a measure of semantic distance was in-

cluded in this study in order to determine if dis-

tance between concepts influences human percep-
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tions of metaphor production quality. To do so, the 

participants’ metaphors were grouped by prompt 

and analyzed separately using the source text 

analysis option in TAACO. This option allows the 

user to load in a source text as a reference text for 

other texts to be compared against for semantic 

and cohesive similarity or differences. For each 

group of metaphors, the Description provided to 

the participants was loaded as the source text, and 

the participant’s metaphor were analyzed to gather 

the amount of semantic overlap between partici-

pants’ answers and the prompts using the 

word2vec measure in TAACO. Word2vec models 

the semantic direction and magnitude of words as 

they relate to other words (known as vectors). By 

modeling words as vectors, word2vec assumes 

words more closely grouped together are more 

semantically related than those that are further 

apart and employs predictive modeling in order to 

calculate the semantic relations among words in a 

text. 

1.3 Statistical Analysis 

The human ratings of figurative language pro-

duction quality were first analyzed using Principle 

Component Analysis (PCA) in order to obtain 

weighted component scores of figurative language 

production quality for both the metaphors and the 

sarcastic responses. Afterwards, a series of linear 

mixed effects (LME) regression models were fit 

to determine if any of the linguistic features were 

predictive of figurative language production quali-

ty scores. For each LME model, the figurative 

language production quality score was entered as 

the dependent variable and the linguistic features 

were added as the independent predictor variables 

(also known as fixed effects). For metaphors, met-

aphor type (novel vs. conventional) was also add-

ed as a fixed effect, and for sarcastic responses, 

sarcasm prompt type was added as a fixed effect 

(black and white, desert island, or three-panel 

comics). Subjects and items were entered as 

crossed random effects, with a random slope of 

metaphor type or sarcasm prompt type fit on sub-

jects where appropriate. Interactions were tested 

among the metaphor types and sarcasm prompt 

types and the linguistic features, with only signifi-

cant interactions retained. The linguistic features 

were controlled for multicollinearity using Pear-

son correlations and variance inflation values 

(VIF), and were also z-scored before being en-

tered into the models.  

2 Results 

2.1 Metaphor and Sarcasm Quality Ratings 

The human ratings of metaphor and sarcasm for 

the three subscales (Conceptual Dis-

tance/Incongruity, Novelty, and Mirth) were ana-

lyzed using two separate PCAs for the remaining 

1304 metaphors and 716 sarcastic responses after 

adjudication. Both of the PCAs reported that the 

Novelty and Mirth subscales loaded into a single 

component, which explained 71% of the variance 

in the PCA for metaphor production scores and 

62% of the variance in the PCA for sarcastic re-

sponse scores. For the metaphor PCA, the Con-

ceptual Distance scores loaded into a separate 

component (from novelty/mirth) explaining 26% 

of the variance in ratings, and for the sarcastic re-

sponses PCA, the Incongruity subscale loaded in-

to a separate component (from novelty/mirth) ex-

plaining 33% of the variance in ratings. Therefore, 

the ratings for Novelty and Mirth were averaged 

for both metaphors and sarcasms, and the ratings 

for Conceptual Distance and Incongruity were re-

tained in their original manner, resulting in two 

dependent variables for the metaphors and sarcas-

tic responses per item. 

2.2 Predicting Metaphor Quality 

Metaphor Conceptual Distance. An LME 

model with metaphor conceptual distance as the 

dependent variable and linguistic features related 

to lexical sophistication and source overlap 

(word2vec), along with metaphor type (conven-

tional vs. novel) as predictor variables reported 

three linguistic indices as significant predictors of 

the conceptual distance ratings (Table 1). 

First, metaphors containing words with higher 

average Age of Acquisition (AoA) scores re-

ceived significantly lower conceptual distance 

ratings. Words with a higher AoA are those that 

are self-reported to be learned later in life based 

on human judgments, and therefore represent 

less frequent and more sophisticated vocabulary. 

This suggests that more sophisticated language 

in terms of AoA scores was not necessary in order 

to construct metaphors with higher conceptual dis-

tance between the entities being described in the 

metaphors. For example, the following metaphor 

had an average AoA of 8.9 and a conceptual dis-

tance score of one: Some professors are geniuses 

like a supercomputer. The prompt for this meta-

phor was Some professors are very smart. The 
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word genius has an AoA of 7.21 and the word su-

percomputer has an AoA of 12.44, and these two 

words contributed significantly to the higher AoA 

score. Moreover, the word genius is conceptually 

similar to the prompt (i.e., very smart), and does 

not allow for any alternative conceptual interpre-

tations. Indeed, genius is essentially a synonym of 

smart, and thus represents the same concept, and 

the inclusion of supercomputer also contains con-

cepts related to intelligence, further amplifying the 

notion of smartness evoked by the word genius. 

Conversely, the following metaphor has an aver-

age AoA of 3.5 and a conceptual distance score of 

five: That book is worth my arm and leg in re-

sponse to the prompt Some property is very valu-

able. In this metaphor, the words arm, leg, and 

book all have AoA scores of less than four, and 

thus contribute to a relatively low AoA rating. 

Furthermore, there is greater conceptual distance 

between a variety of concepts in this metaphor, 

with the words arm and leg perhaps conceptual-

ized as high value currency, but only if one is 

aware of the idiomatic use of the expression costs 

an arm and a leg. Unlike the genius metaphor 

with high AoA, the words arm and leg are also not 

more sophisticated synonyms of any words in the 

prompt. 

In addition to AoA, metaphors with higher Se-

mantic Diversity scores also received significantly 

lower conceptual distance scores. Words with 

higher Semantic Diversity are words with less 

specific and more ambiguous meanings, which 

may suggest that metaphors containing more se-

mantically ambiguous words may not be directly 

referencing specific concepts to make an apt met-

aphorical comparison. 

In a similar fashion, metaphors with higher av-

erage Word Concreteness received significantly 

higher conceptual distance scores. These findings 

suggest that the human raters’ perceptions of con-

ceptual distance in the metaphors were influenced 

by the use of specific words in the metaphors. 

This may be because metaphors with more specif-

ic word usage were better able to evoke conceptu-

al comparisons that were more distantly related, 

making it easier for the raters to identify the size 

of the conceptual comparison in the metaphor. 

Conversely, metaphors with higher AoA scores 

may have tended to use conceptual synonyms 

with the same overall semantic meaning (e.g., the 

use of genius to describe a smart professor), lead-

ing to lowered perceptions of conceptual distance 

among the human raters.  

The model explained a total of 4.1% of the var-

iance in conceptual distance scores, suggesting 

that these linguistic features account for a relative-

ly small amount of the variation in conceptual dis-

tance scores and that they did not play a strong 

role in the human raters’ conceptual rating deci-

sions. 

Metaphor Novelty and Mirth. An LME mod-

el with the averaged metaphor novelty/mirth score 

of human ratings the dependent variable and the 

same linguistic features related to lexical sophisti-

cation and source overlap used in the previous 

model as predictor variables reported three lin-

guistic indices as significant predictors of meta-

phor novelty/mirth ratings (Table 2). 

First, MRC Imageability was a significant, 

negative predictor of the novelty/mirth ratings, 

suggesting that metaphors including more 

imageable words resulted in lower ratings of nov-

elty/mirth. Second, word2vec source similarity 

was also a significant, negative predictor of novel-

ty/mirth, suggesting that metaphors containing 

higher semantic overlap with the source text re-

ceived lower ratings of novelty/mirth.  

Third, COCA spoken word frequency was also 

a significant, negative predictor of novelty/mirth 

ratings, suggesting that metaphors containing 

words with higher spoken word frequency result-

ed in significantly lower ratings of novelty/mirth. 

There were no other significant main effects or in-

teractions. These results cohere to suggest that 

metaphors received higher novelty/mirth ratings if 

they included more sophisticated language and al-

so included less semantic overlap with the meta-

phor prompt. 

From a lexical perspective, higher levels of 

both Spoken Word Frequency and Word 

Imageability resulted in significantly lower ratings 

of novelty/mirth for metaphors. The direction of 

their influence on the novelty/mirth ratings indi-

cates that more lexically sophisticated metaphors 

received higher novelty/mirth scores. 

In terms of cohesion, metaphors that contained 

greater semantic overlap with the metaphor 

prompt (as measured through word2vec) received 

significantly lower novelty/mirth scores. This 

finding makes intuitive sense because metaphors 

that were more closely related to the metaphor 

prompt were most likely those that were more cli-

ché or did not make more distant comparisons. 
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The word2vec measure may also capture the 

extent to which participants relied on the language 

from the metaphor prompt. For example, the met-

aphor Some relationships are like working in a re-

search lab and having a project fail received a 

novelty/mirth score of five and a semantic overlap 

score of -0.17. The only words repeated in this 

metaphor from the prompt are some relationships, 

while the rest of the metaphor includes words out-

side of the prompt.  

Conversely, the metaphor The earth is full of 

people working like bees received a novelty/mirth 

score two and a semantic overlap score of 0.68.  

 

Unlike the previous metaphor, this metaphor al-

most completely repeats the metaphor prompt 

word for word (i.e., the earth is full of busy peo-

ple) and only includes three original words. 

Much like the model predicting metaphor con-

ceptual distance ratings, the linguistic features 

predicting the metaphor novelty/mirth scores ex-

plained a relatively small amount of variance in 

rater scores (7.5%), suggesting that linguistic fea-

tures were just one small influence on the human 

ratings of novelty and mirth.  

 

 

  Estimate SE t p 

(Intercept) 4.559 0.089 51.179 < .001 

Metaphor Type: Novel -0.228 0.399 -0.571 0.575 

Source Similarity (word2vec) 0.010 0.032 0.324 0.746 

MRC Familiarity 0.015 0.027 0.569 0.570 

MRC Imageability -0.011 0.039 -0.277 0.782 

MRC Meaningfulness -0.034 0.034 -0.999 0.318 

Age of Acquisition* -0.123 0.035 -3.533 < .001 

Brysbaert Concreteness* 0.102 0.039 2.610 0.009 

COCA Spoken Word Frequency 0.027 0.031 0.877 0.380 

Semantic Diversity* -0.106 0.035 -2.993 0.003 

* = Significant predictor. SE = Standard Error. Baseline for Metaphor Type = Conventional.  

Table 1. LME predicting metaphor conceptual distance scores 

 

  Estimate SE t p 

(Intercept) 3.292 0.101 32.604 < .001 

Metaphor Type: Novel 0.165 0.388 0.425 0.676 

Source Similarity (word2vec)* -0.127 0.041 -3.127 0.002 

MRC Familiarity 0.064 0.035 1.830 0.068 

MRC Imageability* -0.106 0.050 -2.120 0.034 

MRC Meaningfulness 0.003 0.043 0.064 0.949 

Age of Acquisition -0.065 0.045 -1.451 0.147 

Brysbaert Concreteness -0.067 0.050 -1.347 0.178 

COCA Spoken Word Frequency* -0.314 0.041 -7.660 < .001 

Semantic Diversity -0.040 0.045 -0.895 0.371 

* = Significant predictor. SE = Standard Error. Baseline for Metaphor Type = Conventional.  

Table 2. LME predicting metaphor novelty/mirth scores 

 

2.3 Predicting Sarcasm Quality 

Sarcasm Incongruity. An LME model predict-

ing incongruity ratings of the sarcastic responses 

using linguistic features (MRC Familiarity, MRC 

Meaningfulness, Age of Acquisition, Brysbaert 

Concreteness, COCA Spoken Word Frequency, 

and Semantic Diversity) reported that MRC 

Meaningfulness was a significant, negative pre-

dictor of incongruity ratings, suggesting that sar-

castic responses with more average associations to 

other words resulted in lower ratings of incongrui-

ty (Table 3). This model only accounted for 2% of 

the variance in incongruity scores, suggesting that 

this linguistic feature played a small role in raters’ 

perceptions of incongruity in the sarcastic re-

sponses. 

Sarcasm Novelty and Mirth. An LME model 

predicting novelty/mirth ratings of the sarcastic 

responses using the same linguistic features as the 

previous model included one significant main ef-

fect and two significant interactions (Table 4). 

The main effect demonstrated that sarcastic re-

sponses containing higher levels of average AoA 

received significantly higher novelty/mirth rat-

ings. This finding provide some evidence suggest-
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ing that sarcastic responses which are more lexi-

cally sophisticated are perceived as more creative, 

because higher amounts of AoA tend to suggest 

higher levels of lexical sophistication. 

For example, the sarcastic reply of at least we 

have water for one of the desert island comics re-

ceived a novelty/mirth score of 2.25 and had an 

average AoA score of 3.04, whereas the sarcastic 

reply you have surgical precision behind the 

wheel in response to the puddle splash comic re-

ceived a novelty/mirth score of 4.75 and had an 

average AoA of 7.45. The second example’s use 

of surgical precision represents less frequent 

words when compared to the first example, which 

in turn provides a higher likelihood that the author 

of the second sarcastic response coined an answer 

that was unique when compared to the other par-

ticipants, subsequently increasing perceptions of 

novelty and perhaps mirth among the human 

raters. Thus, the AoA results suggest that using 

more lexically sophisticated language could be 

one strategy for producing more creative sarcastic 

responses. 

 

 

 

 Estimate SE t p 

(Intercept) 4.396 0.099 44.278 < .001 

Sarcasm Prompt: Black and White 0.216 0.129 1.676 0.128 

Sarcasm Prompt: Desert Island 0.175 0.129 1.352 0.209 

MRC Familiarity 0.063 0.035 1.806 0.071 

MRC Meaningfulness* -0.067 0.032 -2.079 0.038 

Age of Acquisition 0.034 0.030 1.130 0.259 

Brysbaert Concreteness 0.027 0.034 0.780 0.436 

COCA Spoken Frequency -0.003 0.033 -0.103 0.918 

Semantic Diversity -0.026 0.036 -0.729 0.466 

* Significant effect. SE = Standard error. Baseline for Sarcasm Prompt = Three Panel Comic.  

Table 3. LME predicting sarcasm incongruity scores 

 

  Estimate SE t p 

(Intercept) 2.965 0.125 23.661 < .001 

MRC Familiarity 0.007 0.044 0.154 0.877 

Sarcasm Prompt: Black and White 0.190 0.162 1.175 0.272 

Sarcasm Prompt: Desert Island 0.377 0.162 2.328 0.046 

Age of Acquisition* 0.114 0.038 3.013 0.003 

Brysbaert Concreteness 0.038 0.063 0.607 0.544 

COCA Spoken Frequency 0.030 0.039 0.763 0.446 

Semantic Diversity -0.065 0.043 -1.507 0.132 

MRC Meaningfulness 0.001 0.039 0.018 0.985 

Significant Interactions  

MRC Familiarity: Sarcasm Prompt: Black and White 0.196 0.120 1.638 0.102 

MRC Familiarity: Sarcasm Prompt: Desert Island* 0.428 0.128 3.351 0.001 

Concreteness: Sarcasm Prompt: Black and White 0.057 0.088 0.652 0.515 

Concreteness: Sarcasm Prompt: Desert Island* 0.210 0.085 2.472 0.014 

* Significant effect. SE = Standard error. Baseline for Sarcasm Prompt = Three Panel Comic.  

Table 4. LME predicting sarcasm novelty/mirth scores 

 

Additionally, two lexical features interacted 

with prompt type in that there were significant dif-

ferences between the desert island prompt and the 

three-panel comic prompt for both features. These 

interactions demonstrated that increasing levels of 

MRC Familiarity and Brysbaert Concreteness sig-

nificantly increased perceptions of novelty/mirth 

for sarcastic replies made in response to the desert 

island prompts when compared to the three-panel 

comic prompts. Higher levels of both MRC Fa-

miliarity and Brysbaert Concreteness suggest less 

lexically sophisticated language, because words 

that are more familiar correlate with more fre-

quently used words, and words that are and more 

concrete represent concepts that are more easily 

retrieved due to their encoding as both a lexical 

item (e.g., car) as well as the visual concept of that 

same item (e.g., a concept of a car). Because there 

was less contextual information available in the 

desert island prompts, it may be that sarcastic re-
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sponses including less sophisticated language (i.e., 

more concrete concepts that are more familiar) 

were better able to index specific ideas indicative 

of sarcastic meaning for the desert island prompts 

when compared to the three-panel comic prompts, 

where contextual information could fill in seman-

tic gaps for the raters. Much like the other models, 

these features accounted for a relatively small 

amount of variance in the raters’ scores (6.8%), 

again suggesting that linguistic features played a 

small yet significant role in raters’ perceptions of 

creativity among the sarcastic responses. 

3 Discussion 

The purpose of this study was to investigate 

whether differences in figurative language quality 

could be predicted using linguistic features related 

to lexical sophistication and semantic cohesion. 

Overall, the findings suggest that variables repre-

sentative of lexical sophistication (and semantic 

cohesion for metaphors) played a small yet signif-

icant role in explaining variance among rater per-

ceptions of figurative language quality, and also 

that perceptions of quality included both theoreti-

cal constructs related to metaphor and sarcasm 

(i.e., conceptual distance and incongruity) as well 

as to more generalized constructs of creative abil-

ity (i.e., novelty and mirth). 

In regards to the theoretical components, great-

er conceptual distance scores were predicted by 

more sophisticated and specific language, perhaps 

because more specific words are better able to en-

code specific concepts, allowing for a more direct 

metaphorical comparison between two entities. 

For sarcastic responses, greater incongruity was 

marked by language with a lower number of word 

associations, which may have been a result of the 

use of more conversational language in sarcastic 

responses (e.g., thank you). As for the novelty and 

mirth scores, overall the results demonstrated that 

greater levels of lexical sophistication led to 

greater perceptions of novelty and mirth for both 

metaphors and sarcastic responses, although this 

effect was mediated by the different prompts for 

sarcastic responses.  

Linguistic features were better able to predict 

variance in the novelty and mirth scores when 

compared to the conceptual distance or incongrui-

ty scores, suggesting that the raters may have at-

tended more strongly to linguistic features when 

considering the creativity of the metaphors and 

sarcastic responses when compared to the concep-

tual distance or incongruity. This suggests that 

linguistic features related to lexical sophistication 

may be more suitable for measuring general 

measures of creativity, which are but one compo-

nent of figurative language quality.  

Finally, the linguistic features explained more 

variance in the metaphors when compared to the 

sarcastic responses, which is most likely a result 

of the linguistic context in which metaphors oper-

ate. Specifically, the understanding of a metaphor 

requires the possessing of conceptual information 

encoded in the metaphor. However, in order to 

understand a sarcastic reply, one must be more 

aware of the surrounding social and pragmatic 

context. Echoing contextual information linguisti-

cally is not necessary in many sarcastic responses, 

as it is known knowledge already available to 

those within the situation. For example, a simple 

thank you can be taken as sarcastic in the right 

contexts, which would be difficult to differentiate 

through linguistic means alone. Therefore, the 

contextual nature of sarcasm quality may make it 

more difficult to define using quantitative linguis-

tic features when compared to other types of fig-

urative language, such as metaphor. 

4 Conclusion 

One limitation present in this data is that the 

answers produced by the participants were gener-

ally short, which in turn could easily bias some of 

the lexical measurements used, as all of them re-

ported average scores for all the content words in 

an answer. Nonetheless, this study has shed fur-

ther light on linguistic features of figurative lan-

guage by investigating connections between fig-

urative language quality, lexical sophistication, 

and cohesion using theoretical definitions of crea-

tivity, metaphor, and sarcasm and demonstrating 

that linguistic features of figurative language qual-

ity may in part be related to generalized notions of 

creativity. Future work employing classifiers de-

signed to discriminate figurative language from 

non-figurative language may want to consider the 

quality of figurative language, and one method for 

doing so may lie in linguistic features related to 

creativity in the examples under investigation.  
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Abstract

Identification of metaphoric language in text is
critical for generating effective semantic rep-
resentations for natural language understand-
ing. Computational approaches to metaphor
identification have largely relied on heuristic
based models or feature-based machine learn-
ing, using hand-crafted lexical resources cou-
pled with basic syntactic information. How-
ever, recent work has shown the predictive
power of syntactic constructions in determin-
ing metaphoric source and target domains
(Sullivan, 2013). Our work intends to ex-
plore syntactic constructions and their rela-
tion to metaphoric language. We undertake
a corpus-based analysis of predicate-argument
constructions and their metaphoric properties,
and attempt to effectively represent syntac-
tic constructions as features for metaphor pro-
cessing, both in identifying source and tar-
get domains and in distinguishing metaphoric
words from non-metaphoric.

1 Metaphor Background

Metaphor can be understood as the conceptual-
ization of one entity using another. Lakoff and
Johnson’s seminal work shows that metaphors are
present at the cognitive level and expressed lin-
guistically (Lakoff and Johnson, 1980). A typical
conceptual metaphor mapping is ARGUMENT IS

WAR, in which ARGUMENT is structured through
the domain of WAR:

1. He defended his position through his publica-
tions.

2. Her speech attacked his viewpoint.

The term ”linguistic metaphor” is used to indi-
cate these types of words and phrases. We will
focus on linguistic metaphor, as identifying these
utterances as metaphoric is critical for generating

correct semantic interpretations. For instance, in
the examples above, literal semantic interpreta-
tions of ’defend’ and ’attack’ will yield nonsen-
sical utterances: a physical position cannot rea-
sonably be defended by a publication, nor can a
speech physically attack any kind of entity.

Automatic metaphor processing tends to in-
volve two main tasks: identifying which words are
being used metaphorically (here called metaphor
identification), and attempting to provide an accu-
rate semantic interpretation for an utterance (here
called metaphor interpretation). The first has
largely been approached as a supervised machine
learning problem, typically using lexical semantic
features and their interaction with context to learn
the kinds of situations where lexical metaphors ap-
pear. The problem of metaphor interpretation is
more complex, with approaches including the im-
plementation of full metaphoric interpretation sys-
tems (Martin, 1990), (Ovchinnikova et al., 2014),
identification of source and target domains (Dodge
et al., 2015), developing knowledge bases (Gor-
don et al., 2015), and providing literal paraphrases
to metaphoric phrases (Shutova, 2010), (Shutova,
2013).

In both identification and interpretation sys-
tems, syntax tends to play a limited role. Many
systems rely only on lexical semantics of target
words, or use only minimal context or dependency
relations to help disambiguate in context (Gargett
and Barnden, 2015), (Rai et al., 2016). Others rely
on topic modeling and other document and sen-
tence level features to provide general semantics,
and compare the lexical semantics to that, ignor-
ing the more ”middle”-level syntactic interactions
(Heintz et al., 2013). While these approaches have
been effective in many areas, there is evidence that
figurative language is significantly influenced by
syntactic constructions, and thus if they can be
represented more effectively, metaphor processing
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capabilities can be improved.
We will examine five kinds of predicate-

argument constructions in corpus data to assess
their metaphoric distributions and usefulness as
features for classification. Our contribution is
twofold. First, we examine the LCC metaphor
corpus, which includes source and target an-
notations, to determine their use in predicate-
argument constructions (Mohler et al., 2016), and
employ syntactic representations as features to im-
prove source/target classification. Second, we in-
vestigate predicate-argument constructions in the
VUAMC corpus of metaphor annotation (Praggle-
jaz Group, 2007), and employ syntactic features to
predict metaphoric vs non-metaphoric words.

2 Metaphor and Constructions

Recent metaphor research has indicated that con-
struction grammar can be employed to deter-
mine the source and target domains of linguistic
metaphors (Sullivan, 2013). In many cases, cer-
tain constructions can determine what syntactic
components are allowable as source and target do-
mains. For example, verbs tend to evoke source
domains. The target domain is then evoked by one
or more of the verb’s arguments (from Sullivan pg
88):

1. the cinema beckoned (intransitive)

2. the criticism stung him (transitive)

3. Meredith flung him an eager glance (ditran-
sitive)

In these instances, the verb is from the source
domain and at least one of the objects is from
the target. However, arguments can also be neu-
tral and don’t necessarily evoke the target domain.
Pronouns like ’him’ in (2) and (3) don’t evoke
any domain. The optionality of domain evocation
makes it harder to predict which elements of the
construction participate in the metaphor. Despite
this limitation, this analysis shows that syntactic
structures beyond the lexical level can be indica-
tive of source and target domains. To better un-
derstand how these structures determine metaphor,
we explored metaphor-annotated corpus data for
predicate-argument constructions.

3 Computational Approaches

While metaphor processing has largely been fo-
cused on capturing lexical semantics, there have

been a variety of approaches that incorporate
syntactic information. Many computational ap-
proaches focus on specific constructions, per-
haps indicating the need to classify different
metaphoric constructions through different means.
The dataset of (Tsvetkov et al., 2014) provides
adjective-noun annotation which has been exten-
sively studied (Rei et al., 2017), (Bulat et al.,
2017). A particularly promising approach is that
of (Gutierrez et al., 2016), who use compositional
distributional semantic models (CDSMs) to repre-
sent metaphors as transformations in vector space,
specifically for adjective-noun constructions. An-
other relevant approach is that of (Haagsma and
Bjerva, 2016) who use clustering and selectional
preference information to detect metaphors in
predicate argument constructions, including verbs
with objects, subjects, and both. Their highest F1
is 57.8 for verbs with both arguments.

Many systems that rely heavily on lexical re-
sources also include some dependency informa-
tion. (Rai et al., 2016) and (Gargett and Barnden,
2015) use a variety of syntactic features including
lemma, part of speech, and dependency relations.
However, both systems are feature-rich and these
syntactic elements’ contribution is unclear. (?) use
lexical features along with contrasting those fea-
tures between the target word and its head. (Dodge
et al., 2015) employ a variety of constructions in
identifying metaphoric source and target domains.
They identify a broad range of constructions and
use these as templates that metaphoric expressions
can fill. Our work expands on this idea by formal-
izing the constructions into features for statistical
metaphor identification.

Perhaps the most syntactically oriented
metaphor identification system is that of (Hovy
et al., 2013), who uses syntactic tree kernels to
identify metaphor. They use combinations of
syntactic features via tree kernels and semantics
via WordNet supersenses and target word embed-
dings. Our approach expands on this by exploring
different syntactic representations and incorporat-
ing semantics through word embeddings into the
syntactic structures.

4 Corpus Analysis

Sullivan identifies a large number of constructions
and the possible configurations of their arguments
with regard to source and target domains. While
some corpus examples are provided that show the
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variety of source-target patterns in each construc-
tion’s argument structure, an in-depth analysis
of how these constructions and their metaphoric
properties are distributed is still needed. We exam-
ined the predicate argument constructions they an-
alyze by using hand-annotated metaphor corpora
to better understand the distributional patterns that
occur. This allows us to make predictions about
what kind of constructions and arguments are use-
ful for metaphor identification and interpretation
and what might be a computationally feasible way
to implement them.

While they examine many kinds of construc-
tions, most of them seem based almost entirely on
the lexical semantics of the words involved, and
thus can be captured simply by effectively rep-
resenting the meaning of individual words. Do-
main and predicative adjective constructions fall
into this category: the construction is identified
by the type of adjective, which needs to be rep-
resented at the lexical level. The more interesting
cases are argument structure constructions, which
take many forms. Sullivan identifies nine different
argument structure constructions that each have
their own source and target properties:

1. Intransitive
2. Transitive
3. Intrasitive Resultative
4. Transitive Resultative
5. Ditransitive
6. Equation
7. Predicative AP
8. Predicative PP
9. Simile

To identify the use of metaphor in these con-
structions, we will rely on two resources: the LCC
metaphor corpus and the VUAMC corpus. The
freely available portion of the LCC corpus con-
tains approximately 7,500 source/target pairs, al-
lowing for a more in-depth look at metaphoric se-
mantics. The VUAMC contains approximately
200,000 words of text with each word tagged as
metaphoric or non-metaphoric. This allows for
large scale analysis of metaphoricity versus non-
metaphoricity at the word level.

4.1 Identifying Constructions
To examine metaphors in these corpora, we need
a method for automatically identifying predicate-
argument constructions. The VUAMC corpus,
as a subsection of the BNC baby, comes with

gold-standard dependency parses. For the LCC
dataset, we used the dependency parser from Stan-
ford Core NLP tools (Manning et al., 2014). These
parses are sufficient to identify intransitives, tran-
sitives, and ditransitive constructions. Verb in-
stances that have an indirect object are ditransi-
tive, those that lack an indirect object but have a
direct object are transitive, and those that lack ei-
ther but have a subject are intransitive. Copulas are
marked in the dependency parses, so we can eas-
ily identify equative constructions. While similes
can take many forms, Sullivan’s work focuses on
simile constructions that consist of a copular verb
and the word ’like’. This oversimplifies to some
degree, as many similes don’t need a copula (’she
fretted like a mother hen’, ’they flew like bats’),
but it allows us to create a subset of equative con-
structions that represent copular similes.

This analysis is necessarily limited, as the we
cannot automatically capture more complex con-
structions via dependency parses, and many of
these are often metaphorically rich. While we un-
derstand this limitation, we believe that we can uti-
lize syntactic features of these basic constructions
as a starting point, with a future goal of expanding
to more complex examples.

Also note that we only identify the surface re-
alization of these constructions - any dropped ar-
guments or missing elements that aren’t in the de-
pendency parse aren’t considered a part of the con-
struction. Thus we see examples of typically di-
transitive verbs (like ’give’) that occur intransi-
tively and transitively, as they lack overt direct and
indirect objects.

5 LCC Analysis

To explore source and target domains, we em-
ploy the free portion of the LCC corpus from
Mohler et al, which contains approximately 7,500
source/target metaphor pairs in sentential context,
rated from 0 to 3 on their degree of metaphoric-
ity. For our research, we included only those in-
stances that were rated above 1.5, yielding approx-
imately 3,000 metaphoric sentences. These anno-
tations also include the source and target domains
of the metaphors, and the lexical trigger phrases
that engender the source and target domains. This
allows us to quantify Sullivan’s analysis of source
and target domains in different constructions, and
shows the actual distribution of source and target
domain items in each construction.
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In order to identify constructions in the LCC
data, we extracted syntactic relations from the de-
pendency parses, using the basic patterns previ-
ously defined to identify predicate argument con-
structions. This allows us to identify the five dif-
ferent constructions: intransitives, transitives, di-
transitives, equatives (copulas), and similes (ana-
lyzed as a subset of equative constructions). For
each construction found, we can identify the pred-
icate and the predicate’s arguments, and determine
for each whether they are identified as metaphoric
and whether they belong to the source or target do-
main.

Figure 1: Counts of metaphoric items in the LCC.
Each bar represents the total instances of argument in
each construction, as well as the percentage of items
that belong to source and target domains.

The vast majority of constructions in the LCC
are intransitive, transitive, and equative. Ditransi-
tives (.4%) and similes (.1%) are exceedingly rare.
This may be because the similes found are only the
verbal type: instances of a copula with the word
’like’. Other similes are likely missed by this au-
tomatic approach.

The majority of metaphoric verbs (92%)
are source domain items, supporting Sullivan’s
claims. Subjects and objects tend to be from the
target domain (61% each). Ditransitive verb con-
structions are relatively rare, with only 43 found,
and only 3 of those containing a metaphoric verb.

Figure 1 shows the counts of source and target
items in the LCC data, based on construction and
argument of the construction. Note that in equa-
tive constructions, direct objects are almost always
source domain items, showing a parallel between
copular arguments and verbs. This is likely due to
the predicative nature of the direct objects of cop-
ular verbs.

5.1 Source and Target Identification

Given that verbs and their argument structures
have varying distributions of source and target do-
main items, we believe that these syntactic struc-
tures can be effectively employed in the classifi-
cation of source and target domain words. While
identifying source and target domains at the sen-
tence level requires lexical and sentential seman-
tics and may not require syntactic information,
identifying lexical triggers can be improved by us-
ing better syntactic representations. To this end we
set up a classification task for identifying source
and target elements.

The LCC contains phrase-level annotations for
source and target elements. We split each sen-
tence into words, projecting the source and target
annotations to the word level. From this, we de-
veloped three classification tasks: (1) identifying
source words, (2) identifying target words, and (3)
identifying any metaphoric word (either source or
target). Our classification scheme focuses on verbs
and nouns, as these are the elements that compose
the syntactic structures in question.

We developed a set of different representations
designed to capture construction-like structures,
and employ them for source/target classification.
This approach follows the intuition of (Hovy et al.,
2013): ”metaphorical use differs from literal use in
certain syntactic patterns”. We implemented this
theory by developing various representations of
constructional syntax and pairing them with lex-
ical semantic features.

For our lexical semantics component, we ex-
perimented with the word embeddings from
word2vec (Mikolov et al., 2013), using the pre-
trained Google News data, as well as the Glove
embeddings (Pennington et al., 2014). We found
in validation that the Google News vectors yielded
slightly better performance, and so those were
used in further experiments.

5.2 Syntactic Representations

Hovy et al use tree kernels to represent the seman-
tic structure of instances, providing information
from dependency parses, part of speech tags, and
WordNet supersenses. Our approach follows this
work by experimenting with a variety of different
ways of meshing syntactic and semantic compo-
nents. This involves creating a computationally
feasible syntactic representation and combining it
with semantics (in our case, word embeddings)
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Construction Verb Subject Direct Object Indirect Object
% SRC TRG -MET SRC TRG -MET SRC TRG -MET SRC TRG -MET

Intransitive 66.5 454 24 6329 128 204 2385 - - - - - -
Transitive 20.0 391 8 1648 53 186 1808 183 265 1599 - - -
Ditransitive .4 3 0 40 0 3 40 3 1 39 1 2 40
Equation 13.0 0 6 1323 57 161 909 288 29 1012 - - -
-Simile .1 0 0 13 1 2 10 8 5 0 - - -

Table 1: % Metaphor by Construction (LCC). For each predicate, the count of source (SRC), target (TRG), and
non-metaphoric (-MET) instances are counted, as well as those for all of each construction’s defining arguments.

from relevant contexts.

5.2.1 Predicate Argument Construction

For a basic integration of syntax, we used the
above corpus analysis technique to identify which
predicate-argument construction the verb token
belongs to. This results in a one-hot vector rep-
resenting either an intransitive, transitive, ditransi-
tive, equative, or simile construction. This pro-
vides basic, purely syntactic knowledge of how
many arguments this particular instance of a verb
currently has. For nouns, we extend this to include
which slot in the construction the noun is filling
(subject, direct object, indirect object) in addition
to the type of predicate-argument construction.

5.2.2 Head and Dependent Features

Including representations of the head word and
dependent words of the word to be classified is
a straightforward way to include basic syntactic
information. For verbs, this mainly involves the
dependents, although many verbs also have head
words. We include a concatenation of the aver-
age embedding over the word’s dependents and the
embedding of the word’s head.

5.2.3 Dependency Relations

A more general and perhaps more powerful way
of converting dependency relations into syntacti-
cally relevant features is to include the specific de-
pendency relations for each dependent of the tar-
get. For verbs, these include things like subjects,
direct objects, adverbial modifiers, nominal mod-
ifiers, passive subjects, and more. Capturing the
fine-grained dependencies for each verb is analo-
gous to determining the exact syntactic construc-
tion it is being realized in. Combining this feature
with the embeddings of dependents and heads is
a promising avenue for linking syntax and seman-
tics.

5.2.4 VerbNet Class
VerbNet is a lexical semantic resource that groups
verbs into classes based on their syntactic behavior
(Kipper-Schuler, 2005). It categorizes over 6,000
verbs into classes, each of which contains syntac-
tic frames that the verbs in the class can appear
in. It also contains distinct senses, allowing it to
distinguish between different verb uses in context.
Previous approaches have employed VerbNet as a
lexical resource (Beigman Klebanov et al., 2016),
but aggregated the senses of each verb, removing
the syntactic distinctions that VerbNet makes for
different word senses.

We ran word-sense disambiguation to deter-
mine the VerbNet class for each verb token
(Palmer et al., 2017). We included one-hot vec-
tors representing verb senses for each token, and
combining this with knowledge of the particular
constructions and the lexical semantics provided
by embeddings for each token gives syntactically
motivated information about the semantics of the
utterance. For noun identification, we include the
VerbNet class of the head of that noun.

5.3 Experiments

As a baseline, we began with using the embed-
ding of the word to be classified. We concate-
nated this with the embeddings of the single pre-
vious and following words, as this proved the best
context in our validation. This creates a represen-
tation of lexical semantics and a word’s context,
without any specific knowledge of the syntactic
relations the word is involved in. We then added
each syntactic representation. These experiments
were done using a training-validation-test split of
76/12/12. We experimented with Maximum En-
tropy, Naive Bayes, Random Forest and Support
Vector Machine classifiers, and through validation
chose a SVM with a linear kernel, L2 regulariza-
tion and squared hinge loss. We then ran the clas-
sifier using our baseline, and added each feature
separately. Finally, we combined the best feature
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set for each classification task, judged by the im-
proved performance of each feature over the base-
line. The classification was split into three tasks:
identifying source items, identifying target items,
and identifying metaphoric (either source or tar-
get) from non-metaphoric. The results of these ex-
periments are in table 2.

From these results we can see that classifying
source-domain words in the LCC data is harder
than classifying target-domain words. This may
be because of the broad range of domains, as the
corpus contains 114 possible source domains. Tar-
get items are much easier to classify, likely be-
cause the dataset contains only a limited number
(32) of target domains. Embeddings are effective
at representing semantics, and they can accurately
determine the domain of lexical items, allowing
for easy classification of target items.

Our syntactic features show mixed results.
Adding sentential context is consistently effec-
tive, showing that naive contextual approaches are
helpful. Adding dependency embeddings is also
consistently effective, supporting our hypothesis
that knowledge of syntactic properties can be help-
ful in metaphor classification. Other syntactic fea-
tures are inconsistent, especially in predicting the
metaphoricity of verbs. Selecting only the feature
sets that showed improvement over the baseline
yields the best results for most categories.

6 VUAMC Analysis

The LCC allows for an in-depth examination
of source and target domains, but is relatively
small compared to the VUAMC. We can use
the VUAMC data to inspect the distribution of
word metaphoricity with regard to argument struc-
ture constructions. While Sullivan’s work focuses
on source and target domain elements and not
whether or not words are used metaphorically,
we can examine the binary classifications in the
VUAMC to provide insight into the distribution
of metaphoric verbs and the predicate-argument
constructions they participate in. Counts of ar-
gument structure verbs and arguments and their
metaphoricity are shown in table 3.

From the data in table 3, we can see clear dis-
tinctions between different constructions and the
metaphoricity of their arguments. Verbs in in-
stransitive constructions are much less likely to be
metaphoric than those used in transitives, and both
less so than those in ditransitive constructions.

Figure 2: Verb types by percent of metaphoric use
in each construction. Each bar represents the number
of verb types that match the X axis for percentage of
metaphoric usages.

The VUAMC chooses not to mark copular verbs
as metaphoric, and only one instance was found of
equative constructions having a metaphoric verb.

We might expect that different constructions
would also impact the distribution of the predi-
cates’ arguments. However, from the data we see
that verb arguments are fairly consistent. Indirect
objects in ditransitive constructions were never ob-
served to be metaphoric, but direct objects are be-
tween 11% and 16% metaphoric throughout. Sub-
jects vary from 2.8% in ditransitives to 11.7% in
equative constructions. One distinctive feature is
that subjects are much less likely than objects to
be metaphoric.

The overall distribution of metaphoric uses by
verb construction shows that the more arguments
that are present in the construction, the more likely
the verb is being used metaphorically. For fur-
ther evidence, we can examine the distribution of
metaphoric usages on a verb-specific basis.

We calculated the average metaphoricity of
each verb found in the VUAMC, and sorted them
by the type of construction they are found in. We
performed this analysis on a type and token ba-
sis, shown in figures 2 and 3. From the data, we
see that the majority of verbs in all constructions
are used exclusively non metaphorically. While a
large number of verb types only occur metaphori-
cally, this accounts for a much smaller number of
verb tokens. Verb types that occur only metaphor-
ically are relatively rare. We can also see that di-
transitive and copula verb types are exceedingly
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Verbs Nouns
Features Src Trg Met Src Trg Met
Baseline (Embedding,1-word context) .467 .316 .483 .440 .701 .597
+Context .494 .545 .436 .487 .705 .593
+Dependent Embeddings .482 .421 .444 .570 .717 .631
+Dependency Relations .488 .384 .482 .486 .718 .601
+Argument Construction .459 .461 .457 .456 .661 .598
+VerbNet Class .467 .555 .473 .433 .684 .589
Best Combination .551 .600 .505 .519 .705 .630

Table 2: Classification of Source and Target elements in the LCC Corpus. Metaphor (MET) is the classification
of a word as either Source or Target against non-metaphoric words.

Verb Predicate Subject Direct Object Indirect Object
% +M -M %Met +M -M %Met +M -M %Met +M -M %Met

Intransitive 75.1 5118 24301 17.4 284 4627 5.8 - - - - - -
Transitive 13.1 1517 3612 29.6 119 3125 3.7 654 4475 12.8 - - -
Ditransitive .2 24 35 40.7 1 35 2.8 9 50 15.2 59 0 0
Equation 11.6 1 4548 .02 449 3376 11.7 468 3736 11.1 - - -
-Simile .1 0 35 0.0 2 28 6.7 7 26 21.2 - - -

Table 3: % Metaphor by Construction (VUAMC). For each predicate, the count of metaphoric (+M) and non-
metaphoric (-M) instances are counted, as well as those for all of each construction’s defining arguments.

Figure 3: Verb tokens by percent of metaphoric use in
each construction. Each bar represents the number of
verb tokens that belong to verb types that match the X
axis for percentage of metaphoric usages.

rare, but copula tokens are very common and al-
most always literal.

We extended this analysis by examining the dis-
tribution of the verb types that can appear intran-
sitively, transitively, and ditransitively. Our hy-
pothesis in studying these verbs is that the type
of construction the verb appears in is predictive
of that verb’s metaphoric use, independent of the
verb’s overall behavior. Eleven verbs appeared in
all three constructions, and the analysis of their

metaphoricity is presented in figure 4.
From the distribution in the VUAMC corpus,

the data indicates that the type of argument struc-
ture construction does not significantly change the
distribution of metaphoricity. The verbs generally
have the same percentage of metaphoric usages
regardless of which construction they appear in.
Only ’give’ appears in more than 2 instances of
the ditransitive, and its distribution mirrors that of
its use in other constructions.

Two components from our corpus analysis stand
relevant for automatic metaphor processing. First,
in broad scope over all verb tokens, predicates’
metaphor distributions are dependent on the kind
of construction they occur in. Second, the verb
itself is critical, as each verb tends to follow the
same pattern of metaphoricity throughout its con-
structions. This supports our belief that identifica-
tion of metaphor requires modeling of the interac-
tion of syntactic and semantic information.

6.1 Metaphor Identification (VUAMC)

We employ the same experimental set up of the
previous classification task using the VUAMC.
The VUAMC doesn’t contain source or target an-
notations, so the classification problem is lim-
ited to identifying metaphoric words from non-
metaphoric words. We employ the same baseline
and syntactic representation features. Again, we
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Figure 4: Counts of metaphoric uses by verb and construction for those verbs that occur in intransitive, transitive,
and ditransitive constructions

used a split of 76/12/12, using a linear SVM.
For metaphoric identification in the VUAMC,

all of the syntactic features improved classifica-
tion over the baseline for verbs. For nouns, the
dependency embeddings and VerbNet class of the
noun’s head were effective. For both, combin-
ing all of the syntactic representations yields the
best performance. While this classification based
on syntactic is slightly lower than some recent
experiments (Beigman Klebanov et al., 2016), it
shows improvement over using purely lexical se-
mantics, and we believe the incorporation of better
syntactic representations can be used to improve
metaphor identification systems.

7 Conclusions

The type of syntactic construction a verb is present
in provides unique evidence of how it is being used
metaphorically. It is important to effectively inte-

Model Verbs Nouns
Baseline (Embedding, 1-Word context) .339 .303
+Context .488 .224
+Dependency Embeddings .425 .349
+Dependency Relations .466 .393
+Argument Construction .471 .289
+VerbNet Class .418 .330
+All .531 .505

Table 4: Results of adding different syntactic models
for VUAMC verb classification.

grate syntax and semantics to detect and interpret
metaphor, and because there are so many types of
metaphors and they occur in such a wide array of
contexts, it may be helpful to use separate methods
of representing metaphoric semantics depending
on the syntactic constructions involved. While our
results indicate that these integrations of syntac-
tic representations do not yet achieve state of the
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art performance, we believe that improving repre-
sentations of syntactic constructions can provide
some benefit to metaphor processing.

To that end, our future goals include explor-
ing better representations of the interaction be-
tween syntax and semantics. Models like syntactic
tree kernels, compositional distributional semantic
models, and other syntactically driven methods are
likely to improve classification if they can prop-
erly combine syntactic and semantic representa-
tions. Additionally, as different constructions are
likely to yield different types of metaphoricity, we
aim to employ ensemble methods that incorporate
construction-based knowledge to select the most
effective classifier, and extending our approach to
identifying source and target domains in addition
to lexical triggers.
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Abstract

The paper addresses the classification of iso-
lated Polish adjective-noun phrases according
to their metaphoricity. We tested neural net-
works to predict if a phrase has a literal or
metaphorical sense or can have both senses
depending on usage. The input to the neu-
ral network consists of word embeddings, but
we also tested the impact of information about
the domain of the adjective and about the ab-
stractness of the noun. We applied our so-
lution to English data available on the Inter-
net and compared it to results published in pa-
pers. We found that the solution based on word
embeddings only can achieve results compa-
rable with complex solutions requiring addi-
tional information.

1 Introduction

One of the essential features of every natural
language is its ambiguity. And apart from the
homonymy and polysemy of words, the phe-
nomenon which makes automatic text understand-
ing difficult is the possible metaphorical usage of
both simple and more complex phrases. Identifi-
cation of potentially figurative usage is crucial for
language processing efficiency and may improve
the performance of many NLP applications. It is
crucial for information extraction tasks, as the lack
of figurative meaning detection may lead to false
identification of a particular object or event (Pat-
wardhan and Riloff, 2007). For example, we do
not want to extract a mention of some kind of pas-
try in the phrase These vegan recipes are a piece of
cake. In machine translation (Shutova, 2011) and
textual entailment (Agerri, 2008) tasks, similar ex-
amples can easily be given as well. Tasks which
can potentially be solved better when metaphors
are correctly recognized are numerous. In partic-
ular, (Thibodeau and Boroditsky, 2011) even ana-
lyze the role of metaphor in reasoning about social

policy on crime.

Our research problem results directly from the
very well-known fact that language expressions
can be interpreted literally i.e. their meaning can
be a composition of the meaning of their parts; or
metaphorically, when either the meaning of some
words or combination of them is not interpreted
literally.

Let us illustrate this in the Polish language on
multiple phrases with an adjective żelazny ‘(to be
made of) iron’. The expression e.g. żelazny uch-
wyt ‘iron grip’ can denote just a grip/handle which
is made of iron, but it can also describe a feeling
of fear and intimidation. The chances of these
two interpretations are not equal for all expres-
sions. With some of them, e.g. żelazna krata
‘iron grille’ it is hard to imagine when they get
a figurative, non-literal meaning – they are strictly
compositional – while others, e.g. żelazne nerwy
‘iron nerves’ are only used in the figurative, non-
literal meaning. Identification of potentially fig-
urative usages may improve the performance of
many NLP applications. Although the ultimate
goal is to decide whether each phrase occurrence
could be interpreted compositionally (literally) or
not, such task requires annotated data which is
quite hard to prepare. In this work, we concentrate
on the initial classification of isolated adjective-
noun (AN) phrases – we try to categorize Pol-
ish phrases built up from a noun and a modifying
adjective into these three categories, i.e. phrases
which are almost certainly interpreted literally (L),
phrases which only have a metaphorical meaning
(M) and phrases which occur in both interpreta-
tions (B).

Although we apply this categorization in Polish,
it may as well be used for other languages. For
example, in English the phrases ‘dirty hands’ may
be used literally and figuratively and qualify as B.
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2 Related Work

The problem of recognizing the metaphoricity of
isolated phrases has been considered as a research
topic in several papers. Almost all authors focus
on phrases which are only literal or metaphorical
and neglect phrases that represent both senses.

Gutierrez et al. (2016) address recognition of
the metaphorical and literal meaning of adjective-
noun phrases on the basis of metaphorical or lit-
eral senses of the adjective. Their approach was
based on the model proposed in (Baroni and Zam-
parelli, 2010) to represent the vector of an unseen
adjective-noun phrase p as a linear transformation
given by a matrix A(a) of an adjective a over a
noun vector n:

A(a) n = p
They represent various (literal or metaphorical)
senses of an adjective as two different matrixes:
ALIT (a) and AMET (a), as in (Kartsaklis and
Sadrzadeh, 2013). Gutierrez et al. (2016) assume
that the literal or metaphorical meaning of the ad-
jective, that is part of an AN phrase, makes the
phrase literal or metaphorical, so they represent
each literal adjective-noun phrase pi containing
adjective a as:

ALIT (a) ni = pi

and each metaphorical phrase i as:

AMET (a) ni = pi

The vectors of whole phrases and nouns can be
extracted from a corpus, so the goal is to learn ad-
jective matrices: literal (ÂLIT (a)) and metaphor-
ical (ÂMET (a)) separately. To test the method,
they prepared a very peculiar dataset consisting
of 3991 literal and 4601 metaphorical AN phrases
for only 23 adjectives, so it contained an average
370 phrases per each adjective. The requirement
of many examples per adjective is crucial in this
method and simultaneously difficult to obtain —
at least if we want to take phrases with more than
a dozen occurrences in texts used for creating vec-
tor representation into account. The best result re-
ported by the authors was 0.809 accuracy (ACC).

Tsvetkov et al. (2014) applied a random for-
est classifier to detect metaphorical and literal
AN phrases. Classifiers included in the ensem-
ble were trained on the basis of three features, ab-
stractness and imageability of nouns, supersenses,
and vector-space word representation. Informa-
tion about abstractness and imageability origi-
nated from the MRC psycholinguistic database

(Wilson, 1988); as the database is not big, they
propagated this information to other words based
on vector representation. Supersenses for a noun
were obtained from the WordNet as a combina-
tion of the supersenses of all synsets to which the
noun belongs. Adjectives are classified into 13 su-
persenses adapted from GermaNet, but the infor-
mation necessary for it was taken from the Word-
Net. To prepare vector space representation the
authors used a variation of latent semantic analy-
sis. To evaluate the method, they prepared training
data consisting of 884 metaphorical AN phrases
and the same number of literal phrases. The data
contains phrases with 654 adjectives, so an aver-
age of 2.7 phrases per adjective. Furthermore, they
collected a test set consisting of 200 phrases (100
phrases per each type) with 167 adjectives from
the train set and 33 new ones. The data does not
include weak metaphors and phrases which can
have both interpretations. The method achieved
ACC = 0.86.

Shutova et al. (2016) used word and visual em-
beddings to represent phrases and their compo-
nents in order to detect metaphorical usage. They
adopted the cosine similarity of embedding vec-
tors as the measure of metaphoricity and postu-
lated that the similarity is lower for metaphorical
expressions. A threshold needed for classification
was fixed on the basis of development data. For
data from (Tsvetkov et al., 2014), the authors re-
ported F1-measure equal to 0.79 (an accuracy is
not given). A similar approach is described in the
paper (Rei et al., 2017), where the authors im-
proved the idea of Shutova et al. (2016) apply-
ing deep learning to establish the threshold. The
evaluation performed on the same data indicated
an accuracy of 0.829 and the F1-measure equal to
0.811, which is better than the original solution.

Bizzoni et al. (2017) proposed detecting the
metaphoricity of AN phrases on the basis of word
vectors only. They tested several configurations
of single-layered neural networks to classify AN
phrases into two groups: metaphorical and lit-
eral. They didn’t use any additional knowledge ex-
cept Word2Vec trained on Google News (Mikolov
et al., 2013). The different configuration of neu-
ral networks was tested on the data from (Gutier-
rez et al., 2016), described above. The method
achieved an accuracy of 0.915 when trained on
500 phrases and 0.985 when trained on 8000
phrases. Simultaneously, Wawer and Mykowiecka
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(2017) proposed a similar approach to the prob-
lem of metaphoricity detection for Polish data.
The authors noticed that detection of metaphor-
ical and literal senses of phrases is not enough,
and proposed classification into three types of AN
phrases: literal metaphorical and phrases which
occur in both interpretations (B). For this task,
they reported an accuracy of 0.7, but the task is
more difficult.

3 Polish Data

We prepared data containing Polish adjective-
noun phrases divided into three classes. We distin-
guished literal (L) and metaphorical (M) phrases
as in the English experiments mentioned in Sec-
tion 2. Similar datasets for English excluded
weak metaphors and phrases with both literal
and metaphorical senses like drowning students
(Tsvetkov et al., 2014). In our data, phrases
with both meaning (B) made up the third class,
we excluded only phrases that may have both
senses but a literal (or metaphorical) one is not
represented in NKJP (National Corpus of Polish,
(Przepiórkowski et al., 2012)). An example of
such phrase is dobry pasterz ‘good shepherd’ for
which we were not able to find literal meaning in
the corpus.

We collected 2380 adjective-noun phrases con-
taining 259 different adjectives, so, an average
9.18 phrases per adjective. The adjectives were
manually assigned to 55 classes (typology de-
signed for this experiment) which represent such
notions as: emotions, quantity, dimension, shape,
colour, etc. Among the nouns we distinguished
only two classes: abstract and concrete. We did
not follow WordNet typology here (e.g. hyper-
onymy) as too elaborate and difficult to apply.

The dataset is an extension of the resource
described in (Wawer and Mykowiecka, 2017).
The process of data collecting was carried out
in several steps. First, we prepared a list of
440 metaphorical phrases and collected literal and
more metaphorical phrases containing the same
adjectives from the frequent phrases in NKJP (Na-
tional Corpus of Polish, (Przepiórkowski et al.,
2012)). It resulted in the collection of many
phrases for each adjective. The most numerous
group, 79 phrases, was collected for the adjec-
tive czarny ’black’, it consists of 45 literal, 27
metaphorical phrases and only 7 phrases of both
types (phrases of B type are rarer then literal and

phrase type adjectives M L B
all phrases 259 1034 1018 328
physical feature 21 185 115 36
dimension 11 147 131 38
color 12 61 182 36
material 16 42 79 15
luminosity 5 48 42 15
sense 18 71 20 13
temperature 4 40 49 13
tidiness 4 56 21 7
empty/full 2 58 22 2
animal 22 32 27 23
emotion 13 28 25 11
good/bad 2 17 24 15
society 24 23 23 8
sequence 2 1 41 11
body/mind f. 7 32 12 0
space orientation 5 0 29 12
sound 5 22 10 4
life/death 4 20 8 1
strength/weakness 2 18 9 1
civilization 8 10 17 1
weather 5 18 3 6
truth false 2 4 20 3
condition 4 2 9 14
easy/difficult 1 6 16 1
freedom 2 11 8 3
terrain stability 3 10 6 5
...
other 29 domains 55 72 70 34

Table 1: Number of phrases

metaphorical ones). In order to improve the par-
ticipation of B phrases in our data we looked for
them in dictionaries and added them if they oc-
curred a dozen times in our texts. Moreover we
added literal and metaphorical phrases for adjec-
tives included in the new B phrases. The obtained
list of phrases was evaluated by two annotators and
inconsistencies were discussed in a larger group of
annotators. Table 1 contains detailed information
about numbers of different types of phrases for ad-
jective domains for which more than 20 examples
were collected.

In order to implement experiments, we used
distributional semantic models (DSM) created by
Word2vec from the gensim package (Řehůřek
and Sojka, 2010) and described in (Mykowiecka
et al., 2017) and avilable from http://zil.
ipipan.waw.pl/CoDeS. As Polish is a highly
inflectional language, we decided to use models
based on lemmas. We used the Continuous Bag of
Words (CBOW) architecture. As a learning strat-
egy, we selected negative sampling in the stan-
dard configuration of 5 positive examples and 1
negative. Models were prepared on the basis of
NKJP (general corpus of Polish) and a dump of
Polish Wikipedia from 2016. Two models based
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on 300 or 100 dimensions were used in our exper-
iments; one consisted of all data, while the second
was limited to words occurring no fewer than 50
times for NKJP data or no fewer than 30 times for
Wikipedia data.

4 Experiments Description

In our experiments, we adopted the method de-
scribed in (Wawer and Mykowiecka, 2017) as a
starting point. The authors applied neural net-
works to predict if a phrase has a literal or
metaphorical sense or can have both senses de-
pending on its usage. Word embeddings of phrase
components are the input to the network. The task
consists in classifying of the input phrases into
three groups: L, M, and B types. Our aim was
to test the method on bigger and better balanced
data. We also tested not only dense neural archi-
tecture but also a sequential one, namely LSTM.
The sequence in our case is a short one, consisting
of two words.

Moreover, we wanted to test the impact of the
type of adjective and noun on the results. To com-
pare the results for Polish with similar experiments
for English, we also performed experiments on the
literal and metaphorical phrases alone. In the latter
case, we eliminated B type phrases from the input
data. The architecture of the network is given in
Figure 1. In the task of classification into L, M, B
types, the output layer consists of three instances
referring to three labels.

The impact of the type of adjectives and nouns
was tested by extending appropriate word embed-
dings with additional features.

5 Results for Polish

In this section, we describe the results obtained for
Polish phrases for different parameters. In all ex-
periments, we performed 10-fold cross-validation
(shuffling each time the entire set, the standard
sklearn procedure resulted in a slightly different
total number of phrases tested). The results were
collected and the average results are given for pre-
cision, recall, F1-measure and accuracy.

Although the classification of adjective-noun
phrases into M, L, B types is consistent with the
linguistics reality, similar studies relating to En-
glish neglect phrases which may have both literal
and metaphorical meanings. So, initially, we re-
moved phrases annotated as B types from the data
and performed the experiments with classification

into two types only.

2 dense layers, vec. size 100
nb ep. P R F1 acc.

M 1030 10 0.88 0.88 0.88
20 0.89 0.87 0.88

L 1017 10 0.88 0.88 0.88
20 0.87 0.89 0.88

avg. 2047 10 0.88 0.88 0.88 0.879
20 0.88 0.88 0.88 0.878

3 dense layers, vec. size 100
nb ep. P R F1 acc.

M 1030 10 0.89 0.86 0.87
20 0.90 0.87 0.88

L 1017 10 0.86 0.89 0.88
20 0.87 0.90 0.89

avg. 2047 10 0.88 0.88 0.88 0.876
20 0.88 0.88 0.88 0.884

Table 2: Input: only embeddings, vectors 100

In Tables 2 and 3, we can see that the size of
vectors, the tested number of epochs and choos-
ing either 2 or 3 dense layers do not seem to have
a great influence on the results. Thus, we tested
the influence of a separate addition of domain of
adjectives and type of noun only for models with
a vector of size 300 and 3 dense layers (Table 4).
Next, we tested adding both noun type and adjec-
tive domain again on all the variants as used in
experiments reported in Tables 2 and 3, the results
are given in Tables 5 and 6. In all these cases,
we see only very small differences in F1 and ac-
curacy. It turned out that on average, the simplest
model with embeddings of size 100, 2 dense layers
and no additional information is almost identically
good as the model with embeddings of size 300, 3
dense layers and additional information consisting
of adjective domain and binary noun type. Train-
ing nets for an additional 10 epochs did not im-

2 dense layers, vec. size 300
nb ep. P R F1 acc.

M 1030 10 0.90 0.85 0.87
20 0.90 0.87 0.88

L 1017 10 0.85 0.91 0.88
20 0.87 0.90 0.88

avg. 2047 10 0.88 0.88 0.88 0.888
20 0.88 0.88 0.88 0.884

3 dense layers, vec. size 300
nb ep. P R F1 acc.

M 1030 10 0.90 0.85 0.87
20 0.90 0.87 0.89

L 1017 10 0.85 0.91 0.88
20 0.88 0.91 0.89

avg. 2047 10 0.88 0.88 0.88 0.876
20 0.89 0.89 0.89 0.889

Table 3: Input: only embeddings, size of vectors 300
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Figure 1: Net architecture for L and M phrases classification

prove the results significantly.

3 dense layers, vec. 300, 20 epochs
nb P R F1 acc.
adjective domains

M 1030 0.90 0.88 0.89
L 1017 0.88 0.89 0.89
avg. 2047 0.89 0.89 0.89 0.885

noun type
M 1030 0.91 0.87 0.89
L 1017 0.87 0.91 0.89
avg. 2047 0.89 0.89 0.89 0.889

Table 4: Input: word embeddings, type of noun or ad-
jective domain

2 dense layers, vec. size 100
nb ep. P R F1 acc.

M 1030 10 0.90 0.87 0.88
20 0.89 0.87 0.88

L 1017 10 0.87 0.91 0.89
20 0.87 0.89 0.88

avg. 2047 10 0.89 0.89 0.89 0.886
20 0.88 0.88 0.88 0.880

3 dense layers, vec. size 100
nb ep. P R F1 acc.

M 1030 10 0.88 0.87 0.88
20 0.90 0.87 0.88

L 1017 10 0.87 0.88 0.88
20 0.87 0.90 0.89

avg. 2047 10 0.88 0.88 0.88 0.876
20 0.89 0.89 0.89 0.886

Table 5: Input: word embeddings, adjective domain,
type of noun (abstract/concrete)

The same architecture was used to classify
phrases into three groups. Table 7 shows the re-
sults for classification of all the data into literal,
metaphorical and both type phrases; the input data
consists of word embeddings of 300 dimensions

2 dense layers, vec. size 300
nb ep. P R F1 acc.

M 1030 10 0.90 0.90 0.89
20 0.89 0.89 0.89

L 1017 10 0.87 0.90 0.89
20 0.89 0.89 0.89

avg. 2047 10 0.88 0.88 0.88 0.883
20 0.89 0.89 0.89 0.890

3 dense layers, vec. size 300
nb ep. P R F1 acc.

M 1030 10 0.90 0.88 0.89
20 0.89 0.88 0.88

L 1017 10 0.89 0.90 0.89
20 0.88 0.89 0.88

avg. 2047 10 0.89 0.89 0.89 0.890
20 0.88 0.88 0.88 0.884

Table 6: Input: word embeddings, adjective domain
and type of noun (abstract/concrete), vectors 300

(the results for 100 vectors are slightly lower –
F1 for B class is equal to 0.48). The results for
the B phrases are much lower than for L and M
phrases. Adjective domains and abstractness do
not improve the results, see Table 8.

6 Results for English Data

As it is difficult to compare methods applied on
different data, we decided to use our method
on data available on the Internet and compare it
with the results reported in papers. The avail-
able resources contain only literal and metaphor-
ical phrases. We tested two sets of such data. The
first one was originally used in (Tsvetkov et al.,
2014) – the solution described in Section 2 and the
data is available from https://github.com/
ytsvetko/metaphor. The train set consists of
884 metaphorical phrases and 884 literal ones, and
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3 dense layers, 20 epochs
nb P R F1 acc.

M 1030 0.82 0.86 0.84
L 1017 0.80 0.78 0.79
B 328 0.52 0.47 0.49
avg. 2374 0.77 0.77 0.77 0.773

LSTM, 2 layers, 10 epochs
nb P R F1 acc.

M 1030 0.84 0.86 0.85
L 1017 0.81 0.82 0.82
B 328 0.52 0.46 0.49
avg. 2374 0.78 0.79 0.79 0.789

Table 7: Polish phrases classification into M, L and B;
300 dimennsions vectors

LSTM, 2 layers, 10 epochs
nb P R F1 acc.

M 1030 0.83 0.85 0.84
L 1017 0.80 0.82 0.81
B 328 0.48 0.40 0.44
avg. 2374 0.77 0.78 0.77 0.778

Table 8: Polish phrases classification into M, L and B.
Input: 300 dimensions word embeddings, adjective do-
main and type of noun

the test set has 100 phrases of each type. In our ex-
periment, we used 300 element pre-trained GLoVe
vectors trained on Wikipedia 2014 and Gigaword
5 (Pennington et al., 2014). We neglected to add
information on adjective domains to directly test
the solution based only on distributed word repre-
sentation. Our results for both dense and LSTM
architectures are given in Table 9. Tsvetkov et al.
(2014) reported in their paper an accuracy of 0.86,
which is a little higher than our result – 0.84. The
same data was used in (Rei et al., 2017) where
the authors reported an accuracy of 0.829 and for
metaphor detection precision: 0.903, recall: 0.738
and F1-measure: 0.811. Our overall slightly better
result (in comparison to (Rei et al., 2017)) is due
to better recall for metaphorical phrases.

The second data set chosen was that prepared by
(Gutierrez et al., 2016). The results of our exper-
iments are reported in Table 10. In this case, the
accuracy obtained by the network with one hid-
den dense layer was equal to 0.969 (between the
results given in (Bizzoni et al., 2017)). This sig-
nificant increase is due to the much smaller num-
ber of different adjectives and the larger number
of phrases with the same adjective in this data set.

7 Conclusions

Information included in standard word embed-
dings makes it possible to differentiate between
literal and metaphorical adjective-noun phrases,

nb P R F1 acc.
Dense, 20 epochs, 10-times cross validation

M 882 0.87 0.86 0.86
L 871 0.86 0.87 0.86
avg. 1753 0.86 0.86 0.86 0.864
LSTM, 20 epochs, 10-times cross validation

M 882 0.86 0.86 0.85
L 871 0.86 0.85 0.85
avg. 0.86 0.86 0.86 0.855

Dense, 20 epochs, test data
M 100 0.90 0.72 0.80
L 100 0.77 0.92 0.84
avg. 200 0.83 0.82 0.82 0.819

GRU, 2 hidden layers, 20 epochs, test data
M 100 0.90 0.78 0.83
L 100 0.81 0.91 0.85
avg. 200 0.85 0.84 0.84 0.845
LSTM, 2 hidden layers, 20 epochs, test data

M 100 0.90 0.76 0.83
L 100 0.79 0.92 0.85
avg. 200 0.85 0.84 0.84 0.84

Table 9: Our results for Tsvetkov et al. (2014) data

Dense, 20 epochs, 10-times cross validation
nb P R F1 acc.

M 4596 0.96 0.97 0.97
L 3991 0.96 0.97 0.97
avg. 8587 0.97 0.97 0.97 0.969

Table 10: Our results for (Gutierrez et al., 2016) data

both in Polish and English. It seems that not us-
ing the cosine measure of vector similarity for
metaphors detection (as discussed in Section 2),
but applying a neural network to this problem is a
good solution.

For the tested network architectures the accu-
racy varies between 0.81 and 0.97 depending on
the character and size of the training set. The
effect of using sequential architecture (GRU or
LSTM units) is not straightforward: it improves
results on the training/test set scenario, but not in
the case of cross-validation setting.

Surprisingly, the adjective domain and the infor-
mation on noun concreteness do not seem to have
any significant influence on the results.

Recognizing phrases which can have either lit-
eral or metaphorical meaning (depending on the
context) is much harder. The best F1 result for
these phrases is at a level of 0.49. The overall re-
sults for recognition of the three labels (L, M and
B) are lower by 0.11 than the results for recogni-
tion of just L and M cases. Still the result of 0.77
could be of practical use.

In the future, we plan to focus on phrases that
have both literal and metaphorical usages (B) and
recognize their usage on sentence level. Although
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the recognition of a type of phrase considered in
isolation cannot be fully reliable, we think that
the obtained results can be used as the additional
source of information for phrases which are less
frequent in text.
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Abstract

This paper presents an exploratory study
on large-scale detection of idiomatic ex-
pressions in essays written by non-native
speakers of English. We describe a com-
putational search procedure for automatic
detection of idiom-candidate phrases in
essay texts. The study used a corpus
of essays written during a standardized
examination of English language profi-
ciency. Automatically-flagged candidate
expressions were manually annotated for
idiomaticity. The study found that id-
ioms are widely used in EFL essays. The
study also showed that a search algorithm
that accommodates the syntactic and lexi-
cal flexibility of idioms can increase the re-
call of idiom instances by 30%, but it also
increases the amount of false positives.

1 Introduction

An idiom is an expression whose meaning can-
not be derived from the usual meaning of its
constituents. As such, idioms present a spe-
cial learning problem for non-native speakers
of English (Cooper, 1998), especially learners
of English as foreign language (EFL). Under-
standing of idiomatic expressions can be im-
portant, for example, in academic settings,
where presentation of ideas often involves figu-
rative language (Littlemore et al., 2011). Even
more encompassing is the notion that “natural
use of idioms can overtly demonstrate partici-
pation in a realm of shared cultural knowledge
and interests, and so help a learner gain social
acceptance” (Boers and Lindstromberg, 2009).
Indeed, it has been claimed that accurate and
appropriate use of idioms is a strong distin-
guishing mark of the native-like command of
the language and might be a reliable measure
of the proficiency of foreign learners (Cowie
et al., 1984).

The present research is informed by the idea
that estimation of the use of idiomatic ex-
pressions in student essays might be utilized
as yet another indicator of proficiency in En-
glish. For practical text-analysis applications
(e.g. web-based services), and for use in large-
scale assessments, such estimation would re-
quire automatic tools. Such tools might use a
two-step approach: find candidate expressions
in text and then verify that they are indeed
idiomatic. We have conducted a large-scale
study to examine the feasibility of the first step
– finding a variety of idiom-candidate expres-
sions in student essays. A wide-coverage ex-
tended search algorithm was used to flag can-
didate expressions and manual annotation was
used for verification.

Prior computational work on detection of
idioms concentrated on methods of discrim-
ination – is a given expression composi-
tional/idiomatic or not (or to what degree).
For purposes of evaluation, such research al-
ways relied on manually curated sets of candi-
date expressions. Our current work is comple-
mentary, our question is: how can we automat-
ically obtain a great variety of idiom-candidate
expressions, in unrestricted context.

The rest of this paper is structured as fol-
lows. Section 2 presents related work on id-
ioms and EFL. Section 3 outlines the complex-
ities of idiom detection. Section 4 describes
our approach to detecting candidate idioms in
essays. Section 5 describes the corpus and the
annotation study. Results and additional ex-
periments are presented in section 6.

2 Idioms and EFL

Applied linguistic research has focused on EFL
students’ knowledge, comprehension and pro-

34



duction of idioms. Cooper (1999) investigated
idiom comprehension with non-native English
speakers from diverse backgrounds, and found
that subjects used a variety of strategies for
comprehension. Laufer (2000) investigated
avoidance of English idioms by EFL univer-
sity students, using a fill-in translation test,
and found that lower English proficiency was
associated with greater avoidance of English
idioms. Tran (2013) investigated knowledge of
50 idioms collected from the lists of frequently
used English idioms and found poor idiomatic
competence among EFL students in Vietnam.
Multiple factors contribute to figurative com-
petency, such as learners’ proficiency levels,
types of idioms, learners’ vocabulary knowl-
edge, and similarity of idioms between foreign
and native language (Alhaysony, 2017; Na Ra-
nong, 2014; de Caro, 2009; Irujo, 1986).

Researchers have also looked at figurative
language that EFL learners encounter in their
educational environments and materials (e.g.
textbooks, lectures, etc.). Liu (2003) con-
ducted a corpus-based study of the spoken
American English idioms encountered most
frequently by college students and provided
suggestions for improving the development of
idiom teaching and reference materials, includ-
ing improving the coverage of idiom variants.
Littlemore et al. (2011; 2001) investigated
the range of difficulties that non-native speak-
ers of English experience when encountering
metaphors1 in British university lectures, in-
cluding non-understanding (failure to inter-
pret) and misunderstanding (incorrect inter-
pretation).

A complementary line of research focuses on
the EFL students’ use of metaphors in lan-
guage production. Littlemore et al. (2014)
analyzed the use of metaphors in 200 exam
essays written by EFL students, at differ-
ent levels of English proficiency. They found
that metaphor use increases with proficiency
level, and even suggested that descriptors for
metaphor use could be integrated in the rating
scales for writing. Beigman Klebanov and Flor
(2013) investigated the use of metaphors in
116 argumentative essays and found moderate-
to-strong correlation between the percentage

1On the close relation between idioms and
metaphors, see Gibbs et al. (1997)

of metaphorically used words in an essay and
the writing quality score. Notably, both
studies used a small number of essays and
conducted an exhaustive manual analysis of
metaphoric expressions.

3 Idiom identification

Syntactic and lexical flexibility are two of the
issues dealt with at length in the linguistic and
psycholinguistic literature on idioms (Glucks-
berg, 2001; Nunberg et al., 1994). Idioms can
vary from being fully syntactically flexible to
not at all. Although, traditionally, idiomatic
expressions had been considered as ‘fixed ex-
pressions’ (Alexander, 1978), researchers have
demonstrated that idioms allow a lot of varia-
tion, including adjectival and adverbial modifi-
cation, quantification, negation, substitution,
passivization and topicalization. Glucksberg
(2001) illustrates the flexibility of idiomatic
expressions, using the idiom “don’t give up the
ship”, which has a wide range of variations:

1. Tense inflection: He gave up the ship.

2. Number inflection: Cowardly? You wont
believe it: They gave up all the ships!

3. Passivization: The ship was given up by
the city council.

4. Adverbial and adjectival modification:
After holding out as long as possible, he
finally gave up the last ship.

5. Word substitution: Give up the ship?
Hell, he gave up the whole fleet!

It has been long noted that many idioms al-
low for application of various kinds of mod-
ifiers, which often insert words and phrases
around or even into the core idiomatic phrase
(Ernst, 1981). Linguists have proposed differ-
ent theories and taxonomies for idiom mod-
ification (McClure, 2011; Glucksberg, 2001;
Nicolas, 1995), while psycholinguistic exper-
iments demonstrated the flexibility of idiom
recognition mechanisms (Hamblin and Gibbs,
1999; McGlone et al., 1994; Gibbs and Nayak,
1989; Gibbs et al., 1989). Researchers who fo-
cused on computer-aided identification of id-
iomatic expressions in texts have noted the
need to account for idiom flexibility (Bond
et al., 2015; Minugh, 2006; Moon, 1998).
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In this respect, it is important to mention
one very common sub-type of idiomatic ex-
pressions: idioms that are not fully lexically
specified. Such idioms, e.g. “be the apple of
one’s eye”, include slots that must be filled in
context, thus involving modification and dis-
continuity of the lexical components of the id-
iom, posing an additional challenge for auto-
matic detection.

3.1 Automated detection of idioms

In computational linguistics, idiom detection
systems fall into one of two paradigms (Muzny
and Zettlemoyer, 2013): type classification,
where a decision is made whether an expres-
sion (out of any context) is always/usually id-
iomatic or literal (Shutova et al., 2010; Gedi-
gian et al., 2006; Widdows and Dorow, 2005),
and token classification, where each occur-
rence of a phrase, in a specific context, can
be idiomatic or literal (Peng et al., 2014; Li
and Sporleder, 2009; Sporleder and Li, 2009;
Fazly et al., 2009; Katz and Giesbrecht, 2006).

Early work on idiom detection involved
small sets of expressions (Fazly and Steven-
son, 2006), and focused on specific types of
syntactic constructions (such as verb + com-
plement, e.g. “stir excitement”,“play with
fire”) (Shutova et al., 2010; Li and Sporleder,
2009; Diab and Bhutada, 2009; Diab and Kr-
ishna, 2009). More recent research on de-
tection of non-compositional word combina-
tions has shown a proliferation of approaches,
but much work still focuses on acontextual
classification (Hashimoto and Tsuruoka, 2016;
Cordeiro et al., 2016; Ramisch et al., 2016;
Yazdani et al., 2015; Salehi et al., 2014; Salehi
and Cook, 2013; Kiela and Clark, 2013; Reddy
et al., 2011). Recent work on detection of
idiom instances in context (Gharbieh et al.,
2016; Salton et al., 2016; Peng et al., 2014) fo-
cused only on Verb+Noun constructions, us-
ing the same dataset (Cook et al., 2008). A
notable exception is the work of Feldman and
Peng (2013), which is not limited by the type
of syntactic construction.

4 Procedure for identifying
idiom-candidates in essays

Our approach to identifying idiomatic expres-
sions in texts is motivated by three factors.

First, we aim for broad coverage, so as to iden-
tify as many different idioms as possible. Sec-
ond, we aim at identifying idiomatic expres-
sions in context, in real-life texts. Third, our
focus is on learner language, in essays written
by non-native learners of English. We assume
that most of the idioms that might be found in
such texts are very well known idioms that are
listed in various dictionaries. Our approach
to idiom detection proposes two phases: can-
didate detection followed by verification. We
compiled a large listing of idiomatic expres-
sions that we want to detect. The idea is to au-
tomatically identify such expressions in texts,
as candidate-idioms, and then apply verifica-
tion algorithms that would confirm/reject the
candidate expressions as being an idiom in the
given context. In this paper we report on
our initial results with the first part of this
approach - detecting candidate-idiom expres-
sions in student essays.

4.1 A collection of idioms

For our collection, we use Wiktionary as a
resource. Wiktionary has a facility for con-
tributors to tag definitions as idiomatic. The
English Wiktionary was used in some previous
computational work on idioms (Salehi et al.,
2014), as it has rather broad coverage for id-
ioms (although it is far from being complete
(Muzny and Zettlemoyer, 2013)). We collected
all English expressions that were tagged as id-
iomatic, from the English Wiktionary of Octo-
ber 2015. That initial list totaled about 8,000
entries. From that list, we eliminated several
classes of expressions. First, we eliminated
all single-word expressions, (e.g. backwater),
since we are interested in idiomatic phrases.
Next, we eliminated verb-particle construc-
tions and prepositional verbs (such as whisk
away and yell at). Finally, we eliminated ex-
pressions that are common greetings (e.g. good
evening) or conventional dialogic expressions
(e.g. how do you do). The resulting list con-
tains 5,075 English idiomatic expressions. The
list is of course extensible and more idioms can
be added in the future.

4.2 The algorithm

Our algorithm for detecting candidate idiom
expressions involves checking whether any of
the listed idioms occur in a text. Since id-
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iomatic expressions can exhibit considerable
flexibility with inflectional and syntactic-form
variations, a broad-coverage search algorithm
must take such variation into account. This is
achieved by enriched representation and flexi-
ble algorithmic matching.

Our initial Wiktionary-based list of 5,075
expressions contains only canonical forms of
idioms. Using an in-house morphological
toolkit, we automatically enrich the represen-
tation of an idiom entry by including all inflec-
tional variants to the idiom’s content words.
The automatic expansion is not part-of-speech
sensitive. For example “melting pot” is ex-
panded to “{melting, melt, molten, melts,
melted, meltings} {pots, pot, potted, potting}”.

The next step is to mark optional ele-
ments in the idiom representation: determin-
ers, prepositions and a set of other common
function words (see appendix for the full list),
as well as possessive “’s”, and punctuation like
commas and hyphens. An idiom should be
matched even if such elements are missing in
the text. For example, with inflectional expan-
sion and with marking of optional elements,
the idiom “give the royal treatment” becomes
“{give, given, gave, giving, gives} [the,a,an]
{royal, royals} {treatment, treatments}”. The
need for optional elements stems from the no-
tion that writers, especially EFL writers, of-
ten omit articles and prepositions, or use erro-
neous ones (Dale et al., 2012).

The third step is the treatment of idioms
that are not fully lexicalized, for example
“pour one’s heart out” or “knock someone’s
socks off ”. We pre-fill the slots with a set
of pronouns that might occur in such po-
sition. For idioms that include a posses-
sive slot, we substitute the canonical “some-
one’s” with possessive pronouns. For ex-
ample, “knock someone’s socks off ” becomes
“{knocked, knock, knocking, knocks} [my,
your, his, her, our, their, one, someone]
[’s] {sock, socked, socking, socks} off ”. For
other idioms, the substitution list uses non-
possessive pronouns. For example, in canon-
ical expressions like “bite off more than one
can chew”, “one” is substituted with “{i, you,
he, she, we, they, one, someone,somebody, me,
him, her, us, them}”. Reflexive pronouns in
canonical idiom forms (e.g. “let oneself go”)

are expanded to a set of reflexives “{myself,
oneself, yourself, yourselves, himself, herself,
itself, ourselves, themselves}”. All automati-
cally added pronouns are treated as optional
elements. This treatment does not fill the slots
with non-pronominal material (names and full
noun phrases), but that is compensated with
the skip-words-algorithm (see below).

The automated enrichment described above
is performed only once, when we transform
the list of canonical idioms into an enriched
search-specification format. Some idioms al-
low insertion of various modifiers over the core
components, for example “kick the proverbial
bucket”, “pay little attention”. To detect such
variant instances, we provide some flexibility
to the search algorithm. Essentially, the search
algorithm must match all the non-optional el-
ements of an idiom, in sequence. Flexibil-
ity is achieved when the algorithm is allowed
to match the core components, in order (as
specified by the enriched representation), but
they don’t have to be consecutive. The algo-
rithm may allow up to k unmatched words be-
tween the first and last elements of an idiom.
This enables detection of idioms with unspeci-
fied modifiers and intervening insertions. The
value of k is a settable parameter.

Note that the algorithm has two separate
skip strategies. On the one hand, there
are optional elements in the idiom search-
specification, such as determiners or pronouns.
This means that not all components of an id-
iom have to be matched in order to spot a
potential idiom-instance. On the other hand,
the algorithm can skip over tokens in the text,
to allow for intervening material. The com-
bination of these two approaches allows to
find instances of lexically underspecified id-
ioms. For example, the idiom “change one’s
mind” is expanded to “{changes, changing,
change, changed} [my, your, his, her, our,
their, one, someone] [’s] {minds, mind, mind-
ing, minded}”, and the algorithm can identify
“changed the people’s minds” in a text, be-
cause the pronouns are optional and ‘the’ and
‘people’ are skippable.

The approach outlined above was imple-
mented with a tokenizer, a sentence-boundary
detection module and an indexing module.
Since we are using a tokenizer, the idiom-
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Annotation category Explanation

Idiomatic use choose this option if you think that the sentence
indeed contains an instance of the idiom

Literal Use choose this option if you think that the expression is correct,
but it is used in a literal and not idiomatic sense

Wrong Expression choose this option if you think that the system picked up
a wrong expression, not an intended one

Need More Context choose this option if you feel that you need more context to decide

Table 1: Classification categories for the idiom annotation study.

search specifications are token-oriented, which
allows for very simple specification of pat-
terns (e.g. all the examples above). The
sentence detector allows restricting the search
only within sentences (and never across sen-
tences). For each sentence in each text under
consideration, we need to check whether any
of our 5,075 enriched expressions is present in
the sentence. Naive search would amount to
matching against 5,075 expressions. Indexing
allows for a faster solution. The enriched dic-
tionary of idioms is indexed by keywords (non-
optional idiom components) when it is loaded
to memory. Each text (essay) is also indexed,
on-the-fly, when loaded for processing. The
indices are cross-compared, and the algorithm
attempts to find only those idioms whose key-
words appear in the index of the current text.

One limitation of the above approach is the
constraint of sequential matching (even with
skips). Some idioms are flexible enough to al-
low for passivization or topicalization (Glucks-
berg, 2001), variations that invert the word or-
der (especially for idioms involving a verb +
direct object, e.g. the ship was given up by
the city council). Extending our algorithm to
handle such cases is left for future work.

It should be stressed that the approach out-
lined above identifies idiom-candidates, i.e. it
finds, in texts, expressions that are likely to be
instantiations of stock idioms. However, the
current algorithm does not perform any veri-
fication - it does not attempt to confirm that
the detected expressions are actually idioms in
context. Adding such capabilities is subject of
continuing research.

5 Data and annotation

We conducted a study in which our flexible
algorithm was applied to a large set of essays

written by EFL students. Candidate-idioms
were automatically marked and later manually
annotated.

5.1 Data

We used the publicly available corpus of es-
says, the ETS Corpus of Non-Native Writ-
ten English (Blanchard et al., 2014, 2013).
This corpus consists of essays written for the
TOEFL R© iBT test. The test is used inter-
nationally as a measure of academic English
proficiency, among other purposes, to inform
admissions decisions for students seeking to
study at institutions of higher learning where
English is the language of instruction. The
corpus contains about 12,000 essays, sam-
pled from eight prompts (i.e. eight differ-
ent discussion topics), along with score lev-
els (low/medium/high) for each essay. Each
prompt poses a proposition and asks exami-
nees to write an argumentative essay, stating
their arguments for or against the proposition.

For our present work, we sampled 3,305 es-
says from this corpus, selecting (a) only among
essays that received medium or high score; and
(b) only among essays that had at least one
candidate idiom match (using the algorithm
with maximum skip k = 4). The sampled data
set has 1,111,618 words; essay length varies
from 143 to 801 words, with an average of 336.

5.2 The annotation study

In total, our algorithm identified 5,704 ex-
pressions as candidate-idiom instances, in the
3,305 essays. All those expressions were then
annotated, using the following setup. For
each candidate-idiom expression, the whole
sentence in which that expression occurred was
automatically extracted from the essay, and
all such sentences were collected in a spread-
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sheet file. For each extract, we provided the
full sentence, what idiom (canonical form) was
tentatively detected, and what were the first
and last words of the detected instance. For
each candidate-expression, the annotator had
to pick one out of four classification options
(see Table 1).

All annotation was performed by a single
annotator, a native speaker of American En-
glish, contracted through a commercial lin-
guistic service provider. The annotator was
given an explanation of how the data was pre-
processed, and was encouraged to consult the
Wiktionary entries for the canonical stock ex-
pressions. Upon completion of a training ses-
sion with 100 instances, the annotator was
given 300 new candidate instances. This set
of 300 items was also annotated by the first
author. We had exact agreement in 285 cases
out of 300, which is 95% (Cohen’s kappa 0.92).
The annotator then proceeded to annotate the
rest of the 5K+ candidate instances. The first
author also adjudicated the disagreed cases
from the 300-items set, and twenty-one in-
stances that the annotator marked as ‘Need
More Context’ in the rest of the data.

6 Results

Out of 5,704 instances marked by our algo-
rithm, the annotation study confirmed 1,302
cases as idiomatic uses, 693 cases were found
to be literal uses, and 3,709 cases were classi-
fied as wrong expressions.

It should be noted that since the annota-
tion was performed only on the automatically
flagged candidate instances, it is quite possible
that essays in our data set contain even more
idioms: a) undetected instances (e.g. due to
word order inversions, insertions larger than
k = 4, etc.), and b) instances of idioms that
are not on our current list.

The 1,302 attested idiom instances in our
data belong to 294 types (canonical forms).
Table 2 lists some of the most common id-
ioms found in the essays. Thus, out of 5,075
idioms types in our dictionary, we found at-
tested instances for 294/5, 075 = 5.8%. This
demonstrates that argumentative essays writ-
ten to TOEFL prompts have quite a rich va-
riety of idiomatic expressions. Notably, the
idioms were not concentrated in just a few es-

says. Out of 3,305 essays, 1,017 essays (30%)
had at least one verified idiom instance.

Idiom (canonical form) Count

pay attention 112
matter of fact 84
other than 54
long run 46
find oneself 37
come to mind 36
side effect 35
day-to-day 34
change one’s mind 32
again and again 30
great deal 28
jack of all trades 23
rush hour 22
open doors 21

Table 2: Instance counts for fourteen most frequent
idioms found in student essays in the corpus.

The majority (65%) of the automatically
marked candidates were classified as ‘Wrong
Expression’ (WE). Such instances are misde-
tected by our algorithm when the mandatory
content words of an idiom-specification do oc-
cur in text, but are not part of the sought-for
expression, or are even parts of unrelated ex-
pressions. See examples in Table 3.

Ideally, we would like our algorithm to mark
as candidates only expressions that might be
idioms or literal uses, so that some verification
algorithm might then distinguish among them.
The proliferation of wrong expressions com-
plicates this outlook. In order to check how
the quality of marked candidate instances is
affected by our skip algorithm, we conducted
two additional experiments.

6.1 Additional experiments

We applied the candidate-idiom detection al-
gorithm to the 3,305 essays, using different val-
ues of the max-skip-tokens parameter k, from
0 to 4. With k = 0, no intervening words are
allowed within an idiom. Notably, k = 4 was
used in the annotation study, so all candidate
expressions marked in runs with smaller val-
ues of k are proper subsets of the annotated
data. The results are presented in Figure 1A.

Predictably, increasing the value of k allows
to detect more idioms, but it also leads to the
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Canonical form Sentence with candidate Status

long run Because, such advertisements are neither wise and profitable Idiom
options for firms in the long run nor legal in many countries.

grass roots we have to understand the content from the grass root level Idiom
of that matter.

try one’s hand Thereby we have stories of some 60-70 year old Idiom
trying their hands at trekking or a cross-country run.

draw a line When do we draw the line to where we should stop gaining Idiom
any new knowledge?

draw a line Suppose if a student is thaught in class to draw lines, boxes. . . Literal

great deal Some people even offer a great deal, but you have to pay in Literal
advance, and in the end you do not even get a product.

leave home And also the most of us leave home eary Literal
in the morning and come back home late in the night.

well-oiled People already realize well the oil will be run out in a short time. WE

come to life So can you disagree with above statement after WE
coming across Faradays life?

any more for The more you do, the more you learn, and life become more WE
any more interesting.

Table 3: Examples of candidate-idiom expressions in context and their annotations.

increase in the number of candidates that are
literal uses, and an increase in the number of
wrongly-marked expressions (false positives).
The largest increase is observed in transition
from zero to just one allowed intervening word.
The number of detected idioms increases by
222 instances (22%), while the number of lit-
eral uses increases by 79 instances (13%). At
the same time, the number of wrong expres-
sions increases dramatically from 153 to 2214
(more than a 1300%).

As we raise the value of k further, the
amount of added idiomatic instances decreases
(3.7% added at k = 2, 2% at k = 3 and 0.7% at
k = 4). The amount of added literal uses also
decreases (1.3%, 0.7%, 0.4%). The amount
of added WE instances decreases slowly (25%,
17%, 14.8%), hundreds of WE instances are
added for each increment of k. This suggests
that k = 4 might be a practical limit for our
current approach, since wrong expressions be-
come increasingly dominant in the output.

The largest number of wrong expressions
is produced by the idiom “any more for any
more”: 683 at k = 1, rising to 998 when
k = 4. Since ‘any ’ and ‘for ’ are optional, the
algorithm flags any sequence of ‘more . . . more’
with up to k intervening words. Other idioms
that generated more than 100 WE instances

(at k = 4) are “day of days” (157), “well and
good” (134), “more like it” (124). No literal or
idiomatic use of those expressions was found.

Overall the skip-enabled search shows con-
siderable promise. With no skip, the algo-
rithm found 1,000 idiom instances in texts.
With skip k = 4, the algorithm found 1,302
instances, an increase of 30%. To illustrate
the usefulness of the skip-enabled search, we
list some extended forms of idioms that were
detected. For “pay attention”: researchers
should pay their attention on the specific sub-
ject; if Einstein had not paid specific attention
to. . . ; pay particular attention. For “change
one’s mind”: . . . people change their mind;
you might change your mind; the customer
change his mind after. . . ; advertisements can
change consumer’s mind about products.

In a second experiment we also varied the
values of k, but this time we switched all the
optional (function) words in idiom specifica-
tions to being mandatory. Thus, for example,
for “draw a line”, a determiner in the middle is
now mandatory – one of {the,a,an} should be
matched for an instance to be flagged. (Punc-
tuation and “’s” remain optional.) The results
are presented in Figure 1B.

The general trends observed in the previous
experiment are still present: as the number
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of allowable insertions rises, more idiom in-
stances are detected, but also more literal uses
and more misdetected expressions; the incre-
ment decays with larger k.

Next we compare between the results of the
two experiments (each bar in Figure 1A vs. a
corresponding bar in Figure 1B). When func-
tion words in the patterns are mandatory, the
number of detected idioms is reduced by 0.6%
at k = 0, 3.6% at k = 1, 5.4% at k = 2, 6.5% at
k = 3 and 6.7% at k = 4 (from 1,302 to 1,214).
There is also some reduction in the number of
detected literal-use instances (6.2% at k = 4).
The strongest reduction is in the number of
misdetected expressions: 70% at k = 4 (3,709
to 1,090) and 74% at k = 1. Some such re-
duction might have been expected: with all

Figure 1: Counts of Idiom, Literal Use and Wrong
Expression instances marked in essays, as a func-
tion of the number of allowable intervening words
in candidate detection. Panel A: with optional
words in idioms; Panel B: all words in idioms are
mandatory.

mandatory components, the idiom patterns
are stricter, and so less irrelevant material fits
into them. However, the magnitude of the re-
duction is impressive, as it demonstrates that
function words in idioms can be very useful for
filtering out irrelevant material.

Still, with function words being non-
optional, we loose about 6.7% of idioms. Here
are some corpus examples of idiom instances
that are detected when optional components
are allowed, but are not detected otherwise.
For ‘pain in the neck ’: “. . . but it’s always a
pain of neck to decide whether going with a
tour guide or by themselves”; here the student
used a wrong preposition of. For ‘seize the
day ’: “. . . young people tend to seize each day
because even in his early age an human being
is fully aware. . . ”; here the student used the
unexpected determiner each, but not any from
the ‘mandatory’ set.

7 Conclusions

We presented a large-scale investigation of the
use of idiomatic expressions in argumentative
essays written by non-native English speakers.

We described a search procedure for auto-
matic detection of candidate phrases in essay
texts. The procedure was developed to ad-
dress multiple demands - provide wide cover-
age (with an extensible dictionary with thou-
sands of idioms) and address the flexibility of
idiomatic expressions (via lexical enrichment
and skip-steps in the search algorithm).

In an annotation study, candidate-idiom in-
stances were automatically marked and then
manually classified as idiomatic, literal, or
wrong (misidentified) expressions. The study
revealed that stock idiomatic expressions are
quite common in EFL student essays and that
a rather rich variety of English idioms is used.

Our study has confirmed the importance of
tending to the syntactic and lexical flexibility
of English idiomatic expressions. Allowing op-
tional components in idioms and lexical inser-
tions in text, increases recall of idiom instances
by 30% relative to a baseline.

The flexible candidate-detection algorithm
also flags a lot of irrelevant material, espe-
cially when more intervening words are al-
lowed within an idiom. We have shown that
consideration of function words in idioms can
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help reduce the amount of false positives. We
are working on integrating those findings to-
wards an improved algorithm.
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Appendix

The list of words that were defined as op-
tional in idiom specifications: Determiners:
a, an, the, any, some; Wh-words: what,
who, whom, whose, how, when, why, where;
Auxiliary verbs: can, can’t, cannot, could,
couldn’t, may, might, should, do, does, did,
done, don’t, doesn’t, didn’t ; Be forms: be, been,
was, wasn’t, were, weren’t, ain’t, am , is, are,
isn’t, aren’t ; Common prepositions: in, on, of,
off, at, as, to, for, from, down, up, it, and,
or, with; Pronouns: i, me, my, you, your,
he, his, him, she, her, hers, we, our, ours,
us, they, them, their, theirs; Demonstratives:
there, here, this, that, these, those; Other: but,
yet, and, or, so, s, ’s, one, someone, some-
body, thus, such, ever, never, no, not, none.
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Abstract
We propose a new annotated corpus for
metaphor interpretation by paraphrase, and a
novel DNN model for performing this task.
Our corpus consists of 200 sets of 5 sen-
tences, with each set containing one reference
metaphorical sentence, and four ranked candi-
date paraphrases. Our model is trained for a
binary classification of paraphrase candidates,
and then used to predict graded paraphrase ac-
ceptability. It reaches an encouraging 75% ac-
curacy on the binary classification task, and
high Pearson (.75) and Spearman (.68) correla-
tions on the gradient judgment prediction task.

1 Introduction

Metaphor is an increasingly studied phenomenon
in computational linguistics. But while metaphor
detection has received considerable attention in
the NLP literature (Dunn et al., 2014; Veale et al.,
2016) and in corpus linguistics (Krennmayr, 2015)
in recent years, not much work has focused on
the task of metaphor paraphrasing - assigning an
appropriate interpretation to a metaphorical ex-
pression. Moreover, there are few (if any) anno-
tated corpora of metaphor paraphrases (Shutova
and Teufel, 2010). The main papers in this area
are Shutova (2010), and Bollegala and Shutova
(2013). The first applies a supervised method
combining WordNet and distributional word vec-
tors to produce the best paraphrase of a single verb
used metaphorically in a sentence. The second ap-
proach, conceptually related to the first, builds an
unsupervised system that, given a sentence with
a single metaphorical verb and a set of poten-
tial paraphrases, selects the most accurate candi-
date through a combination of mutual information
scores and distributional similarity.

Despite the computational and linguistic inter-
est of this task, little research has been devoted to

it.
Some quantitative analyses of figurative lan-

guage have involved metaphor interpretation and
paraphrasing. These focus on integrating para-
phrase into automatic Textual Entailment frames
(Agerri, 2008), to explore the properties of distri-
butional semantics in larger-than-word structures
(Turney, 2013). Alternatively, they study the sen-
timent features of metaphor usage (Mohammad
et al., 2016; Kozareva, 2015). This last aspect
of figurative interpretation is considered a par-
ticularly hard task and has generated several ap-
proaches

The task of metaphor interpretation is a partic-
ular case of paraphrase detection, although this
characterization is not unproblematic, as we will
see in Section 6.

In Bollegala and Shutova (2013), metaphor
paraphrase is treated as a ranking problem. Given
a metaphorical usage of a verb in a short sen-
tence, several candidate literal sentences are re-
trieved from the Web and ranked. This approach
requires the authors to create a gradient score to
label their paraphrases, a perspective that is now
gaining currency in broader semantic similarity
tasks (Xu et al., 2015; Agirre et al., 2016).

Mohammad et al. (2016) resort to metaphor
paraphrasing in order to perform a quantitative
study on the emotions associated with the usage
of metaphors. They create a small corpus of para-
phrase pairs formed from a metaphorical expres-
sion and a literal equivalent. They ask candidates
to judge the degree of ”emotionality” conveyed
by the metaphorical and the literal expressions.
While the study has shown that metaphorical para-
phrases are generally perceived as more emotion-
ally charged than their literal equivalents, a corpus
of this kind has not been used to train a computa-
tional model for metaphor paraphrase scoring.

In this paper we present a new dataset for
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metaphor paraphrase identification and ranking.
In our corpus, paraphrase recognition is treated as
an ordering problem, where sets of sentences are
ranked with respect to a reference metaphor sen-
tence.

The main difference with respect to existing
work in this field consists in the syntactic and
semantic diversity covered by our dataset. The
metaphors in our corpus are not confined to a sin-
gle part of speech. We introduce metaphorical ex-
amples of nouns, adjectives, verbs and a number
of multi-word metaphors.

Our corpus is, to the best of our knowledge, the
largest existing dataset for metaphor paraphrase
detection and ranking.

As we describe in Section 2, it is composed of
groups of five sentences: one metaphor, and four
candidates that can be ranked as its literal para-
phrases.

The inspiration for the structure of our dataset
comes from a recent work on paraphrase (Bizzoni
and Lappin, 2017), where a similarly organized
dataset was introduced to deal with paraphrase de-
tection.

In our work, we use an analogous structure to
model metaphor paraphrase. Also, while Bizzoni
and Lappin (2017) present a corpus annotated by
a single human, each paraphrase set in our cor-
pus was judged by 20 different Amazon Mechani-
cal Turk (AMT) annotators, making the grading of
our sentences more robust and reliable (see Sec-
tion 2.1).

We use this corpus to test a neural net-
work model formed by a combination of Con-
volutional Neural Networks (CNNs) and Long
Short Term Memory Recurrent Neural Networks
(LSTM RNNs). We test this model on two clas-
sification problems: (i) binary paraphrase classifi-
cation and (ii) paraphrase ranking. We show that
our system can achieve significant correlation with
human judgments on the ranking task as a by-
product of supervised binary learning. To the best
of our knowledge, this is the first work in metaphor
paraphrasing to use supervised gradient represen-
tations.

2 A New Corpus for Metaphor
Paraphrase Evaluation

We present a dataset for metaphor paraphrase de-
signed to allow users to rank non-metaphorical

candidates as paraphrases of a metaphorical sen-
tence or expression. Our corpus is formed of 200
sets of five sentence paraphrase candidates for a
metaphorical sentence or expression.1

In each set, the first sentence contains a
metaphor, and it provides the reference sentence to
be paraphrased. The remaining four sentences are
labeled on a 1-4 scale based on the degree to which
they paraphrase the reference sentence. This is
on analogy with the annotation frame used for
SemEval Semantic Similarity tasks (Agirre et al.,
2016). Broadly, our labels represent the following
categories:

1 Two sentences cannot be considered para-
phrases.

2 Two sentences cannot be considered para-
phrase, but they show a degree of semantic
similarity.

3 Two sentences could be considered para-
phrases, although they present some impor-
tant difference in style or content (they are
not strong paraphrases).

4 Two sentences are strong paraphrases.

On average, every group of five sentences con-
tains a strong paraphrase, a loose paraphrase and
two non-paraphrases, one of which may use some
relevant words from the metaphor in question.2

The following examples illustrate these ranking
labels.

• Metaphor: The crowd was a river in the street

– The crowd was large and impetuous in
the street. Score: 4

– There were a lot of people in the street.
Score: 3

– There were few people in the street.
Score: 2

– We reached a river at the end of the
street. Score: 1

We believe that this annotation scheme is use-
ful. While it sustains graded semantic similarity
labels, it also provides sets of semantically related

1Our annotated data set and the code for our model is
available at https://github.com/yuri-bizzoni/
Metaphor-Paraphrase .

2Some of the problems raised by the concept of para-
phrase in figurative language are discussed in Section 6.
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elements, each one of which can be scored or or-
dered independently of the others. Therefore, the
metaphorical sentence can be tested separately for
each literal candidate in the set in a binary classi-
fication task.

In the test phase, the annotation scheme allows
us to observe how a system represents the similar-
ity between a metaphorical and a literal sentence
by taking the scores of two candidates as points of
relative proximity to the metaphor.

It can be argued that a good literal paraphrase of
a metaphor needs to compensate to some extent for
the expressive or sentimental bias that a metaphor
usually supplies, as argued in Mohammad et al.
(2016). In general a binary classification can be
misleading because it conceals the different levels
of similarity between competing candidates.

For example, the literal sentence Republican
candidates during the convention were terrible
can be considered to be a loose paraphrase of
the metaphor The Republican convention was a
horror show, or alternatively, as a semantically
related non-paraphrase. Which of these conclu-
sions we adopt depends on our decision concern-
ing how much interpretative content a literal sen-
tence needs to provide in order to qualify as a valid
paraphrase of a metaphor. The question whether
the two sentences are acceptable paraphrases or
not can be hard to answer. By contrast, it would be
far fetched to suggest that The Republican conven-
tion was a joy to follow is a better or even equally
strong literal paraphrase for The Republican con-
vention was a horror show.

In this sense, the sentences Her new occupa-
tion was a dream come true and She liked her
new occupation can be considered to be loose
paraphrases, in that the term liked can be judged an
acceptable, but not ideal interpretation of the more
intense metaphorical expression a dream come
true. By contrast, She hated her new occupation
cannot be plausibly regarded as more similar in
meaning than She liked her new occupation to Her
new occupation was a dream come true.

Our training dataset is divided into four main
sections:

1. Noun phrase Metaphors : My lawyer is an
angel.

2. Adjective Metaphors : The rich man had a
cold heart.

3. Verb Metaphors : She cut him down with her

words.

4. Multi-word Metaphors : The seeds of change
were planted in 1943.

All these sentences and their candidates were
manually produced to insure that for each group
we have a strong literal paraphrase, a loose lit-
eral paraphrase and two semantically related non-
paraphrases. Here “semantically related” can in-
dicate either a re-use of the metaphorical words
to express a different meaning, or an unacceptable
interpretation of the reference metaphor.

Although the paraphrases were gener-
ated freely and cover a number of possible
(mis)interpretations, we did take several issues
into account. For example, for sentiment related
metaphors two opposite interpretations are often
proposed, forcing the system to make a choice
between two sentiment poles when ranking the
paraphrases (I love my job – I hate my job for
My job is a dream). In general, antonymous
interpretations (Time passes very fast – Time is
slow for Time flies) are listed, when possible,
among the four competing choices.

Our corpus has the advantage of being suitable
for both binary classification and gradient para-
phrase judgment prediction. For the former, we
map every score over a given gradient threshold la-
bel to 1, and scores below that threshold to 0. For
gradient classification, we use all the scoring la-
bels to test the correlation between the system’s or-
dered predictions and human judgments. We will
show how, once a model has been trained for a
binary detection task, we can evaluate its perfor-
mance on the gradient ordering task.

We stress that our corpus is under development.
As far as we know it is unique for the kind of task
we are discussing. The main difficulty in build-
ing this corpus is that there is no obvious way to
collect the data automatically. Even if there were
a procedure to extract pairs of paraphrases con-
taining a metaphoric element semi-automatically,
it does not seem possible to generate alternative
paraphrase candidates automatically.

The reference sentences we chose were either
selected from published sources or created man-
ually by the authors. In all cases, the paraphrase
candidates had to be crafted manually. We tried
to keep a balanced diversity inside the corpus.
The dataset is divided among metaphorically used
Nouns, Adjectives and Verbs, plus a section of
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Multi Word metaphors. The corpus is an attempt
to represent metaphor in different parts of speech.

A native speaker of English independently
checked all the sentences for acceptability.

2.1 Collecting judgments through AMT

Originally, one author individually annotated the
entire corpus. The difference between strong and
loose literal paraphrases can be a matter of indi-
vidual sensibility.

While such annotations could be used as the
basis for a preliminary study, we needed more
judgments to build a statistically reliable annotated
dataset. Therefore we used crowd sourcing to so-
licit judgments from large numbers of annotators.
We collected human judgments on the degree of
paraphrasehood for each pair of sentences in a set
(with the reference metaphor sentence in the pair)
through Amazon Mechanical Turk (AMT).

Annotators were presented with four metaphor
- candidate paraphrase pairs, all relating to the
same metaphor. They were asked to express
a judgment between 1 and 4, according to the
scheme given above.

We collected 20 human judgments for each pair
metaphor - candidate paraphrase. Analyzing in-
dividual annotators’ response patterns, we were
able to filter out a small number of “rogue” anno-
tators (less than 10%). This filtering process was
based on annotators’ answers to some control el-
ements inserted in the corpus, and evaluation of
their overall performance. For example, an anno-
tator who consistently assigned the same score to
all sentences is classified as “rogue”.

We then computed the mean judgment for each
sentence pair and compared it with the original
judgments expressed by one of the authors. We
found a high Pearson correlation between the an-
notators’ mean judgments and the author’s judg-
ment of close to 0.93.

The annotators’ understanding of the problem
and their evaluation of the sentence pairs seem, on
average, to correspond very closely to that of our
original single annotator. The high correlation also
suggests a small level of variation from the mean
across AMT annotators. Finally, a similar corre-
lation strengthens the hypothesis that paraphrase
detection is better modeled as an ordering, rather
than a binary, task. If this had not been the case,
we would expect more polarized judgments tend-
ing towards the highest and lowest scores, instead

of the more evenly distributed judgment patterns
that we observed.

These mean judgments appear to provide reli-
able data for supervision of a machine learning
model. We thus set the upper bound for the per-
formance of a machine learning algorithm trained
on this data to be around .9, on the basis of the
Pearson correlation with the original single anno-
tator scores. In what follows, we refer to the mean
judgments of AMT annotators as our gold stan-
dard when evaluating our results, unless otherwise
indicated.

3 A DNN for Metaphor Para-
phrase Classification

For classification and gradient judgment predic-
tion we constructed a deep neural network. Its ar-
chitecture consists of three main components:

1. Two encoders that learn the representation of
two sentences separately

2. A unified layer that merges the output of the
encoders

3. A final set of fully connected layers that op-
erate on the merged representation of the two
sentences to generate a judgment.

The encoder for each pair of sentences taken as
input is composed of two parallel Convolutional
Neural Networks (CNNs) and LSTM RNNs, feed-
ing two sequenced fully connected layers. We use
an ”Atrous” CNN (Chen et al., 2016). Interest-
ingly, classical CNNs only decrease our accuracy
by approximately two points and reach a good F1
score, as Table 1 indicates.

Using a CNN (we apply 25 filters of length
5) as a first layer proved to be an efficient strat-
egy. While CNNs were originally introduced in
the field of computer vision, they have been suc-
cessfully applied to problems in computational se-
mantics, such as text classification and sentiment
analysis (Lai et al., 2015), as well as to paraphrase
recognition (Socher et al., 2011). In NLP applica-
tions, CNNs usually abstract over a series of word-
or character-level embeddings, instead of pixels.
In this part of our model, the encoder learns a more
compact representation of the sentence, with re-
duced vector space dimensions and features. This
permits the entire DNN to focus on the informa-
tion most relevant to paraphrase identification.
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The output of each CNN is passed through a
max pooling layer to an LSTM RNN. Since the
CNN and the max pooling layer perform discrim-
inative reduction of the input’s dimensions, we
can run a relatively small LSTM RNN model (20
hidden units). In this phase, the vector dimen-
sions of the sentence representation are further re-
duced, with relevant information conserved and
highlighted, particularly for the sequential struc-
ture of the data. Each encoder is completed by
two successive fully connected layers, of dimen-
sions 15 and 10 respectively, the first one having a
0.5 dropout rate.

Figure 1: Example of an encoder. Input is passed to a
CNN, a max pooling layer, an LSTM RNN, and finally
two fully connected layers, the first having a dropout
rate of .5. The input’s and output’s shape is indicated
in brackets for each layer

Each sentence is thus transformed to a 10 di-
mensional vector. To perform the final compari-
son, these two low dimensional vectors are passed
to a layer that merges them into a single vector.
We tried several ways of merging the encoders’
outputs, and we found that simple vector concate-
nation was the best option. We produce a 20 di-
mensional two-sentence vector as the final output
of the DNN.

We do not apply any special mechanism for
”comparison” or ”alignment” in this phase. To
measure the similarity of two sequences our model
makes use only of the information contained in the
merged vector that the encoders produce. We did
not use a device in the merging phase to assess

similarity between the two sequences. This allows
a high degree of freedom in the interpretation pat-
terns we are trying to model, but it also involves
a fair amount of noise, which increases the risk of
error.

The merging layer feeds the concatenated input
to a final fully connected layer. The last layer
applies a sigmoid function to produce the judg-
ments. The advantage of using a sigmoid func-
tion in this case is that, while it performs well for
binary classification, it returns a gradient over its
input, thus generating an ordering of values appro-
priate for the ranking task. The combination of
these three kinds of Neural Networks in this or-
der (CNN, LSTM RNN and fully connected lay-
ers) has been explored in other works, with inter-
esting results (Sainath et al., 2015). This research
has indicated that these architectures can comple-
ment each other in complex semantic tasks, such
as sentiment analysis (Wang et al., 2016) and text
representation (Vosoughi et al., 2016).

The fundamental idea here is that these three
kinds of Neural Network capture information in
different ways that can be combined to achieve
a better global representation of sentence input.
While a CNN can reduce the spectral variance of
input, an LSTM RNN is designed to model its se-
quential temporal dimension. At the same time,
an LSTM RNN’s performance can be strongly im-
proved by providing it with better features (Pas-
canu et al., 2014), such as the ones produced by
a CNN, as happens in our case. The densely con-
nected layers contribute a clearer, more separable
final vector representation of one sentence.

To encode the original sentences we used
Word2Vec embeddings pre-trained on the very
large Google News dataset (Mikolov et al., 2013).
We used these embeddings to create the input se-
quences for our model.

We take as a baseline for evaluating our model
the cosine similarity of the sentence vectors, ob-
tained through combining their respective pre-
trained lexical embeddings. This baseline gives
very low accuracy and F1 scores.

4 Binary Classification Task

As discussed above, our corpus can be applied to
model two sub-problems: binary classification and
paraphrase ordering.

To use our corpus for a binary classification task
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Model Accuracy F1
Baseline (cosine similarity) 50.8 10.1
Our model 75.2 74.6
Encoders without LSTM 64.4 64.9
Encoders without ACNN 62.6 61.5
Using CNN instead of ACNN 61.0 61.6
ACNN with 10 filters 73.4 71.7
LSTM with 10 filters 72.3 70.6
Merging via multiplication 53.4 69.6
Aligner 49.4 61.6
Aligner + our model 73.4 75.

Table 1: Accuracy for different versions of the model,
and the baseline. Each version ran on our standard
train and test data, without performing cross-validation.
We use as a baseline the cosine similarity between the
mean of the word vectors composing each sentence.

we map each set of five sentences into a series of
pairs, where the first element is the metaphor we
want to interpret and the second element is one of
its four literal candidates.

Gradient labels are then replaced by binary
ones. We consider all labels higher than 2 as pos-
itive judgments (Paraphrase) and all labels less
than or equal to 2 as negative judgments (Non-
Paraphrase), reflecting the ranking discussed in
Section 2. We train our model with these labels
for a binary metaphor paraphrase detection task.

Keeping the order of the input fixed (we will
discuss this issue below), we ran the training phase
for 15 epochs.

We reached an average accuracy of 67% for 12
fold cross-validation.

Interestingly, when trained on the pre-defined
training set only, our model reaches the higher ac-
curacy of 75%.

We strongly suspect that this discrepancy in per-
formance is due to the small training and test sets
created by the partitions of the 12 fold cross vali-
dation process.

In general, this task is particularly hard, both be-
cause of the complexity of the semantic properties
involved in accurate paraphrase (see 4.1), and the
limited size of the training set. It seems to us that
an average accuracy of 67% on a 12 fold partition-
ing of training and test sets is a reasonable result,
given the size of our corpus.

We observe that our architecture learned to rec-
ognize different semantic phenomena related to
metaphor interpretation with a promising level of
accuracy, but such phenomena need to be repre-
sented in the training set.

In light of the fact that previous work in this
field is concerned with single verb paraphrase

ranking (Bollegala and Shutova, 2013), where
the metaphorical element is explicitly identified,
and the candidates don’t contain any syntactic-
semantic expansion, our results are encouraging.3

Although a small corpus may cause instability
in results, our DNN seems able to generalize with
relative consistency on the following patterns:

• Sentiment. My life in California was a night-
mare – My life in California was terrible. Our
system seems able to discriminate the right
sentiment polarity of a metaphor by picking
the right paraphrase, even when some can-
didates contain sentiment words of opposite
polarity, which are usually very similar in a
distributional space

• Non metaphorical word re-use. Our sys-
tem seems able, in several cases, to discrim-
inate the correct paraphrase for a metaphor,
even when some candidates re-use the words
of the metaphor to convey a (wrong) literal
meaning. My life in California was a dream
– I lived in California and had a dream

• Cases of multi-word metaphor Although
well represented in our corpus, multi-word
metaphors are in some respects the most dif-
ficult to correctly paraphrase, since the inter-
pretation has to be extended to a number of
words. Nonetheless, our model was able to
correctly handle these in a number of situa-
tions. You can plant the seeds of anger – You
can act in a way that will engender rage

However, our model had trouble with several
others cases.

It seems to have particular difficulty in discrim-
inating sentiment intensity, with assignment of
higher scores to paraphrases that value the sen-
timent intensity of the metaphor, which creates
problems in several instances. Also, cases of
metaphoric exaggeration (My roommate is a sport
maniac – My roommate is a sport person), nega-
tion (My roommate was not an eagle – My room-
mate was dumb.) and syntactic inversions pose
difficulties for our models.

We found that our model is able to abstract over
specific patterns, but, predictably, it has difficulty
in learning when the semantic focus of an interpre-
tation consists in a phrase that is under represented
in the training data.

3It should be noted that Bollegala and Shutova (2013) em-
ploy an unsupervised approach.
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In some cases, the effect of data scarcity can
be observed in an ”overfit weighting” of specific
terms. Some words that were seen in the data only
once are associated with a high or low score inde-
pendently of their context, degrading the overall
performance of the model. We believe that these
idiosyncrasies, can be overcome through training
on a larger data set.

4.1 The gray areas of interpretation

We observe that, on occasion, the model’s errors
fall into a gray area between clear paraphrase and
clear non-paraphrase. Here the correctness of a
label is not obvious.

These cases are particularly important in
metaphor paraphrasing, since this task requires an
interpretative leap from the metaphor to its literal
equivalent. For example, the pair I was home
watching the days slip by from my window – I
was home thinking about the time I was wasting
can be considered as a loose paraphrase pair. Al-
ternatively, it can be regarded as a case of non-
paraphrase, since the second element introduces
some interpretative elements (I was thinking about
the time) that are not in the original.

In our test set we labeled it as 3 (loose para-
phrase), but if our system fails to label it correctly
in a binary task, it is not entirely clear that it is
making an error. For these cases, the approach
presented in the next section is particularly useful.

5 Paraphrase Ordering Task

The high degree of correlation we found between
the AMT annotations and our single annotator’s
judgments indicate that we can use this dataset
for an ordering task as well. Since the human
judgments we collected about the “degree of para-
phrasehood” are quite consistent, it is reasonable
to pursue a non-binary approach.

Once the DNN has learned representations for
binary classification, we can apply it to rank the
sentences of the test set in order of similarity.

We apply the sigmoid value distribution for the
candidate sentences in a set of five (the reference
and four candidates) to determine the ranking.

To do this we use the original structure of our
dataset, composed of sets of five sentences. First,
we assign a similarity score to all pairs of sen-
tences (reference sentence and candidate para-

phrase) in a set. This is the similarity score learned
in the binary task, so it is determined by the sig-
moid function applied on the output.

The following is an example of an ordered set
with strong correlation between the model’s pre-
dictions (marked in bold) and our annotations
(given in italics)

• The candidate is a fox

– 0.13 1 The candidate owns a fox
– 0.30 2 The candidate is stupid
– 0.41 3 The candidate is intelligent
– 0.64 4 The candidate is a cunning person

We compute the average Pearson and Spearman
correlations on all sets of the test corpus, to check
the extent to which the ranking that our DNN pro-
duces matches our mean crowd source human an-
notations.

While Pearson correlation measures the rela-
tionship between two continuous variables, Spear-
man correlation evaluates the monotonic relation
between two variables, continuous or ordinal.

Since the first of our variables, the model’s
judgment, is continuous, while the second one, the
human labels, is ordinal, both measures are of in-
terest.

We found comparable and meaningful correla-
tions between mean AMT rankings and the order-
ing that our model predicts, on both metrics. On
the balanced training and test set, we achieve an
average Pearson correlation of 0.75 and an aver-
age Spearman correlation of 0.68. On a twelve
fold cross-validation frame, we achieve an average
Pearson correlation of 0.55 and an average Spear-
man correlation of 0.54. We chose a twelve fold
cross-validation because it is the smallest partition
we can use to get meaningful results. We conjec-
ture that the average cross fold validation perfor-
mance is lower because of the small size of the
training data in each fold. These results are dis-
played in Table 2.4

These correlations indicate that our model
achieves an encouraging level of accuracy in pre-
dicting our gradient annotations for the candidate
sentences in a set when trained for a binary classi-
fication task.

This task differs from the binary classification
task in several important respects. In one way,

4As discussed above, the upper bound for our model’s per-
formance can be set at 0.9, the correlation between our single
annotator’s and the mean crowd sourced judgments.
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it is easier. A non-paraphrase can be misjudged
as a paraphrase and still appear in the right or-
der within a ranking. In another sense, it is more
difficult. Strict paraphrases, loose paraphrases,
and various kinds of semantically similar non-
paraphrases have to be ordered in accord with hu-
man judgment patterns, which is a more complex
task than simple binary classification.

We should consider to what extent this task is
different from a multi-class categorization prob-
lem. Broadly, multi-class categorization requires
a system for linking a pair of sentences to a spe-
cific class of similarity. This is dependent upon
the classes defined by the annotator and presented
in the training phase. In several cases determin-
ing these ranked categories might be problem-
atic. A class corresponding to our label ”3”, for
example, could contain many different phenom-
ena related to metaphor paraphrase: expansions,
reformulations, reduction in the expressivity of
the sentence, or particular interpretations of the
metaphor’s meaning. Our way of formulating the
ordering task allows us to overcome this problem.
A paraphrase containing an expansion and a para-
phrase involving some information loss, both la-
beled as ”3”, might have quite different scoring,
but they still fall between all ”2” elements and all
”4” elements in a ranking.

We can see that our gradient ranking system
provides a more nuanced view of the paraphrase
relation than a binary classification.

Consider the following example:

• My life in California was a dream

– 0.03 1 I had a dream once
– 0.05 2 While living in California I had a

dream
– 0.11 3 My life in California was nice, I

enjoyed it
– 0.58 4 My life in California was abso-

lutely great

The human annotators consider the pair My life
in California was a dream – My life in California
was nice, I enjoyed it as loose paraphrases, while
the model scored it very low. But the difference
in sentiment intensity between the metaphor and
the literal candidate renders the semantic relation
between the two sentences less than perspicuous.
Such intensity is instead present in My life in Cal-
ifornia was absolutely great, marked as a more
valid paraphrase (score 4).

Measure 12-fold value Baseline
Accuracy 67 51
Pearson correlation 0.553 0.151
Spearman correlation 0.545 0.113

Table 2: Accuracy and ranking correlation for Twelve
Fold Cross-Validation. It can be seen that the simple
cosine similarity between the mean vectors of the two
sentences, which we use as baseline, returns a low cor-
relation with human judgments.

On the other hand, it is clear that in the choice
between While living in California I had a dream
and My life in California was nice, I enjoyed it,
the latter is a more reasonable interpretation of the
metaphor.

The annotators relative mean ranking has been
sustained by our model, even if its absolute scor-
ing involves an error in binary classification.

The correlation between AMT annotation or-
dering and our model’s predictions is a by-product
of supervised binary learning. Since we are re-
using the predictions of a binary classification
task, we consider it a form of transfer learning
from a supervised binary context to an unsuper-
vised ordering task. In this case, our corpus al-
lows us to perform double transfer learning. First,
we used pretrained word embeddings trained to
maximize single words’ contextual similarity, in
order to train on a supervised binary paraphrase
dataset. Then, we use the representations acquired
in this way to perform an ordering task for which
the DNN had not been trained.

The fact that ranked correlations are sustained
through binary paraphrase classification is not an
obvious result. In principle, a model trained on
{0,1} labels could ”polarize” its scores to the point
where no meaningful ordering would be available.
Had this happened, a good performance in a bi-
nary task would actually conceal the loss of im-
portant semantic information. The fact that there
is no necessary connection between binary classi-
fication and prediction of gradient labels, and that
an increase in one can even produce a loss in the
other, is pointed out in Xu et al. (2015), who dis-
cuss the relation of paraphrase identification to the
recognition of semantic similarity.
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6 The Nature of the Metaphor In-
terpretation Task

Although this task resembles a particular case of
paraphrase detection, in many respects it is some-
thing different. While paraphrase detection con-
cerns learning content identity or strong cases of
semantic similarity, our task involves the interpre-
tation of figurative language.

In a traditional paraphrase task, we should
maintain that “The candidate is a fox” and “The
candidate is cunning” are invalid paraphrases.
First, the superficial informational content of the
two sentences is different. Second, without fur-
ther context we might assume that the candidate is
an actual fox. We ignore the context of the phrase.

In this task the frame is different. We assume
that the first sentence contains a metaphor. We
summarize this task by the following question.

Given that X is a metaphor, which one of the
given candidates would be its best literal interpre-
tation?

We trained our model to move along a similar
learning pattern. This training frame can produce
the apparent, but false paradox that two acceptable
paraphrases such as The Council is on fire and The
Council is burning are assigned a low score by our
model. If the first element is a metaphor, the sec-
ond element is, in fact, a bad literal interpretation.
A higher score is correctly assigned to the candi-
date People in the Council are very excited.

7 Conclusions

We present a new kind of corpus to evaluate
metaphor paraphrase detection, following the ap-
proach presented in Bizzoni and Lappin (2017) for
paraphrase grading, and we construct a novel type
of DNN architecture for a set of metaphor inter-
pretation tasks. We show that our model learns an
effective representation of sentences, starting from
the distributional representations of their words.
Using word embeddings trained on very large cor-
pora proved to be a fruitful strategy. Our model is
able to retrieve from the original semantic spaces
not only the primary meaning or denotation of
words, but also some of the more subtle semantic
aspects involved in the metaphorical use of terms.

We based our corpus’ design on the view that
paraphrase ranking is a useful way to approach the
metaphor interpretation problem.

We show how this kind of corpus can be used
for both supervised learning of binary classifica-
tion, and for gradient judgment prediction.

The neural network architecture that we pro-
pose encodes each sentence in a 10 dimen-
sional vector representation, combining a CNN,
an LSTM RNN, and two densely connected neu-
ral layers. The two input representations are
merged through concatenation and fed to a series
of densely connected layers.

We show that such an architecture is able, to an
extent, to learn metaphor-to-literal paraphrase.

While binary classification is learned in the
training phase, it yields a robust correlation in the
ordering task through the softmax sigmoid distri-
butions generated for binary classification. The
model learns to classify a sentence as a valid or in-
valid literal interpretation of a given metaphor, and
it retains enough information to assign a gradient
value to sets of sentences in a way that correlates
with our crowd source annotation.

Our model doesn’t use any ”alignment” of the
data. The encoders’ representations are simply
concatenated. This gives our DNN consider-
able flexibility in modeling interpretation patterns.
It can also create complications where a simple
alignment of two sentences might suffice to iden-
tify a similarity. We have considered several possi-
ble alternative versions of this model to tackle this
issue.

In future we will expand the size and variety of
our corpus. We will perform a detailed error anal-
ysis of our model’s predictions, and we will further
explore different kinds of neural network designs
for paraphrase detection and ordering. Finally, we
intend to study this task “the other way around” by
detecting the most appropriate metaphor to para-
phrase a literal reference sentence or phrase.
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Abstract

As the community working on computational
approaches to figurative language is growing
and as methods and data become increasingly
diverse, it is important to create widely shared
empirical knowledge of the level of system
performance in a range of contexts, thus fa-
cilitating progress in this area. One way of
creating such shared knowledge is through
benchmarking multiple systems on a common
dataset. We report on the shared task on
metaphor identification on the VU Amsterdam
Metaphor Corpus conducted at the NAACL
2018 Workshop on Figurative Language Pro-
cessing.

1 Introduction

Metaphor use in everyday language is a way to
relate our physical and familiar social experi-
ences to a multitude of other subjects and con-
texts (Lakoff and Johnson, 2008); it is a funda-
mental way to structure our understanding of the
world even without our conscious realization of its
presence as we speak and write. It highlights the
unknown using the known, explains the complex
using the simple, and helps us to emphasize the
relevant aspects of meaning resulting in effective
communication. Consider the following examples
of metaphor use in Table 1.

Metaphor has been studied in the context
of political communication, marketing, mental
health, teaching, assessment of English profi-
ciency, among others (Beigman Klebanov et al.,
2018; Gutierrez et al., 2017; Littlemore et al.,
2013; Thibodeau and Boroditsky, 2011; Kaviani
and Hamedi, 2011; Kathpalia and Carmel, 2011;
Landau et al., 2009; Beigman Klebanov et al.,
2008; Zaltman and Zaltman, 2008; Littlemore and
Low, 2006; Cameron, 2003; Lakoff, 2010; Billow
et al., 1997; Bosman, 1987); see chapter 7 in Veale
et al. (2016) for a recent review.

M: The alligator’s teeth are like white daggers
I: The alligator have white and pointed teeth.

M: He swam in a sea of diamonds.
I: He is a rich person.

M: Authority is a chair, it needs legs to stand.
I: Authority is useless when it lacks support.

M: In Washington, people change dance part-
ners frequently, but not the dance.
I: In Washington, people work with one another
opportunistically.

M: Robert Muller is like a bulldog — he will get
what he wants.
I: Robert Muller will work in a determined and
aggressive manner to get what he wants.

Table 1: Metaphorical sentences (M) characterized
by metaphors in bold and their literal interpreta-
tions (I)

In this paper, we report on the first shared task
on automatic metaphor detection. By making
available an easily accessible common dataset and
framework for evaluation, we hope to contribute to
the consolidation and strengthening of the grow-
ing community of researchers working on com-
putational approaches to figurative language. By
engaging a variety of teams to test their systems
within a common evaluation framework and share
their findings about more or less effective architec-
tures, features, and data sources, we hope to create
a shared understanding of the current state of the
art, laying a foundation for further work.

This report provides a description of the shared
task, dataset and metrics, a brief description of
each of the participating systems, a comparative
evaluation of the systems, and our observations
about trends in designs and performance of the
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systems that participated in the shared task.

2 Related Work

Over the last decade, automated detection of
metaphor has become an increasingly popular
topic, which manifests itself in both a variety of
approaches and in an increasing variety of data to
which the methods are applied. In terms of meth-
ods, approaches based on feature-engineering in
a supervised machine learning paradigm explored
features based on concreteness and imageability,
semantic classification using WordNet, FrameNet,
VerbNet, SUMO ontology, property norms, and
distributional semantic models, syntactic depen-
dency patterns, sensorial and vision-based fea-
tures (Bulat et al., 2017; Köper and im Walde,
2017; Gutierrez et al., 2016; Shutova et al., 2016;
Beigman Klebanov et al., 2016; Tekiroglu et al.,
2015; Tsvetkov et al., 2014; Beigman Klebanov
et al., 2014; Dunn, 2013; Neuman et al., 2013;
Mohler et al., 2013; Hovy et al., 2013; Tsvetkov
et al., 2013; Turney et al., 2011; Shutova et al.,
2010; Gedigian et al., 2006); see Shutova et al.
(2017) and Veale et al. (2016) for reviews of super-
vised as well as semi-supervised and unsupervised
approaches.

Recently, deep learning methods have been ex-
plored for token-level metaphor detection (Rei
et al., 2017; Gutierrez et al., 2017; Do Dinh and
Gurevych, 2016). As discussed later in the paper
later, the fact that all but one of the participating
teams for the shared task experimented with neu-
ral network architectures testifies to the increasing
popularity of this modeling approach.

In terms of data used for evaluating metaphor
detection systems, researchers used specially con-
structed or selected sets, such as adjective noun
pairs (Gutierrez et al., 2016; Tsvetkov et al., 2014),
WordNet synsets and glosses (Mohammad et al.,
2016), annotated lexical items (from a range of
word classes) in sentences sampled from cor-
pora (Özbal et al., 2016; Jang et al., 2015; Hovy
et al., 2013; Birke and Sarkar, 2006), all the way
to annotation of all words in running text for
metaphoricity (Beigman Klebanov et al., 2018;
Steen et al., 2010); Veale et al. (2016) review addi-
tional annotated datasets. By far the largest anno-
tated dataset is the VU Amsterdam Metaphor Cor-
pus; it has also been used for evaluating many of
the cited supervised learning-based systems. Due
to its size, availability, reliability of annotation,

and popularity in current research, we decided to
use it to benchmark the current field of supervised
metaphor detection approaches.

3 Task Description

The goal of this shared task is to detect, at
the word level, all metaphors in a given text.
Specifically, there are two tracks, namely, All
Part-Of-Speech (POS) and Verbs. The former
track is concerned with the detection of all
content words, i.e., nouns, verbs, adverbs and
adjectives that are labeled as metaphorical while
the latter track is concerned only with verbs that
are metaphorical. We excluded all forms or be,
do, and have for both tracks. Each participating
individual or team can elect to compete in the All
POS track, Verbs track, or both. The competition
is organized into two phases: training and testing.

3.1 Dataset

We use the VU Amsterdam Metaphor Corpus
(VUA) (Steen et al., 2010) as the dataset for our
shared task. The dataset consists of 117 fragments
sampled across four genres from the British Na-
tional Corpus: Academic, News, Conversation,
and Fiction. Each genre is represented by approx-
imately the same number of tokens, although the
number of texts differs greatly, where the news
archive has the largest number of texts. We ran-
domly sampled 23% of the texts from each genre
to set aside for testing, while retaining the rest for
training. The data is annotated using the MIP-
VU procedure with a strong inter-annotator re-
liability of κ > 0.8. It is based on the MIP
procedure (Group, 2007), extending it to handle
metaphoricity through reference (such as marking
did as a metaphor in As the weather broke up, so
did their friendship) and allow for explicit cod-
ing of difficult cases where a group of annotators
could not arrive at a consensus. The tagset is rich
and is organized hierarchically, detecting various
types of metaphors, words that flag the presense of
metaphors, etc. In this paper, we consider only the
top-level partition, labeling all content words with
the tag “function=mrw” (metaphor-related word)
as metaphors, while all other content words are la-
beled as non-metaphors. Table 2 shows the overall
statistics of our training and testing sets.

To facilitate the use of the datasets and evalu-
ation scripts beyond this shared task in future re-
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Data Training Testing
#texts #tokens %M #texts #tokens %M

Verbs
Academic 12 4,903 31% 4 1,259 51%
Conversation 18 4,181 15% 6 2,001 15%
Fiction 11 4,647 25% 3 1,385 20%
News 49 3,509 42% 14 1,228 46%

All POS
Academic 12 27,669 14% 4 6,076 24%
Conversation 18 11,994 10% 6 5,302 10%
Fiction 11 15,892 16% 3 4,810 14%
News 49 17,056 20% 14 6,008 22%

Table 2: Verbs and All POS datasets. The table reports the number of text fragments from BNC, number
of tokens and percentage of tokens marked as metaphor group by genres.

search, the complete set of task instructions and
scripts are published on Github1. Specifically, we
provide a script to parse the original VUAMC.xml,
which was not provided in our download bundle
due to licensing restriction, to extract the verbs and
other content words required for the shared task.
We also provide a set of features used to construct
the baseline classification model for prediction of
metaphor/non-metaphor classes at the word level,
and instructions on how to replicate the baselines.

3.2 Training phase
In this first phase, data is released for train-
ing and/or development of metaphor detection
models. Participants can elect to perform cross-
validation on the training data, or partition the
training data further to have a held-out set for
preliminary evaluations, and/or set apart a subset
of the data for development/tuning of hyper-
parameters. However the training data is used, the
goal is to have N final systems (or versions of a
system) ready for evaluation when the test data is
released.

3.3 Testing phase
In this phase, instances for evaluation are re-
leased.2 Each participating system generated
predictions for the test instances, for up to N
models.3 Predictions are submitted to CodaLab4

1https://github.com/EducationalTestingService/metaphor
/tree/master/NAACL-FLP-shared-task

2In principle, participants could have access to the test
data by independently obtaining the VUA corpus. The shared
task was based on a presumption of fair play by participants.

3We set N=12.
4https://competitions.codalab.org/competitions/17805

and evaluated automatically against the true
labels. We selected CodaLab as a platform
for organizing the task due to its ease of use,
availability of communication tools such as
mass-emailing, online forum for clarification of
task issues, and tracking of submissions in real
time. Submissions were anonymized. Hence, the
only statistics displayed were the highest score
of all systems per day, and the total number of
system submissions per day. The metrics used
for evaluation is the F1 score (least frequent
class/label, which is “metaphor”) with Precision
and Recall also available via the detailed results
link in CodaLab.

4 Systems

The shared task started on January 12, 2018 when
the training data was made available to registered
participants. On February 12, 2018, the testing
data was released. Submissions were accepted un-
til March 8, 2018. Overall, there were a total of 32
submissions by 8 unique individuals/teams for the
Verbs track, and 100 submissions by 11 individu-
als/teams for the All POS track. All participants
in the Verbs track also participated in the All POS
track. In total, 8 system papers were submitted
describing the algorithms and methodology for
generating their metaphor predictions. In the
following sections, we first describe the baseline
classification models and their feature sets. Next,
we report performance results and ranking of the
best systems for each of the 8 teams. We also
briefly describe the best-performing system for
every team. The interested readers can refer to the

58



teams’ papers for more details.

Baseline Classifiers
We make available to shared task participants a
number of features from prior published work on
metaphor detection, including unigram features,
features based on WordNet, VerbNet, and those
derived from a distributional semantic model,
POS-based, concreteness and difference in con-
creteness, as well as topic models.

As baselines, we train two logistic regression
classifiers for each track (Verbs and All-POS),
with instance weights inversely proportional to
class frequencies. Lemmatized unigrams (UL) is a
simple yet fairly strong baseline (Baseline 1). This
feature is produced using NLTK (Bird and Loper,
2004) to generate the lemma of each word accord-
ing to its tagged POS. As Baseline 2, we use the
best system from Beigman Klebanov et al. (2016).
The features are: lemmatized unigrams, general-
ized WordNet semantic classes, and difference in
concreteness ratings between verbs/adjectives and
nouns (UL + WordNet + CCDB).5

4.1 System Descriptions

The best-performing system from each participant
is described below, in alphabetic order.

bot.zen (Stemle and Onysko, 2018) used
word embeddings from different standard cor-
pora representing different levels of language
mastery, encoding each word in a sentence into
multiple vector-based embeddings which are
then fed into an LSTM RNN network architec-
ture. Specifically, the backpropagation step was
performed using weightings computed based on
the logarithmic function of the inverse of the
count of the metaphors and non-metaphors. Their
implementation is hosted on Github6 under the
Apache License Version 2.0.

DeepReader (Swarnkar and Singh, 2018) The
authors present a neural network architecture
that concatenates hidden states of forward and
backward LSTMs, with feature selection and
classification. The authors also show that re-
weighting examples and adding linguistic features
(WordNet, POS, concreteness) helps improve
performance further.

5Baseline 2 is “all-16” in Beigman Klebanov et al. (2018).
6https://github.com/bot-zen/naacl flp st

MAP (Pramanick et al., 2018) used a hybrid
architecture of Bi-directional LSTM and Con-
ditional Random Fields (CRF) for metaphor
detection, relying on features such as token,
lemma and POS, and using word2vec embeddings
trained on English Wikipedia. Specifically, the
authors considered contextual information within
a sentence for generating predictions.

nsu ai (Mosolova et al., 2018) used linguistic
features based on unigrams, lemmas, POS tags,
topical LDAs, concreteness, WordNet, VerbNet
and verb clusters and trained a Conditional
Random Field (CRF) model with gradient descent
using the L-BFGS method to generate predictions.

OCOTA (Bizzoni and Ghanimifard, 2018)
experimented with a deep neural network com-
posed of a Bi-LSTM preceded and followed
by fully connected layers, as well as a simpler
model that has a sequence of fully connected
neural networks. The authors also experiment
with word embeddings trained on various data,
with explicit features based on concreteness, and
with preprocessing that addresses variability in
sentence length. The authors observe that a model
that combines Bi-LSTM with the explicit features
and sentence-length manipulation shows the best
performance. The authors also show that an
ensemble of the two types of neural models works
even better, due to a substantial increase in recall
over single models.

Samsung RD PL (Skurniak et al., 2018) ex-
plored the use of several orthogonal resources in a
cascading manner to predict metaphoricity. For a
given word in a sentence, they extracted three fea-
ture sets: concreteness score from the Brysbaert
database, intermediate hidden vector representing
the word in a neural translation framework, and
generated logits of a CRF sequence tagging model
trained using word embeddings and contextual
information. Trained on the VUA data, the CRF
model alone outperforms that of a GRU taking all
three features.

THU NGN (Wu et al., 2018) created word
embeddings using a pre-trained word2vec model
and added features such as embedding clus-
terings and POS tags before using CNN and
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Bi-LSTM to capture local and long-range de-
pendencies for generating metaphorical labels.
Specifically, they used an ensemble strategy
in which iterative modeling is performed by
training on randomly selected training data and
averaging the model predictions for finalized
outputs. At the inferencing layer, the authors
showed that the best-performing system is one
achieved by using a weighted-softmax classifier
rather than the Conditional Random Field pre-
dictor, since it can significantly improve the recall.

ZIL IPIPAN (Mykowiecka et al., 2018) used
word2vec embeddings over ortographical word
forms (no lemmatization) as an input for LSTM
network for generating predictions. They ex-
plored augmenting word embeddings by binarized
vectors that reflect the General Inquirer dictionary
category of a word and its POS. Experiments were
also carried out with different parametrization of
LSTM based on type of unit network, number of
layers, size of dropout, number of epochs, etc.,
though vectors enriched with POS information
did not result in any improvement.

5 Results

Tables 3 and 4 show the performance and the
ranking of all the systems, including the baseline
systems. For overall results on All-POS track,
three out of the seven systems outperformed the
stronger of the two baselines, with the best submit-
ted system gaining 6 F1-score points over the best
baseline (0.65 vs 0.59). We note that the best sys-
tem outperformed the baseline through improved
precision (by 10 points), while the recall remained
the same, around 0.7.

For the Verbs track, four out of the five sys-
tems outperformed both baselines. The best sys-
tem posted an improvement of 7 F1-score points
over best baseline (0.67 vs 0.60), achieved by im-
provements of about the same magnitude in both
recall and precision.

In the following section, we inspect the perfor-
mance of the different systems more closely.

6 Discussion

6.1 Trends in system design
All the submitted systems but one are based on a
neural network architecture. Out of the top three
systems that outperform the baseline on All-POS,

two introduce explicit linguistic features into the
architecture along with the more standard word-
embedding-based representations, while the third
experiments with using a variety of corpora –
including English-language-learner-produced cor-
pora – to compute word embeddings.

6.2 Performance across genres
Tables 3 and 4 show the overall performance for
the best submission per team, as well as the per-
formance of these systems by genre. It is clear
that the overall F1 scores of 0.62-0.65 for the top
three systems do not make explicit the substan-
tial variation in performance across genres. Thus,
Academic is the easiest genre, with the best per-
formance of 0.74, followed by News (0.66), with
comparable scores for Fiction (0.57) and Conver-
sation (0.55). In fact, this trend holds not only
for the top systems but for all systems, includ-
ing baselines, apart from the lowest-performing
system that showed somewhat better results on
News than on Academic. The same observations
hold for the Verb data. The large discrepancies
in performance across different genres underscore
the need for wide genre coverage when evaluat-
ing metaphor detection systems, as the patterns
of metaphor use are quite different across genres
and present tasks of varying difficulty to machine
learning systems across the board.

Furthermore, we note that the best overall sys-
tem, which is the only system that improves
upon the baseline for every single genre in All-
POS evaluation, improved over the baseline much
more substantially in the lower-performance gen-
res. Thus, for Academic and News, the in-
crease is 1.4 and 5.2 F1 points, respectively, while
the improvements for Conversation and Fiction
are 8.1 and 11.1 points, respectively. The best-
performing system thus exhibits more stable per-
formance across genres than the baseline, though
genre discrepancies are still substantial, as de-
scribed above.

6.3 Part of Speech
6.3.1 AllPOS vs Verbs
We observe that for the four teams who improved
upon the baseline on the Verbs-only track, their
best performance on the Verbs was better than on
the All-POS track, by 2.1-5 F1 score points.
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Rank Team P R F1 Approach
All POS (Overall)

1 THU NGN 0.608 0.700 0.651 word embeddings + CNN + Bi-LSTM
2 OCOTA 0.595 0.680 0.635 word embeddings + Bi-LSTM + linguistic
3 bot.zen 0.553 0.698 0.617 word embeddings + LSTM RNN
4 Baseline 2 0.510 0.696 0.589 UL + WordNet + CCDB + Logistic Regression
5 ZIL IPIPAN 0.555 0.615 0.583 dictionary-based vectors + LSTM
6 Baseline 1 0.521 0.657 0.581 UL + Logistic Regression
7 DeepReader 0.511 0.644 0.570 word embeddings + Di-LSTM + linguistic
8 Samsung RD PL 0.547 0.575 0.561 word embeddings + CRF + context
9 MAP 0.645 0.459 0.536 word embeddings + Bi-LSTM + CRF
10 nsu ai 0.183 0.111 0.138 linguistic + CRF

All POS (Academic)
1 THU NGN 0.725 0.746 0.735 word embedding + CNN + Bi-LSTM
2 Baseline 2 0.711 0.731 0.721 UL + WordNet + CCDB + Logistic Regression
3 Baseline 1 0.728 0.701 0.715 UL + Logistic Regression
4 bot.zen 0.743 0.681 0.711 word embeddings + LSTM RNN
5 OCOTA 0.724 0.695 0.709 word embeddings + Bi-LSTM + linguistic
6 ZIL IPIPAN 0.722 0.674 0.697 dictionary-based vectors + LSTM
7 DeepReader 0.641 0.682 0.661 word embeddings + Di-LSTM + linguistic
8 Samsung RD PL 0.649 0.631 0.640 word embeddings + CRF + context
9 MAP 0.743 0.526 0.616 word embeddings + Bi-LSTM + CRF
10 nsu ai 0.283 0.100 0.148 linguistic + CRF

All POS (Conversation)
1 THU NGN 0.453 0.711 0.553 word embeddings + CNN + Bi-LSTM
2 OCOTA 0.478 0.607 0.534 word embeddings + Bi-LSTM + linguistic
3 bot.zen 0.469 0.563 0.511 word embeddings + LSTM RNN
4 DeepReader 0.403 0.608 0.485 word embeddings + Di-LSTM + linguistic
5 MAP 0.503 0.456 0.478 word embeddings + Bi-LSTM + CRF
6 Baseline 2 0.334 0.809 0.472 UL + WordNet + CCDB + Logistic Regression
7 Samsung RD PL 0.505 0.439 0.470 word embeddings + CRF + context
8 Baseline 1 0.335 0.767 0.466 UL + Logistic Regression
9 ZIL IPIPAN 0.336 0.625 0.437 dictionary-based vectors + LSTM
10 nsu ai 0.099 0.107 0.102 linguistic + CRF

All POS (Fiction)
1 THU NGN 0.483 0.692 0.569 word embeddings + CNN + Bi-LSTM
2 OCOTA 0.460 0.631 0.532 word embeddings + Bi-LSTM + linguistic
3 bot.zen 0.474 0.569 0.517 word embeddings + LSTM RNN
4 DeepReader 0.414 0.597 0.489 word embeddings + Di-LSTM + linguistic
5 MAP 0.526 0.445 0.482 word embeddings + Bi-LSTM + CRF
6 ZIL IPIPAN 0.415 0.545 0.471 dictionary-based vectors + LSTM
7 Samsung RD PL 0.413 0.531 0.464 word embeddings + CRF + context
8 Baseline 2 0.366 0.614 0.458 UL + WordNet + CCDB + Logistic Regression
9 Baseline 1 0.372 0.594 0.457 UL + Logistic Regression
10 nsu ai 0.121 0.120 0.120 linguistic + CRF

All POS (News)
1 OCOTA 0.606 0.718 0.658 word embeddings + Bi-LSTM + linguistic
2 THU NGN 0.664 0.647 0.655 word embedding + CNN + Bi-LSTM
3 bot.zen 0.608 0.694 0.648 word embeddings + LSTM RNN
4 ZIL IPIPAN 0.649 0.578 0.612 dictionary-based vectors + LSTM
5 Baseline 2 0.567 0.650 0.606 UL + WordNet + CCDB + Logistic Regression
6 Baseline 1 0.591 0.593 0.592 UL + Logistic Regression
7 DeepReader 0.566 0.592 0.579 word embeddings + Di-LSTM + linguistic
8 Samsung RD PL 0.571 0.587 0.579 word embeddings + CRF + context
9 MAP 0.681 0.400 0.504 word embeddings + Bi-LSTM + CRF
10 nsu ai 0.255 0.126 0.169 linguistic + CRF

Table 3: Performance and ranking of the best system per team and baselines for the All-POS track,
including split by genre.

61



Rank Team P R F1 Approach
Verbs (Overall)

1 THU NGN 0.600 0.763 0.672 word embeddings + CNN + Bi-LSTM
2 bot.zen 0.547 0.779 0.642 word embeddings + LSTM RNN
3 ZIL IPIPAN 0.571 0.676 0.619 dictionary-based vectors + LSTM
4 DeepReader 0.529 0.708 0.605 word embeddings + Di-LSTM + linguistic
5 Baseline 2 0.527 0.698 0.600 UL + WordNet + CCDB + Logistic Regression
6 MAP 0.675 0.517 0.586 word embeddings + Bi-LSTM + CRF
7 Baseline 1 0.510 0.654 0.573 UL + Logistic Regression
8 nsu ai 0.301 0.207 0.246 linguistic + CRF

Verbs (Academic)
1 Baseline 2 0.707 0.836 0.766 UL + WordNet + CCDB + Logistic Regression
2 DeepReader 0.684 0.865 0.764 word embeddings + Di-LSTM + linguistic
3 ZIL IPIPAN 0.752 0.768 0.760 dictionary-based vectors + LSTM
4 THU NGN 0.746 0.763 0.755 word embedding + CNN + Bi-LSTM
5 MAP 0.672 0.842 0.748 word embeddings + Bi-LSTM + CRF
6 Baseline 1 0.686 0.808 0.742 UL + Logistic Regression
7 bot.zen 0.769 0.617 0.685 word embeddings + LSTM RNN
8 nsu ai 0.499 0.908 0.644 linguistic + CRF

Verbs (Conversation)
1 THU NGN 0.408 0.656 0.503 word embeddings + CNN + Bi-LSTM
2 bot.zen 0.355 0.729 0.477 word embeddings + LSTM RNN
3 DeepReader 0.366 0.605 0.456 word embeddings + Di-LSTM + linguistic
4 Baseline 2 0.301 0.821 0.441 UL + WordNet + CCDB + Logistic Regression
5 MAP 0.482 0.405 0.440 word embeddings + Bi-LSTM + CRF
6 ZIL IPIPAN 0.333 0.636 0.437 dictionary-based vectors + LSTM
7 Baseline 1 0.294 0.794 0.429 UL + Logistic Regression
8 nsu ai 0.163 0.271 0.203 linguistic + CRF

Verbs (Fiction)
1 THU NGN 0.455 0.784 0.576 word embeddings + CNN + Bi-LSTM
2 bot.zen 0.411 0.766 0.535 word embeddings + LSTM RNN
3 MAP 0.538 0.513 0.525 word embeddings + Bi-LSTM + CRF
4 DeepReader 0.419 0.670 0.515 word embeddings + Di-LSTM + linguistic
5 Baseline 2 0.407 0.667 0.506 UL + WordNet + CCDB + Logistic Regression
6 ZIL IPIPAN 0.414 0.604 0.491 dictionary-based vectors + LSTM
7 Baseline 1 0.390 0.608 0.475 UL + Logistic Regression
8 nsu ai 0.218 0.190 0.204 linguistic + CRF

Verbs (News)
1 THU NGN 0.694 0.744 0.718 word embedding + CNN + Bi-LSTM
2 bot.zen 0.667 0.764 0.712 word embeddings + LSTM RNN
3 Baseline 2 0.677 0.689 0.683 UL + WordNet + CCDB + Logistic Regression
4 ZIL IPIPAN 0.709 0.644 0.675 dictionary-based vectors + LSTM
5 DeepReader 0.644 0.665 0.654 word embeddings + Di-LSTM + linguistic
6 Baseline 1 0.668 0.619 0.643 UL + Logistic Regression
7 MAP 0.746 0.488 0.590 word embeddings + Bi-LSTM + CRF
8 nsu ai 0.477 0.256 0.333 linguistic + CRF

Table 4: Performance and ranking of the best system per team and baselines for the Verbs track, including
split by genre.

Team All-POS Verbs Adjectives Nouns Adverbs Best to Worst
THU NGN .651 .674 (1) .651 (2) .629 (3) .588 (4) .09
OCOTA .635 .669 (1) .625 (2) .609 (3) .569 (4) .10
bot.zen .617 .655 (1) .582 (3) .594 (2) .539 (4) .12
Baseline 2 .589 .616 (1) .557 (3) .564 (2) .542 (4) .07
ZIL IPIPAN .583 .619 (1) .571 (2) .552 (3) .484 (4) .14
Baseline 1 .581 .594 (1) .578 (2) .564 (3) .563 (4) .03
DeepReader .570 .605 (1) .568 (2) .537 (3) .521 (4) .08
SamSung RD PL .561 .615 (1) .540 (2) .516 (3) .498 (4) .12
MAP .536 .586 (1) .527 (2) .481 (4) .496 (3) .10
nsu ai .138 .155 (1) .131 (3) .136 (2) .102 (4) .05
Av. rank among POS – 1 2.3 2.8 3.9 .09
Rank order correlation 1 .94 .92 .98 .81 –
with AllPOS performance

Table 5: Performance (F-score) of the best systems submitted to All-POS track by POS subsets of the test
data. In parentheses, we show the rank of the given POS within all POS for the system. The last column
shows the overall drop in performance from best POS (ranked 1) to worst (ranked 4).

62



This could be related to the larger preponder-
ance of metaphors among verbs, which, in turn,
leads to a more balanced class distribution in the
Verbs data.

6.3.2 AllPOS by POS
To better understand performance patterns across
various parts of speech, we break down the All-
POS test set by POS, and report performance of
each of the best systems submitted to the All-
POS track on each POS-based subset of the test
data; Table 5 shows the results. First, we ob-
serve that the average difference in performance
between best and worst POS is 9 points (see col-
umn Best to Worst in the Table), with different
systems ranging from 3 to 14. We note that the
baseline systems are relatively more robust in this
respect (3-7 points), while the the top 3 systems
exhibit a 9-12 point range of variation in perfor-
mance by POS. While this gap is substantial, it is
much smaller than the 20-point gap observed in
by-genre breakdown.

Second, we note that without exception all sys-
tems performed best on verbs, and for all but one
system performance was worst on adverbs (see
“Av. rank among POS” row in Table 5). Perfor-
mance on adjectives and nouns was comparable
for most systems, with slightly better results for
adjectives for 7 out of 10 systems. These trends
closely follow the proportions of metaphors within
each POS:

While 30% of verbs are marked as metaphor-
ical, only 8% of adverbs are thus marked, with
nouns and adjectives occupying the middle ground
with 13% and 18% metaphors, respectively.

Third, we observe that the relative performance
of the systems is quite consistent across POS.
Thus, the rank order correlation between systems’
overall performance (AllPOS) and their perfor-
mance on Verbs is 0.94; it is 0.98 for nouns and
0.92 for Adjectives (see the last row of Table 5).
In fact, the top three ranks are occupied by the
same systems in AllPOS, Verbs, Adjectives, and
Nouns categories. The somewhat lower rank or-
der correlation for Adverbs (0.81) reflects Base-
line 1 (which ranks 6th overall) posting a rela-
tively strong performance for Adverbs (ranks 3rd),
while the ZIL IPIPAN system (ranks 5th overall)
shows relatively weak performance on Adverbs
(ranks 9th). Overall, the systems’ relative stand-
ings are not much affected when parceled out by
POS-based subsets.

7 Conclusion

This paper summarized the results of the 2018
shared task on metaphor identification in the VUA
corpus, held as part of the 2018 NAACL Work-
shop on Figurative Language Processing. We pro-
vided brief descriptions of the participating sys-
tems for which detailed papers were submitted;
systems’ performance in terms of precision, recall,
and F-score; and breakdowns of systems’ perfor-
mance by POS and genre.

We observed that the task of metaphor detection
seems to be somewhat easier for verbs than for
other parts of speech, consistently across partici-
pating systems. For genres, we observed a large
discrepancy in best and worst performance, with
results in the .7s for Academic and in .5s for Con-
versation data. Clearly, understanding and bridg-
ing the genre-based gap in performance is an im-
portant avenue for future work.

While most systems employed a deep learn-
ing architecture effectively, the baselines that use
a traditional feature-engineering design were not
far behind, in terms of performance; the stronger
baseline came 4th overall. Indeed, some of the
contributions explored a combination of a DNN
architecture and explicit linguistic features; this
seems like a promising direction for future work.
Some of the teams made their implementations
publicly available, which should facilitate further
work on improving performance on this task.
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Abstract
Automatic processing of figurative lan-
guages is gaining popularity in NLP com-
munity for their ubiquitous nature and in-
creasing volume. In this era of web 2.0,
automatic analysis of metaphors is impor-
tant for their extensive usage. Metaphors
are a part of figurative language that
compares different concepts, often on a
cognitive level. Many approaches have
been proposed for automatic detection of
metaphors, even using sequential mod-
els or neural networks. In this paper,
we propose a method for detection of
metaphors at the token level using a hy-
brid model of Bidirectional-LSTM and
CRF. We used fewer features, as com-
pared to the previous state-of-the-art se-
quential model. On experimentation with
VUAMC, our method obtained an F-score
of 0.674.

1 Introduction

A metaphor is a figure of speech that brings to-
gether different concepts, which are often distinct
and seemingly unrelated. A metaphor comprises
a word or a phrase representing something else,
where applying it in its literal sense is often not
possible. Metaphors bring in vivid imagery to our
communications by drawing an analogy between
one thing and another or between actions.

Metaphors also provide a fundamental cognitive
and structural role. Lakoff and Johnson (1980)
introduced metaphor as a central cognitive de-
vice that gives structure to abstract conceptual do-
mains, referred to as the ‘target domains’, which
are described in terms of concrete domains, re-
ferred to as the ‘source domains’. In our work,

we do not try to ascertain the source or target do-
mains, rather we focus on determining the pres-
ence of metaphorically used tokens in any given
sentence.

To estimate the frequency of occurrence of
metaphors, Shutova and Teufel (2010) conducted
a study on a subset of the British National Cor-
pus (Consortium and others, 2007) and manu-
ally annotated the metaphorical expressions in that
data. They found out that 241 sentences contained
at least one metaphor among the 761 sentences
considered.

Figurative uses of language are abundant in lit-
erature, but they are not restricted to the liter-
ary works. Figurative elements of language, es-
pecially sarcasm and metaphor, are common in
online product reviews, blogs, articles and posts
in social networking sites. With the increasing
amount of textual data, the number of metaphori-
cal instances is also increasing. As the application
of metaphors is pervasive, their interpretation in
non-literal ways is required. To process metaphors
automatically, their detection is of foremost im-
portance. Their abundance in any language sug-
gests that their detection would benefit the entire
Natural Language Processing (NLP) community,
for it would benefit methods like paraphrasing,
summarization, machine translation, etc. As of
now, most of the state of the art machine transla-
tions treat text literally and hence errors creep into
the automated translations.

There has been an increasing interest in auto-
mated processing of metaphors in the NLP com-
munity for their pervasiveness in our communi-
cations. To analyze and interpret a metaphor, it
has to be identified first. Some of the existing
computational models for detection of metaphors
use a hierarchical organization of conventional
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metaphors, or selectional restrictions as provided
in lexical resources available or by using word
embeddings, or conventional mappings of subject-
verb, verb-object, subject-object (Shutova, 2015).

In this paper, we treat the problem of token-
level metaphor detection as a sequence tagging
problem; and sequence tagging problems, like
Parts Of Speech (POS) tagging and Named En-
tity Recognition (NER), have been long dealt in
NLP. We approach token-level metaphor detec-
tion, with the help of Long Short-Term Memory
(LSTM) and Conditional Random Fields (CRF).
We try to identify the metaphors in a running text,
irrespective of the type of the metaphor. To ob-
serve the effectiveness of our proposed method,
we have experimented on VUAMC (Steen et al.,
2010b), an open domain text corpus, that has been
hand-annotated for metaphors at the token level.
Our method obtained the state-of-the-art results as
compared to previously reported works on token
level metaphor detection.

The rest of the paper is organized as follows.
We start in Section 2 by discussing existing litera-
ture on metaphor detection which compares to our
work in at least one facet and compare these with
our methodology. Section 3 discusses the prelim-
inaries. Section 4 presents the motivation behind
proposing our method. Section 5 provides infor-
mation about the dataset used in the experiments
and discusses the feature set considered. Section
6 provides the experimental details. Section 7
presents the results of our experiments along with
some discussions. Section 8 concludes the paper
suggesting possible future works.

2 Related Works

Numerous works have been reported on auto-
mated processing of metaphors. Shutova (2015)
has made a comprehensive review of computa-
tional metaphor identification systems as well as
metaphor interpretation systems. Initially, com-
putational approaches to metaphor identification
heavily relied on hand-coded knowledge, followed
by metaphor identification relying on lexical re-
sources. Recently the NLP community has wit-
nessed a growing interest in statistical and ma-
chine learning approaches to metaphor identifi-
cation. In the following paragraphs, we discuss
works done in the past that are related to our ap-
proach.

Hovy et al. (2013) presented one of the first

approaches to metaphor identification with word
vectors. They revisited the idea of selectional pref-
erence violation as an indication of metaphorical
expression but captured the difference in syntac-
tic relations using dependency trees over words.
They used tree kernels, a similarity matrix over
tree instances, computed using the number of
shared subtrees, to train a Support Vector Ma-
chine (Cortes and Vapnik, 1995) (SVM) classifier.
To construct the different tree representations, they
considered word vector, lemma, POS tag, depen-
dency label, and WordNet (Fellbaum, 1998) su-
persense representations. They downloaded a list
of 329 examples of metaphorical expressions from
the web and used 80% as training data, 10% as
developmental set and remaining 10% as test set.
The authors reported an F-score of 0.75, which
indicates the importance of syntactic information
and compositionality in metaphor identification.

Haagsma and Bjerva (2016) worked on detect-
ing novel metaphors using selectional preference
information. They claim that “metaphor is de-
fined by basicness of meaning and not frequency
of meaning”. Though the basicness and frequency
are correlated, there are instances where the figu-
rative sense of a word has become more frequent
than its original literal sense. They proposed dif-
ferent ways for generalizing over selectional pref-
erences obtained from a corpus. One among them
was to use the word embeddings for the gener-
alizations directly. They used a neural network
with one hidden layer containing 600 hidden units
with a sigmoid activation function and the result-
ing predictions were used as the Predicted Log-
Probability (P-LP) feature. They evaluated the ap-
proaches on the VU Amsterdam Metaphor Corpus
(VUAMC).

Tsvetkov et al. (2014) used logistics regres-
sion with word vectors and MRC Psycholinguis-
tic Database to get the abstractness and imageabil-
ity scores. With the abstractness and imageabil-
ity scores, they used supersenses and vector repre-
sentation of words as features for Random Forest
Classifier to detect metaphor.

Klebanov et al. (2014) considered each of the
‘content-word’ token in any given text to be clas-
sified as metaphorical or not. They used the lo-
gistic regression classifier to detect metaphor us-
ing unigrams, part of speech, concreteness and
topic models as features. Klebanov et al. (2015)
tuned the weight parameter to represent concrete-
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ness of information and include the difference of
concreteness between an adjective and its head
noun and between a verb and its direct object, to
improve on their previous work.

Do Dinh and Gurevych (2016) presented a neu-
ral network based method to detect metaphors at
the token level. Their method relied on word em-
beddings. They experimented with “multilayer
perceptrons (MLP), fully connected feedforward
neural networks with an input layer, one or more
hidden layers, and an output layer”. In their ex-
periments, they incorporated labels for tokens with
noun, verb, adjective, adverb POS tags as supplied
with the VUAMC, as their interest lied in the de-
tection of metaphoricity of content tokens. They
also filtered out auxiliary verbs, having lemmas
have, be, or do.

Rai et al. (2016) used Conditional Random
Fields (CRF) to detect metaphors in an open
domain text. For their experiments, they used
Syntactic features, Conceptual features, Affective
Features and Contextual features. Lemma, Part
of Speech (PoS), Named Entity (NE) type, depen-
dency, and stop word as a set of syntactic features
extracted by using Stanford CoreNLP formed
the Syntactic features. Concreteness, familiar-
ity, imageability, frequency and meaningfulness
extracted from MRC Psycholinguistic Database
formed the Conceptual features. Cognitive state,
physical state, trait, attitude, and emotion ex-
tracted from WordNet Affect (Strapparava et al.,
2004) formed the Affective features. As Contex-
tual features, they used word embeddings. Using
CRF++ (Kudo, 2005) on VUAMC, they reported
an F-score of 0.6093.

Do Dinh and Gurevych (2016) filtered out to-
kens if they did not have noun, verb, adjective or
adverb as part of speech. On the other hand, we
considered all tokens of the dataset. The reason
being that if one word cannot be used metaphori-
cally, it can indicate metaphoricity of another. We
used LSTM, which they had suggested in their
conclusion. Our approach uses less number of fea-
tures as compared to that of Rai et al. (2016). We
used a hybrid architecture of Bidirectional-LSTM
and CRF for metaphor detection.

3 Preliminaries

3.1 Word Embeddings

There is a long history of word embeddings (Hin-
ton et al., 1985; Hinton et al., 1986; Elman, 1990).

Collobert and Weston (2008) tried to define a uni-
fied architecture for Natural Language Processing.
The architecture deals with raw words and trans-
forms them into real-valued vectors. The architec-
ture learns feature representations that have rele-
vance to many well known NLP tasks like part-
of-speech (POS) tagging, chunking, named-entity
recognition (NER), learning a language model,
recognizing synonyms and semantic role-labeling
(SRL), by training a deep neural network.

The word embeddings produced by the method
of Turian et al. (2010), are real numbers that are
not necessarily in a bounded range, however, gen-
erally, the embeddings have a zero mean, though
they can be scaled by a hyper-parameter to control
their standard deviation.

Mnih and Hinton (2009) used a log-bilinear
model as the foundation to their hierarchical
model. They were focussed on a learning ap-
proach where no expert knowledge was available.
The ‘word feature vectors’ were obtained by gen-
erating a random tree of words, training a hier-
archical log-bilinear model on it and using the
distributed representations the model learns while
building the tree of words.

Mikolov et al. (2013b) showed that sub-
sampling of frequent words during the training
speeds-up the process, and also improves the accu-
racy of the vector representations of less frequent
words. The most common words are usually less
informative as they can easily occur millions of
times. To counter the rare and common words im-
balance, they used a sub-sampling approach. The
work provides a simple but powerful way to rep-
resent large pieces of text, keeping the computa-
tional complexity to a minimal.

Pennington et al. (2014) explicitly made the
model properties that were needed for semantic
and syntactic regularities and presented a global
log-bilinear model having the advantages of global
matrix factorization as well as local context win-
dow methods.

3.2 LSTM

Long Short-Term Memory (LSTM) was intro-
duced by Hochreiter and Schmidhuber (1997)
to overcome the issue of vanishing gradients in
the vanilla recurrent neural networks. They in-
troduced the gating mechanism through LSTM,
which made it possible to learn long-term depen-
dencies.
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LSTM equations are as follows:

it = σ(Wxi · Xt +Whi · Ht−1

+Wci · Ct−1 + bi)

ft = σ(Wxf · Xt +Whf · Ht−1

+Wcf · Ct−1 + bf )

Ct = ft � Ct−1 + it � tanh(Wxc · Xt

+Whc · Ht−1 + bc)

ot = σ(Wxo · Xt +Who · Ht−1

+Wco · Ct + bo)

Ht = ot � tanh(Ct)

(1)

In Eq. 1 for the LSTM, σ is the sigmoid function,
� is the Hadamard product, Ct is the cell state, Ht

is the hidden state. it, ft, ot refer to the input gate,
forget gate and output gate respectively.

A Bidirectional-LSTM (Graves and Schmidhu-
ber, 2005) has two LSTM networks. One of the
networks is provided the input in the forward di-
rection, whereas the other network is provided the
input backward, but both of the networks are con-
nected to the same output layer. In this paper,
Bidirectional-LSTM is henceforth referred to as
Bi-LSTM.

3.3 CRF

While predicting the output tags for a sequence,
a system can also make use of the tags predicted
in the previous time steps. This can be facilitated
by using a Maximum Entropy Markov Model
(MEMM) (McCallum et al., 2000) or a Condi-
tional Random Fields based tagging scheme. Con-
ditional Random Fields or CRF was introduced
by Lafferty et al. (2001) for building probabilis-
tic models for labeling sequential data. CRF over-
comes the problem of label bias. In most prob-
lems, CRF provides a better tagging performance
as compared to MEMMs (Lafferty et al., 2001;
Rozenfeld et al., 2006).

4 Motivation

A standalone word, or token for that matter, cannot
be marked for metaphoricity as many words can be
used both literally or figuratively, which is deter-
mined by the context of the word. Many computa-
tional methods have been proposed for metaphor
detection in datasets consisting of word tuples like
Adjective-Noun (Tsvetkov et al., 2014; Shutova et
al., 2016), Noun-Noun (or Type I metaphor as cat-
egorised by Krishnakumaran and Zhu (2007)) (Su

et al., 2017; Kesarwani et al., 2017) and Subject-
Verb-Object (Tsvetkov et al., 2014; Shutova et al.,
2016).

Open domain texts may have more than one
type of metaphor and though dependency pars-
ing is pretty accurate these days, metaphori-
cally related words and their indication might not
be directly related. So inherently detection of
metaphors, at a token level, is a context-sensitive
job and a sequential one.

Hybrid models of Bidirectional-LSTM and
CRF have been successful in tagging problems
like POS tagging, chunking and NER tagging
(Huang et al., 2015; Lample et al., 2016). We
apply a hybrid model of Bidirectional-LSTM and
CRF (henceforth referred to as Bi-LSTM-CRF),
to look for metaphors at the token level.

5 Data and Feature Set

5.1 Dataset

VU Amsterdam Metaphor Corpus
(VUAMC) (Steen et al., 2010b) is a subset
of BNC Baby. The Reference Guide to BNC
Baby (2003) describes its design and provides
information about the way in which it is encoded.
VUAMC is one of the “largest available corpus
hand-annotated for all metaphorical language use,
regardless of lexical field or source domain”. It
was reported that the corpus was annotated with
an inter-annotator reliability in terms of Fleiss’
Kappa, κ > 0.8.

VUAMC consists of randomly selected texts
from four registers of the BNC-Baby, namely,
academic texts, conversations, fiction and news
texts. The texts are coded for metaphor. The an-
notation manual for VUAMC and a detailed doc-
umentation of the project have been published in
Steen et al. (2010a).

In VUAMC, each lexical unit is annotated as be-
ing used literally or metaphorically. Annotation
for metaphoricity is done using fine grained tags.
XML tags with attribute function having value
mrw indicates that the unit is related to metaphors
(mwr expands to metaphor-related words), but
they are further divided with the help of attribute
type which has values between bridge, lit and
met. We considered tags with the value of met for
attribute type when attribute function has value of
mrw as metaphorical and label everything else as
literal.
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5.2 Generating Word Representations

We obtained word embeddings for our ex-
periments by using the open source Google
word2vec1 (Mikolov et al., 2013a; Mikolov et al.,
2013b; Mikolov et al., 2013c). We have used
the Continuous Bag-Of-Words (CBOW) model of
Mikolov et al. (2013a) with a window size of
eight (8) words. CBOW uses a continuous dis-
tributed representation of the context but the order
of words in the history does not influence the pro-
jection.

For training the model, we used the text cor-
pus from recent English Wikipedia dump2 prepro-
cessed with the Perl script of Matt Mahoney3 and
obtained vectors with a dimension of 200.

By training the model with Wikipedia text cor-
pus, we obtained word embeddings for most of
the lemmas and words contained in the VUAMC.
For some of the words and some of the lemmas,
embeddings were not available. There were some
words which were compositions of more than one
word, for them we took the component-wise aver-
age of the vectors of the composing words. Aver-
aging retains the property of both of the compo-
nents. Phrase embedding could have been an al-
ternative, but averaging sufficed our purpose. Nu-
merical tokens of VUAMC had to be dealt sepa-
rately as the Perl script removes non-alphabetical
characters from the corpus during the preprocess-
ing. So years were represented by the embedding
of the word ‘year’, amount was represented by that
of ‘dollars’, component-wise averaged with em-
bedding for ‘million’ or ‘billion’ if mentioned in
the token, and so on. For the words whose repre-
sentations were still not available, a constant vec-
tor was used.

In XML file of the VUAMC, the Part-Of-
Speech (POS) for the tokens are provided by the
“type” attribute. For our experiments, we needed
the vector representations of the POS. For their
representations instead of using one-hot encoding
or some randomly initialized vectors, we trained
Google word2vec only on the sequence of POS
tags as present in the VUAMC and used the
CBOW model to generate vectors of dimension 20
for the POS. While training word2vec on the se-
quence of POS tags, we did not include the labels
for metaphoricity, keeping the embedding genera-

1https://code.google.com/archive/p/word2vec/
2https://dumps.wikimedia.org/enwiki/latest/
3http://mattmahoney.net/dc/textdata.html

tion for the POS unsupervised.

5.3 Features
The features that we considered for our experi-
ments are as follows :

1. Token

2. Lemma of the token

3. Part-Of-Speech (POS)

4. Whether the lemma and the word are same

5. Whether the lemma is present in the token

Token or word (converted to lower case, if not
originally in the XML file of VUAMC) was the
most essential component for the feature vector
as we were addressing the problem of token-level
metaphor detection. So for every experiment per-
formed for this paper, the token was common. The
word embedding of the token as generated in sub-
section 5.2 was considered as a part of the feature
vector, and referred to as ‘Token’.

Similarly, for the lemma of the token as pro-
vided by the “lemma” attribute in XML file of
VUAMC, word embeddings as generated in sub-
section 5.2 was considered and referred to as
‘Lemma’ in later sections. The generated POS
embeddings were used to represent the Part-Of-
Speech as provided by the “type” attribute in XML
file of VUAMC and referred to as ‘POS’.

For the features 4 and 5, we have used one hot
encoding. For each of them, there were only two
possible scenarios, yes and no, so vectors of di-
mension 2 did the work. Features 4 and 5 represent
the relation between the lemma and the token, so
collectively they are referred to as ‘Word-Lemma
Relations’.

The feature vector of a token, as input to the
model, was a concatenation of the representation
of the features described above in the order they
have been mentioned. When we experimented for
the contribution of each of the features over the to-
ken, we omitted some features while retaining the
others, but we maintained the order for our ease.

6 Experiments

6.1 Baselines
As one of our baselines, we used the results from
Do Dinh and Gurevych (2016). Using neural net-
work, they experimented on each of the contained
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genres in VUAMC (news, conversation, fiction,
academic) separately; for each subcorpora, they
used a random subset of 76% of the data as a
training set, 12% as development set and 12% as
test set. They also reported the performance of
their system on the complete corpus, with a 76%,
12%, 12% split. We compared with their preci-
sion, recall and F1-measure regarding metaphor-
ically used tokens for their tuned neural network
on a feature set of Token+POS+Conc i.e. with
a feature set consisting of Token, POS and Con-
creteness rating.

As for our other baseline, we considered the re-
sults from Rai et al. (2016), as reported by them.
They used conditional random fields (CRF) for de-
tection of metaphors and experimented on each of
the genres contained in VUAMC, as well as on
the complete dataset. For the genres, they have re-
ported precision and recall (for metaphor class),
from which we can calculate the F-measure for
the metaphor class. On the complete dataset, they
have reported precision, recall and F-measure,
with which we compared the performance of our
method.

6.2 Experimental Setup

We considered all tokens, irrespective of their POS
tag supplied with the VUAMC. We ignored the
punctuations like comma (,), exclamation mark
(!), period (.), and quotation mark (’), as punctu-
ation marks cannot be used metaphorically, to the
best of our knowledge.

For each of the tokens considered, the feature
vector was computed as described in section 5.
As the punctuation marks were not considered,
the tokens belonging to a particular sentence were
clubbed together, in the order they appear in the
sentence in VUAMC. As the label for metaphoric-
ity, each token is marked as negative or positive
representing literal and metaphorical tokens, re-
spectively.

As sentences of the dataset are not of equal
length, we padded them with constant vectors, la-
beled negative for metaphoricity. In a running text,
if the end of sentences are not marked, an auto-
matic processor for sentences can be used to mark
them.

We used a Bi-LSTM-CRF architecture similar
to the ones presented by Collobert et al. (2011),
Huang et al. (2015) and Lample et al. (2016).
Our architecture used a Bidirectional-LSTM with

a layer of CRF above it.
Our model with back-propagation updated pa-

rameters with every batch. We used a batch size
of 128 while training. We used a learning rate of
0.0005 and had set the gradient clipping to 5. We
used Adam (Kingma and Ba, 2014) as our learning
method with a dropout of 0.5. Our model used a
single LSTM layer for forward and a single LSTM
layer for backward propagations. Each of the lay-
ers had a dimension of 100. It was observed that
changing the dimensions did not significantly im-
prove the results.

The system is trained and tested on the complete
corpus, leaving out the metadata of the genre they
belong to in the British National Corpus (BNC).
We did a 10-fold cross validation on the entire
dataset, with the order of the sentences changed
randomly. We rearranged the sentences so that the
sentences belonging to the same genre did not nec-
essarily get clubbed together as originally in the
dataset. The performance of the system with the
suggested features is evaluated on the basis of Pre-
cision, Recall and F1-score.

To check whether a feature contributes to the
results, we also experimented on an incremental
basis, i.e. adding features on top of the others. We
also checked separately for the features along with
the word embeddings for the words (tokens). We
did this with a 10-fold cross-validation.

6.3 Fig-Lang18 Shared Task

The shared task on metaphor detection in the First
Workshop on Figurative Language Processing4,
co-located with NAACL 2018 targets detecting
“all content-word metaphors in a given text”. The
shared task also uses the VUAMC dataset (re-
ferred to as VUA in the shared task). It has a sep-
arate evaluation only for the verb metaphors.

The training as well as the test data consists of
text ids and sentence ids along with the respective
sentences from the VUAMC. The test phase has
test instances (one set of instances for all-POS and
another only for the verb metaphors), over which
the submitted predictions are evaluated.

For our training and testing purpose, we had
the text ids and sentence ids as provided for the
shared task, from which we could get the respec-
tive sentences from the VUAMC and thus generate
the feature vectors for each of their tokens (leav-
ing aside the punctuation marks), as described in

4https://competitions.codalab.org/competitions/17805
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Method Precision Recall F1-score
Do Dinh and Gurevych (2016) 0.5899 0.5355 0.5614
Rai et al. (2016) 0.6333 0.5871 0.6093
Bi-LSTM-CRF (Embeddings only for tokens) 0.7036 0.5755 0.6327
Bi-LSTM-CRF (All of the considered features) 0.7283 0.6253 0.6740

Table 1: Results for complete VU Amsterdam Metaphor Corpus.

Method Precision Recall F1-score
Only Token 0.7036 0.5755 0.6327
Token + Word-Lemma Relations 0.7040 0.5876 0.6330
Token + POS 0.7252 0.5784 0.6399
Token + Lemma 0.7495 0.6213 0.6657
Token + Lemma + POS 0.7239 0.6297 0.6729
Token + Lemma + POS + Word-Lemma Relations 0.7283 0.6253 0.6740

Table 2: Results for Feature Selection on the complete VU Amsterdam Metaphor Corpus with Bi-
LSTM-CRF.

section 5. If any punctuation mark was to be
evaluated, it was to be given a negative level for
metaphoricity.

We trained on the training set as decided for the
task, using the same system of Bi-LSTM-CRF as
used in the previous subsection, with all of the fea-
tures considered. We did not train separately for
verb metaphors but used the same system to eval-
uate the verb metaphors also.

7 Results and Discussions

Using Bi-LSTM-CRF only with the word embed-
dings of the tokens of the sentences, gives better
results as compared to the baselines, as shown in
Table 1.

We have also reported the results of experiments
for feature selection in Table 2. As it can be seen
in Table 2, using word embeddings of the lem-
mas along with the tokens, improved the results
by a huge scale. Adding embeddings for the POS
also improved the results. POS tags are provided
with VUAMC, but for a dataset, if the POS are
not available, they can be generated by using the
available POS taggers.

Do Dinh and Gurevych (2016) and Rai et
al. (2016) used concreteness ratings but for our
method, the results hardly change if we con-
sider concreteness ratings. As Do Dinh and
Gurevych (2016) have pointed out, this could be
due to one-dimensionality of the abstractness (or
concreteness) feature.

The results of the experiments on the shared
task data have been reported in Table 3. Our
method obtained an F-measure of 0.6541 over the
entire test set of the shared task but an F-measure
of 0.5362 for the all-POS instances and 0.5859 for
the verb instances.

8 Conclusion and Future Work

We presented a method for token level metaphor
detection using Bi-LSTM-CRF. Our method uses
word-embeddings of the token as well as its lem-
matized form. Our method compares well with the
state-of-the-art system that considers a huge set of
features, which we beat with fewer features with-
out filtering out any particular type of word.

The context that we had considered for our ex-
periments was one sentence at a time, but an in-
dication of metaphorically related words can also
be across sentences and for those scenarios, the
global context is expected to help. So in our future
work, we intend to take wider context into consid-
eration.
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Data Accuracy Precision Recall F-measure
All POS Instances 0.8575 0.6446 0.4591 0.5362
Verb Instances 0.7807 0.6753 0.5173 0.5859
Overall Test Set 0.9172 0.7331 0.5904 0.6541

Table 3: Results on Shared Task.
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Abstract

Metaphor is a popular figure of speech.
Popularity of metaphors calls for their au-
tomatic identification and interpretation.
Most of the unsupervised methods direc-
ted at detection of metaphors use some
hand-coded knowledge. We propose an
unsupervised framework for metaphor de-
tection that does not require any hand-
coded knowledge. We applied clustering
on features derived from Adjective-Noun
pairs for classifying them into two disjoint
classes. We experimented with adjective-
noun pairs of a popular dataset annotated
for metaphors and obtained an accuracy
of 72.87% with k-means clustering algo-
rithm.

1 Introduction

Figurative or non-literal elements are ubiquitous in
human languages. Usage of non-literal language is
popular in day-to-day communications. In this era
of Web 2.0, generation of textual data is enormous
and thus intractable to be labeled by humans to
figure out something from them.

Metaphor is one of the most popular figures of
speech. Metaphors are common in online product
reviews, blogs, articles and posts in social networ-
king sites. So it has become important for com-
puters to detect metaphors. Interpretation of me-
taphors comes after their detection in any given
text. Also, detection and interpretation of meta-
phors would definitely help other Natural Langua-
ge Processing (NLP) tasks like machine translati-
on and summarization.

In 1980, Lakoff and Johnson (1980) proposed
Conceptual Metaphor Theory (CMT), in which
they claimed that metaphor is not only a proper-
ty of the language but also a cognitive mechanism
that describes our conceptual system. Thus meta-
phors are devices that transfer the property from

one domain to another unrelated or different do-
main.

Many supervised as well as unsupervised works
have been reported on metaphor detection (Shuto-
va, 2015). Supervised methods require annotated
dataset and thus resources are required. Most of
the existing unsupervised methods use some hand-
coded knowledge, making them hard to scale. Ma-
ny words can be used metaphorically as well as li-
terally, and words are added to the dictionary on
a regular basis. So hand-crafted knowledge about
domains cannot be relied upon for a long time, as
language is an ever-changing phenomenon neces-
sitating updates of the knowledge base from time
to time.

In this paper, we categorically propose an un-
supervised framework for metaphor detection wi-
thout using any hand-coded knowledge, making it
robust to scale and adaptive to language change.
Using the Adjective-Noun (AN) pairs from the da-
taset created by Tsvetkov et al. (2014), validations
were performed using accuracy as measure and the
proposed method demonstrated significant results.

2 Related Works

In the recent years, there has been a growing inte-
rest in statistical metaphor processing. Many me-
thods, supervised as well as unsupervised, have
been proposed for metaphor detection (Shutova,
2015).

Fass (1991) proposed one of the first approaches
for metaphor identification and interpretation. The
system looked for violated semantic constraints,
which are also known as selectional preferences,
for identification of metaphors.

TroFi (Trope Finder) (Birke and Sarkar, 2006),
is a system that classifies whether a verb is used
literally or non-literally, through ‘nearly unsuper-
vised’ techniques. The system is based on statisti-
cal word-sense disambiguation techniques (Karov
and Edelman, 1998; Stevenson and Wilks, 2003)

76



and clustering techniques. “TroFi uses sentential
context instead of selectional constraint violations
or paths in semantic hierarchies” (Birke and Sar-
kar, 2006).

Wilks et al. (2013) revisited the idea of violati-
on of selectional preferences. To determine whe-
ther a sentence contains a metaphor they extracted
the subject and direct object for each verb, using
the Stanford Parser. After extraction of verbs from
the sentence, they checked for preference violati-
ons with the help of WordNet (Miller, 1995; Fell-
baum, 1998) and VerbNet (Schuler, 2005) and co-
ming across a violation, they marked it as ‘Pre-
ference Violation metaphor’. They also conside-
red the ‘conventional metaphors’ and determined
them by using the senses in WordNet.

Based on the theory of meaning, Su et al. (2017)
presented a metaphor detection technique, consi-
dering the difference between the source and tar-
get domains in the semantic level rather than the
categories of the domains. They extracted subject-
object pair by a dependency parser, which they
referred to as ‘concept-pair’. They compared the
cosine similarity of the concept-pair and from the
WordNet, they verified whether the subject was
a hypernym or hyponym of the object. When the
cosine similarity was below a particular threshold
and the ‘concept-pair’ did not have a hypernym-
hyponym relation, it was categorized as metapho-
rical, otherwise literal.

3 Motivation and Feature Selection

3.1 Cosine Similarity

Pramanick and Mitra (2017) used cosine similari-
ty to detect metaphors in a supervised way. They
showed that cosine similarity of contextually dis-
similar words can be used for metaphor detecti-
on, which they base on the claim that words ha-
ve “multiple degrees of similarity”. Their method
aims at detecting metaphors in general, so cosine
similarity should be helpful in detecting metapho-
rical Adjective-Noun pairs.

3.2 Abstractness Ratings

According to Köper and im Walde (2017), “ab-
stract words refer to things that can not be seen,
heard, felt, smelled, or tasted as opposed to con-
crete words.” Abstractness of any word is studied
by placing the word on a scale ranging between
abstract and concrete, known as abstractness ra-
tings. Thus abstractness ratings represent the de-

gree of the abstractness of the thing the word refers
to. Abstractness ratings have been shown as a de-
termining factor for metaphor detection (Turney et
al., 2011; Dunn, 2013; Tsvetkov et al., 2014; Kle-
banov et al., 2015; Köper and im Walde, 2016).

3.3 Edit Distance
Alliteration, assonance and consonance are figu-
res of speech, in which there is a repetition of let-
ters or sounds. Literary devices are rarely used in
isolation, so a way to project the repetitions of let-
ters might help in detection of metaphors, especi-
ally if the source of the AN pairs is verse.

To project the repetition of letters, we used edit
distance. Given two strings a and b, the edit distan-
ce is the minimum number of edit operations that
transforms a into b. The problem with this repre-
sentation is that the length of the words varies. So
we used the ratio of the edit distance to the length
of the word. We considered edit distance from ad-
jective to noun divided by the length of the adjec-
tive.

The edit distance is not symmetric. It is not ne-
cessarily that EditDistance(a, b) = EditDistance(b,
a). So we also used the edit distance from noun to
adjective, divided by the length of the noun.

3.4 Summary of the Features
The features thus considered are :

1. Abstractness rating of the Adjective

2. Abstractness rating of the Noun

3. Modulus of ( (Abstractness rating of the ad-
jective) - (Abstractness rating of the noun) )

4. Cosine similarity of the Adjective and the
Noun

5. Edit distance from the Adjective to the Noun,
divided by the length of the Adjective

6. Edit distance from the Noun to the Adjective,
divided by the length of the Noun

4 Experiments and Results

4.1 Dataset
Tsvetkov et al. (2014) created a large annotated
dataset of Adjective-Noun (AN) pairs (henceforth
referred to as TSV in this paper). The training set
TSV-Train consists of 884 metaphorical AN pairs
and 884 literal AN pairs, and the test set TSV-Test
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contains 100 metaphorical AN pairs and 100 lite-
ral AN pairs. The data was collected by two anno-
tators by using public resources, which was then
reduced by at least one additional person “by re-
moving duplicates, weak metaphors and metapho-
rical phrases (such as drowning students) whose
interpretation depends on the context”.

Literal Metaphorical
acute bronchitis acute ignorance
beaten boxer beaten path
clouded sky clouded face
deflated tire deflated meaning
enormous ship enormous ego
fragile glass fragile health
growing plant growing imbalance
heated oven heated discussion
shattered glass shattered dreams
terminal station terminal poverty
unforgiving soldier unforgiving heights
velvet jeans velvet voice
whispering kids whispering breeze
young girl young money

Table 1: Annotated AN Pairs from TSV-Train

Literal Metaphorical
angry protester angry welt
bald eagle bald assertion
clear sky clear explanation
empty can empty promise
dry skin dry wit
raw meat raw emotion
sour cherry sour mood
white sand white anger

Table 2: Annotated AN Pairs from TSV-Test

4.2 Feature Extraction

We have discussed the features that were used for
our experiments and the motivation behind them.
Now we discuss how we obtained those features
for our experiments. The dataset had some words
with accents, which we removed with Unicode
(NFKD) normalization during preprocessing, as
required for feature extraction.

4.2.1 Cosine Similarity
To obtain the vector representation of words,
we used the Google word2Vec1 (Mikolov et al.,
2013), an open source tool. We used text corpus
from the latest English Wikipedia dump2 to train
the model and obtained word embeddings of di-
mension 200.

Word vectors were unavailable for some words
and most of them contained a hyphen (-). For each
of such words, we tried to find its vector by remo-
ving the hyphen, still, if the vector was not obtai-
ned, we considered the component-wise average
of the vector representation of the parts separated
by hyphen.

After getting the word vectors for the adjective
and the noun, we calculated their cosine similarity,
for our experiments.

4.2.2 Abstractness Ratings
For our experiments, we used the abstractness ra-
tings proposed by Köper and im Walde (2017).
They used “a fully connected feed forward neural
network with up to two hidden layers” with word
vectors of dimension 300 to obtain the ratings,
which have been made public.

We took the abstractness ratings of the adjec-
tive and noun and divided each of them by ten
(10). The division was performed so as to make
the ratings comparable to the cosine similarity, as
the abstractness ratings range from 0.0 to 10.0. If
the abstractness ratings were not scaled, they could
have overshadowed the other features considered.

For the words whose ratings were not available,
we tried to obtain the rating by removing the hy-
phen if present. If the abstractness rating was still
not obtained, we tried to obtain the abstractness
rating by the taking the average of the abstractness
ratings of the parts separated by the hyphen.

4.2.3 Edit Distance
With the set of ASCII characters as the alphabet
under consideration, the edit operations conside-
red were :

• Substitution of a single symbol by another
symbol from the alphabet

• Insertion of a single symbol from the alpha-
bet

• Deletion of a single symbol
1Available at https://code.google.com/archive/p/word2vec/
2Available at https://dumps.wikimedia.org/enwiki/latest/
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Features Accuracy
Abstractness Ratings 72.31%
Abstractness Ratings + Cosine Similarity 72.56%
Abstractness Ratings + Cosine Similarity + Edit Distance 72.87%

Table 3: Accuracy of K-Means for Entire Dataset

Features Training Set Test Set
Abstractness Ratings 71.21% 82.5%
Abstractness Ratings + Cosine Similarity 71.44% 82.5%
Abstractness Ratings + Cosine Similarity + Edit Distance 71.55% 84%

Table 4: Accuracy of K-Means for Training Data and Test Data

4.3 Clustering

K-means was adopted as the clustering algorithm
for our experiments. Given a set of d data points,
k-means aims to partition the set into k (k < d)
sets. For our experiments, we needed two clusters
representing metaphors and literals and we can fix
the number of clusters in the k-means clustering
algorithm.

First, we ran the k-means algorithm to cluster
the entire data provided in the dataset. The algo-
rithm was run with the features described above
and without the labels of AN pairs being metapho-
rical or literal as provided in the dataset. K-means
was used to partition the data into two disjoint
clusters. Randomly we labeled one of the clusters
as metaphorical and the other as literal, and calcu-
lated the accuracy. If the calculated accuracy was
below 50%, we interchanged the cluster labels and
calculated the accuracy. This was done as we had
two clusters and we did not know which one was
supposed to be metaphorical. The accuracy of the
algorithm on the entire data of the dataset is sum-
marized in Table 3.

The dataset comes with divisions of training set
and test set. So we ran the k-means clustering al-
gorithm with the training set and obtained the clus-
ters. Similar as above, we measured the accuracy
for the training set. With the clusters received af-
ter running the clustering algorithm on the training
data, we used them to predict the labels (metapho-
rical or literal) of the test data. As the labels we-
re decided for the clusters of the training data, we
used the same labels and report the accuracy in Ta-
ble 4.

5 Discussions

Dependency parsers can be used to extract the
nouns along with their adjectival modifiers from
running texts to look for Adjective-Noun meta-
phors or Type-III metaphors as categorized by
Krishnakumaran and Zhu (2007). For our experi-
ments, we used TSV, a popular annotated dataset
for type-III metaphors.

Turney et al. (2011) used hand-annotated ab-
stractness scores for words to develop their sys-
tem and reported an accuracy of 0.79 for adjecti-
ve–noun metaphors but it was rather evaluated on
a limited dataset of only 10 adjectives and they had
used logistic regression, a supervised method.

Tsvetkov et al. (2014) reported an F-score of
0.85 on the Adjective-Noun classification which
is better than the F-score as reported by Shutova
et al. (2016). But our method being unsupervised,
we cannot compare with their results as they have
reported in terms of Precision, Recall and F-score.

6 Conclusion

The paper proposes an unsupervised framework
for identification of metaphorical adjective-noun
word pairs which was evaluated on the large TSV
dataset. Cosine similarity and derivatives of ab-
stractness ratings and edit distance were used for
clustering.

The proposed framework does not rely on hand-
coded knowledge and learns from patterns using
machine learning, providing a statistical approach
with significant results, which would help as the
language changes. The features used in the experi-
ments can also be used for other languages as they
are language independent.
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Abstract

Metaphor is an essential element of human
cognition which is often used to express ideas
and emotions that might be difficult to express
using literal language. Processing metaphoric
language is a challenging task for a wide
range of applications ranging from text sim-
plification to psychotherapy. Despite the va-
riety of approaches that are trying to process
metaphor, there is still a need for better models
that mimic the human cognition while exploit-
ing fewer resources. In this paper, we present
an approach based on distributional seman-
tics to identify metaphors on the phrase-level.
We investigated the use of different word em-
beddings models to identify verb-noun pairs
where the verb is used metaphorically. Several
experiments are conducted to show the per-
formance of the proposed approach on bench-
mark datasets.

1 Introduction

Metaphor is a stylistic device used to enrich the
language and represent abstract concepts using the
properties of other concepts. It is considered as an
analogy between a tenor (target concept) and a ve-
hicle (source concept) by exploiting common sim-
ilarities. The sense of a concept such as “harm-
ful plant” can be transferred to another concept’s
sense such as “poverty” by exploiting the prop-
erties of the first concept. This then can be ex-
pressed in our everyday language in terms of lin-
guistic metaphoric expressions such as “...eradi-
cate poverty”, “...root out the causes of poverty”,
or “...the roots of poverty are...”1 (Lakoff and
Johnson, 1980; Veale et al., 2016). In this work,
a word or an expression is a metaphor if it has at
least one basic/literal sense (more concrete, phys-
ical) and a secondary metaphoric sense (abstract,

1These examples could be found in the United Nations
Parallel Corpus (Ziemski et al., 2016).

non-physical) which resonates semantically with
the basic sense (Steen et al., 2010; Hanks, 2016).

Metaphor processing is one of the most chal-
lenging problems for many natural language pro-
cessing tasks such as machine translation, text
summarization and text simplification. Moreover,
metaphor processing could be helpful for wider
applications such as political discourse analysis
(Charteris-Black, 2011) and psychotherapy (Witz-
tum et al., 1988; Gutiérrez et al., 2017).

Understanding metaphors requires deeper lev-
els of language processing that go beyond the sen-
tence surface level. Among the main challenges of
the computational modelling of metaphors is their
pervasiveness in language which makes them oc-
cur frequently in everyday language. Moreover,
metaphors are often conventionalised to such an
extent that they exhibit no defined lexical patterns
or signals. Previous approaches relies on exten-
sive lexical resources to identify metaphors and to
capture their semantic features. Feature extraction
from an annotated corpus is a challenge as well,
not only due to the complexity of the task itself
but also due to the lack of high quality annotated
corpora. The process of creating such a corpus
depends on the task definition as well as the tar-
geted application and often requires significant ef-
fort and time.

In this paper, we introduce a semi-supervised
approach that makes use of distributed represen-
tations of word meaning to capture metaphoricity.
We focus on identifying verb-noun pairs where the
verb is used metaphorically. We extract verb-noun
grammar relations using the Stanford parser (Chen
and Manning, 2014). We then employ pre-trained
word embeddings models to measure the seman-
tic similarity between the candidate and a prede-
fined seed set of metaphors. A similarity thresh-
old, which was optimised on a sample dataset, is
used to classify the given candidate. Evaluation
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of the presented approach was carried out on var-
ious test sets using different word embeddings al-
gorithms. Additionally, a performance compari-
son is carried out against the results of the state-
of-the-art approach on benchmark datasets.

2 Related Work

One of the most common tasks of the computa-
tional processing of metaphors is “metaphor iden-
tification” which is concerned with recognising
(detecting) the metaphoric expressions in the in-
put text. Metaphor detection could be done on the
word-level (token-level) or on the phrase-level by
extracting grammatical relations.

In this paper, we are interested in phrase-level
linguistic metaphor detection, focusing on verb-
noun phrases (grammatical relations) by employ-
ing semantic representation of word meaning.
Therefore, due to space limitation, we will discuss
the most relevant research in this regard in this sec-
tion. An extensive literature review is presented in
(Zhou et al., 2007; Shutova, 2015). Some recent
work on metaphor detection has been looking into
the utilization of semantic representations through
word embeddings representations to design super-
vised systems for metaphor detection (Rei et al.,
2017; Bulat et al., 2017; Shutova et al., 2016). Our
approach also utilises such representations but in
a semi-supervised manner to avoid the need for
large training corpora.

Rei et al. (2017) introduced a neural network ar-
chitecture to detect adjective-noun and verb-noun
metaphoric constructions. Their system comprises
three main components which are: word gat-
ing, vector representation mapping and a weighted
similarity function. The word gating is used to
model the association between the properties of
the source and target domains which is done via a
non-linear transformation of the word embeddings
vectors of the given candidate pair. The word em-
beddings used in this step are obtained from a pre-
trained model. Then, a vector representation map-
ping is carried out to prepare a “new metaphor-
specific” vector space using the original word em-
beddings. Finally, a weighted cosine similarity
function is used to automatically select the impor-
tant vector dimensions for the metaphor detection
task. The authors experimented with different pre-
trained word representations, namely skip-gram
model and an attribute-based model. Two different
datasets, which were referred to as the TSV dataset

(Tsvetkov et al., 2013) and the MOH dataset (Mo-
hammad et al., 2016), were used to train the sys-
tem and optimise its parameters as well as to as-
sess its performance.

Bulat et al. (2017) is a recent approach that in-
vestigated whether property-based semantic word
representation can provide better concept gen-
eralisation for detecting metaphors than dense
linguistic representation. The authors proposed
property-based vectors through cross-modal map-
ping between dense linguistic representations and
a property-norm semantic space. The authors built
a count-based distributional vector and employed
a skip-gram model trained on Wikipedia articles
as their dense linguistic representations. The
property-norm semantic space is obtained from
the property-norm dataset (McRae et al., 2005).
The TSV dataset is used to train and test a sup-
port vector machine (SVM) classifier to classify
adjective-noun pairs using the introduced cogni-
tively salient properties as features.

An interesting approach, which employed
multi-model embeddings of visual and linguistic
features to detect metaphoricity in text, is intro-
duced by Shutova et al. (2016). The proposed ap-
proach obtained linguistic word embeddings using
a log-linear skip-gram model trained on Wikipedia
text and obtained visual embeddings using a deep
convolutional neural network trained on image
data. This was done for both the words and
phrases of adjective-noun and verb-noun pairs in-
dividually. Then, the cosine similarity function
has been employed to measure the distance be-
tween the phrase vector and the corresponding
vectors of its constituent words. Metaphor clas-
sification is done based on an optimised threshold
output of the cosine similarity function. The au-
thors used the TSV and the MOH datasets to train
and test their system in addition to optimising the
classification thresholds.

Modelling metaphor in a distributional seman-
tic space through linear transformation to improve
vector representation has been investigated by
Gutiérrez et al. (2016). The authors introduced a
compositional distributional semantic framework
to identify adjective-noun metaphoric expressions.

A variety of lexical and semantic features in-
cluding lexical abstractness and concreteness, im-
ageability, named entities, part-of-speech tags,
and the word’s supersenses2 using WordNet (Fell-

2the WordNet lexicographer name of the words first sense
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baum, 1998) have been employed to develop su-
pervised systems to detect metaphors (Köper and
Schulte im Walde, 2017; Tsvetkov et al., 2013;
Hovy et al., 2013; Turney et al., 2011).

Shutova et al. (2010) was among the earliest ap-
proaches to computational modelling of metaphor,
avoiding task-specific hand-crafted knowledge
and huge annotated resources. They introduced
a semi-supervised approach to identify verb-noun
metaphors using corpus-driven distributional clus-
tering. Their strategy is based on clustering ab-
stract nouns based on their contextual features in
order to capture the metaphorical senses associ-
ated with the source concept. The system exploits
a small set of metaphoric expressions as a seed to
detect metaphors in a semi-supervised manner. In
a follow-up work, Shutova and Sun (2013) inves-
tigated the use of hierarchical graph factorization
clustering to derive a network of concepts in order
to learn metaphorical associations in an unsuper-
vised way which then was used as features to iden-
tify metaphors. We consider the work introduced
by Shutova et al. (2010) as a baseline for our pro-
posed approach, thus we are going to explain its
reimplementation details in subsection 3.3.

Birke and Sarkar (2006) introduced TroFi,
which is considered the first statistical system to
identify the metaphorical senses of verbs in a
semi-supervised way. The authors adapted a sta-
tistical similarity-based word sense disambigua-
tion approach to cluster literal and non-literal
senses. A predefined set of seed sentences is
utilised to compute the similarity between a given
sentence and the seed sentences.

3 Methodology

The idea behind our approach is based on find-
ing synonyms and near-synonyms of metaphors.
Our approach employs vector representation and
semantic similarity to classify verb-noun pairs ex-
tracted from a sentence using a parser as poten-
tial candidates for metaphoric classification. A
candidate is classified as a metaphor or not by
measuring its semantic similarity to a predefined
small seed set of metaphors which acts as our ex-
isting known metaphors sample. Metaphoric clas-
sification is performed based on a previously cal-
culated similarity threshold value on a develop-
ment dataset. The following subsections explain
the hypothesis behind this work and our proposed
approach in addition to the reimplementation of

the state-of-the-art semi-supervised system used
as our baseline system.

3.1 Hypothesis
Our hypothesis in this work is that a given candi-
date should have common characteristics and se-
mantic features with some positive examples of
metaphors. However, simply calculating the simi-
larity between a given verb-noun candidate and a
metaphoric seed is not enough due to the effect of
each of the verb and the noun on the overall simi-
larity score. For example, consider a metaphoric
seed such as “break agreement” and two given
candidates such as “break promise” and “break
glass”. The semantic similarities between the
word embeddings vectors of the seed and the two
candidates measured by the cosine similarity func-
tion are 0.5304 and 0.6376, respectively, using a
pre-trained Word2Vec (Mikolov et al., 2013) word
embedding model on the Google News dataset.
This indicates that both candidates are similar to
the seed and there is not enough information to tell
which one should be classified as a metaphor. Ta-
ble 1 shows the similarity values of the two candi-
dates and the most similar metaphoric seeds from
the predefined seed set. We decided to look into
the individual words of the candidate considering
the fact that semantically similar or related words
will be placed near each other in the embeddings
space while unrelated words will be far apart.
Therefore, we expect that the noun “promise” will
be in the neighbourhood of “agreement” in the se-
mantic space, while “glass” will not. So if both
candidates share similar verbs, classification could
be done based on the similarity of the nouns; in
that case, “break promise” can be classified as
metaphor due to the vicinity of its noun to the
noun of the metaphoric seed while “break glass”
will not. Since using one positive (metaphoric) ex-
ample is not enough for precise classification, we
used a small set of verb-noun pairs, hereafter re-
ferred to as the seed set, where the verb is used
metaphorically. The specification of the seed set
will be explained in detail in section 4.

3.2 Approach
We start with the seed set of metaphoric verb-noun
pairs as S = {(V,N)}. Given a target verb-noun
candidate (vt, nt) that needs to be classified, we
calculate the distance between every verb vs in S
and the verb of the candidate vt using the cosine
distance measure as follows:
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Candidate Metaphoric Seed Cosine Similarity Candidate Metaphoric Seed Cosine Similarity

break promise

break agreement 0.6376

break glass

break agreement 0.5304

hold back truth 0.4560 hold back truth 0.3435

fix term 0.3653 frame question 0.3109

spell out reason 0.3385 face hour 0.2949

seize moment 0.3384 block out thought 0.2701

glimpse duty 0.3224 seize moment 0.2677

grasp term 0.3019 throw remark 0.2583

frame question 0.2959 skim over question 0.2509

accelerate change 0.2927 mend marriage 0.2375

throw remark 0.2776 spell out reason 0.2354

Table 1: The cosine similarity between the candidates “break promise” and “break glass” and the top 10
metaphoric seeds in the seed set using a pre-trained Word2Vec word embedding model on Google News dataset.

Dts = d(vt, vs) ∀vs ∈ S
This gives a list of verbs ranked according to the
distance to the verb of the candidate; we then se-
lect the top n nearest verbs and we get the nouns
associated with them in the seed set as follows:

Yvt = topn{ns : (vs, ns) ∈ S} by Dts

Finally, the average of the distances between these
nouns and the target noun in the candidate phrase
is calculated. If this average is less than a thresh-
old δ then the candidate phrase will be classified
as a metaphoric expression as follows:

1

|Yvt |
∑

ns∈Yvt

[d(nt, ns)] ≤ δ

Table 2 shows the cosine distance between the
verbs and the nouns of the candidates “break
promise” and “break glass” verses the verbs and
the nouns of the top 10 metaphoric seeds from the
seed set using a pre-trained Word2Vec word em-
bedding model on the Google News dataset; those
10 seeds have the most similar (nearest in terms of
distance) verbs to the candidate verb.

3.3 Baseline

We consider the system introduced by Shutova
et al. (2010) as our baseline system. In this sub-
section, we are going to explain in detail the reim-
plementation of this approach and the related find-
ings. The system consists of four main compo-
nents which are: a seed set, a clustering com-
ponent, a candidate extraction component, and
a filtering component. The seed set is obtained
from the British National Corpus (BNC) (Burnard,

2009) and consists of 62 metaphoric verb-noun
pairs (more details are given in section 4). Spectral
clustering (Meila and Shi, 2001) is used to clus-
ter the abstract concepts (nouns) and the concrete
concepts (verbs) then an association (mapping) is
drawn between the two clusters using the seed
set. The candidate extraction component employs
the Robust Accurate Statistical Parsing (RASP)
parser (Briscoe et al., 2006) to extract verb-subject
and verb-direct object grammar relations. After
that, the linked clusters (through the seed set) is
used to identify potential metaphoric candidates.
The filtering component is finally used to filter
out these candidates based on a selectional pref-
erences strength (SPS) measure (Resnik, 1993).
The verbs exhibiting weak selectional preferences
are considered to have lower metaphorical poten-
tial. An SPS threshold was set experimentally to
be 1.32, thus, the candidates which verbs have an
SPS value below this threshold are discarded.

In our reimplementation, we employed the
Stanford Parser instead of the RASP Parser to ex-
tract the grammar relations and to implement the
filtering component to calculate the SPS. SPS is
calculated using a simplified Resnik model which
models the association of the verb (predicate) with
the noun (instead of a class) from the BNC cor-
pus. The verb clusters were originally developed
using VerbNet (Schuler, 2006) and the noun clus-
tering were developed using the 2,000 most fre-
quent nouns in the BNC corpus. Since the clusters
were obtained from a relatively small dataset we
suspected that it might lead to a limited coverage,
which will be later shown in the system evaluation.
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Cand. V Seed’s V CosDist Cand. N Seed’s N CosDist Cand. N Seed’s N CosDist

break

break 0

promise

agreement 0.7479

glass

agreement 1.0093

hold back 0.6591 truth 0.7736 truth 0.8872

mend 0.6935 marriage 0.9381 marriage 0.9419

fix 0.6952 term 0.8085 term 1.0252

catch 0.6966 contagion 1.0126 contagion 0.9089

throw 0.7035 remark 0.8513 remark 0.9559

seize 0.7201 moment 0.8556 moment 0.9510

impose 0.7350 decision 0.8207 control 0.9506

impose 0.7350 control 0.9107 decision 0.9987

frame 0.7371 question 0.8462 question 0.9424

Table 2: The cosine distance between the verbs and nouns of the candidates “break promise” and “break glass”
verses the verbs and the nouns of the top 10 metaphoric seeds in the seed set using a pre-trained Word2Vec word
embedding model on Google News dataset.

This is one of the limitations of this system; a can-
didate is either in the clusters or not. And if the
candidate’s noun appeared in a noun cluster but
this cluster was not mapped to the cluster where
the verb occurs the candidate will be discarded.

4 System Architecture

As described in Figure 1 below, our system con-
sists of three main components: a parser, a seed set
of metaphoric expressions and a pre-trained word
embedding model.

Parser: Since our aim is to identify metaphors
on the phrase-level, the Stanford parser is used
to extract the grammar relations in a given sen-
tence. We used the recurrent neural network
(RNN) parser in the Stanford CoreNLP toolkit
(Manning et al., 2014) to extract dependencies
focusing on verb-subject and verb-direct object
grammar relations.

Seed Set: We used the seed set of Shutova
et al. (2010) to act as our set of existing known
metaphoric expressions (positive examples). The
seed set consists of 62 verb-subject and verb-direct
object phrases where the verb is used metaphori-
cally3. These seeds are extracted originally from a
subset of the BNC corpus which contains 761 sen-
tences. These sentences were annotated for gram-
matical relations to extract the specified gram-
mar relations which are then filtered and manu-
ally annotated for metaphoricity. Examples of the

3The seed set provided to us by Shutova et al. (2010) con-
sists of 52 pairs out of which 11 are verb-subjects and 41 are
verb-direct object

metaphors in the seed set are “mend marriage,
break agreement, cast doubt, and stir excitement”.

Word Embedding Model: This work utilises
distributional vector representation of word mean-
ing to calculate semantic similarity between a can-
didate and a seed set. Word2Vec and GloVe (Pen-
nington et al., 2014) are two widely used word em-
beddings algorithms to construct embeddings vec-
tors based on the distributional hypothesis (Firth,
1957) but using different machine learning tech-
niques. In this work, we investigated the effect of
using different pre-trained models and similarity
measures as shown in detail in the next section.

5 Experimental Settings

In this section, we give an overview of the exper-
imental settings of our proposed approach and the
test sets that are used to assess the performance of
the methodology described above.

5.1 Models and Parameters

The utilised similarity measures, word embed-
dings models, and system’s parameters are defined
as follows:

Similarity Measures: We examined two simi-
larity measures as follows:

– Cosine Distance Metric: The cosine similar-
ity function measures the cosine of the angle
between two vectors. Given the vectors u and
v, the cosine distance can be defined as:

1− cos(u, v)
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Figure 1: The Overall System Architecture.

– Word Mover’s Distance (WMD) (Kusner
et al., 2015): could be defined as the mini-
mum travelling distance from one word em-
beddings vector to the other.

Embeddings Models: We experimented with
two different pre-trained vector representations of
word embeddings which are:

– Word2Vec Google News4: The model is
trained on about 100 billion words from
the Google News dataset and contains 300-
dimensional vectors for 3 million words us-
ing the approach described in (Mikolov et al.,
2013). The model is based on the skip-
gram neural network architecture which em-
ploys the negative sampling training algo-
rithm and sub-sampling frequent words using
a window-size of 10.

– GloVe Common Crawl5: We used a pre-
trained model on the Common Crawl dataset
containing 840 billion tokens of web data
(about 2 million words). The vectors are 300-
dimensional using 100 training iteration.

For simplicity, we used a single vector representa-
tion for each word ignoring multi-word combina-

4https://code.google.com/archive/p/
word2vec/

5https://nlp.stanford.edu/projects/
glove/

tions such as phrasal verbs, examples of which in-
clude e.g. “hold back, flip through”; we are plan-
ing to address this issue in the future.

System’s Parameters: We performed experi-
ments on a development set to select the values of
the parameters topn and δ mentioned in subsec-
tion 3.2. The best value obtained for n is found
to be top 10 nearest verbs. The suitable distance
average threshold δ is found to be 0.80 for the
GloVe Creative-Commons-840 model and 0.85 for
the Word2Vec Google-News model. These values
give a good trade-off between false positives and
false negatives.

5.2 Test Sets

Two different test sets are used to evaluate our ap-
proach as follows:

VUA Test Set: We use a subset of the training
verbs dataset from the VU Amsterdam Metaphor
Corpus (VUA) (Steen et al., 2010) provided by
the NAACL 2018 Metaphor Shared Task 6. The
original VUA corpus is a subset of the BNC Baby
corpus consists of 117 texts covering various gen-
res which are academic, conversation, fiction, and
news. Although the dataset is annotated on the
token-level, its availability and the fact that it is

6https://github.com/
EducationalTestingService/metaphor/tree/
master/NAACL-FLP-shared-task
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already annotated encouraged us to use it for as-
sessing our approach. The verbs dataset consists
of around 17,240 annotated verbs; we retrieved the
original sentences of these verbs from the VUA
corpus, which yielded around 8,000 sentences. We
then parsed these sentences using the Stanford
Parser and extracted around 5,000 verb-direct ob-
ject relations. Arbitrary 300 verb-noun pairs (160
positive and 145 negative examples) are selected
to be our test set where the verb is used metaphor-
ically or literally. Table 3 shows some examples
from this test set.

MOH dataset: Shutova et al. (2016) introduced
a manually annotated dataset of verb-subject and
verb-object pairs. The dataset has been referred
to as MOH as it was originally obtained from
Mohammad et al. (2016) who annotated differ-
ent senses of verbs in WordNet for metaphoricity.
Verbs were selected if they have more than three
senses and less than ten senses. Then the exam-
ple sentences from WordNet for each verb were
extracted and annotated by 10 annotators using
crowd-sourcing. In a next step, the verb-subject
and verb-direct object grammar relations were ex-
tracted out of the original dataset. The final dataset
consists of 647 pairs out of which 316 instances
are metaphorical and 331 instances are literal.

Metaphor Not Metaphor
reveal approach collect passport
break corporation use power
make money abolish power
see language perform shuffle
make error decorate wall
face criticism put stage
give access read book
lay foundation research joke
make time tell story
abuse status give key

Table 3: Examples from the VUA test set.

6 Evaluation

In this section, we evaluate our approach using
different test sets, pre-trained word embeddings
models and similarity measures. Additionally, we
compare the performance of our approach against
the baseline system explained in subsection 3.3.
We used four standard evaluation metrics, namely

precision, recall, F-score and accuracy.

6.1 Results

We applied our system to the three test sets intro-
duced above and compared it to the defined base-
line system. Table 4 shows the results of the ex-
periment carried out on the VUA test set. It also
shows the results obtained from the baseline sys-
tem. Table 5 shows the performance of our system
on the whole MOH dataset.

6.2 Discussion and Analysis

It can be seen from the results above that our ap-
proach performs better using GloVe as the pre-
trained word embedding model and using cosine
distance as the similarity metric. It is also noted
that the system suffers from a low recall when us-
ing the Word2Vec model with the cosine distance
function. This might be due to the limited cover-
age of the seed set where the top 10 most simi-
lar metaphors are not enough to detect new candi-
dates of metaphors. We manually examined our
system’s output on the MOH dataset. Our sys-
tem was able to correctly detect metaphoric ex-
pressions such as “absorb knowledge, attack can-
cer, blur distinction, buy story, capture essence,
swallow word, visit illness, wear smile” as well
as literal ones such as “attack village, build ar-
chitect, leak container, steam ship, suck poison”.
Some of the false positives, where our system de-
tection was metaphor while the gold label was not,
include “ascend path, blur vision, buy love, com-
municate anxiety, jam mechanism, lighten room,
line book, push crowd” which could be regarded
as metaphors depending on the context.

Our system was able to spot some inconsistency
in the annotations of the VUA test set. For exam-
ple, the verb-noun pair “win election” is detected
as metaphor by our system while we realised that
it has 3 different annotations across the rest of the
VUA dataset (the verb “win” annotated once as
a metaphor and twice as not metaphor while hav-
ing “election” as its direct object). Additionally,
in the VUA corpus the verb “win” is annotated
as metaphor with similar abstract concepts such
as in “win match” and “win bid”. This is one
of the differences between preparing a dataset for
word-level detection as the VUA corpus or prepar-
ing a dataset for phrase-level detection. Moreover,
it shows that a verb-noun pair may or may not be
metaphoric based on the context. Also, it high-
lights the minor differences in the views of the
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Precision Recall F–score Accuracy

Shutova et al. (2010) distributional clustering approach 0.7500 0.0197 0.0385 0.4915

Our approach
Word2Vec

WMD 0.556 0.8487 0.6719 0.5729

cosine distance 0.7455 0.2697 0.3961 0.5763

GloVe
WMD 0.5565 0.9079 0.6900 0.5797

cosine distance 0.6377 0.8684 0.7354 0.6780

Table 4: Evaluation on the VUA test set of 300 verb-noun pairs and a performance comparison to the baseline
system.

Precision Recall F–score Accuracy

Shutova et al. (2010) distributional clustering approach 1.0000 0.0095 0.0189 0.5148

Our approach
Word2Vec

WMD 0.5321 0.8413 0.6519 0.5599

cosine distance 0.8727 0.1524 0.2595 0.5739

GloVe
WMD 0.5243 0.8571 0.6506 0.5490

cosine distance 0.6317 0.7460 0.6841 0.6625

Table 5: Evaluation on the MOH dataset of 647 verb-noun pairs and a performance comparison to the baseline
system.

definition of metaphor itself between Lakoff and
Johnson (1980) and Steen et al. (2010), which in
turn emphasises that the metaphorical sense does
not depend solely on the properties of individual
words (Gutiérrez et al., 2016).

The results also indicate that the baseline sys-
tem has a very low recall on the introduced test
sets. The reason behind that, as mentioned in sub-
section 3.3, is that it utilises clusters developed us-
ing the BNC corpus, which likely limit the cover-
age of the system adding into account the limita-
tion of the small seed set (as in our approach). For
example, out of the 300 pairs in the VUA test set
only 7 candidates were included in the final clas-
sification as the rest of the words were not seen
before in the clusters. Similarly, out of the 647
pairs in the MOH dataset only 4 were able to be
recognised as candidates.

Our system’s performance could be improved
by increasing the size of the seed set and optimis-
ing the system’s parameters accordingly (which
we are planing to address in the future). In order to
investigate this point, we did an additional experi-
ment using 10-fold cross-validation of the MOH
dataset in which we included 10 different splits
from the dataset as our seed set of metaphors.
The best results in terms of precision, recall, F-

score, and accuracy are 0.5945, 0.756, 0.6657,
and 0.6290, respectively. These results are ob-
tained using the GloVe word embedding model
pre-trained on the Common Crawl dataset and
the cosine distance as similarity function with the
same parameters values. In this experiment, we
noticed that the values of n and the threshold δ
should be adapted according to the increase in the
number of seeds.

We did not to compare our results to Shutova
et al. (2016) or Rei et al. (2017) as these sys-
tems are not directly comparable to ours. Shutova
et al. (2016) is using a different test split from
the MOH dataset to evaluate their system. More-
over, both works proposed fully supervised ap-
proaches in which they utilise negative (literal)
examples as well as positive (metaphoric) exam-
ples to train their systems, whereas our approach is
semi-supervised (similar to (Shutova et al., 2010))
which uses only the positive (metaphoric) exam-
ples. Therefore, carrying out a performance com-
parison will be imperfect.

7 Conclusion and Future Work

In this work, we presented a semi-supervised ap-
proach to detect metaphors using distributional
representation of word meaning. Different word
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embeddings models have been investigated to
identify phrase-level metaphors focusing on verb-
noun expressions. The system utilises a prede-
fined seed set of metaphoric expressions to detect
unseen metaphoric expression(s) in a given sen-
tence. As discussed, in contrast to other state-
of-the-art approaches, our proposed approach em-
ploys fewer lexical resources and does not require
annotated datasets or highly-engineered features.
This gives it a flexibility to be easily adapted to
new languages or text types. We have performed
several experiments to assess the performance of
our approach on benchmark datasets. As part of
our future work, we are planning to investigate
the effect of increasing the number of seeds on
the system’s coverage and to extend this approach
to detect other metaphoric syntactic constructions
taking into account multi-word expressions such
as phrasal verbs.
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Abstract

We present and compare two alternative deep
neural architectures to perform word-level
metaphor detection on text: a bi-LSTM model
and a new structure based on recursive feed-
forward concatenation of the input. We dis-
cuss different versions of such models and the
effect that input manipulation - specifically, re-
ducing the length of sentences and introducing
concreteness scores for words - have on their
performance. 1

1 Paper’s contribution

This paper describes our contribution to the shared
task on metaphor detection published by NAACL
2018’s First Workshop on Figurative Language
Processing.

In this paper, we will:

1. Present and compare two neural network
models, (1) a bidirectional recurrent neural
networks for long distance compositions and
(2) a novel bigram based model for local
compositions.

2. Show the results of ablation experiments on
these two models.

3. Present some input manipulations and feature
enrichment to improve their performance.

The implementation code and additional supple-
mentary material is available here: https://
github.com/GU-CLASP/ocota

2 Introduction

Automatic metaphor detection is the task of auto-
matically identifying metaphors in a text or dataset

1The model product of this paper competed in The Work-
shop on Figurative Language’s Shared Task with team name
OCOTA.

(Veale et al., 2016). Traditionally, the main ap-
proaches to this problem have been of two kinds:
either a set of manually crafted rules was applied
to a text, or a machine learning algorithm was
trained on a source dataset to identify patterns of
features identifying metaphoricity. In the latter
case, typically used features were “psycholinguis-
tics” features such as abstractness or imageability
2; hypernym-hyponym coercions as modeled by
resources like WordNet; sequence probabilities as
given by language models; and semantic spaces
or word embeddings. Similar trends can also be
observed in works dealing with other figures of
speech (Zhang and Gelernter, 2015).

The use of word embeddings in metaphor pro-
cessing - both in detection and interpretation -
is particularly widespread, and distributional se-
mantic spaces may represent the single most con-
sistently used “tool” in this task. Su et al.
(2017) combine word embeddings and WordNet
hypernym/hyponym information to detect nominal
predicative metaphors of the kind “X is Y” and to
select a more literal target - thus producing a para-
phrase of the metaphor.

Shutova et al. (2017) use unsupervised and
weakly supervised learning to detect metaphors,
exploiting syntax-aware distributional word vec-
tors.

Gong et al. (2017) use figurative language de-
tection - sarcasm and metaphor - as a way to ex-
plore word vector compositionality and try to use
simple cosine distance to tell metaphoric from lit-
eral sentences: a word being out of context in a
sentence has a likelihood of being metaphoric.

The reason why semantic spaces are consis-
2Recent trends tend to see metaphoricity as a nuanced

rather than binary property, and to take into consideration the
correlation between figurativity and affective scoring (Köper
and im Walde, 2016), an umbrella term usually including four
psycolinguistic properties: abstractness, arousal, imageabil-
ity and valence (Köper and Im Walde, 2016).
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tently used in metaphor detection lies in the con-
ception that metaphor, like metonymy and other
figures of speech (Nastase and Strube, 2009), is
a mainly contextual phenomenon. In this view, a
metaphor is fundamentally composed of two dif-
ferent semantic domains, in which one domain
acts as source - and is used literally - while the
other acts as target - and is used figuratively.

In this frame, semantic spaces appear to be a
very flexible and powerful frame to model such
semantic domains in terms of words’ cluster-
ing and distributional similarity (Mohler et al.,
2014). Also, semantic spaces are relatively easy
to build and handle, giving them an advantage
over more time-consuming resources, such as very
large knowledge bases and “is A” bases from web
corpora, as in Li et al. (2013).

Gutierrez et al. (2016) use the flexibility of
word vectors to study the compositional nature of
metaphors and the possibility of modeling it in a
semantic space.

Tsvetkov et al. (2014) use distributional spaces,
together with several other resources such as
imageability scores and abstractness to detect
metaphors in English and apply a transfer learning
system through pivoting on bilingual dictionaries
to detect metaphors in multiple language.

A composite approach using both distributional
features and psycho-linguistics scores for lexical
items is also used by Rai et al. (2016) to per-
form metaphor detection using conditional ran-
dom fields.

Metaphor detection with semantic spaces has
also been explored in a multimodal frame by
Shutova et al. (2016), where systems using only
text-based distributional vectors are compared
against systems using distributional vectors en-
riched with visual information.

The link between distributional information and
metaphors appears so relevant that some studies
presenting new general distributional approaches
have elected metaphor detection as a benchmark to
test their models (Srivastava and Hovy, 2014), and
studies using diversified sets of resources for their
classifiers report that distributional vectors are the
best performing single device to tackle metaphor
detection (Köper and im Walde, 2016).

Finally, Bulat et al. (2017) present a differ-
ent kind of semantic space, not context-based
but attribute-based, to detect and generalize over
metaphoric patterns. In such spaces, words are

represented by the attributes of the concepts they
represent, so that for example ant is represented by
elements such as an insect, is black etc. The au-
thors describe a system to map conventional dis-
tributional spaces to pre-existent attribute-based
spaces and show that such approach helps detect-
ing metaphoric bigrams.

A recent approach is that of using neural net-
works for metaphor detection with pretrained
word embeddings initialization. Bizzoni et al.
(2017) and Rei et al. (2017) proved that this is
a valuable strategy to predict metaphoricity in
datasets of bigrams without any extra contextual or
explicit world knowledge representations. While
Bizzoni et al. (2017) show how a simple fully con-
nected neural network is able to learn pre-existing
a dataset of metaphoric bigrams with high ac-
curacy and to achieve a better performance than
previous approaches, Rei et al. (2017) present an
ad-hoc neural design able to compose and detect
metaphoric bigrams in two different datasets.

Do Dinh and Gurevych (2016) apply a series
of perceptrons to the Amsterdam Corpus com-
bined with word embeddings and part-of-speech
tagging, reaching a f-score of .56.

Interestingly, a similar approach - a combina-
tion of fully connected networks and pre-trained
word embeddings - has also been used as a pre-
processing step to metaphor detection, in order
to learn word and sense abstractness scores to
be used as features in a metaphor identification
pipeline (Köper and im Walde, 2017).

3 Corpus

Metaphor processing suffers from a problem of
data scarcity: annotated corpora for metaphor de-
tection are relatively rare and of modest propor-
tions.

In this work we will use the VU Amsterdam
Metaphor Corpus (Krennmayr and Steen, 2017)
train and test our models. To this date, the
VU Amsterdam Metaphor Corpus (VUAMC) the
largest publicly available annotated corpus for
metaphor detection.

Metaphor corpora in other languages do exits,
but, to the best of our knowledge, suffer of the
same problem of data scarcity.

The VUAMC is divided into four sub-categories
representing four different genres: news texts, fic-
tion, academic texts and conversations. Every
word in the corpus is manually annotated by sev-
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eral annotators for metaphoricity. In the corpus,
metaphor, simile and personification are equated,
while also implicit metaphors are taken into con-
sideration. For example, in the sentence To em-
bark on such a step is not necessarily to succeed
immediately in realizing it the word it is consid-
ered an implicit metaphor since it refers to the
words step that was used metaphorically.

The corpus covers about 190,000 lexical units,
randomly selected from the BNC Baby corpus.

According to Krennmayr and Steen (2017), the
genre with a higher percentage of manually de-
tected metaphors is academic texts (18.5%), fol-
lowed by news (16.4%), fiction (“only” 11.9%)
and conversation (7.7%). Given the very fine-
grained nature of metaphor annotation applied to
the corpus, the authors also find that the parts of
speech that tend to be used metaphorically most
often are prepositions and verbs, followed adjec-
tives and nouns.

Due to its dimensions, diversity and accessi-
bility, the VU Amsterdam Metaphor Corpus has
been used in a number of studies. Using it can
provide a direct comparison to important previous
works and proposed models. This makes of the
VUAMC a valuable resource for metaphor detec-
tion and processing.

Nonetheless, the VU Amsterdam Metaphor
Corpus presents some difficulties: the semantic
annotation of metaphor can be extremely fine-
grained and cross the boundaries with word sense
disambiguation.

For example, in the sentence:

The 63-year-old head of Pembridge
Investments, through which the bid is
being mounted says, ‘rule number one
in this business is: the more luxuri-
ous the luncheon rooms at headquarters,
the more inefficient the business’.[a1e-
fragment01-5]

three words were annotated as metaphoric: head,
through, mounted, rule, in, this and headquarters.

Sometimes the annotation itself can be puzzling
or questionable. In the sentence:

There are other things he has, on his
own admission, not fully investigated,
like the value of the DRG properties,
or which part of the DRG business he
would keep after the break up . [a1e-
fragment01-7]

the following words are annotated as metaphoric:
things, on, admission, part, keep and after.

While the very fine-grained metaphoricity of
things, part and keep is to some extent still un-
derstandable - these terms are not used in their
physical sense to indicate material objects, such
as a concrete slice of something, or the act of
physically keeping something with oneself - the
metaphoric nature of admission remains quite
opaque. At the same time, it is not clear why
the annotators ignored the metaphoric interpreta-
tion of the break up.

There are also harder to explain examples, at
least from our perspective. The sentence

Going to bed with Jean fucking,
fucking shite! [kbd-fragment07-2586]

is annotated as completely literal - no metaphoric
usage is detected by the annotators.

In the sentence

Take that fucking urbane look off
your face and face reality, Adam [fpb-
fragment01-1343]

the following words are annotated as metaphoric:
take, that, off, face.

All the remaining terms have to be considered
as literal, which looks slightly incoherent with the
previous fine-grained metaphoricity annotations.

4 Models

4.1 Architectures

In this work we present two alternative neural ar-
chitectures to process sentences as input and pre-
dict words’ metaphoricity as output.

The first model we discuss is composed of a
bi-directional LSTM (Schuster and Paliwal, 1997)
and two fully connected or dense layers, having
respectively dimensionality of 32, 20 and 1. We
will also show results for deeper and more shal-
low alternative versions of this model.

Sun and Xie (2017) recently tried to tackle verb
metaphor detection on the TroFi corpus (Birke and
Sarkar, 2006) using Bi-LSTMs with word embed-
dings. For their study they tried different kinds
of input: using the whole sentence; using a sub-
sequence composed of the target verb and all its
dependents; using a sub-sequence composed of
the target verb, its subject and its object. Inter-
estingly, they show that the simplest approach -
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taking into consideration the whole sentence - re-
turns the best results, with an F score only slightly
lower than that achieved by a composite approach
taking into consideration all of the previous differ-
ent inputs together.

The main difference with our architecture is the
presence of the final Perceptrons (fully connected
networks). Sun and Xie (2017) don’t mention fur-
ther hidden layers beyond the bi-LSTM.

We also don’t have any form of syntactic pre-
processing and we only use the sequence of the
standard word embeddings to represent the whole
sentence. Finally, we are interested in considering
the different performances of bi-LSTMs on dif-
ferent part-of-speech elements: metaphor recog-
nition on functional words is supposedly harder,
since these words have a more complex semantic
signature in distributional spaces.

In this spirit we find worth it approaching the
problem with a relatively “standard” neural frame-
work.

The second model we discuss is a simple se-
quence of fully connected neural networks.

We present the design of this architecture in Fig-
ure 1.

This model is a generalization of neural ar-
chitectures for bigram phrase compositions as
tested on Adjective-Noun phrases in Bizzoni et al.
(2017). While a similar approach is already at-
tempted in Do Dinh and Gurevych (2016), we
introduce a recursive variant which can make
the compositions deeper and while allowing wide
window sizes. There have been more sophisticated
architectures such as Kalchbrenner et al. (2014),
which take a similar approach for sentence repre-
sentation with convolutional neural networks, but
we propose a simpler method only using dense
compositions.

We built our architecture using the Python li-
brary Keras (Chollet et al., 2015).

For both our models we used Adam optimizer.

4.2 Input manipulation

We compare two different features representa-
tions: 1. different word embeddings, 2. concrete-
ness scores as word representations. In addition
to ablation test for feature representations, we ex-
amined the effect of breaking sentences in shorter
sequences.

Embeddings We tried two types of pre-trained
word embeddings both with 300 dimensions: (1)

Figure 1: Bigram composition networks with depth
n = 2.

GloVe (Pennington et al., 2014) (2) Word2Vec
(Mikolov et al., 2013). Since these vector
spaces are trained on different corpora, there are
some out-of-vocabulary words, we represent these
words with zero vectors. Additionally, Word2Vec
is using a sub-sampling technique for more effi-
ciency which consequently it doesn’t cover most
frequent words. In order to expand the word-
coverage, we also trained GloVe embeddings on
British National Corpus (Consortium et al., 2007)
from which the VUAMC corpus was sampled, and
compared it with both pre-trained Word2Vec em-
beddings on Google News corpus and standard
GloVe embeddings trained on Common Crawl
corpus.

Explicit features It has been observed in sev-
eral works that metaphoricity judgments are par-
tially related to a gap in concreteness between the
target word and its context. Köper and im Walde
(2017) try detecting all metaphoric verbs in the
Amsterdam corpus using this single feature. Biz-
zoni et al. (2017) show how a network trained for
metaphor detection on pairs of word embeddings
can “side-learn” noun abstractness.

A metaphor functioning on this axis is com-
posed of an abstract and a concrete element: in
such case, usually, the concrete element is the
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metaphoric one. The expression “In a window of
5 years, between 2011 and 2016” could be consid-
ered a metaphor playing on this level, where the
more concrete word ”window” has a metaphoric
sense.

There are kinds of metaphors functioning at dif-
ferent semantic levels: for example a synesthesia,
which can be considered a sub-type of metaphor,
is an expression where a word linked to a senso-
rial field is used to refer to a term that pertains to
another sensorial field.

In this case, the features used metaphorically
are usually on a similar level of abstractness.
However, for our purposes the abstract-concrete
features may be among the most important to take
into consideration.

While the abstract-concrete polarity is repre-
sented in distributional embeddings, it is possible
that taking such features more explicitly into con-
sideration would help a neural classifier. Brysbaert
et al. (2014) released a list of almost forty thou-
sand English words annotated along the concrete-
abstract axis, annotated by over four thousand par-
ticipants.

We try using such scores as an extra dimen-
sion for the distributional embeddings: we thus
obtain sequences of 301-dimensional embeddings,
the last dimension being the human rating of con-
creteness. For the out-of-vocabulary words we use
the average concreteness value of 2.5.

This resource allows us to assign to (almost) ev-
ery word in the dataset an explicit concreteness
score. When a word might have more than one
sense, the annotations seem to use the most con-
crete one: for example the word “node” has a con-
creteness score of 4 out of 5. For comparison the
words “output” and “literally” have a score of 2.48
and the word “being” has a score of 1.93.

It must be noted that the abstract-concrete gap
is not necessarily the best way to describe the kind
of metaphors represented in this specific corpus.
The network should be able to mark as metaphoric
words in this dataset that have a low level of con-
creteness, such as “approach” (2.76), in equally
abstract contexts, such as “latest corporate reveals
laid-back approach” (here “approach” was marked
as metaphoric in VUAMC).

Many of the metaphoric uses outlined here are
so ingrained in language that their actual con-
crete origins may be under-represented not only
in modern day corpora, but even in many mod-

Concreteness score window number of words
1-2 38 262
2-3 36 730
3-4 28 664
4-5 14 473

Table 1: Concrete and abstract tokens in VUAM corpus
according to Brysbaert et al. (2014) dataset.

ern day annotators’ minds. We discussed various
cases of this problem in the section about the cor-
pus: words that have gradually assumed a new and
main sense in the English language are often anno-
tated as metaphors in the VUAMC.

Nonetheless, the abstract-concrete polarity re-
mains one of the main semantic dimensions to in-
terpret and understand metaphors and has been ex-
plicitly used in several metaphor detection tasks
with promising results.

We can thus partly revert to feature engineer-
ing and see whether adding this dimension can im-
prove the performance of our models.

Sentence breaking Including long sentences in
our training dataset makes it necessary to consis-
tently pad short sentences with zero-vectors. In
our experiments we have seen that this seems to
slow down and harm training for our models, since
they will try to learn both patterns for sequences of
pre-trained embeddings and patterns for long se-
quences of vectors filled with 0s.

To partly avoid this problem, we can break long
sentences into two or more shorter elements. We
assume that long distance information is not par-
ticularly important here to detect metaphoricity,
while long padding can affect performance.

4.3 Preprocessing

We chose a maximum sentence length of 50: while
the longest sentence in the dataset is 87 words, the
vast majority of the elements in the dataset is less
than 50 words long. Out of vocabulary words,
which are words that did not have a correspond-
ing vector in our embedding space, were replaced
by a mock vector of all zeros. After shuffling the
dataset, we use the first 1000 sentences of the cor-
pus as test, and the rest of the data for training
(11122 sentences). We used the same training and
test data for all reported results.
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4.4 Loss function

The design of the models is to predict the
metaphoricity of each word in a sentence. The pre-
dicted value from a final layer with sigmoid acti-
vation is compared with the labeled data and usual
logarithmic loss is used. However, most words
do not have specified metaphoric or literal anno-
tations in the dataset. Instead of assigning a non-
metaphor value to unspecified tokens in a string,
we modified the loss function in order to generate
zero loss for these tokens.

4.5 Training

After shuffling the training data, 1000 samples are
taken as holdout to find the overfitting point. With
batch size 64 and and early stopping patience 3
based on validation loss we trained each model up
to 15 epochs.

5 Results

5.1 Embeddings

Through a comparison of different semantic
spaces, we found that the best performing space
was GloVe trained on 42B Common Crawl, of di-
mensionality 300.

For the rest of our experiments we used these
embeddings.

5.2 Baseline

In Table 2, we compare the results obtained from
previous works on this task, and the performance
of the “vanilla” settings of our model including a
simple LSTM as our baselines. The comparison
with Do Dinh and Gurevych (2016) shows that de-
ploying deeper and more complex architectures on
this set does not return particularly large improve-
ments: we achieve an F1-score one point higher
than Do Dinh and Gurevych (2016)’s results on
a setting enriched with POS tags, and two points
higher than the simplest model proposed in the pa-
per.

It can be observed that our bigram composition
architecture seems to produce comparable results
considering the previous works. The influence of
LSTM architectures appears thus further dimin-
ished.

Table 3 presents precision, recall and F-score
values for several concatenation windows of our
composition model. These results can be com-
pared to the ones we obtain with deep Bi-LSTM

models. Without external features such as con-
creteness or POS tagging, composing the input im-
proves the model’s performance up to a window of
3. Larger windows reduce the performance of the
model.

In Table 4 we report the tests with different set-
tings on depth and width of each layer.

It seems that widening the dimensionality of the
Bi-LSTM itself beyond a certain limit does not
improve - and rather harms - the model’s perfor-
mance in classification.

Regarding our first model, completely relying
on the power of the Bi-LSTM architecture is not
enough, and deeper fully connected layers are
clearly playing a role.

We can also see that inserting a fully connected
layer before the Bi-LSTM returns better results.
This layer has a number of nodes as large as the
number of dimensions of the input token embed-
dings. It can be another clue that the most rele-
vant information for this task has to be searched
in the word embeddings composing the sentence
and their immediate surrounding, rather than in the
structure of the whole sequence.

In conclusion, our results show that a quite
standard deep neural architecture fed with good
word embeddings can return promising results in
metaphor detection. The “compositional” archi-
tecture also achieves comparable results, with an
F score only a couple of points lower than that of
the Bi-LSTM, indicating that “forcing” a network
to give particular attention to the short or immedi-
ate context of each word in the data can improve
its performance all the while reducing its depth,
complexity and number of parameters. While this
approach is not the one returning the absolute best
F score, we consider the trade-off between its sim-
plicity and its performance worth noting.

Our results also show a negative aspect: while
we consider our models’ performances encourag-
ing, there is an ample room for improvement.

5.3 Feature experiments

Interestingly adding explicit semantic information
such as concreteness ratings in our input - which
means, somehow, reverting to feature engineering
- did produce better results for the composition ar-
chitecture, but not yet for our Bi-LSTM.

Table 5 show the results of our best perform-
ing models when the concreteness of the individ-
ual token was explicitly added to the embeddings.
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Architecture F1
Haagsma and Bjerva (2016) .53
Do Dinh and Gurevych (2016)3 .56
Dense(1) .22
LSTM(32) .43
Bi-LSTM(32) .46
Bi-LSTM(32)+Dense(20) .50
Dense(300)+Bi-LSTM(32)+Dense(20) .56
Concat(n=2)+Dense(300) .55

Table 2: Performance of different models compared to the score reported by two relevant works in the literature.
We report the performance of simpler models and their combinations as baselines. We used some abbreviations to
describe the models in the table. For example, Dense(1) represents a single, fully connected layer of output length
of 1, LSTM(32) is an LSTM with an output length of 32 and Concat represents our compositional model. Thus,
Concat(n=2)+Dense(300) represents the bigram composition model with a concatenation window of 2 combined
with a fully connected layer of 300 output units.

N Precision Recall F1 score
1 .627 .459 .530
2 .588 .504 .543
3 .571 .531 .550
4 .649 .402 .497

Table 3: F1 for different windows of concatenation (N)
in the composition model. N=1 is equivalent to no con-
catenation.

The results are higher than those returned by the
same models trained and tested on the same sen-
tences only with pre-trained distributional embed-
dings. It appears that simply adding the concrete-
ness feature returns a better performance on the
whole dataset. It is worth noting that in this case,
and only in this case, the “compositional” archi-
tecture is the best performing, while the bi-LSTM
has a harder time detecting metaphors in the tex-
tual data.

Finally, we try to break long sentences into
shorter sequences, as we discussed in 4.2. The
metaphors identified in the VUAM corpus do not
generally require long-distance information to be
detected. We can observe that this method im-
proves the performance of our models: this is
probably because the “noise” due to long padding
of short sentences is reduced. Having less contex-
tual information for words tagged as metaphoric or
literal does not seem to have a real negative impact
on the learning process.

As we show in Table 6, breaking sentences
longer than 20 tokens into several short sequences
reduces the number of misclassified elements in

the set.
Not surprisingly, a combination of these two

methods - adding explicit concreteness informa-
tion and breaking long sentences - returns the best
overall results, as can be seen in Table 7.

Finally, since these experiments were originally
designed for the shared task in metaphor detec-
tion of the First Workshop in Figurative Language
(NAACL 2018), in Table 8 we report our best per-
forming models’ results on the evaluation set pro-
vided in the task.

The last line reports the result from using both
models together: as can be seen, the F score we get
from taking into consideration the output of both
architectures together is higher than the F score of
the single models.

We can suppose that the two models are learn-
ing to detect slightly different kinds of metaphors -
their true positives are not completely overlapping
- and they can thus complement each other.

6 Conclusions

In the frame of NAACL 2018’s shared task on
metaphor detection, we explored two main ap-
proaches to detect metaphoricity through deep
learning and compared their performances with
different kinds of inputs. The overall single best
performing system is a deep neural network com-
posed of a bi-LSTM preceded and followed by
fully connected layers, having access to concrete-
ness scores for each token and running on rela-
tively short sequences - thus reducing the effects
of sentence padding.

We show that adding such features, our model is
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Architecture F1
Bi-LSTM(32) .46
Bi-LSTM(32)+Dense(20) .50
Bi-LSTM(400)+Dense(20) .47
Bi-LSTM(32)+LSTM(32)+Dense(20) .35
Bi-LSTM(400)+LSTM(32)+Dense(20) .43
Dense(300)+Bi-LSTM(32)+Dense(20) .56
Dense(300)+Bi-LSTM(300)+Dense(20) .56
Dense(300)+Bi-LSTM(300)+LSTM(20)+Dense(20) .57
Dense(300)+Bi-LSTM(300)+LSTM(100)+Dense(20) .40

Table 4: Parameter tuning, testing both deeper and wider settings of the model. We write in parenthesis the
dimensions each layer: for example Dense(20) is a fully connected layer with an output space of dimensionality
20.

N Precision Recall F1
Dense(300)+Bi-LSTM(32)+Dense(20) .642 .498 .561
Dense(301)+Bi-LSTM(32)+Dense(20)+Conc .580 .491 .530
Concat(n=2)+Dense(300)+Conc .554 .570 .562
Concat(n=3)+Dense(300)+Conc .567 .593 .580

Table 5: Results for different models using embeddings enriched with explicit information regarding word con-
creteness. The first line works as baseline showing a model without input manipulation. Concat(n=) represents
our compositional model, with n= representing the composition window length. Conc signifies the usage of
concreteness scores. So for example Concat(n=2)+Dense(300)+Conc represents our compositional model with
concatenation window of 2 combined with a fully connected layer of 300 output units and using the concreteness
scores as additional information.

N Precision Recall F1
Dense(300)+Bi-LSTM(32)+Dense(20) .642 .498 .561
Dense(300)+Bi-LSTM(32)+Dense(20)+Chunk .671 .570 .621
Concat(n=2)+Dense(300)+Chunk .571 .561 .560
Concat(n=3)+Dense(300)+Chunk .611 .400 .491

Table 6: Results for different models using sentence breaking to 20 (any sentence longer than 20 tokens is split in
two parts treated as complete different sentences). The first line works as baseline showing a model without input
manipulation. Concat(n=) represents our compositional model, Chunk signifies the usage of sentence breaking.

N Precision Recall F1
Dense(300)+Bi-LSTM(32)+Dense(20) .642 .498 .561
Dense(300)+Bi-LSTM(32)+Dense(20)+Chunk .670 .571 .620
Dense(301)+Bi-LSTM(32)+Dense(20)+Conc .581 .490 .531
Dense(301)+Bi-LSTM(32)+Dense(20)+Conc+Chunk .649 .624 .636
Concat(n=3)+Dense(300)+Conc+Chunk .632 .446 .523

Table 7: Results for different models using embeddings enriched with explicit information regarding word con-
creteness and sentence breaking to 20 (any sentence longer than 20 tokens is split in two parts treated as complete
different sentences). The first lines work as baselines showing the performance of previous models (without any
input manipulation, only chunking, only concreteness scores). Concat(n=) represents our compositional model,
Chunk signifies the usage of sentence breaking, Conc represents the usage of concreteness scores.
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N Precision Recall F1
Dense(300)+Bi-LSTM(32)+Dense(20) .638 .593 .615
Concat(n=2)+Dense(300) .642 .498 .561
Combined results .595 .680 .635

Table 8: Results for the evaluation set from the shared dataset competition (NAACL 2018). We used sentence
breaking and concreteness information.

able to slightly outperform two baselines recently
published.

We also found that combining these two sys-
tems gave the best results on the test set provided
by the shared task.

Considering the difficult nature of the original
annotations, we judge this a promising result. It
could be the case that adding more explicit fea-
tures further helps reduce the number of inconsis-
tent detections on the corpus, but one of the goals
of these experiments was that of keeping the fea-
ture engineering as contained as possible, reduc-
ing the number of external resources used to en-
rich the input.

We also explored a simpler neural architecture
based on the recursive composition of word em-
beddings. Yielding a slighlty worse performance
than the Bi-LSTM architecture, this model still
shows that a much simpler architecture can reach
interesting results.

7 Future Works

We think that an in depth error analysis of our
models’ shortcomings might represent an interest-
ing contribution in order to better understand what
neural networks are learning when they are learn-
ing metaphor detection. In future we would like to
perform a systematic analysis of the errors of our
networks both when used alone and when used in
combination.

We would also like to extend the range of our
comparisons to different, and simpler, machine
learning algorithms to see to what extent the in-
formation provided in input - in terms of distri-
butional information and explicit lexical scores
- contributes to the performance of our models.
While a consistent body of works on metaphor de-
tection with “traditional” machine learning means
already exists, we think that a direct comparison of
our networks with other systems might help clari-
fying the contribution of deep learning to this task.
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Abstract

The current study seeks to implement a
deep learning classification algorithm us-
ing argument-structure level representation of
metaphoric constructions, for the identifica-
tion of source domain mappings in metaphoric
utterances. It thus builds on previous
work in computational metaphor interpretation
(Mohler et al. 2014; Shutova 2010; Bolle-
gala & Shutova 2013; Hong 2016; Su et al.
2017) while implementing a theoretical frame-
work based off of work in the interface of
metaphor and construction grammar (Sullivan
2006, 2007, 2013). The results indicate that it
is possible to achieve an accuracy of approx-
imately 80.4% using the proposed method,
combining construction grammatical features
with a simple deep learning NN. I attribute
this increase in accuracy to the use of con-
structional cues, extracted from the raw text of
metaphoric instances.

1 Introduction

Lakoff’s theory of conceptual metaphor has been
highly influential in cognitive linguistic research
since its initial publication (Lakoff & Johnson
1980). Conceptual metaphors represent fine-
grained mappings of abstract concepts like ”love”
to more concrete, tangible phenomena, like ”jour-
neys” which have material and culturally salient
attributes like a PATH, various LANDMARKS,
and a THEME which undergoes movement from
a SOURCE to a GOAL (Lakoff & Johnson 1980).
These tangible phenomena then serve as the basis
for models from which speakers can reason about
abstract ideas in a culturally transmissible manner.
For example, consider the following metaphoric
mappings for the metaphor LOVE IS MAGIC, as
shown in figure 1.

To date, while automatic metaphor detection
has been explored in some length, computational

metaphor interpretation is still relatively new, and
a growing number of researchers are beginning to
explore the topic in greater depth. Recently, work
by the team behind Berkeley’s MetaNet has shown
that a constructional and frame-semantic ontol-
ogy can be used to accurately identify metaphoric
utterances and generate possible source domain
mappings, though at the cost of requiring a large
database of metaphoric exemplars (Dodge et al.
2015; Hong 2016). Researchers from the Depart-
ment of Cognitive Science at Xiamen University
(Su et al. 2017) report that, using word embed-
dings, they have created a system that can reliably
identify nominal-specific conceptual metaphors as
well as interpret them, albeit within a very lim-
ited scope–the nominal modifier metaphors that
they work with only include metaphors in which
the source and target domain share what they
refer to as a ”direct ancestor”, such as in the
case of ”the surgeon is a butcher”, limiting re-
searchers to analyzing noun phrases with modi-
fiers that exist in a single source and target do-
main. Other approaches have included develop-
ing literal paraphrases of metaphoric utterances
(Shutova 2010; Bollegala & Shutova 2013), and,
as an ancestor to the current study, clustering the-
matic co-occurents–the AGENT, PATIENT, and
ATTRIBUTE of the metaphoric sentence–which
allowed researchers to predict a possible source
domain label–think: ”The bill blocked the way
forward”, where for the word ”bill” the system
predicted that it mapped to a ”PHYSICAL OB-
JECT” role in the source domain (Mohler et al.
2014).

2 Construction Grammatical
Approaches to Metaphor

The constructional makeup of metaphoric lan-
guage has been explored at some length by a
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LOVER is a MAGICIAN She cast her spell over me
ATTRACTION is a SPELL I was spellbound
A RELATIONSHIP is BEWITCHMENT He has me in a trance

Figure 1: Metaphoric Mapping & Example

handful of researchers to date. Karen Sullivan,
for example, has done considerable work on both
how syntactic structures (i.e. constructions) re-
strict the interpretation of metaphoric utterances
in predictable ways by both instantiating a seman-
tic frame and mapping the target domain referent
to a semantic role within the instantiated frame
(Sullivan 2006, 2009, 2013). Notable examples of
computational implementations of Sullivan’s the-
ories include Stickles et al. (2016) and Dodge
et al. (2015), who have compiled a database
of metaphoric frames–MetaNet–organized into an
ontology of source domains for researchers to
use in analyzing metaphoric utterances, similar to
FrameNet.

One of the advantages of construction gram-
mar with respect to figurative language interpre-
tation lies in the regularity with which construc-
tions establish form-meaning pairings. The var-
ious meanings of constructions rely heavily on
particular ”cues”–cues including the verb, as well
as the syntactic template and argument-structure–
which point speakers in the direction of a spe-
cific interpretation (Goldberg 2006). For the pur-
pose of the current study, I will be focusing on
the argument-structure of metaphoric utterances
which, though it supplies a rather course-grained
view of the meaning of an utterance, provides an
excellent and stable constructional cue with re-
spect to its interpretation (Goldberg 2006). As an
example of how this might work, consider the dif-
ference between ”the Holidays are coming up on
us” and ”we’re coming up on the Holidays.” In the
first sentence, ”the Holidays” is established as be-
ing mapped to a MOVING OBJECT in the source
domain by virtue of its position in the argument-
structure of the sentence. Meanwhile, in the sec-
ond utterance ”the Holidays” is mapped to a LO-
CATION or GOAL in the source domain due to its
change in position in the argument-structure of the
construction. Implicitly, this means that important
information about the interpretation of a construc-
tion can be gleaned through extracting the argu-
ments that fill its argument-structure and analyz-
ing these arguments’ relationships to one another,

independent of cues beyond the sentence itself.

3 Data Collection

All the examples in this experiment were taken
from the EN-Small LCC Metaphor Dataset, com-
piled and annotated by Mohler et al. (2016).
The corpus contains 16,265 instances of concep-
tual metaphors from government discourse, in-
cluding immediate context sentences preceding
and following them. Each sentence is given a
metaphoricity score, ranging from ”-1” to ”3”,
where ”3” indicates high confidence that the sen-
tence is metaphoric, ”0” indicates that the sen-
tence was not metaphoric, and ”-1” indicates an in-
valid syntactic relationship between the target and
source domain referents in the sentence (Mohler
et al. 2016). Additionally, the corpus is annotated
for polarity (negative, neutral, and positive), inten-
sity, and situational protagonists (i.e.: the ”gov-
ernment”, ”individuals”, etc.). Though not anno-
tated for every sentence, the most important an-
notations for this study were the annotations for
source-target domain mappings. There was a total
of 7,941 sentences annotated for these mappings,
with 108 source domain tags, annotated by five an-
notators (Mohler et al. 2016). Each annotator in-
dicated not only what they thought the source do-
main was, but also gave the example an additional
metaphoricity score based on their opinion.

For the purposes of this study, I only used
the metaphoric instances that were annotated for
source-target domain mappings. For the source
domain labels, I selected the labels made by the
annotator who had marked the example for having
the highest metaphoricity. I initially attempted to
select the metaphoric source domain annotations
that had the highest agreement amongst the an-
notators who had annotated the sentence, but this
proved trickier than I had anticipated. After cal-
culating the average Cohen Kappa score (54.4%),
I decided that selecting labels based on their asso-
ciated metaphoricity would be better. This effec-
tively removed two annotators from the pool, who
consistently ranked each metaphoric sentence as
having a metaphoricity score of 1 or less.
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I further restricted the training and test data by
excluding multi-word expressions from the dataset
for simplicity, though in the future I would very
much like to re-test the methods outlined in the
rest of this paper including the omitted MWEs. Fi-
nally, I removed any source domain annotations
that included only a single example and split the
data in training and testing data sets, using 85%
as training data, and 15% as testing data. Be-
cause of my exclusion of MWEs and metaphoric
source domain tags that were used only once, this
left me with a total of 1985 sentences used in this
experiment–1633 of those were used in the train-
ing data, and 352 reserved for test data–with 77
source domain labels. The source labels were con-
verted to integers and used as classes in the follow-
ing Deep Neural Net (DNN) classifier.

4 The Neural Network Approach to
Source Domain Interpretation

4.1 Feature Generation

The task in this study is to predict the source do-
main of a metaphoric utterance using only features
extracted from the sentence text. For example,
from a sentence like ”So, you advocate for the
ability to deny people the vote by pushing them
into poverty?”, and given the target domain refer-
ent (in this sentence, ”poverty”), can we accurately
predict the source domain label ”ABYSS” (as an-
notated in the LCC dataset) using only the text
from the sentence? To do so, we wanted to extract
from the sentence a representation of its argument
structure, and use that to classify the source do-
main label. The argument structure of a construc-
tion is represented by the verb and the arguments it
accepts to fulfill the roles defined by both the verb
and its semantic frame (Goldberg 2006; Michaelis
2012; Sag 2012; Pustejovsky 2011). Though there
are subtle differences between construction gram-
mar and dependency grammar, it is possible to
reconstruct the argument-structure of a construc-
tion from grammatical dependencies (Osborne &
Gross 2012; for a computational implementation
of a theoretically similar system to ours, see Hong
2016). For the purposes of this study, I first gen-
erated a representation of all the dependency rela-
tionships in each sentence from the LCC dataset
using the Stanford NLP dependency parser (Chen
& Manning 2014). Second, I searched the out-
put list dependencies from the dependency parser
for the target domain referent as identified in the

corpus example, and found the verb that it was
directly dependent on in the sentence. This en-
sured that the target domain referent was in its
immediate context. Once the verb was found, I
then built a representation of the argument struc-
ture of the sentence by extracting the following
dependencies–(1) the verb for which the target do-
main referent was a dependency, (2) the subject of
the verb in 1, (3) the object of the verb in 1, and
if the target domain referent was not included in
the subject or direct object, (4) the target domain
referent as a nominal modifier and (5) any prepo-
sitional arguments that it had as a dependency.
Additionally, I extracted (6) the universal depen-
dency tags for each of the arguments in the verb’s
argument-structure, and converted that into a list
of tags that I simply labeled ”syntax”, or ”SYN”,
based off the assumption that knowing what the
dependencies were might help in identifying the
exact relationships between the lexemes that had
been collected. Finally, these elements along with
(7) the target domain referent itself were compiled
into a list to be used in the training or test data,
and labeled with the pre-identified source domain
label assigned to the sentence in the LCC dataset.
The output of this process is visually represented
in figure 2. The branch of the dependency tree in
blue indicates the direct context of the target do-
main referent–in this case, ”poverty”.

While these strings provided a representation
of the arguments as a set, they did not provide
enough information a priori to predict the source
domain on their own. Sullivan (2013) explains that
the backbone of metaphoric utterances is the rela-
tionship of the target domain referent to the frame
evoked by the construction. Additionally, Gold-
berg (2006) describes the semantic meaning of
constructions as arising from both the nouns con-
tained in their argument-structure, and the mean-
ing implied by the construction’s syntactic tem-
plate. The following features combined Sullivan’s
relationships of the target domain referent to the
construction, with the two observations made by
Goldberg about constructional meaning. For the
interaction of the target domain referent with the
nouns contained in the argument structure I used
the following interactions as features: (8) the tar-
get domain referent and the subject of the local
dependency tree (again, in blue in figure 2), (9)
the target domain referent and the direct object,
and (10) the target domain referent and the nom-
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Figure 2: Raw text sentence input to dependency parsed output from Stanford Core NLP’s dependency parser.
The syntactic roles in order of their index in the dependency parsed sentence are as follows: (0) the target domain
referencing noun, (1) the subject, (2) the direct object, (3) the syntactic sisters of the target domain referencing
noun, (3) the verb, (4) the preposition/case of a nominal modifier, (5) the head of a nominal modifier. The word in
bold was annotated as the target domain referent by annotators.

inal modifier from 4 in the previous paragraph. I
then augmented these with the following interac-
tions to represent the interaction of the target do-
main referent with the syntactic template: (11) the
target domain referent, the verb, and the subject
of the verb, (12) the target domain referent, the
verb, and the object of the verb, and (13) the tar-
get domain referent, the preposition preceding the
nominal modifier, and the nominal modifier. I pre-
dicted that these six interactions would approxi-
mate the relationship between the target domain
referent and its construction-based context, as in-
spired by previous work in semantic role labeling
(Wang et al. 2009; Matsubayashi et al. 2014;
and especially Gildea & Jurafsky 2002, where re-
searchers automatically labeled the semantic role
of a specific target noun in a given frame). A list
of these complex interactions can be seen in figure
3.

These 13 features were then converted into
embeddings to be used as inputs in the DNN
via the following process. The strings extracted
from the dependency parsed, raw text sentence
were first lemmatized, then converted from strings
into numeric representations in Tensorflow us-
ing the tf.contrib.layers sparse column with hash
bucket function. The interactions indicated in 8-
13 in the prior paragraph were defined using the
tf.contrib.layers crossed column function, return-
ing a numeric representation of the interaction. Fi-
nally, these numeric representations for all of the
features described above were then converted into
an embedding layer in order to represent the con-
text of the features as they appeared per each sen-
tence that they extracted from. This was done us-

ing the tf.contrib.layers embedding column func-
tion, and the number of dimensions for each em-
bedding layer was set uniformly at 13 dimensions.

4.2 Feed Forward DNN Network
Architecture

These embedding layers were then used as the
inputs into the DNN. In order to quickly proto-
type the model, I used the tf.contrib.learn library
in Tensorflow. The activation function in the net-
work was set to a relu function (tf.nn.relu). The
network included a single, fully connected hid-
den layer, with 77 hidden units which were ran-
domly initialized during training. I implemented a
dropout rate of .4 during training to prevent over-
fitting. Information from the hidden layer was
passed to a Softmax layer, and then passed to an
output layer for the 77 labels in the train and test
data. The reason behind using a single hidden
layer was in part because the model training was
initially done on a single MacBook Air, and so the
model needed to be sufficiently small to train effi-
ciently on that computer. The network was trained
for 500 epochs, or until the model reached a train-
ing loss less than .006 after the 498th epoch. The
early cut-off was decided upon after having run
the model 20 times, and having discovered that
accuracy was improved by approximately 1.2% if
training was cut off immediately after reaching a
loss less than .006. The full network architecture
can be seen in figure 4.

4.3 Accuracy and Evaluation

The DNN architecture as described accurately pre-
dicted the source domain label from the LCC
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Figure 3: Diagram of the interactions as derived from the previous dependency parsed inputs.

Figure 4: Diagram of the full DNN architecture from input features to output layer.

dataset 80.4% of the time, with a testing loss value
of 1.51. I compared the output of the feedforward
network to a similar DNN build without the inter-
actions from figure 3 (essentially, only using the
extracted argument structure as seen in figure 2). I
then also compared the DNN architecture with the
interactions in figure 3, to an LSTM neural net-
work without those same constructional features.
The results for the highest and lowest accuracy in
a set of five test runs for each of these networks
are compared in figure 5.

5 Discussion

The results reported indicates that the addition of
construction grammatical relations to the feature
set used by deep learning algorithms significantly
increases the accuracy of metaphoric source do-
main prediction tasks.

Whilst the inclusion of the lexical units from the
dependency parsed sentence are important to build
sufficient context for the DNN classifier, the inter-
actions as seen in Figure 3 provide the real predic-
tive power of this system by approximating the re-
lationship between the target domain referent and
the interactions of items in the argument-structure
of the construction. While we can take for granted
from work in both VerbNet and FrameNet (Verb-
Net: Kipper, Korhonen, Ryant & Palmer 2008;
FrameNet: Fillmore et al. 2001; Fillmore, John-
son, & Petruck 2002) proving that the verb is a
strong cue for the semantic frame, a stronger pre-
dictor for the metaphoric source domain is the
interaction of the verb with the arguments in its
argument-structure.

In theory, the pipeline from dependencies, to
usage-based constructional features, to embed-
dings for input into the DNN described, would
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Network Architecture Lowest acc Highest acc
Feed Forward DNN without constructional cues as inputs 77.6% 78.9%
LSTM without constructional cues as inputs 72.1% 73.0%
Feed Forward DNN with constructional cues as inputs 79.2% 80.4%

Figure 5: Highest and lowest accuracy for the three network builds.

appear to assume that the utterance being ana-
lyzed has already been identified as metaphoric.
In practice, by focusing on the relationship of
the target domain referent to a small set of inter-
actions (representing a construction’s argument-
structure), one could feasibly use a known set of
target domain referents in order to identify the
source domains that they are mapped to, skip-
ping entirely the need to identify an example as
metaphoric. Think of it like this: if a researcher
is interested in the kinds of metaphors used to talk
about ”poverty” in a text, a simple query coupled
with the DNN described can find and accurately
predict possible source domain labels for all ut-
terances in which ”poverty” is used. Coupling
the DNN here with a system designed to iden-
tify metaphors or even target domain referents in
a text, however, would be ideal, and would greatly
add to the described DNN’s power and utility as a
predictive tool.

An additional confound limiting the final ac-
curacy in this experiment was the wide range of
conceptual metaphor source domain annotations
given by annotators per each utterance in the LCC
dataset. Despite it being an excellent resource for
researchers interested in metaphor source domain
interpretation due to its CMSource annotations,
the average inter-annotator agreement for source
domain mappings in the corpus was on average
approximately 54.4% for the dataset, as calculated
by averaging the Cohen-Kappa scores for annota-
tors. While annotators agreed about the related-
ness of the source and target domain referents dur-
ing the annotation process (agreement for ”Source
Relatedness” and ”Target Relatedness” in the LCC
dataset were calculated as of 2014 as 95.1% and
94.3% respectively (Mohler et al. 2014)), several
of the source domain mappings provided were dif-
ferent from one another in incredibly subtle, but
crucial, ways. Take ”LMInstance” 22920 from the
dataset for example–”This prison is the prison of
poverty.” Where as one of the annotators labeled
the sentence as evoking ”CRIME” as the source
domain mapping, another indicated that it evoked

the thematically related concept of ”CONFINE-
MENT” as the source domain. Neither label in
this instance appears, at least on first glance, to be
intrinsically better than the other.

Adding to this, I actively avoided using exam-
ples in which MWEs were identified as the tar-
get domain referent–a decision which limited the
number of examples used, and thus likely lim-
ited the number of times that a specific argument-
structure construction in the dataset showed up
alongside of an accompanying source-domain la-
bel.

In all, the current experiment serves as an ex-
ample not only of the usefulness of construction
grammar to NLP tasks, but of the utility of a cog-
nitive theory of language understanding to compu-
tational linguistic inquiry.

6 Acknowledgements

I would like to thank the anonymous reviewers for
their excellent feedback, and Michael Mohler of
the Language Computer Corporation for the cor-
pus used in this paper. I would also like to thank
the wonderful faculty and students at the Univer-
sity of Colorado, Boulder, for their support.

References
Danushka Bollegala and Ekaterina Shutova. 2013.

Metaphor interpretation using paraphrases extracted
from the web. PloS ONE 8(9):e74304.

Danqi Chen and Christopher D Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of EMNLP 2014. Associa-
tion for Computational Linguistics, pages 740–750.

Ellen Dodge, Jisup Hong, and Elise Stickles. 2015.
Metanet: Deep semantic automatic metaphor anal-
ysis. In Proceedings of the Third Workshop on
Metaphor in NLP. Association for Computational
Linguistics, pages 40–49.

John Feldman and S. Narayanan. 2004. Embodied
meaning in a neural theory of language. Brain and
language 89(2):385–392.

Charles Fillmore, Christopher Johnson, and Miriam
Petruck. 2002. Background to framenet. Interna-
tional Journal of Lexicography 16(3):235–250.

107



Charles Fillmore et al. 2001. Building a large lexical
databank which provides deep semantics. In Ben-
jamin Tsou and Olivia Kwong, editors, Proceedings
of the 15th Pacific Asia Conference on Language,
Information and Computation. Pacific Asia Confer-
ence on Language, Information, and Computation,
pages 3–26.

Dedre Gentner et al. 2002. As time goes by: Evidence
for two systems in processing spacetime metaphors.
Language and Cognitive Processes 17(5):537–565.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic
labeling of semantic roles. Linguistics 28(3):245–
288.

Adele Goldberg. 2006. Constructions at Work: The
Nature of Generalization in Language. Oxford Uni-
versity Press, Inc.

Stefan Gries. 2006. Corpus-based methods and cog-
nitive semantics: The many senses of to run. In
Stefan Th. Gries and Anatol Stefanowitsch, editors,
Corpora in Cognitive Linguistics: Corpus-Based
Approaches to Syntax and Lexis, Walter de Gruyter,
pages 57–99.

Jisup Hong. 2016. Automatic metaphor detection us-
ing constructions and frames. Constructions and
Frames 8(2):295–322.

Karin Kipper, Anna Korhonen, Neville Ryant, and
Martha Palmer. 2008. A large-scale classification of
english verbs. Language Resources and Evaluation
Journal 42(1):21–40.

George Lakoff. 1990. Women, Fire, and Dangerous
Things. The University of Chicago Press.

George Lakoff and Mark Johnson. 1980. Metaphors
We Live By. The University of Chicago Press.

R. W. Landacker. 2002. Concept, image and symbol:
cognitive basis of grammar. Mouton de Gruyter.

R. W. Langacker. 1997. Constituency, dependency, and
conceptual grouping. Cognitive Linguistics 8(1):1–
32.

Dekang Lin. 1998. Automatic retrieval and clustering
of similar words. In Proceedings of the 17th In-
ternational Conference on Computational Linguis-
tics. Association for Computational Linguistics, vol-
ume 2, pages 768–774.

Z.J. Mason. 2004. Cormet: A computational, corpus-
based conventional metaphor extraction system.
Computational Linguistics 30(1):23–44.

Yuichiroh Matsubayashi et al. 2014. Generalization of
semantic roles in automatic semantic role labeling.
Journal of Natural Language Processing 21(4):841–
875.

Matthew McGlone. 1998. Back (or forward?) to the
future: The role of perspective in temporal language
comprehension. Journal of Experimental Psychol-
ogy Learning Memory and Cognition 24(5):1211–
1223.

Laura Michaelis. 2012. Making the case for construc-
tion grammar. In Hans Boas and Ivan Sag, editors,
Sign-Based Construction Grammar, Center for the
Study of Language and Information, pages 31–67.

Michael Mohler et al. 2013. Semantic signatures
for example-based linguistic metaphor detection.
In Ekaterina Shutova, Beata Beigman Klebanov,
Joel Tetreault, and Zornitsa Kozareva, editors, First
Workshop on Metaphor in NLP. Association for
Computational Linguistics, pages 27–35.

Michael Mohler et al. 2014. A novel distributional ap-
proach to multilingual conceptual metaphor recogni-
tion. In Proceedings of COLING 2014, the 25th In-
ternational Conference on Computational Linguis-
tics: Technical Papers. Association for Computa-
tional Linguistics, pages 1752–1763.

Michael Mohler et al. 2016. Introducing the LCC
metaphor datasets. In Proceedings of the Language
Resources and Evaluation Conference 2016. Eu-
ropean Language Resources Association (ELRA),
pages 4221–4227.

James Pustejovsky. 2011. Coercion in a general the-
ory of argument selection. Linguistics 49(6):1401–
1431.

Ivan Sag. 2012. Sign-based construction grammar: An
informal synopsis. In Hans Boas and Ivan Sag, edi-
tors, Sign-Based Construction Grammar, Center for
the Study of Language and Information, pages 61–
197.

Ekaterina Shutova. 2010. Automatic metaphor inter-
pretation as a paraphrasing task. In Ben Hachey
and Miles Osborne, editors, Human Language Tech-
nologies: The 2010 Annual Conference of the North
American Chapter of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics, pages 1029–1037.

Elise Stickles et al. 2016. Formalizing contemporary
conceptual metaphor theory: A structured repository
for metaphor analysis. Constructions and Frames
8:166–213.

Chang Su et al. 2017. Automatic detection and inter-
pretation of nominal metaphor based on the theory
of meaning. Neurocomputing 219:300–311.

Karen Sullivan. 2007. Metaphoric extension and in-
vited inferencing in semantic change. Culture, Lan-
guage and Representation, Special Issue: Metaphor
and Discourse pages 257–274.

Karen Sullivan. 2009. Grammatical constructions in
metaphoric language. In Barbara Lewandowska-
Tomaszcyk and Katerina Dziwirek, editors, Studies
in Corpus Linguistics, John Benjamins, pages 1–24.

108



Karen Sullivan. 2013. Frames and Constructions in
Metaphoric Language. John Benjamins.

Hong-Lin Wang et al. 2009. Semantic role labeling
based on dependency relationship. Computer Engi-
neering 35(15):82–84.

109



Proceedings of the Workshop on Figurative Language Processing, pages 110–114
New Orleans, Louisiana, June 6, 2018. c©2018 Association for Computational Linguistics

Neural Metaphor Detecting with CNN-LSTM Model

Chuhan Wu1, Fangzhao Wu2, Yubo Chen1, Sixing Wu1,
Zhigang Yuan1 and Yongfeng Huang1

1Tsinghua National Laboratory for Information Science and Technology,
Department of Electronic Engineering, Tsinghua University, Beijing 100084

2Microsoft Research Asia
{wuch15,ybch14,wu-sx15,yuanzg14,yfhuang}@mails.tsinghua.edu.cn

wufangzhao@gmail.com

Abstract

Metaphors are figurative languages widely
used in daily life and literatures. It’s an im-
portant task to detect the metaphors evoked
by texts. Thus, the metaphor shared task is
aimed to extract metaphors from plain texts at
word level. We propose to use a CNN-LSTM
model for this task. Our model combines CNN
and LSTM layers to utilize both local and
long-range contextual information for identi-
fying metaphorical information. In addition,
we compare the performance of the softmax
classifier and conditional random field (CRF)
for sequential labeling in this task. We also
incorporated some additional features such as
part of speech (POS) tags and word cluster to
improve the performance of model. Our best
model achieved 65.06% F-score in the all POS
testing subtask and 67.15% in the verbs testing
subtask.

1 Introduction

A metaphor is a type of conceptual mapping to
represent one thing as another (Lakofi and John-
son, 1980). They are widely used in verbal and
written languages to convey rich linguistic and
sentiment information (Steen et al., 2010). De-
tecting the metaphors in texts are important to
mine the semantic and sentiment information bet-
ter, which is beneficial to many applications such
as machine translation, dialog systems and senti-
ment analysis (Tsvetkov et al., 2014).

However, detecting metaphors is a challenging
task. The semantic differences between metaphor-
ical and non-metaphorical texts are often subtle.
For example, the sentence Her hair is a white
snowflake is metaphorical, while the sentence Her
hair is white doesn’t contain metaphors. In ad-
dition, detecting metaphors can be influenced by
subjective factors, and may need specific domain
knowledge (Tsvetkov et al., 2014).

Existing computational approaches to detect
metaphors are mainly based on lexicons (Mohler
et al., 2013; Dodge et al., 2015) and supervised
methods (Turney et al., 2011; Heintz et al., 2013;
Klebanov et al., 2014, 2015, 2016). Lexicon-
based methods are free from data annotation, but
they are unable to detect novel metaphorical us-
ages and capture the contextual information. Su-
pervised methods such as logistic regression clas-
sifier (Klebanov et al., 2014) can capture richer
metaphor information. However, they need so-
phisticated hand-crafted features.

To improve the collective techniques on detect-
ing metaphors, the metaphor shared task1 aims
to detect both metaphorical verbs and metaphors
with other POS. Given a sentence and their words
with specific POS tags, systems are required to de-
termine whether each word is a metaphor. We pro-
pose a CNN-LSTM model with CRF or weighted
softmax classifier to address this task. Our model
can take advantage of both long-range and local
information by utilizing both LSTM and CNN lay-
ers. We propose to use a weighted softmax clas-
sifier to predict the label sequence of sentence,
which outperforms the CRF method. We apply a
model ensemble strategy to help our model predict
more accurately. In addition, we incorporated ad-
ditional features such as POS tags and word cluster
features to further improve our model. Our best
model achieved 65.06% F-score on the test data
in the all POS testing subtask, and 67.15% in the
verbs testing subtask.

2 CNN-LSTM Model with CRF or
Softmax Inference

We model this task as a sequential labeling task
and the input is a sentence with a sequence of
words. The framework of our CNN-LSTM model

1https://competitions.codalab.org/competitions/17805
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Figure 1: The architecture of our method. The final
metaphor labels will be predicted by a CRF or softmax
inference layer.

is presented in Figure 1. We will introduce the de-
tails of modules in our model from bottom to top.

We follow the approach proposed by Klebanov
et al. (2016) to use the lemmatizing strategy. The
first module in our model is a lemmatizer. This
module is used to lemmatize the verbs in texts via
a dictionary. The input is a text with a sequence
of word, and output is the text with lemmatized
words. Since verbs with different forms can share
the same lemmas, using the lemmatized verbs in
texts can simplify the semantic information and re-
duce the number of out-of-vocabulary words. We
use the NLTK package (Bird et al., 2009) to trans-
form the verbs into their lemmas.

The second module is an embedding layer. It
will convert sequences of words in sentences into
sequences of low-dimension dense vectors via a
lookup table. The embedding weights of words
are obtained by the pre-trained word2vec model
and they will be fine-tuned during model train-
ing. POS tags are useful in metaphor detecting
task (Klebanov et al., 2014). Therefore, we also
incorporate the one-hot encoded POS tags as addi-
tional features into our neural model, and concate-

nated them with the word embeddings. We use the
Stanford parser2 tool to obtain the POS tag of each
word in texts. Since similar words may have simi-
lar metaphor information, we also incorporate the
word cluster features. They are obtained by clus-
tering the word embedding vectors via k-means
method. They are also one-hot encoded and com-
bined with the word embeddings as the final word
representations to input the neural network.

The third module in our model is a convolu-
tional neural networks (CNN) to extract local con-
textual information. Motivated by the multiple
kernels CNN used for sequential labeling (Chen
et al., 2016), we also apply such CNN with differ-
ent window sizes to this task.

The fourth module in our model is a bidirec-
tional long short-term memory (Bi-LSTM) layer.
This layer is used to extract the long-range infor-
mation from the CNN feature maps. It will com-
bine the previous and future context information
to output the hidden state hi at time step i.

The last module is an inference layer. We im-
plement it with two alternatives and compare their
performance via experiments.
CRF: We use CRF to predict the metaphor labels
of each words. Given the matrix of hidden rep-
resentations h = [h1,h2, ...,hN ], the conditional
probability of the output sequence of label y is for-
mulated as follows:

p(y|h; θ) =

N∏
i=1

ψ(hi, yi, yi−1)

∑
y′∈Y(s)

N∏
i=1

ψ(hi, y′i, y
′
i−1)

, (1)

where Y(s) is the set of all possible label se-
quences, θ is the parameters, and ψ(hi, yi, yi−1)
is the potential function. In our model, we use a
simple potential function which is formulated as:

ψ(hi, yi, yi−1) = exp(yTi W
Thi + yTi−1Tyi),

(2)

where W and T represent the linear transform pa-
rameters. The CRF loss function we use is the
negative log-likelihood over all training samples,
which is formulated as follows:

LCRF = −
∑

s∈S
log(p(ys|hs; θ)), (3)

where S is the training set, and hs and ys are the
hidden states and label sequence of sentence s.

2https://nlp.stanford.edu/software/lex-parser.shtml
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Softmax: We use a dense layer with softmax acti-
vation function to predict the metaphor label se-
quences. Motivated by the cost-sensitive cross-
entropy (Santos-Rodrı́guez et al., 2009; Yang
et al., 2014; Muller et al., 2014), the loss function
of our model is formulated as follows:

LSoftmax = −
∑

s∈S

N∑

i=1

wyiyi log(ŷi), (4)

yi is the metaphor label of ith word, ŷi is the
predicted score, and wyi is the loss weight of
metaphor label yi. Since there are much more
non-metaphorical words than metaphors, we as-
sign larger loss weight to the positive class. Since
the prediction is generated from the lemmatized
texts, optimizing the loss in Eq. (4) can tune all pa-
rameters in the embedding, CNN and LSTM lay-
ers.

Ensemble strategy is usually useful to improve
the performance of neural network (Wu et al.,
2017). We train our model for 20 times on ran-
domly selected 90% training data. For CRF-based
model, the prediction of each token will be ob-
tained by voting. For softmax-based model, the
output probability is the averaged logits of all
model predictions.

3 Experiment

3.1 Dataset and Experimental Settings
The dataset for this task is the VU Amsterdam
Metaphor Corpus (VUA)3. There are 12,122 sen-
tences for training, and 4,080 sentences for test.
We tune the hyper-parameters of our model via
cross validation.

The pre-trained word embeddings are the 300-
dim Google embedding4 released by Mikolov et
al. (2013). They were trained by the skip-gram
model on about 100-billion words on Google
News. These word embedding were fine-tuned
during model training.

The hyper-parameters in our model were tuned
via cross-validation. The dimension of Bi-LSTM
hidden states is 200, the window sizes of CNN fil-
ters are 3, 5, 7 and 9 respectively. The number
of CNN filters is 100. We set the dropout rate to
0.2 for each layer. The loss weights wp and wn of
metaphors and non-metaphorical words are set to

3http://ota.ahds.ac.uk/headers/2541.xml
4https://code.google.com/archive/p/word2vec/

2.0 and 1.0 respectively. The class number of word
cluster is set 50. The batch size is 50, and the max
training epoch is set to 15. The optimizer we use
is RMSProp in our experiment. The performance
of both all POS testing and verbs testing subtasks
is evaluated by precision, recall and F-score as a
standard binary classification task.

3.2 Performance Evaluation

We compare the performance of the variants
of our model and several baseline methods.
The methods to be compared include: 1)
CNN+CRF, using CNN to extract local in-
formation and CRF for word-level metaphor
detection; 2) LSTM+CRF, using Bi-LSTM to
obtain the text representation and CRF inference
layer; 3) CNN+LSTM+CRF, using the com-
bination of LSTM, CNN and CRF inference
layer; 4) CNN+LSTM+CRF+ensemble, adding
ensemble strategy to the CNN+LSTM+CRF
model; 5) CNN+Softmax, using CNN and
weighted softmax classifier for sequen-
tial labeling; 6) LSTM+Softmax, using
Bi-LSTM and softmax inference layer; 7)
CNN+LSTM+Softmax w/o lemma, using the com-
bination of LSTM, CNN and softmax inference
layer, but without the lemmatizing process; 8)
CNN+LSTM+Softmax, using the combination
of LSTM, CNN and softmax inference layer;
9) CNN+LSTM+Softmax+ensemble, adding
ensemble strategy to the CNN+LSTM+Softmax
model. Our official submissions are obtained by
model 3), 4), 8), 9) and the different combinations
of additional features, which will be discussed in
the next subsection.

According to Table 1, we have several obser-
vations: (1) The combination of LSTM and CNN
outperforms the single CNN and LSTM in both
subtasks. It proves that the combination of CNN
and LSTM can help to mine both local and long-
distance information from texts, which is benefi-
cial for detecting the metaphors in texts. (2) Com-
paring the modeling using CRF and softmax layer,
best precision score can be achieved by using CRF.
But the recall and F-score are significantly better
when using weighted softmax classifier. This is
probably because the numbers of metaphors are
usually less than normal non-metaphorical words.
The metaphors can be identified better when they
are assigned larger loss weights. (3) Improve-
ment can be brought by the lemmatizing process
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Model
Verbs Testing All POS Testing

P R F P R F
CNN+CRF* .628 .611 .619 .605 .589 .597
LSTM+CRF* .633 .609 .621 .604 .586 .595

CNN+LSTM+CRF .644 .615 .629 .617 .597 .607
CNN+LSTM+CRF+ensemble .664 .626 .645 .610 .627 .619

CNN+Softmax* .575 .716 .638 .585 .644 .613
LSTM+Softmax* .588 .710 .643 .591 .659 .623

CNN+LSTM+Softmax w/o lemma* .585 .702 .638 .601 .669 .633
CNN+LSTM+Softmax .593 .734 .656 .611 .677 .643

CNN+LSTM+Softmax+ensemble .600 .763 .671 .608 .700 .651

Table 1: The performance of different methods. *The results of these baseline methods were not submitted due to
the limited submission time. We evaluate their performance using the labels of testing data after the competition.

in both tasks. It may be because the lemmatized
verbal metaphors are more simple, and there will
be fewer out-of-vocabulary words in the embed-
ding look-up table. (4) the ensenmble strategy can
also help our model identify metaphors more ac-
curately. It validates that using a series of models
to predict can reduce the data noise and improve
the generalization ability of our model.

3.3 Influence of Additional Features

Features
Verbs Testing All POS Testing

P R F P R F
None .584 .717 .644 .583 .665 .621
+POS .588 .729 .651 .606 .662 .633

+cluster .589 .723 .649 .606 .665 .634
+POS+cluster .593 .734 .656 .611 .677 .643

Table 2: The influence of additional features on our
best-performance model.

The influence of the POS tags and word clus-
ters is shown in Table 2. Here we use the
CNN+LSTM+Softmax model to investigate the in-
fluence of features. The results show that both
POS tags and word cluster features can help im-
prove the performance of detecting metaphors. It
proves that POS tags contain useful information
to identify the metaphors, since metaphors usually
have specific POS tags and they can be easier to
be identified by incorporating POS information.
Thus, combing the POS tag features is beneficial.
Incorporating the word cluster features is also use-
ful to improve the performance. It may be because
words with similar semantic information have
some inherent relatedness and they share similar
metaphor information. Our model can identify
such information better if word cluster features are
incorporated. In addition, it can also enrich the in-

formation of out-of-vocabulary words, which can
improve the generalization ability of our model.
Thus, incorporating the word cluster features is
also beneficial to detect metaphors.

3.4 Influence of Loss Weight
Since the metaphors are less frequent than normal
words, the selection of loss weight is important.
We investigate the influence of the loss weight wp

of positive label on the softmax classifier, which is
illustrated in Figure 2. The results indicate that us-
ing larger wp can improve the recall score, but the
precision will be lower. It proves that controlling
the loss weights can improve the F-score perfor-
mance in this unbalanced classification task. To
achieve a better performance, we choose wp = 2
since the F-score performance is best as shown in
this figure.
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Figure 2: The validation performance of our model us-
ing different wp.

4 Conclusion

In this paper, we introduce our CNN-LSTM model
with CRF or softmax layer for the metaphor
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shared task to detect metaphors in texts. We
combine CNN and LSTM to capture both local
and long-distance contextual information to rep-
resent the input sentences with lemmatizing pre-
processing. We compare the performance of us-
ing CRF and softmax classifier with weighted loss.
In addition, we incorporate additional features in-
cluding POS tags and word cluster features, and
use the ensemble strategy to improve the perfor-
mance. The experimental results validate the ef-
fectiveness of our model on detecting metaphors.
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Abstract
The contrast between the contextual and gen-
eral meaning of a word serves as an important
clue for detecting its metaphoricity. In this pa-
per, we present a deep neural architecture for
metaphor detection which exploits this con-
trast. Additionally, we also use cost-sensitive
learning by re-weighting examples, and base-
line features like concreteness ratings, POS
and WordNet-based features. The best per-
forming system of ours achieves an overall F1
score of 0.570 on All POS category and 0.605
on the Verbs category at the Metaphor Shared
Task 2018.

1 Introduction

Lakoff (1993) defines a metaphorical expression
as a linguistic expression which is the surface real-
ization of a cross-domain mapping in a conceptual
system. On one hand, metaphors play a signifi-
cant role in making a language more creative. On
the other, they also make language understanding
difficult for artificial systems.

Metaphor Shared Task 2018 (Leong et al.,
2018) aims to explore various approaches for
word-level metaphor detection in sentences. The
task is to predict whether the target word in the
given sentence is metaphoric or not. There are
two categories for this shared task. The first one,
All POS, tests the models for content words from
all types of POS among nouns, adjectives, adverbs
and verbs, while the second category, Verbs, tests
the models only for verbs.

2 Related Work

Various attempts have been made for metaphor
detection in recent years, but only a few of
them utilize the power of distributed represen-
tation of words (Bengio et al., 2003) combined
with deep neural networks. Rei et al. (2017) pro-
posed and evaluated the first deep neural network

for metaphor identification on two datasets, Saif
M. Mohammad and Turney (2016) and Tsvetkov
et al. (2014). Do Dinh and Gurevych (2016) ex-
plore MLP classifier with trainable word embed-
dings on VUAMC corpus and achieve comparable
results to other systems which use corpus-based or
based on handcrafted features.

Other attempts which employ supervised
learning approaches for metaphor detection
on VUAMC corpus involve the use of logistic
classifier (Beigman Klebanov et al., 2014) on a
set of features, which include unigrams, topic
models, POS, and concreteness features. Later,
Beigman Klebanov et al. (2015) showed a sig-
nificant improvement by re-weighting examples
for cost sensitive learning and experimenting with
concreteness information. Gargett and Barnden
(2015) focused on utilizing the interactions
between concreteness, imageability, and affective
meaning for metaphor detection. Rai et al. (2016)
explored Conditional Random Fields with syntac-
tic, conceptual, affective, and contextual (word
embeddings) features. Beigman Klebanov et al.
(2016) experimented with unigrams, WordNet
(Miller, 1995) and VerbNet (Schuler, 2006) based
features for detection of verb metaphors.

3 Data

The dataset provided for this task is VU Ams-
terdam Metaphor Corpus (VUAMC). VUAMC is
extracted from the British National Corpus (BNC
Baby) and is annotated using MIPVU Procedure
(Steen, 2010). It contains examples from four gen-
res of text: Academic, News, Fiction and Conver-
sation.

Table 1 and Table 2 summarize the statistics of
the data for this shared task.
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Content
Tokens

%
Metaphors

Training Set 72611 15.2%
Test Set 22196 17.9%

Table 1: Summary of data statistics for All POS cat-
egory (Content Tokens: nouns, adjectives, adverbs and
verbs)

Content
Tokens

%
Metaphors

Training Set 17240 27.8%
Test Set 5873 29.9%

Table 2: Summary of data statistics for Verbs category
(Content Tokens: verbs)

4 System Description

This section describes our proposed system for
this shared task, which we call Di-LSTM Contrast
(illustrated in Figure 11) and is divided into three
modules trained in an end to end setting. The input
to the model is given as pre-trained word embed-
dings. An encoder uses these word embeddings
to encode the context of the sentence with respect
to the target word using forward and backward
LSTMs (Hochreiter and Schmidhuber, 1997). The
output from the encoder is fed to the feature selec-
tion module (section 4.2) for generating contrast-
based features for the token word. The classifier
module (section 4.3) then predicts the probabili-
ties for the target word being metaphoric.

4.1 Context Encoder
The context encoder is inspired by Bidirec-
tional LSTM (BLSTM, Graves and Schmidhu-
ber (2005)). Given an input sentence S =
{w1, w2, ...wn}, with n as the number of tokens
in a sentence and i as the index of target token,
we make two sets A = {w1, w2, ...wi} and B =
{wn, wn−1, ...wi} and feed them into forward and
backward LSTMs respectively. The motivation for
this split is to produce the context with respect to
the target word (wi).

hf = LSTMf (A)

hb = LSTMb(B)

The hidden states hf ∈ IRd and hb ∈ IRd, so
obtained from forward and backward LSTMs are

1Figure generated using https://www.draw.io/

Figure 1: The Architecture of DiLSTM Contrast Model

combined by concatenation or averaging, followed
by a fully connected layer to produce v ∈ IRd, the
context encoding.

h = [hf ;hb]

v = sigmoid(W(1)h+ b(1))

W(1) ∈ IR(d×2d) is the transformation weight ma-
trix, and b(1) ∈ IRd is bias.

4.2 Feature Selection
A combination of the context encoding (v) and the
word vector of the target word u = wi is then fed
to the classification module as

g = [u; (u− v)]

The intuition behind this feature set g ∈ IR2d is
that the properties of the word and the difference
between the general and contextual meanings play
a major role in determining the metaphoricity of a
word (Steen, 2010).

4.3 Classification
The vector g from the previous module is trans-
formed to a hidden layer and then to the output
layer to obtain the softmax probabilities (p ∈ IR2)
for metaphoricity.

h1 = sigmoid(W(2)g + b(2))
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Model
Variants

Val. Test All
POS

Test
Verbs

DC (avg) 0.541 0.538 0.572
DC 0.554 0.542 0.584
DC +R 0.570 0.562 0.590
DC +RL 0.575 0.570 0.605
Task Baseline - 0.589 0.600

Table 3: Comparision of F1 scores on Validation, All POS (Test) and Verbs (Test) scores between the various
approaches. DC = DiLSTM Contrast with concatenation, DC (avg) = DiLSTM Contrast with averaging, R = Re-
weighting of Examples, L = Additional Linguistic Features (Baseline), Task Baseline = The baseline system used
by the task organizers

p = softmax(W(4)h1 + b(4))

W(2) ∈ IR(m×2d),W(4) ∈ IR(2×m) are the weight
matrices and b(2) ∈ IRm, b(4) ∈ IR2 are the biases.

To enable the use of some additional binary
baseline features (section 6.3), we modify the
equations as

h1 = sigmoid(W(2)g + b(2))

l2 =W(3)gbaseline + b(3)

l1 =W(4)h1 + b(4)

p = softmax(α l1 + (1− α) l2)
W(2) ∈ IR(m×2d),W(3) ∈ IR(2×k),W(4) ∈
IR(2×m) are the corresponding weight matrices,
b(2) ∈ IRm, b(3) ∈ IR2, b(4) ∈ IR2 are the cor-
responding biases, gbaseline ∈ IRk is the baseline
feature vector and α is a trainable variable which
determines the weights to be given to the baseline
features and the contrast features.

5 Implementation Details

We split the provided training data in 90:10 ra-
tio as training set and development set. We use
this development set to tune our hyperparameters
for the different variations of our model. We use
300-dimensional GloVe vectors (Pennington et al.,
2014) trained on 6B Common Crawl corpus as
word embeddings, setting the embeddings of out-
of-vocabulary words to zero. To prevent overfit-
ting on the training set, we use dropout regular-
ization (Srivastava et al., 2014) and early stopping
(Yao et al., 2007). We set the minibatch size to 50
examples and we zero pad the A and B split sets
(as defined in section 4.1 ). More details on the
hyperparameter settings can be found in the table
4.

Hyperparameter Value
GloVe dimension (d+) 300
Hidden dimension (m+) 200
Dropout 0.15
Initial learning rate 0.3
# epochs 30
Early stopping∗ 2

Table 4: Hyperparameter settings for out best perform-
ing model; +: d, m as indicated in section 4; *: stop
training after loss divergence for 2 consecutive itera-
tions .

We use TensorFlow (Abadi et al., 2015) library
in Python2 to implement our model. AdaGrad
(Duchi et al., 2011) optimizer is used for optimiza-
tion of the model.

We train our models only on the All POS cate-
gory training set, and evaluate it on the test sets of
both All POS and Verb categories, since the train-
ing set for all the verbs is a subset of the ALL POS
category .

6 Experiments and Evaluation

In this section, we present evaluation results for
our model. Table 3 shows their comparison on the
test set using F1 score as the metric for evalua-
tion. Experimental results indicate that our model
generalizes well on the tests for both the task cat-
egories and the performance trends on tests are
consistent with those on validation. Table 3 also
shows the performance comparison of the vari-
ants of our model with the baseline results for the
shares task provided by the organizers. Our best
performing model surpasses the baseline results
on the Verbs category, while it achieves a lesser
but comparable performance with the baseline on

2https://www.python.org/
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Text Genre All POS Verbs
P R F P R F

Academic 0.641 0.683 0.661 0.736 0.753 0.744
Conversation 0.346 0.724 0.469 0.308 0.729 0.433
Fiction 0.413 0.596 0.488 0.416 0.665 0.512
News 0.566 0.591 0.578 0.643 0.665 0.654
Average 0.491 0.648 0.549 0.525 0.703 0.585
Overall 0.511 0.644 0.570 0.529 0.708 0.605

Table 5: Analysis of our best performing system on the Test Sets (both categories). P = Precision. R = Recall, F
= F1 Score

All POS category.

6.1 Experiment with the Encoder

We experiment with the combining function of
the hidden states of forward and backward LSTM
(in section 4.1) using both averaging and concate-
nation. The validation results on both the cat-
egories show that concatenation performs much
better than averaging. This observation is sup-
ported by the fact that concatenation followed by
a fully connected layer allows more parameterized
interactions between the two states than averaging.

6.2 Re-weighting of Training Examples

We employ cost-sensitive learning (Yang et al.,
2014) by re-weighting examples for our model.
This brings an appreciable improvement in the
performance of our model, 1.6% F1 gain on Val-
idation, 2.0% on All POS category (Test) and
0.6% on verb category (Test). This increment in
the performance agrees with the previous works
on metaphor detection (Beigman Klebanov et al.,
2015, 2016) which show the effectiveness of re-
weighting training examples on VUAMC corpus.

6.3 Additional Baseline Features

The use of baseline features like WordNet (Miller,
1995) features, part-of-speech tags and Concrete-
ness features (Brysbaert et al., 2014) in our model
additionally improves the F1 score by 0.8% on the
All POS category (Test) and 1.5% on verb cate-
gory (Test), though it shows a relatively lesser im-
provement on the Validation set.

To obtain the POS-tag-based features, we en-
code the POS tag of the target tokens into a
one-hot vector. By Wordnet features, we re-
fer to one-hot encoding of the 26 class clas-
sification of the words based on their gen-
eral meaning. The concreteness features repre-

sent the concatenation of the one hot represen-
tation of concreteness-mean-binning-BiasDown,
and concreteness-mean-binning-BiasUp features
(as indicated in Beigman Klebanov et al. (2015,
2016)).

7 Analysis

After the completion of the shared task, we down-
loaded the publicly available labels of the test data
to analyze the results of our best performing model
across all the four genres of text (section 3) on both
the categories (as shown in the Table 5). Our sys-
tem performs comparatively better on academic
and news texts than on conversation and fiction
texts.

8 Conclusion and Future Work

We described a deep neural architecture Di-LSTM
Contrast Network for metaphor detection, which
we submitted for Metaphor Shared Task 2018
(Leong et al., 2018). We showed that our system
achieves appreciable performance solely by using
the contrast features, generated by our model us-
ing pre-trained word embeddings. Additionally,
our model gets a significant performance boost
from the use of extra baseline features, and re-
weighting of examples.

For our future work, we plan to experiment with
CNNs along with LSTM for capturing the context
representation of the sentence in light of the target
word. Another interesting idea is the use of at-
tention mechanism (Mnih et al., 2014), which has
proven to be effective in many NLP tasks.
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Abstract 

We present an algorithm for detecting 

metaphor in sentences which was used in 

Shared Task on Metaphor Detection by 

First Workshop on Figurative Language 

Processing. The algorithm is based on dif-

ferent features and Conditional Random 

Fields. 

1 Introduction 

In this paper, we present a system which predicts 

metaphoricity of the word depending on its neigh-

bors. We used VU Amsterdam corpus (Steen et 

al., 2010) given by competition’s organizers, 10 

features which were also given by competition’s 

organizers and algorithm of Conditional Random 

Fields for predictions that are depending on previ-

ous ones.  

2 Related Work 

A lot of papers describe methods for metaphor de-

tection, but the closest in performance is the arti-

cle by Rai et al. (2016). It proposes to use Condi-

tional Random Fields for metaphor detection. The 

authors also use features based on syntax, con-

cepts, affects, and word embeddings from MRC 

Psycholinguistic Database and coherence and 

analogy between words which are taken from 

word embeddings given by Huang et al. (2012). 

Moreover, they use synonymy from WordNet. 

This work is very similar to our due to some 

similar features and the main algorithm which is 

CRF. 

3 Data 

3.1 Dataset 

As a dataset was used VU Amsterdam corpus 

(Steen et al., 2010). It consists of 117 texts divid-

ed into 4 parts (academic, news, fiction, conversa-

tion).  

It was divided into two parts: train and test. The 

model was trained on the train set and evaluated 

on the test set. 

3.2 Features 

Features were given by competition’s organiz-

ers. Set of features consists of: 

 

• Unigrams: All words from the training data 

without any changes; 

• Unigram lemmas: All words from the train-

ing data in their normal form;  

• Part-of-Speech tags: They were generated 

by Stanford POS tagger 3.3.0 (Toutanova et 

al. 2003); 

• Topical LDA: Latent Dirichlet Allocation 

(Blei et al., 2003) for deriving a 100-topic 

model from the NYT corpus years 2003-

2007 (Sandhaus, 2008) for representing 

common topics of public discussions. The 

NYT data was lemmatized using NLTK 

(Bird, 2006) and the model was built using 

the gensim toolkit (R. Řehůřek and P. 

Sojka,  2010); 

• Concreteness: For this feature was used 

Brysbaert et al. (2013) database of con-

creteness ratings for about 40,000 English 

words. The mean ratings, ranging 1-5, are 

binned in 0.25 increments; each bin is used 

as a binary feature; 
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• WordNet: 15 lexical classes of verbs based 

on their general meanings; 

• VerbNet: Classification based on syntactic 

frames of verbs ; 

• Corpus: 150 clusters of verbs using their 

subcategorization frames and the verb’s 

nominal arguments as features for cluster-

ing.  

All of these features were described in Beig-

man Klebanov et al. (2014), Beigman Kleba-

nov et al. (2015) and Beigman Klebanov et al. 

(2016). 

3.3 Algorithm 

 

As an algorithm for classification was used Con-

ditional Random Fields which was described in 

Lafferty et al. (2001). This algorithm depends on 

previous predictions making the future ones and it 

was crucial because metaphoricity of a word in a   

sentence relies on its neighbors. Also, this classi-

fier can work with a big amount of features, so we  

used a lot of them in this work and it was helpful 

for the further results. 

4 Experiments 

We tried different parameters that were provid-

ed in the crfsuite (Okazaki, 2007). There were five 

training algorithms such as lbfgs (gradient de-

scending using the L-BFGS method), l2sgd (sto-

chastic gradient descend with L2 regularization 

term), Averaged Perceptron, Passive Aggressive, 

Adaptive Regularization Of Weight Vector. The 

best training algorithm was lbfgs.  

Moreover, we used a different amount of itera-

tions, and its amount affects the loss because there 

is no limit to the number of iterations in the lbfgs-

algorithm.  

Furthermore, some experiments with regulari-

zation were conducted. Regularization was used 

for reducing the generalization error and it is im-

portant in CRF. For the selection of the most ap-

propriate parameters for regularization, we used  

RandomizedSearchCV from scikit-learn 

(http://scikit-learn.org). 

We used sklearn-crfsuite that is the special 

wrapper of crfsuite written in C for Python 

(https://github.com/TeamHG-Memex/sklearn-

crfsuite) for computing the algorithm. 

As a metric for evaluating the score was taken 

F-score.  

The best F-score had the algorithm with 200 it-

erations, lbfgs-algorithm, c1 regularization and c2 

regularization that equal to 0.1. 

The result obtained with these parameters was 

evaluated using a held-out set from the train set. 

F-score of this model and other experiments are 

presented in table 1 for All-POS track and for 

Verb track. 

 

Parameters F-score for 

all-POS 

F-score for 

Verbs track 

lbfgs,  

200 iterations, 

c1=c2=0.1 

0.8621 0.7417 

lbfgs,  

100 iterations, 

c1=c2=0.1 

0.8593 0.739 

lbfgs, 

50 iterations, 

c1=c2=0.1 

0.8601 0.7333 

lbfgs, 

100 iterations, 

c1=0.2353, 

c2=0.0329, 

0.8586 0.7528 

l2sgd,  

100 iterations,  

c2=0.1 

0.8455 0.6343 

Averaged Per-

ceptron,  

100 iterations 

0.8303 0.7165 

Passive Ag-

gressive,  

100 iterations 

0.8483 0.7327 

Adaptive Reg-

ularization Of 

Weight Vector, 

100 iterations 

0.8459 0.6973 

5 Results 

   As a result, our best-trained model was based on 

10 features described below and CRF classifier 

with lbfgs and 200 iterations and it has F-score 

equal to 0.8621 for All-POS track. As for the Verb 

track, the best model was also based on lbfgs, had 

100 iterations and c1 equal to 0.2353, c2 equal to 

0.0329 with F-score 0.7528. 

Table 1The results of the experiment for All-POS and 

Verb tracks. 
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These results are obtained using validation with a 

part of the train set, and as for the test set, for All-

POS track, the result measured by F-score is 

0.138 and for Verb track is 0.246.  

The results differ as it is possible that validation 

on a small part of the train set (33%) is not as ac-

curate as validation on the test set which usually 

consists of the larger number of sentences. 

6 Conclusion 

   We used Conditional Random Fields for the 

task of metaphor detection. Due to the large 

number of features, this classifier worked very 

well, and it is assumed that increasing the num-

ber of features will improve the performance of 

the algorithm. 
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Abstract

The paper addresses the detection of figura-
tive usage of words in English text. The cho-
sen method was to use neural nets fed by
pre-trained word embeddings. The obtained
results show that simple solutions, based on
word embeddings only, are comparable to
complex solutions, using additional informa-
tion as a result of taggers or a psycholinguis-
tic database. This approach can be easily ap-
plied to other languages, even less-studied, for
which we only have raw texts available.

1 Introduction

Natural language is a very efficient way of com-
munication. To make the task of learning and
remembering language easier, the same linguistic
expression can have many different meanings, e.g.
the nearest bank. What is more, in spite of reg-
ular homonymy and polysemy, words or expres-
sions can have a meaning that is different from
all literal interpretations. The latter phenomena,
called figurative usage, allows for much more cre-
ative and rich communication, and makes it more
effective, persuasive, and impactful. It is very of-
ten used in poetry or literature, but is also quite
frequent in everyday language. Although figura-
tive meanings are different from literal ones, there
usually exists some linkage between both mean-
ings which make metaphors comprehensive for a
hearer/reader. For example, when somebody says
I am a rock we start to think about being hard and
solid. Thus, we can easily understand not just con-
ventional figurative expressions which we already
know, but also those that we read or hear for the
first time.

The problem which we tried to solve was de-
fined by the organizers of the Figurative Language
NAACL Workshop shared task in which we took
part as the ZIL-IPIPAN team. In this task, par-

ticipants were supposed to label, in a given sub-
set of VU Amsterdam Metaphor Corpus (Steen
et al., 2010), individual words which were used
metaphorically. As people are able to recognize
metaphorical usage of a word based on the actual
context, we decided to test to what degree it is
possible to automatically recognize metaphorical
word occurrence using only word embeddings.

2 Related Work

Multiple approaches have been proposed for the
problem of detecting metaphors in text. Among
many published methods, we only discuss selected
ones in this section, especially those based on the
Amsterdam metaphor dataset.

In (Beigman Klebanov et al., 2016), the authors
apply a logistic regression classifier to test com-
bined lexical and dictionary-based feature spaces.

In (Rai et al., 2016), a conditional random field
(CRF) algorithm is proposed. The approach is
based on features from the MRC psycholinguistic
dictionary (Wilson and Division, 1997) and Word-
NetAffect database (a subset of WordNet with
emotion annotations).

Perhaps the the method described in (Do Dinh
and Gurevych, 2016) is the most relevant to our
work, where a neural network is used to rec-
ognize word-level metaphoricity. As in our ap-
proach, word embeddings are used to represent
words. However, the structure of the network
is different: it is a dense multi-layer network,
while we focus on recurrent networks (such as
LSTM), in our opinion more suitable for labelling
sequential, word-level data. Interestingly, the au-
thors demonstrate the positive influence of part-
of-speech (POS) based features, used to augment
word embeddings. The best overall model is based
on combining word embeddings, POS and se-
lected MRC dictionary data.

124



3 Data

The texts in the VU AMC corpus, used in the
shared task, originated from the British National
Corpus from four genres: News, Fiction, Aca-
demic and Conversation. VU AMC was divided
into two parts: train and test. The train set was
used to prepare classifiers of metaphorical and lit-
eral senses of tokens, while a test set was used for
evaluation. The numbers of sentences tokens and
metaphors of both parts are given in Table 1.

part sentences tokens metaphors % of met.
train 8,883 106,986 9,022 8.43
test 4,080 58,359 6,822 11.69

Table 1: The test and train datasets in numbers

The solutions were tested on 22,196 tokens
from the test set indicated by the organizers.

4 Neural Net Architecture

In our experiments, we adopted the method de-
scribed in (Wawer and Mykowiecka, 2017) as a
starting point. The authors applied neural net-
works and word embeddings to predict if a noun-
adjective phrase has a literal or metaphorical sense
or can have both senses depending on its usage. As
the current task concerns labelling all words in a
sentence, the obvious choice was to use a sequen-
tial model. We tested both GRU and LSTM units
in a bidirectional architecture, as the important in-
formation may be coded both in left and right word
context. The implementation is done in Keras with
the Tensorflow backend – the model summary is
given in Figure 1. The sequential network has to
be of a fixed length, thus the maximum length of
the sentence was chosen (to be equal to 110). As
word representation, we used 300 element GLoVe
vectors trained on Wikipedia 2014 and Gigaword
5 (Pennington et al., 2014)

Figure 1: Basic net architecture

As it might be correct that the information in-
cluded in word embeddings is not sufficient, we
tested the impact of additional information. We
extended appropriate word embeddings with more
features. Two types of information were consid-
ered. First, we added morphological information
about part of speech categories. Second, we used
information from General Inquirer data.

4.1 Adding part-of-speech data
In our experiments, we tested if enriching data
by part-of-speech (POS) had a positive effect on
the results. At the beginning, we wanted to ex-
tract POS from the xml file of VU AMC avail-
able on the shared task page, but it occurred that
it contained tokens/parts omitted in the train and
test text files, and the tokenization was inconsis-
tent in the text and xml datasets. Because we
were not sure of all the changes made to the text
data, we tagged the train and test texts with the
Stanford tagger (Toutanova et al., 2003) avail-
able from https://nlp.stanford.edu/
software/tagger.shtml, and we applied
the bidirectional model. As the tokenization used
in the tagger divided strings into finer ones in com-
parison to VU AMC, we removed redundant tags
where it was necessary. For example, in the cor-
pus, there were amounts of money given by one to-
ken £10,000 but the tagger divided them into two
tokens: £ tagged as ‘#’ and 10,000 tagged as ‘CD’.
As we had to choose one tag we deleted the first
one and left the second. There were many similar
differences, especially in tokenization of strings
containing a digit.

4.2 Adding General Inquirer Data
It has been shown that using information from
external dictionaries may be beneficial for train-
ing models on the metaphor detection problem.
In their baseline paper (Beigman Klebanov et al.,
2016) demonstrate the positive influence of fea-
tures derived from the WordNet dictionary.

For this task, some researchers use not only
general purpose dictionaries (such as WordNet)
but also more specialized, psychological and psy-
cholinguistic databases of words. For exam-
ple, the MRC database (Wilson and Division,
1997), a large dictionary listing linguistic and psy-
cholinguistic attributes obtained experimentally,
has been applied to metaphor detection in a cross-
lingual model transfer scenario (Tsvetkov et al.,
2014).
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In our experiments, we used another such
database: The General Inquirer (Stone et al.,
1966). The dictionary (a total of 183 categories
assigned to over eleven thousand words that cover
a large part of the commonly used English lexi-
con) contains two sub-parts: the Harvard IV psy-
chosocial dictionary and the Laswell dictionary
of values in politics. We conducted our exper-
iments using the Harvard IV part. It contains
all three Osgood dimensions (including evalua-
tive dimension, often called sentiment, but also
potency and activity), and also many other cat-
egories related to pleasure, pain, emotions, var-
ious social institutions (sport, politics, religion)
and social cognition, cognitive orientation, and
emotional states. A more comprehensive de-
scription and listing of the categories can be
found at http://www.wjh.harvard.edu/
~inquirer/homecat.htm. The dictionary is
only available for English. Its translation would
be a complex and challenging task. This might in-
volve validation against many perspectives, both
theoretical and empirical, as many groups of re-
searchers contributed their parts of the dictionary
over decades. For example, Osgood labels come
from factor analysis of a large survey, Laswell dic-
tionary labels are grounded in studies of totalitar-
ian regimes.

We tested for the presence of each input word
in the General Inquirer dictionary and created bi-
nary input vectors for neural network models, with
a ‘1’ indicating that the word belongs to a given
category and a ‘0’ otherwise.

5 Results

The main neural net architecture was chosen based
on the experience with solving other tasks and data
sets (see (Mykowiecka et al., 2018); recognition
of figurative/metaphorical senses of Polish phrases
in sentences, recognition of temporal relations —
work in progress), but still some decisions had to
be made as to the number of layers, the number
of epoch, and the degree of the dropout. To select
the best configuration we planned to perform 10-
cross validation on the training data. As our exper-
iments with LSTM networks were time consum-
ing, we eventually decided not to perform them
on all 10 folds but on their subset. The exact num-
ber of folds are given in Table 2. The results of
these preliminary experiments are given in Table
2. The results show that the LSTM units are better

than GRU. The larger number of layers (3 instead
of 2) helped slightly for the LSTM network and
worsened the results of the GRU network. For the
GRU architecture, the 15 epochs are better than 10
or 20; for LSTM, 10 epochs turned out to be the
best choice of those three values. Adding infor-
mation on POS tags helped in the case of the GRU
network and had very little influence on the results
of the LSTM architecture. The same slight, posi-
tive, influence was observed after adding either 20
or 50 features from the General Inquirer to the in-
put of the LSTM network.

type folds acc. P R F1
GRU

2 layers, 15 epochs, dropout 0.4
10 - 0.71 0.62 0.66

2 layers, 20 epochs, dropout 0.4
2 - 0.71 0.60 0.65

3 layers, 15 epochs, dropout 0.4
10 - 0.70 0.61 0.65

3 layers, 10 epochs, dropout 0.4 + POS tags
1 0.982 0.68 0.70 0.69

LSTM
2 layers, 10 epochs, dropout 0.4

10 0.985 0.74 0.72 0.73
2 layers, 15 epochs, dropout 0.4

10 - 0.71 0.62 0.66
3 layers, 10 epochs, dropout 0.4

4 0.984 0.73 0.71 0.72
3 layers, 20 epochs, dropout 0.4

2 0.982 0.73 0.62 0.67
2 layers, 10 epochs, dropout 0.4 + POS tags

5 0.985 0.75 0.72 0.74
2 layers, 20 epochs, dropout 0.3 + POS tags

10 0.985 0.76 0.71 0.74
3 layers, 10 epochs, dropout 0.4 + POS tags

4 0.984 0.74 0.71 0.73
2 layers, 10 epochs, dropout 0.4 + GI20

5 0.985 0.74 0.72 0.73
2 layers, 5 epochs, dropout 0.4 + GI50

10 0.985 0.76 0.71 0.73
2 layers, 10 epochs, dropout 0.4 + GI50

10 0.984 0.75 0.72 0.73
2 layers, 10 epochs, dropout 0.3 + POS tags + GI50

10 0.985 0.76 0.70 0.73

Table 2: Results of partial 10-fold cross validation on
train data set, all-pos task; folds – number of folds pro-
cessed. GI stands here for the features taken from the
General Inquirer. The number indicates how many (be-
ginning) features were taken. POS indicates adding the
encoded part of the speech tag.

We applied the models trained on the entire
training data on the test data and observed slightly
different results (see Table 3). However, the
LSTM architecture still turned out to be more ef-
fective, generally, and the obtained results were
lower that those from the cross-validation schema.
The best results (0.58 for all words and 0.62 for
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type lrs dpt ep. add-inf F1:all F1:v
LSTM 2 .4 10 - 0.583 0.619
LSTM 2 .4 15 - 0.574 0.602
LSTM 3 .4 10 GI20 0.545 0.563
LSTM 3 .5 7 0.541 0.553
LSTM 3 .4 10 - 0.536 0.544
LSTM 2 .4 7 GI_POS 0.518 0.543
GRU 3 .5 15 - 0.514 0.561
GRU 2 .4 20 - 0.506 0.546
GRU 2 .5 15 - 0.485 0.524
LSTM 3 .4 10 POS 0.475 0.558
LSTM 1 .4 5 - 0.447 0.450
GRU 3 .5 20 - 0.425 0.452
LSTM 1 .4 5 GI50 0.350 0.338

Table 3: Results on the test set ordered by the F1
value (for metaphors only) for the all-pos task. Mod-
els differ in type of unit network, number of layers,
size of dropout, number of epochs and the type of ad-
ditional information included apart from embeddings.
GI stands here for the features taken from the General
Inquirer. The number indicates how many beginning
features were taken. POS indicates adding the encoded
part of the speech tag.

verbs) were obtained using the model which was
not the best one in the cross-validation schema but,
nevertheless, it obtained an F-value equal to 0.72
on all the words. In the case of the test data, adding
POS names and features from the General Inquirer
worsened the results.

6 Conclusions

Recurrent sequential neural networks turned out to
be capable of recognizing metaphorical usage of
words better than many other already tested ap-
proaches. The exact result achieved – F1 equal to
0.73 for the metaphorical words and to 0.58 for the
test data in the cross-validation schema – shows
that the scores are not very stable and, probably,
the optimal net architecture and settings were not
already found. An improvement in the results af-
ter adding General Inquirer data, at least for some
configurations, shows that the enrichment of the
vector representation by additional features might
be effective and that this idea needs further study.
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Abstract

This paper describes multiple solutions de-
signed and tested for the problem of word-
level metaphor detection. The proposed sys-
tems are all based on variants of recurrent neu-
ral network architectures. Specifically, we ex-
plore multiple sources of information: pre-
trained word embeddings (Glove), a dictio-
nary of language concreteness and a trans-
fer learning scenario based on the states of
an encoder network from neural network ma-
chine translation system. One of the archi-
tectures is based on combining all three sys-
tems: (1) Neural CRF (Conditional Random
Fields), trained directly on the metaphor data
set; (2) Neural Machine Translation encoder of
a transfer learning scenario; (3) a neural net-
work used to predict final labels, trained di-
rectly on the metaphor data set. Our results
vary between test sets: Neural CRF standalone
is the best one on submission data, while com-
bined system scores the highest on a test subset
randomly selected from training data.

1 Introduction

1.1 Shared Task
This paper is focused on the problem of au-
tomated metaphoricity classification of verbs.
It describes a system aimed at the Shared
Task https://competitions.codalab.
org/competitions/17805 on metaphoric-
ity classification co-organized with the Workshop
on Figurative Language Processing.

The task is based on VUA Metaphor corpus
(Steen et al., 2010). The data set, as its au-
thors claim, is the largest available corpus hand-
annotated for all metaphorical language use, re-
gardless of lexical field or source domain. The
method of metaphor labeling is consistent with
systematic and explicit metaphor identification
protocol MIPVU. The corpus consists of alto-
gether 117 texts covering four genres (academic,
conversation, fiction, news).

Our submissions and results are for the all POS
(part-of-speech) part of the task.

2 Existing Work

2.1 Predicting Metaphoricity

The VUA Metaphor Corpus has been previously
used to automatically predict the metaphoricity
of verbs. In the baseline paper (Klebanov et al.,
2016) authors explore multiple feature spaces,
based on VerbNet and WordNet databases, cluster-
ing distributional similarity data of verbs. Tested
classifiers included Logistic Regression, Random
Forest and Linear SVM. The best of reported F1
scores averaged over four document types in the
VUA corpus reach 0.60 for a feature space com-
bined of lemma unigrams and WordNet data.

In another study (Rai et al., 2016) authors use a
Conditional Random Field algorithm and a feature
space of MRC and WordNetAffect dictionaries.

In Do Dinh and Gurevych (2016) a neural net-
work based on word embeddings is used to detect
metaphorical words. The network is a multi-layer
one, but not sequential as in our approach.

In a similar manner, (Sun and Xie, 2017)
use four sequential recurrent neural networks (bi-
LSTM) to predict metaphors. The first three mod-
els use a sub-sequence as the input to BiLSTM
network, each with a special kind of sub-sequence
extracted from the input sentence. The last model
is an ensemble model which aggregates the out-
puts from the first three models.

2.2 Transfer Learning

The idea of transfer learning has not been
widely explored in the context of predicting the
metaphoricity, especially in the context of verbs.
We do not consider the method described in Biz-
zoni et al. (2017) to be fully transfer learning.

In our understanding, the term transfer learning
refers not only to finding representations of words
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in some vector space, but also to training full mod-
els that solve some non-trivial sequential problem,
in order to apply them later to another one. Our
approach is similar to Conneau et al. (2017) where
authors investigate transfer learning to find univer-
sal sentence representation. The concept is to use
datasets originally compiled for different applica-
tions, such as question answering, textual entail-
ment or sentiment analysis, to finally apply them
to some other task (in Conneau et al. (2017), to
find sentence representation).

3 System Design

We test multiple systems and components on the
task of word-level metaphor recognition. The ar-
chitecture is based on multiple components that
constitute input space for a recurrent neural net-
work, which produces output labels. It combines
the following elements: (1) Neural CRF (Con-
ditional Random Fields), trained directly on the
metaphor data set; (2) Neural Machine Translation
encoder, used in the transfer learning scenario; (3)
a neural network to predict final labels, trained on
the metaphor data set. Figure 1 illustrates the sys-
tem. Elements (1) – the neural CRF and (3) – the
recurrent network can be used to predict the out-
put labels and we test them both in subsequent sec-
tions.

3.1 Neural CRF
We used a sequence tagging model (Ma and Hovy,
2016) to generate scores (logits) for each tag. We
used those logits for directly predicting the out-
put labels as well as for input features into an-
other recurrent network. The model is based on
both word representation and contextual word rep-
resentation. The former uses pre-trained word em-
beddings (GloVe (Pennington et al., 2014) trained
on Wikipedia 2014 and Gigaword-5 corpus) as
well as features on the character level extracted us-
ing bidirectional LSTM (Hochreiter and Schmid-
huber, 1997). The latter is based on bidirectional

LSTM on the word level, which captures informa-
tion about the context. In the decoding phase, the
vector of scores corresponding to each tag is gen-
erated with a fully connected neural network. Fi-
nally, predictions are made with linear-chain CRF
which, in contrast to a simple softmax function,
make use of the neighboring tagging decisions.

We fed the presented model with training data
from the VUAMC corpus. The model has been
used in two settings: standalone, to directly pre-
dict the output labels, and in another mode, where
we used the extracted logits (the output of a fully
connected neural network on an encoded state of
bidirectional LSTM on words level) as an input for
another recurrent neural network, as illustrated in
Figure 1.

3.2 Concreteness Score
We used the concreteness score from Brysbaert
et al. (2014) database, which provides ratings for
nearly 40,000 words. For each word, its mean con-
creteness rating, ranging from 1 to 5, was com-
puted based on at least 25 observations. In the task
instructions, concreteness was defined as a feature
of words related to things and actions which can be
experienced directly through senses. In addition,
the task designers put stress on all 5 modalities,
providing examples of concrete words connected
with different senses.

In our data set we found concreteness scores for
nearly 66% of words. For those that could not be
found in Brysbaert et al. (2014) database we as-
sumed a mid value of 2.5 as a neutral score. We
later normalized these values.

MIPVU (Metaphor Identification Procedure
VU University Amsterdam) (Steen et al., 2010) is
based on investigating if there is a more basic, con-
crete, body-related, precise or historically older
meaning of a given word compared to its contex-
tual meaning. The concreteness score may indi-
cate if the contextual meaning of a token is also its
basic meaning.

3.3 OpenNMT encoded VUA Sentences
OpenNMT (Klein et al., 2017) http:
//opennmt.net is an initiative for neural
machine translation and neural sequence model-
ing. It offers a set of tools dedicated for machine
translation, which enable end-to-end translation
process are offered.

In our solution the OpenNMT implementation
is used in a transfer learning fashion: a model
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Measures Features

P R F1 Conc. Logits
Encoder
states

GloVe
100

GloVe
300

bi-GRU
3 layers

0.57 0.67 0.62 x x x x

bi-GRU
3 layers

0.61 0.51 0.55 x x x

bi-GRU
2 layers

0.61 0.63 0.62 x x x x

bi-GRU
2 layers

0.59 0.5 0.54 x x x

bi-GRU
2 layers

0.66 0.52 0.58 x x

bi-GRU
2 layers

0.57 0.58 0.57 x

neural CRF 0.58 0.57 0.57 x

Table 1: Best training phase scores (all POS).

trained for machine translation is used to generate
a representation of an input sentence. Then, in-
stead of translating the sentence into another out-
put language, we use the intermediate representa-
tion for metaphor recognition.

Thus, the overall procedure was to (1) train the
translation model; (2) translate Metaphor Shared
Task sentences and capture the hidden states of a
machine translation encoder for each sentence and
(3) extract the hidden vector for every word.

1. Training translation model

With the aim to maximize usability of the
model and consequently, quality of the ex-
tracted encoder states, we decided not to use
pre-trained models available in the web but
rather to use an open source dataset of paral-
lel sentences instead. The corpora are pro-
vided by Tiedemann (2012) and are com-
monly used in the machine translation tasks.

The translating model is trained on one mil-
lion English sentences with their French
translations.

2. Translation and hidden states

The translating model consists of a encoder-
decoder approach. The model used in the
solution is built with simple unidirectional
LSTM. The hidden states of the LSTM were
captured during the translation process. Typ-
ically, the outputs of the encoder play the role
of an intermediate layer in the translation pro-

cess. The encoded states capture the meaning
of a sentence.

3. Word vectors extraction

Extracting word vectors is the last step of the
process. Finally, each word is represented by
a 500-dimensional vector.

3.4 Bidirectional GRU
To predict metaphors in a given text we used
bidirectional Gated Recurrent Units (GRU). Previ-
ously described features - concreteness score, log-
its from neural CRF and OpenNMT hidden states -
as well as pre-trained words embeddings (GloVe)
served as an input to our neural network.

4 Results

All reported results were obtained for all part-of-
speech data.

4.1 Training Phase
Initially, we evaluated different versions of our
model on the provided training set - randomly
shuffled and divided into three subsets (15% test
/ 15% - validation / 70% - training). The results on
this test set (not the Shared Task official test set)
are presented in Table 1.

We tested the models with a different number
of layers and sets of features. Models with all fea-
tures showed the best performance. Omitting any
of them led to a considerable decrease in F1 score.
We also tried class weighting which slightly in-
creased the performance. Finally, we tested neural
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Measures Features

P R F1 Conc. Logits
Encoder
states

GloVe
300

GloVe
100

class
weighting

bi-GRU
3 layers

0.722 0.312 0.435 x x x

bi-GRU
3 layers

0.705 0.343 0.461 x x x x

bi-GRU
3 layers

0.675 0.371 0.479 x x x x x

bi-GRU
2 layers

0.655 0.237 0.348 x

bi-GRU
2 layers

0.638 0.407 0.497 x x x x x

bi-GRU
2 layers

0.621 0.362 0.457 x

neural CRF 0.547 0.575 0.561 x

Table 2: Best submission scores (all POS).

CRF and bidirectional GRU with GloVe embed-
dings. Those more basic models served as a point
of reference.

The best score was generated by a bidirectional
GRU with all the features. A difference in lay-
ers number did not show any significant change in
performance.

Batch sizes for all models were set to 64 or 128
during experiments. Models were trained using
Adam optimizer and a binary cross-entropy loss
function.

The network named ‘bi-GRU 2 layers’ in Ta-
ble 1 contained two bi-directional LSTM layers.
Dropouts were applied after each layer with rates
in range from 0,5 to 0,6. Bi-directional layers
were followed by two dense layers of size 500 with
dropouts (rate 0,5) placed after each of them. The
last layer of this network was a sigmoid one. All
GRU layers had ‘tanh’ activation functions, dense
layers ‘relu’ activation functions.

The network named ‘bi-GRU 3 layers’ in Ta-
ble 1 contained three bi-directional LSTM layers
followed by a sigmoid layer. Dropouts were ap-
plied after each bidirectional layer, with rates in
range from 0,5 to 0,6 as before.

4.2 Submission Phase

Table 2 shows our submission scores obtained by
the best performing models chosen in the previous
step. We tested them on the all part-of-speech task.

Interestingly, scores from submission differ sig-
nificantly from those observed in the training

phase. Here, the Neural CRF model applied stan-
dalone came out as the best solution. Three layer
bidirectional GRU generated a better F1 score
than two layers model. However, both models
gained much lower scores than noted in the train-
ing phase.

This discrepancy can be possibly explained by
different character of our test set (random sub-part
of the training data set), compared to the official
test set in the shared task.

5 Conclusions

In this paper we have discussed solutions for
metaphor detection built for Metaphor Detection
Shared Task. We described different features and
architecture combinations along with their scores,
measured on a test set randomly sampled from
training data and on official submission procedure.

Due to discrepancies between scores obtained
in from the training set and scores obtained in sub-
mission, it is not easy to draw straightforward con-
clusions.

When tested on a subset of training data, our re-
sults indicate that all proposed features: those cap-
tured in OpenNMT encoder states, concreteness
ratings and tag scores from neural CRF, all had an
impact on the performance of our system, which
resulted in a better F1 score than simple models
using GloVe. These results seem to go along the
lines of results reported in Do Dinh and Gurevych
(2016).

Submission results, as measured on the official
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test set of the Shared task, provide an entirely
different picture. They also show the advantage
of bidirectional GRU including all features over
one trained on GloVe only. Yet, it is neural CRF
standalone, which included only pre-trained em-
beddings, that outperformed other more complex
models.
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Abstract

This article describes the system that partici-
pated in the shared task (ST) on metaphor de-
tection (Leong et al., 2018) on the Vrije Uni-
versity Amsterdam Metaphor Corpus (VUA).
The ST was part of the workshop on pro-
cessing figurative language at the 16th annual
conference of the North American Chapter of
the Association for Computational Linguistics
(NAACL2018).

The system combines a small assertion of
trending techniques, which implement ma-
tured methods from NLP and ML; in partic-
ular, the system uses word embeddings from
standard corpora and from corpora represent-
ing different proficiency levels of language
learners in a LSTM BiRNN architecture.

The system is available under the APLv2
open-source license.

1 Introduction

Ever since conceptual metaphor theory was laid
out in Lakoff and Johnson (1980), the most vex-
ing question has remained a methodological one:
how can conceptual metaphors be reliably identi-
fied in language use? Although manual identifica-
tion was put on a stronger methodological foot-
ing with the Metaphor Identification Procedure
(MIP) (”Pragglejaz Group”, 2007) and its elabora-
tion into MIPVU (Steen et al., 2010), fuzzy areas
remain due to the fact that conceptual metaphors
can vary between primary metaphors and com-
plex metaphors (cf. Grady, 1997). Furthermore,
highly conventionalized metaphorical expressions
might not be processed in the same way as novel
metaphors. The core process of manual metaphor
identification is not completely unproblematic ei-
ther since it can be difficult to establish whether
the meaning of a lexical unit in its context devi-
ates from its basic meaning or not. In the face of

that slippery terrain, automatic metaphor identifi-
cation emerges as an extremely challenging task.
An increasing volume of research since the start of
annual workshops at NAACL in 2013 has shown
first promising results using different methods of
automated metaphor identification (see for exam-
ple Shutova et al. (2015) and Klebanov et al.
(2016) for previous events). The current shared
task of metaphor identification provided a further
opportunity to put the computational spotting of
metaphors to the test.

Our bid for this task combines (cf. Section 2)
fastText word embeddings (WEs) with a
single-layer long short-term memory bidirectional
recurrent neural network (BiRNN) architecture.
The input, sequences of WE representations of
words, is fed into the BiRNN which predicts
metaphorical usage for each word.

The WEs were trained (cf. Section 4.2) on
different large corpora (BNC, Wikipedia, enTen-
Ten13, ukWaC) and on the Vienna-Oxford Inter-
national Corpus of English (VOICE) as well as
on the TOEFL11 Corpus of Non-Native English.
The latter corpus was used, among others, in the
First Native Language Identification Shared Task
(Tetreault et al., 2013) held at the 8th Workshop on
Innovative Use of NLP for Building Educational
Applications as part of NAACL-HLT 2013.

We were led by the idea (cf. Section 2.3) that
metaphorical language use changes while gaining
proficiency in a language, and so we hoped to be
able to utilise the information contained in corpora
of different proficiency levels.

The paper is organised as follows: We present
our system design with related work in Section 2,
the implementation in Section 3, and the experi-
mental setup with an evaluation in Section 4. Sec-
tion 5 concludes with an outlook on possible next
steps.
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2 Design

Generally, our design builds upon the foundation
laid out by Collobert et al. (2011) for a neural
network (NN) architecture and learning algorithm
that can be applied to various natural language
processing tasks. The most related task specific
design is given in Do Dinh and Gurevych (2016)
who used a NN in combination with WEs to detect
metaphors. In contrast to our study, they used a
dense multi-layer NN while we adapted the design
of Stemle (2016a,b), who combined WEs with
a recurrent NN (RNN) to predict part-of-speech
(PoS) tags of computer-mediated communication
(CMC) and Web corpora for German and Italian.
RNNs are usually considered to be more suitable
for labelling sequential data such as text.

2.1 Word Embeddings

Recently, state-of-the-art results on various lin-
guistic tasks were accomplished by architectures
using neural-network based WEs. Baroni et al.
(2014) conducted a set of experiments comparing
the popular word2vec (Mikolov et al., 2013a,b)
implementation for creating WEs with other well-
known distributional methods across various (se-
mantic) tasks. These results suggest that the WEs
substantially outperform the other architectures on
semantic similarity and analogy detection tasks.
Subsequently, Levy et al. (2015) conducted a com-
prehensive set of experiments that suggest that
much of the improved results are due to the system
design and parameter optimizations, rather than
the selected method. They conclude that ”there
does not seem to be a consistent significant advan-
tage to one approach over the other”.

WEs provide high-quality low dimensional vec-
tor representations of words from large corpora
of unlabelled data. The representations, typically
computed using NNs, encode many linguistic reg-
ularities and patterns (Mikolov et al., 2013b).

2.2 Bidirectional Recurrent Neural Network

NNs consist of a large number of simple, highly
interconnected processing nodes in an architec-
ture loosely inspired by the structure of the cere-
bral cortex of the brain (O’Reilly and Munakata,
2000). The nodes receive weighted inputs through
their connections on one side and fire according to
their individual thresholds of their shared activa-
tion function. A firing node passes on an activation
to all connected nodes on the other side. During

learning the input is propagated through the net-
work and the actual output is compared to the de-
sired output. Then, the weights of the connections
(and the thresholds) are adjusted step-wise so as to
more closely resemble a configuration that would
produce the desired output. After all training data
have been presented, the process typically starts
over, and the learned output values will usually be
closer to the desired values.

Recurrent NNs (RNNs), introduced by Elman
(1990), are NNs where the connections between
the elements are directed cycles, i.e. the networks
have loops, and this enables the NN to model
sequential dependencies of the input. However,
regular RNNs have fundamental difficulties learn-
ing long-term dependencies, and special kinds of
RNNs need to be used (Hochreiter, 1991); a very
popular one is the so called long short-term mem-
ory (LSTM) network proposed by Hochreiter and
Schmidhuber (1997).

Bidirectional RNNs (BiRNN), introduced by
Schuster and Paliwal (1997), extend unidirectional
RNNs by introducing a layer, where the directed
cycles enable the input to flow in opposite sequen-
tial order. While processing text, this means that
for any given word the network not only consid-
ers the text leading up to the word but also the text
thereafter.

Overall, we benefit from available labelled data
with this design but also from large amounts of
available unlabelled data.

2.3 Language Learner Data

Our experimental design also utilizes data from
language learner corpora. This is based on the in-
tuition that metaphor use might vary depending on
learner proficiency. Beigman Klebanov and Flor
(2013) indeed found a correlation between higher
proficiency ratings of learner texts and a higher
density of metaphors in these texts. Their study
is also one of the few in the field of automated
metaphor detection that are concerned with learner
language. Their aim, however, is quite different to
the current study as they try to establish annota-
tions for metaphoric language use that can help to
train an automated classifier of metaphors in test-
taker essays. The current study, by contrast, uti-
lizes learner corpus data to build WEs among other
corpora representing written standard language.
Learner language could be a particularly helpful
source of information for automated metaphor de-
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tection via WEs as learner language provides dif-
ferent usage patterns compared to WEs derived
from standard language corpora.

3 Implementation

We maintain the implementation in a source code
repository1. Our system uses sequences of word
features as input to a BiRNN with a LSTM archi-
tecture.

3.1 Word Embeddings

We use gensim2, a Python tool for unsupervised
semantic modelling from plain text, to load pre-
computed WE models and to compute embedding-
vector representations of words. Words missing in
a WE model, i.e. out-of-vocabulary words (OOV),
are first estimated by looking at a fixed context
of their non-OOV words. If this fails, OOVs are
mapped to their individual, randomly generated,
vector representations.

3.2 Neural Network

Our implementation uses Keras (Chollet, 2015), a
high-level NNs’ library written in Python, on top
of TensorFlow (Abadi et al., 2016), an open source
software library for numerical computation.

The number of input layers corresponds to the
number of employed feature sets. For multiple
feature sets, e.g. multiple WE models or additional
PoS tags, sequences are concatenated on the word
level such that the number of features for an indi-
vidual word grows.

Input sequences have a pre-defined length and
represent original textual sentence segments. In
case a sentence is longer than the sequence length,
the input is split into multiple segments. And if
a segment is shorter than the sequence length, the
remaining slots are padded, i.e. they are filled with
identical dummy information.

Each input layer feeds into a masking layer such
that the padded values from the input sequence
will be skipped in all downstream layers.3 The
masked input is fed into a bidirectional LSTM
layer that, in turn, projects to a fully connected
output layer that is activated by a softmax func-
tion.

1https://github.com/bot-zen/
2https://radimrehurek.com/gensim/
3This is considered good practice and speeds up process-

ing with long sequences and many padded values – with our
rather short sequences it did not help much.

The output is a single sequence of matching
length with labels indicating whether the corre-
sponding word is used metaphorically or not.

During training, we use dropout for the linear
transformation of the recurrent state, i.e. the net-
work drops a fraction of recurrent connections,
which helps prevent overfitting (Srivastava et al.,
2014); and we use a weighted categorical cross-
entropy loss function to counteract the fact that
far fewer words in our sequences are labelled as
metaphorical than non-metaphorical, which usu-
ally hampers classification performance (cf. Kot-
siantis et al., 2006).

4 Experiments and Results

Participants of the ST could either participate in
the metaphor prediction tracks for verbs only, all
content part-of-speech only, or both. For a given
text in VUA, and for each sentence, the task was
to predict metaphoricity for each verb or content
word respectively, and submit the result to Co-
daLab4 for evaluation. Results were calculated as
the harmonic average of the precision and recall
(F1-score) of the metaphoricity label. We partici-
pated with our system in both tasks.

The remainder of this section introduces the of-
ficial data set, our WE models and describes our
fixed hyper-parameters. The results of different
combinations of WE models are shown in Table
1. Also note that all results in this paper refer only
to the all content part-of-speech task.

4.1 Shared Task Data

The VUA, the corpus that was used in the shared
task, originates from the British National Corpus
(BNC). Altogether, it is comprised of 117 texts
covering four genres (academic, conversation, fic-
tion, news). For the ST, VUA was pre-divided
by the organisers into a training and a test set.
The training set was labelled and could be used to
train classifiers, while the participants were sup-
posed to label the test set and submit it. The dis-
tribution of metaphorical vs. non-metaphorical la-
bels was imbalanced with a ratio of roughly 1:6
(11044 : 61567).

4.2 Word Embedding Models

We use pre-built WE models of the follow-
ing corpora: BNC and enTenTen13 web cor-

4http://codalab.org
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10-fold CV
Accuracy

on Training Set
µ — σ

T11 (low) 0.3 1 50 X 0.207 0.917 0.016
T11 (med) 1.8 1 50 X 0.526 0.924 0.011
T11 (high) 1.4 1 50 X 0.514 0.930 0.007
T11 (l+m+h) 3.5 1 50 X 0.541 0.928 0.008
VOICE 1 1 50 X 0.495 0.923 0.010
BNC 100 5 100 X 0.597 0.942 0.005
enTenTen13 19,000 5 100 X 0.594 0.947 0.004
ukWaC 2100 5 100 X 0.598 0.945 0.004
ukWaC T11-size 3.5 1 50 X 0.564 0.933 0.009
Wikipedia17 ca 2300 5 300 X 0.586 0.947 0.003

7 X X X X 0.576 0.941 0.003
7 X X 0.567 0.936 0.008

103.5 X X X X 0.596 0.944 0.008
103.5 X X 0.613 0.945 0.005
103.5 X X 0.597 0.948 0.003
104.5 X X X X X 0.601 0.950 0.004
107 X X X 0.586 0.951 0.002
108 X X X X 0.550 0.948 0.003

19,004.5 X X X X X 0.603 0.947 0.006
21,400 X X X 0.605 0.951 0.003
21,401 X X X X 0.594 0.953 0.003
21,404.5 X X X X X X X 0.597 0.952 0.003

Table 1: Overview of the word embedding models we used, and evaluation results for individual models and some
combinations on the metaphor prediction track for all content part-of-speech.
Number of tokens in the original corpus, parameters minCount and dim for fastText during training of the
models. Our calculated F1-scores on the official labelled test set (they should coincide with the organisers’ results).
The mean accuracy as well as the standard deviation in the accuracy for 10-fold cross validation runs on the training
set.

pus (Jakubı́ček et al., 2013) from SketchEngine5,
as well as Wikipedia176 from fastText (Bo-
janowski et al., 2016).

We trained WE models using fastText’s
SkipGram model with the default parameters7 ex-
cept for the two parameters -minCount (the
minimal number of word occurrences) and -dim
(size of word vectors). The two parameters were
altered to take the smaller sizes of our corpora into

5https://embeddings.sketchengine.co.
uk/static/index.html

6https://fasttext.cc/docs/en/
pretrained-vectors.html

7https://github.com/facebookresearch/
fastText/archive/v0.1.0.zip

account. See Table 1 for details.

Three individual models were trained for the
different proficiency levels low, medium and high
of the training subset of the TOEFL11 (Blanchard
et al., 2013); another model was trained for the full
training set comprising all three proficiency levels.
One model was trained for the VOICE (Seidlhofer
et al., 2013), a corpus of English as it is spoken by
a non-native speaking majority of users in differ-
ent contexts.

Two models were trained for ukWaC (Baroni
et al., 2009), a corpus constructed from the Web
using medium-frequency words from the BNC as
seeds. The first model for the full corpus and
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the second model for a random sample of docu-
ments approximating the token count of the full
TOEFL11 training set.

4.3 Hyper-Parameter Tuning

Hyper-parameter tuning is important for good per-
formance. The parameters of our system were op-
timised via an ad-hoc grid search in 3-fold cross
validation (CV) runs.

Parameters were: NN optimizer (rmsprop,
adadelta, adam), recurrent dropout rate for the
LSTM layer (0.1, 0.25, 0.5), dropout for the in-
put layer (0, 0.1, 0.2), sequence length (5, 10, 15,
50), learning epochs (3, 5, 20, 32) and batch size
(16, 32, 64), and the network architecture, e.g. in-
troducing a second LSTM abstraction layer or us-
ing a Gated Recurrent (GRU) layer instead of the
LSTM layer. Furthermore, we trained WE mod-
els with different values for the dim (25, 50, 100,
150, 200, 250) and minCount (1, 2, 5, 10) pa-
rameters.

The weight for the categorical cross-entropy
loss function is calculated as the logarithm of the
ratio of number of words vs. metaphorical labels.
The context for estimating OOV words was set to
10.

Once set, we used the same configuration for all
experiments.

5 Conclusion & Outlook

The combination of WEs with a BiRNN is capa-
ble of recognizing metaphorical usage of words
better than many other already tested approaches.
More importantly, our design does not rely on
WordNet or VerbNet information, and does not
need concreteness or abstractness information like
many successful architectures from previous an-
nual workshops at NAACL. Besides VUA, our
system only needs running text.

The best result on the test set was achieved
with a combination of TOEFL11 learner data
and data from the BNC. So far, the results are
encouraging—but also mixed—regarding our ini-
tial idea that metaphorical language use at differ-
ent proficiency levels could be utilised to recog-
nizing metaphorical usage of words. To this end,
we are looking forward to output from the Euro-
pean Network for Combining Language Learning
with Crowdsourcing Techniques8, where poten-

8http://www.cost.eu/COST_Actions/ca/
CA16105

tially more and more fine-grained language learner
data will be collected and made available.
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