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Abstract

Autism spectrum disorder (ASD) is a neurode-
velopmental condition characterized by im-
paired social communication and the presence
of restricted, repetitive patterns of behaviors
and interests. Prior research suggests that re-
stricted patterns of behavior in ASD may be
cross-domain phenomena that are evident in
a variety of modalities. Computational stud-
ies of language in ASD provide support for
the existence of an underlying dimension of
restriction that emerges during a conversa-
tion. Similar evidence exists for restricted
patterns of facial movement. Using tools
from computational linguistics, computer vi-
sion, and information theory, this study tests
whether cognitive-motor restriction can be de-
tected across multiple behavioral domains in
adults with ASD during a naturalistic conver-
sation. Our methods identify restricted behav-
ioral patterns, as measured by entropy in word
use and mouth movement. Results suggest that
adults with ASD produce significantly less di-
verse mouth movements and words than neu-
rotypical adults, with an increased reliance on
repeated patterns in both domains. The diver-
sity values of the two domains are not signifi-
cantly correlated, suggesting that they provide
complementary information.

1 Introduction

Autism spectrum disorder (ASD) is a
behaviorally-defined neurodevelopmental condi-
tion that affects approximately 1.5% of children
in the U.S. (Christensen et al., 2016). Individuals
with ASD are characterized by social communi-
cation impairments and the presence of restricted
and repetitive patterns of interests and activities
(APA, 2013). One of the most striking features
of ASD is extreme heterogeneity in its clinical
presentation. For example, verbal abilities in
ASD range from minimally verbal (a few words

or sounds) to above average (Pickles et al., 2014).
This heterogeneity makes it harder to diagnose
ASD reliably, and indeed, expert clinicians may
disagree about whether or not an individual
meets criteria (Regier et al., 2013). Diagnostic
challenges are compounded by shortcomings
in current phenotyping approaches, which are
either time-consuming and expensive, or provide
limited information via questionnaires. Moreover,
although ecologically valid stimuli have been
shown to be superior for capturing ASD-related
differences in behavior (Chevallier et al., 2015),
most traditional ASD assessments continue to be
conducted in highly controlled contexts. Taken
together, these challenges highlight the need for
a precision medicine approach to ASD (Bevers-
dorf, 2016) that includes quantified and precise
behavioral assessments in naturalistic settings.

Recent computational methodologies, including
wearable technologies, computer vision, and nat-
ural language processing, have great potential to
facilitate automated identification of novel phe-
notypic markers of behavior in ecologically valid
settings, with exquisite precision, and in a highly
scalable manner. Clinically, these technological
advancements in “quantified behavior” could sup-
port diagnostic decision making, while providing
critical information about intervention effective-
ness.

In this study, we explore the applicability of
computational behavioral assessments for identi-
fying manifestations of the restricted/repetitive di-
mension in ASD. Building on existing knowledge
about language production (Bone et al., 2013,
2014; Heeman et al., 2010; Tanaka et al., 2014;
Van Santen et al., 2010; Goodkind et al., 2018;
Parish-Morris et al., 2016b) and facial movements
in ASD (Yirmiya et al., 1989; Borsos and Gy-
ori, 2017; Guha et al., 2018; Owada et al., 2018),
as well as the known interrelation between the
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two domains (Busso and Narayanan, 2007), this
study investigates patterns of word production and
mouth movements during natural conversation.
Our goal is to test whether an underlying dimen-
sion of cognitive-motor restriction can be detected
across multiple behavioral domains in ASD.

Prior research suggests that restricted patterns
of behavior may be cross-domain phenomena in
autism, and are therefore evident in a variety of
modalities. For example, computational studies of
language in ASD provide support for the existence
of multifaceted restricted language patterns that
emerge during conversation. Children with ASD
produce significantly more semantically overlap-
ping turns than typically developing children dur-
ing clinical evaluations (Rouhizadeh et al., 2015).
They also engage in more echolalia (repetition
of words or phrases) than typical children dur-
ing semi-structured interviews (van Santen et al.,
2013), and utilize a restricted range of narrative
tools (Capps et al., 2000) and words (Baixauli
et al., 2016) during storytelling. Less is known
about linguistic diversity in adults with ASD, par-
ticularly during naturalistic conversations.

While similar evidence for atypical patterns of
facial movement in ASD exists, most prior work
has investigated facial expressions in the context
of emotion recognition and imitation. Individ-
uals with ASD produce flattened facial expres-
sions (Yirmiya et al., 1989) that are hard to read
(Brewer et al., 2016), and overt facial expression
mimicry is impaired (Yoshimura et al., 2015). Re-
duced complexity in facial behavior, particularly
in the eye region, while participants produced var-
ious facial expressions has been reported (Guha
et al., 2018). Limited research, however, has ex-
amined facial expressions and oral-motor move-
ment in dynamic social contexts such as conversa-
tions.

This study adds to the existing literature by
combining tools from computational linguistics,
computer vision, and information theory to char-
acterize lexical and oral-motor diversity in adults
with ASD. We demonstrate the utility of our ap-
proach in a young adult data set consisting of 44
conversational partners, 17 with ASD, in natural-
istic social scenarios. Results showed that par-
ticipants with ASD used fewer words than the
typically developing (TD) control group during
3-minute “get to know you” conversations, and
paused more. They also produced significantly

less diverse mouth movements and words, sug-
gesting increased reliance on repeated patterns
(i.e., restriction) in both domains. Notably, the
correlation between the diversity values of the two
domains was not significant, suggesting that they
provide complementary information. The findings
reported here suggest that reduced behavioral di-
versity, across domains, captures an underlying di-
mension of restriction and repetition in ASD that
distinguishes individuals on the spectrum from
typical controls. In the future, these methods could
be utilized to identify and track highly quantifiable
treatment targets, thus advancing the goal of pre-
cision medicine for autism.

2 Methods

2.1 Participants

Forty-four adults participated in the present study
(ASD: N=17, TD: N=27, all native English speak-
ers). Participant groups did not differ signifi-
cantly on mean chronological age, full-scale IQ
estimates (WASI-II) (Wechsler, 2011), verbal IQ
estimates, or sex ratio (Table 1). There was
a trend toward a difference in full-scale IQ, so
this variable was considered in models comparing
diagnostic groups. Participants were diagnosed
using the Clinical Best Estimate process (Lord
et al., 2012b), informed by the Autism Diagnos-
tic Observation Schedule - 2nd Edition, Module
4 (ADOS-2) (Lord et al., 2012a) and adhering to
DSM-V criteria for ASD (APA, 2013). All aspects
of this study were approved by Institutional Re-
view Boards of the University of Pennsylvania and
the Children’s Hospital of Philadelphia.

2.2 Procedure

After providing written informed consent to par-
ticipate in a novel social skills intervention (NIH
R34MH104407, “Services to enhance social func-
tioning in adults with autism spectrum disorders”,
PI: Brodkin) participants underwent a battery of
tasks at three time points separated by approxi-
mately 6 months each. These tasks assessed so-
cial communication competence and included a
slightly modified Contextual Assessment of So-
cial Skills (CASS) (Ratto et al., 2011). The cur-
rent analysis focuses on the third time point, after
all participants with ASD received the social skills
intervention. Typical participants did not receive
intervention, and participated in the CASS once
after providing informed consent.
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Variable ASD Mean (SD) TD Mean (SD) Statistics p-value
Age (years) 26.9 (7.3) 28.1 (8.4) W = 234 0.923
Sex (Male, Female) 15, 2 23, 4 χ2: 0.08 0.774
Full-Scale IQ 102.1 (19.8) 111.7 (9.5) W = 157 0.080
Verbal IQ 112.6 (22.1) 112.4 (11.2) W = 215 0.736
ADOS Total 13.1 (3.0) 1.1 (0.9) W = 442 < 2e-8*
ADOS Social Affect 9.8 (2.3) 1.0 (0.9) W = 442 < 1e-8*
ADOS RRB 3.3 (1.5) 0.1 (0.3) W = 441 < 1e-9*

Table 1: Demographics of participants in our sample. Wilcoxon rank sum tests with continuity correction were
used for statistical group comparisons, except for sex ratios where a Chi-squared was used. One TD participant
had missing ADOS-2 scores. RRB=Repetitive Behaviors and Restricted Interests subscore of the ADOS-2. *
Statistically significant difference between diagnostic groups, p<0.05.

The CASS is a semi-structured assessment of
conversational ability designed to mimic real-life
first-time encounters. Participants engaged in two
3-minute face-to-face conversations with two dif-
ferent confederates (research staff, blind to par-
ticipant diagnostic status and unaware of the de-
pendent variables of interest). In the first con-
versation (interested condition), the confederate
demonstrated social interest by engaging both ver-
bally and non-verbally in the conversation. In the
second conversation (bored condition), the con-
federate indicated boredom and disengagement
both verbally (e.g., one-word answers, limited
follow-up questions) and physically (e.g., neutral
affect, limited eye-contact and gestures). The cur-
rent analysis is based on the interested condition
only. Prior to each conversation, study staff pro-
vided the following prompt to the participants and
confederates before leaving the room: “Thank you
both so much for coming in today. Right now, you
will have 3 minutes to talk and get to know each
other, and then I will come back into the room.”

CASS confederates included 10 undergraduate
students or BA-level research assistants (3 males,
7 females, all native English speakers). Confeder-
ates were semi-randomly selected, based on avail-
ability and clinical judgment (4 confederates inter-
acted with the ASD group, 8 with the TD group,
2 with both). In order to provide opportunities
for participants to initiate and develop the conver-
sation, confederates were trained to speak for no
more than 50% of the time and to wait 10s to initi-
ate the conversation. If conversational pauses oc-
curred, confederates were trained to wait 5s before
re-initiating the conversation. No specific prompts
were provided to either speaker.

Audio and video of the CASS was recorded us-
ing a specialized “TreeCam”, built in-house (Fig-

ure 1), that was placed between the participant
and confederate on a floor stand. This device has
two HD video cameras pointing in opposite di-
rections to allow simultaneous recording of the
participant and the confederate as they sit facing
each other, with a central microphone to record au-
dio. For the face analysis, the first 10 seconds of
the video were cropped to remove RA instructions
(which may have also removed a few seconds of
the CASS), and recordings continued for 3 min-
utes. For the lexical analysis, the sample began
when the first word of the CASS was uttered, af-
ter study staff left the room, and ended when study
staff re-entered.

Figure 1: (a) The TreeCam video/audio capturing de-
vice. (b) Illustration of the task environment. Partic-
ipants and confederates sat face-to-face while engag-
ing in a “get to know each other” dialogue, with the
TreeCam placed in between.

2.3 Processing of Language Data

Audio streams were extracted from video record-
ings, and saved in lossless .flac format. A team
of reliable annotators produced time-aligned, ver-
batim, orthographic transcripts of the recordings
in XTrans (Glenn et al., 2009). Each recording
was processed by two junior annotators and one
senior annotator, all of whom were undergradu-
ate students and native English speakers. Before
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becoming junior annotators for this cohort, each
team member received at least 10 hours of training
in Quick Transcription (Kimball et al., 2004) mod-
ified for use with clinical interviews of participants
with ASD (Parish-Morris et al., 2016b,a, 2017). In
addition, annotators were trained to reliability (de-
fined as >90% in common with a Gold Standard
transcript) on segmenting (marking speech start
and stop times) and transcribing (writing down
words and sounds produced, using the modified
Quick Transcription specification). Training files
included audio recordings of conversations be-
tween individuals with and without autism that
were not used in this study. For the CASS, one re-
liable junior annotator segmented utterances into
pause groups, while the second transcribed words
produced by each speaker. A senior annotator then
thoroughly reviewed and corrected each file (Fig-
ure 2). All senior annotators had at least 6 months
of prior transcription experience. Final language
data were exported from XTrans as tab-delimited
files that were batch imported into R. Annotations
marking non-speech sounds like laughter, indica-
tors of language errors like stutters, and punc-
tuation were removed, while other disfluencies
(including filled pauses and whole-word repeti-
tions) were left in. Total words, speech rate (to-
tal words/total length of speaking segments), sum
of participant response latencies (Confederate-to-
Participant inter-turn pauses or C2P; overlaps ex-
cluded), and number of conversational turns were
calculated across each session.

2.4 Processing of Vision Data

CASS videos were processed by an image pro-
cessing and feature extraction pipeline that in-
cluded face detection, face registration, and facial
movement quantification.

For face detection and localization of multi-
ple facial landmarks (eyes, lip corners, nose etc.)
within each face, we used a publicly available tool
(OpenFace) (Baltrusaitis et al., 2016). The com-
putation of facial movements requires image regis-
tration across frames, which we achieved via part-
based registration (Sariyanidi et al., 2015). Using
landmarks from the corners of the eyes and mouths
at each frame, we subdivided the face into three
overlapping parts covering the left eye region, the
right eye region, and the mouth region (see Figure
3). Cropped sequences had visible jitter due to im-
precise landmark localization at each frame, which

Figure 2: An illustration of the workflow for language
processing.

is detrimental to the analysis of subtle face/head
movements. We eliminated jitter using a video
stabilization technique (Sariyanidi et al., 2017),
which registers consecutive frames to one another.

Figure 3: Illustration of the computer vision prepro-
cessing pipeline. (a) Input video frames include the up-
per body of a participant/confederate. (b) Using Open-
Face, faces are automatically detected and and anno-
tated with specific landmarks. (c) Faces are divided
into three overlapping parts covering the left eye re-
gion, the right eye region, and the mouth region.

Quantification of facial movements was done
using the Facial Bases method (Sariyanidi et al.,
2017). This method uses 180 facial movement ba-
sis functions, 60 of which correspond to mouth
movements. Each basis provides differential infor-
mation (i.e. change of appearance) about a move-
ment that occurs in a particular region of the face.
Most bases are semantically interpretable; for ex-
ample, one basis is activated when the lip corner
of the subject moves upwards/downwards and an-
other basis is activated when the subject’s lower
lip moves, which typically occurs when the sub-
ject is talking (Figure 4). In this study, we used

150



the 60 bases corresponding to mouth movements.
The entire video sequence of a participant was rep-
resented as a collection of 60 time series, where
each time series quantified the activation level of
one basis over time (Figure 4). In our analyses,
we only used time points when participants were
speaking.

Each time series underwent smoothing, peak
detection, and normalization steps for reliability
and comparability between participants and across
60 bases. We first smoothed each time series us-
ing a Gaussian filter with a filter width of 2 stan-
dard deviations. We then detected peaks by deter-
mining the time points of sign change in the first
derivative (i.e. the point at which an increase in
activation stops and a decrease begins).

Each facial basis may have a different max-
imum activation magnitude (Sariyanidi et al.,
2017). We therefore normalized the heights of
detected peaks via z-normalization, by using the
time series from research confederates to calculate
the mean activation and the standard deviation for
each basis. Finally, we removed outlier peaks by
setting activations whose absolute value is above
6 standard deviations to zero.

Figure 4: Quantification of mouth movements. (a) Ex-
ample facial bases that explain mouth movements are
highlighted. (b) Illustration of the bases as time se-
ries. Their activations quantify the mouth movements
throughout the video.

2.5 Computation of Diversity

For both modalities (language and mouth move-
ments) we quantified diversity using Shannon en-
tropy (Cover and Thomas, 2006). From an infor-
mation theoretical perspective, entropy can be de-
scribed as the amount of information a data modal-
ity carries. Intuitively, one expects a higher en-
tropy (diversity) when, for instance, a participant
makes a rich set of facial expressions while speak-
ing compared to a participant who generates only
a restricted set of mouth movements. Similarly in
the cognitive domain, higher lexical entropy (di-

versity) is expected when participants use a vari-
ety of words, and lower entropy is expected when
participants produce repetitive speech. Shannon
entropy (H) is calculated as

H = −
n∑

i=1

p(xi) logb p(xi)

where b is the base of the logarithm. In this work
we used b = 2, yielding a measure of entropy in
bits. The probability of generating a word xi (or
activation of a facial basis), p(xi), is calculated
from the sample of generated words (or basis acti-
vations).

The ‘diversity’ function of the ‘qdap’ package
in R (R Core Team, 2017) was used to calcu-
late lexical (word-level) entropy for each partici-
pant. This function counts the number of differ-
ent words produced by each participant, result-
ing in a vector of word counts. The probability
of each word, p(xi), is then calculated by divid-
ing its count by the total number of word counts.
Note that the possible number of words and the
exact words used by a participant can differ from
one participant to other. Therefore, we also tested
whether calculated entropy values were affected
by total word counts (see Results).

For mouth movements, all participants were as-
sessed using the same set of 60 bases. We cal-
culated the number of times each facial basis was
activated (similar to word counts), also taking into
account the magnitude of activation, by calculat-
ing the sum of the entire time series. Note that
the summation of positive and negative values in a
time series should be zero, since a basis activation
(i.e., a positive value) is followed by a deactivation
(a negative value). For example, when a lip corner
is stretched, it is then relaxed. Therefore, instead
of summing the raw values of the time series, we
summed the positive and the absolute of negative
values separately, taking the average as our final
count value. We repeated this procedure for all 60
bases, yielding a vector of movement counts.

Different facial bases may have different ex-
pected activation patterns, with some of them ac-
tivated more frequently than others naturally. We
therefore normalized the total activation count of
each basis by the maximum count that was ob-
served for the same basis of research confederates.
Finally, entropy was calculated using the normal-
ized counts.
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2.6 Statistical Analysis

Our research design included repeated confeder-
ates across participants (i.e., the same 10 confed-
erates joined multiple conversations with different
ASD and TD participants). In order to account
for this nested design when assessing group differ-
ences in diversity values (ASD vs TD), we began
by using linear mixed effects models that included
confederate ID as a random effect (function ‘lmer’
from package ‘lme4’ in R) (R Core Team, 2017;
Bates et al., 2015).

We measured the contribution of random ef-
fects to the model by comparing the conditional
and marginal coefficients of determination, using
‘MuMIn’ package and ‘r.squaredGLMM’ func-
tion. The conditional and marginal coefficients
of determination correspond to variance explained
by fixed effects alone and variance explained by
both fixed and random effects, respectively. When
there was no difference between the two models
(i.e. random effects did not contribute to model
fit), we also fit ordinary linear regression models
using the ‘lm’ function. Due to our small sample
size (n = 44), simpler models were used when
possible, to preserve degrees of freedom.

The ASD and TD groups did not differ signif-
icantly on mean age, sex ratio, or verbal IQ esti-
mates, but there was a trend toward a difference
in full-scale IQ (Table 1). To gauge the robust-
ness of diagnostic group differences and check for
the utility of these variables as potential predic-
tors, we also fit models that included sex, age, and
IQ as covariates. For the analysis of mouth move-
ments, we used speech length (the sum of partici-
pant speech segments) as a covariate; more move-
ment is expected with longer talk times, which
may impact diversity. The pipeline for mouth
movements described above is sensitive to overall
head movements since facial bases may be spuri-
ously activated with head movement. Therefore,
we quantified the average head movement of each
participant (as provided by OpenFace), by measur-
ing the total motion of the head center during the
conversation, and used it as another covariate.

Effect sizes for group differences are reported
using Cohen’s d. We calculated Cohen’s d by di-
viding the estimated coefficient of the diagnostic
variable (0: TD, 1: ASD) in the fitted model (lmer
or lm) by the pooled standard deviation of the di-
versity value (i.e. average standard deviation of
ASD and TD groups). Following (Cohen, 1988),

d values between 0.20 and 0.50 reflect a small ef-
fect, between 0.50 and 0.80 a medium effect, and
> 0.80 a large effect.

Agreement between lexical and mouth move-
ment diversity was measured using Spearman’s
rank-order correlation coefficient.

3 Results

3.1 Basic Conversational Differences

Preliminary analyses revealed that conversations
differed on a variety of basic linguistic features,
according to the diagnosis of the Participant (Ta-
ble 2; t-values of the main effect of diagnosis are
reported; the random effect of confederate ID con-
tributed only to models for confederate word count
and conversational turns; ordinary linear models
are reported for all other variables). Conversa-
tional length did not differ for ASD and TD par-
ticipants, which was expected given the controlled
3-minute task design. Confederates in each condi-
tion produced the same number of words regard-
less of the diagnosis of their conversational part-
ners. However, participants with ASD produced
fewer words than TD participants (p = 0.002),
and conversational partners exchanged marginally
fewer turns when the participant had ASD (p =
0.10). Participant groups did not differ on speech
rate, but the ASD group had a significantly larger
sum of Confederate-to-Participant (C2P) pauses
than the TD group. These results demonstrate
that participants with ASD produced fewer words
and longer pauses than TD participants during the
CASS, and trended toward engaging in fewer con-
versational turns despite comparable task dura-
tion.

3.2 Lexical Diversity

Preliminary analyses revealed that inclusion of
confederate ID as a random effect did not signif-
icantly improve model fit for lexical diversity in
any model that included diagnosis as a fixed ef-
fect; we therefore report ordinary linear models.

A simple linear model revealed significantly
reduced lexical diversity in participants with
ASD (Mean=4.50, SD=0.22) as compared to TD
participants (Mean=4.64, SD=0.12; t(42)=2.85,
p=0.007, Cohen’s d=0.82). The effect of diagno-
sis on diversity continued to be significant after
accounting for age, IQ, and gender (t(39)=3.25,
p=0.002). Diversity of confederate language did
not differ by participant diagnosis (t(35.26)=0.17,
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p=0.86), suggesting that the effect of diagnosis
on diversity in participants is driven by internal
participant-level variables and not by differences
in confederate language.

Given the expected (neurotypical) association
between word count and entropy (Witten and Bell,
1990; Shannon, 1951), a second model was con-
structed that included word count, diagnosis, and
the interaction between word count and diagnosis
as predictors of participant lexical diversity. A sig-
nificant interaction was revealed (Table 3), such
that the slope of the relationship between word
count and diversity was greater in the TD group
than the ASD group (Figure 5).

3.3 Diversity of Mouth Movements

The random effect of confederate ID did not con-
tribute to model fit when predicting mouth move-
ment diversity; therefore, we report the results of
ordinary linear models.

Mirroring our language findings, we observed a
significant decrease in mouth movement diversity
in the ASD group as compared to the TD group
(Cohen’s d=1.0, t=-2.73, p=0.009) in a model us-
ing head movement and speech length as covari-
ates. This difference remained significant when
age, sex, and IQ were included as covariates (Co-
hen’s d=1.0, t=-2.52, p=0.016). None of the co-
variates contributed significantly to the model. In
contrast to the observed relationship between word
count and word diversity (Table 3), there was no
significant relationship between speech length and
mouth movement diversity (t=0.50, p=0.619).

3.4 Correlations Between Language and
Mouth Modalities

We also investigated whether the two modalities
(mouth movement and words produced) provided
redundant information when characterizing ASD-
related restriction in oral-motor and linguistic di-
versity. The diversity values of the two modalities
were not significantly correlated in the ASD group
(Spearman’s r=-0.08, p=0.758), in the TD group
(Spearman’s r=-0.11, p=0.566), or across the sam-
ple as a whole (Spearman’s r=0.18, p=0.240).
This suggests that lexical and oral-motor diversity
provide unique information, and could potentially
account for independent variance in future models
designed to predict restricted interests/repetitive
behaviors in ASD.

Figure 5: The relationship between word count and lin-
guistic diversity differed by diagnostic status, with a
steeper slope in the TD group than the ASD group.

4 Discussion

In this study, we identified medium-to-large group
differences in behavioral entropy in adults with
ASD vs. neurotypical adults, specifically in
the areas of word production and mouth move-
ment. This study is the first to use both com-
puter vision and computational linguistics to show
a “restricted” dimension in adult conversations
with non-clinicians (most prior research used
children’s interactions with psychologists during
semi-structured clinical evaluations) (Rouhizadeh
et al., 2015; van Santen et al., 2013).

In addition to basic group differences, our re-
sults revealed a novel interactive effect of word
count and diagnosis on lexical diversity. As in-
creasing numbers of words were produced by par-
ticipants with ASD, they did not reach the same
levels of linguistic diversity as their non-ASD
peers. Indeed, this gap may widen over the course
of longer conversations, and may differ by word
category (e.g., function words vs. content words).
We will explore these questions in future research
with longer samples, wherein we evaluate the re-
lationship between relatively deteriorated linguis-
tic diversity and impressions of social communi-
cation ability by gathering post-conversational rat-
ings of social communication quality from confed-
erates.

Our finding that mouth movements are less di-
verse in ASD is also novel. One possible expla-
nation for this finding is subtle oral-motor impair-
ments in the ASD sample, as children with ASD
have been reported to have oral-motor deficits
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ASD Mean (SD) TD Mean (SD) t-value p-value
Duration (mins) 3.08 (0.12) 3.16 (0.23) 1.43 0.16

Word Count
Part: 275 (77) 370 (99) 3.37 0.002*
Conf: 226 (67) 236 (55) 1.08 0.29

Conversational Turns 33.53 (8.90) 38.56 (8.63) 1.70 0.10
Speech Rate 190.31 (26.29) 193.53 (24.88) 0.41 0.69
Sum of C2P Pauses 12.60 (5.36) 7.33 (3.61) 3.91 0.001*

Table 2: Basic group differences between conversations that did or did not include participants with ASD.
* Statistically significant difference between diagnostic groups, p<0.05.

Variable Estimate Std. Error t-value p-value
(Intercept) 3.882 0.11 35.27 <2.00E-16
WC 0.002 0 5.79 <.001*
Diagnosis 0.519 0.142 3.66 <.001*
WC:Diagnosis -0.002 0 -3.51 0.001*

Table 3: Linear model to predict linguistic diversity. Model includes word count (WC), participant diagnosis (TD
coded as 1) and the interaction between word count and diagnosis. * Statistically significant difference between
diagnostic groups, p<0.05.

(Adams, 1998), and oral-motor abilities in in-
fancy and toddlerhood predict later speech fluency
(Gernsbacher et al., 2008). However, all partic-
ipants in this study were fluent English speak-
ers without overt oral-motor impairments. Re-
duced phonological diversity could also result in
restricted mouth movements, a hypothesis that
will be explored in future analyses.

Reduced facial expressiveness (McIntosh et al.,
2006), atypical expressiveness (Samad et al.,
2018; Loveland et al., 1994), and limited integra-
tion of expressions and vocalizations (Lord et al.,
2012a) have all been reported in ASD, which
could lead to reduced diversity in mouth move-
ments. Typically, when people take part in a
conversation, vocalizations are accompanied by
subtle changes in facial expressions (Busso and
Narayanan, 2007). Integration across different
modalities (e.g., language and facial expressions)
is a critical aspect of social communication, and
impairment in this area is assessed in common di-
agnostic instruments for ASD, such as the ADOS
(Lord et al., 2012a). However, to the best of our
knowledge, there are no objective methods for di-
rectly quantifying the degree to which such inte-
gration occurs during natural conversations. De-
velopment of novel computational tools to fill this
gap is an especially promising future direction.

Of clinical note, adults with ASD who partici-
pated in our study had just completed an intensive
intervention to improve social interaction skills.

It is striking that decreased entropy was evident
across domains in this sample, despite the recent
intervention that targeted social reciprocity and
conversational skills. This suggests that our re-
sults may in fact underestimate the magnitude of
differences that could be present in untreated indi-
viduals.

5 Conclusion

Adults with ASD exhibit restricted/repetitive pat-
terns of behavior (APA, 2013), but computational
efforts to quantify the restricted/repetitive dimen-
sion in real-world contexts are just beginning to
emerge (Rouhizadeh et al., 2015; Bone et al.,
2015; Goodwin et al., 2014). This knowledge
gap makes adult impairments difficult to treat, and
tracking the effectiveness of interventions that tar-
get RRBs is a significant challenge for clinicians
and researchers. Our results suggest that cross-
domain entropy during naturalistic conversations
could serve as a quantitative behavioral marker of
ASD.

This study advances the field by applying com-
putational methods across oral-motor and lexical
domains, to identify restricted patterns of behav-
ior in ASD in real-world contexts. In future re-
search, we will explore relationships between re-
duced behavioral diversity and clinical phenotype,
with the goal of moving beyond group differences
to predict individual variability, and establishing
external validity with established measures. We
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envision that future iterations of the methods de-
scribed here will be utilized to identify and track
highly quantifiable treatment targets in the area
of restricted/repetitive behaviors, and will advance
the goal of precision medicine for individuals with
autism and their families.
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Douglas Bates, Martin Mächler, Ben Bolker, and Steve
Walker. 2015. Fitting Linear Mixed-Effects Mod-
els Using {lme4}. Journal of Statistical Software,
67(1):1–48.

David Q Beversdorf. 2016. Phenotyping, Etiolog-
ical Factors, and Biomarkers: Toward Precision
Medicine in Autism Spectrum Disorders. Journal
of developmental and behavioral pediatrics : JDBP,
37(8):659–73.

Daniel Bone, Matthew S. Goodwin, Matthew P. Black,
Chi-Chun Lee, Kartik Audhkhasi, and Shrikanth
Narayanan. 2015. Applying Machine Learn-
ing to Facilitate Autism Diagnostics: Pitfalls and
Promises. Journal of Autism and Developmental
Disorders, 45(5):1121–1136.

Daniel Bone, Chi-Chun Lee, Matthew P Black, Mar-
ian E Williams, Sungbok Lee, Pat Levitt, and
Shrikanth Narayanan. 2014. The psychologist as
an interlocutor in autism spectrum disorder assess-
ment: insights from a study of spontaneous prosody.
Journal of speech, language, and hearing research :
JSLHR, 57(4):1162–77.

Daniel Bone, Chi-Chun Lee, Theodora Chaspari,
Matthew P Black, Marian E Williams, Sungbok
Lee, Pat Levitt, and Shrikanth Narayanan. 2013.
Acoustic-prosodic, turn-taking, and language cues
in child-psychologist interactions for varying social
demand. In INTERSPEECH, pages 2400–2404.
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