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Abstract

We introduce the TMU systems for the sec-
ond language acquisition modeling shared task
2018 (Settles et al., 2018). To model learner
error patterns, it is necessary to maintain a
considerable amount of information regard-
ing the type of exercises learners have been
learning in the past and the manner in which
they answered them. Tracking an enormous
learner’s learning history and their correct and
mistaken answers is essential to predict the
learner’s future mistakes. Therefore, we pro-
pose a model which tracks the learner’s learn-
ing history efficiently. Our systems ranked
fourth in the English and Spanish subtasks,
and fifth in the French subtask.

1 Introduction

The second language acquisition modeling
(SLAM) is an interesting research topic in the
fields of psychology, linguistics, and pedagogy as
well as engineering. Popular language learning
applications such as Duolingo accumulate learn-
ing data of language learners on a large-scale;
thus, there has been an increasing interest for
SLAM using machine learning using such data.
In this study on SLAM, we aim to clarify both:
(1) the inherent nature of second language learn-
ing, and (2) effective machine learning/natural
language processing (ML/NLP) engineering
strategies to build personalized adaptive learning
systems.

In order to predict the learner’s future mistakes,
it is important to track a huge history of what
and how exercises were solved by that learner and
be able to model it. Therefore, we propose a
model that can efficiently track a learner’s learning
history. (Piech et al., 2015; Khajah et al., 2014,
2016)

Figure 1: An exercise example. Given exercise is
a “correct” input. Outputs are “1” each time a
learner makes a mistake

2 2018 Duolingo Shared Task on SLAM

We used data from Duolingo in this shared task.
Duolingo is the most popular language-learning
online application. Learners solve the exercises
and this shared task use only 3 type of exer-
cises. Exercise (a) is a reverse translate item,
where learners translate written prompt from the
language they know into the language they are
learning. Exercise (b) is a reverse tap item, where
learners construct an answer given a set of words
and distractors in the second language. Exercise
(c) is a listen item, where learners listen and tran-
scribe an utterance in the second language. In this
shared task, There are 3 exercise data of the fol-
lowing groups of second language learners:

• English learners (who already speak Spanish)

• Spanish learners (who already speak English)

• French learners (who already speak English)

The Duolingo data set, which contains more
than 2 million annotated words, is created from
the answers submitted by more than 6,000 learn-
ers during their first 30 days. In the related ex-
ercises, learners answer questions related to the
second language they are learning; thus, they in-
evitably make various mistakes during the course.
In this task, we predict mistakes on word level
given an exercise. Figure 1 is an exercise exam-
ple. Given a “correct” exercise as input a system
has to predict labels as output.
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Figure 2: Architecture of the proposed TMU system.

In general, most tokens are perfect matches;
however, the remainder of the tokens are either
missing or spelled incorrectly (ignoring capitaliza-
tion, punctuation, and accents). The former is as-
signed the label “0” (OK), while the latter is as-
signed the label “1” (Mistake).

3 TMU System

To track a lot of learner’s histories, our proposed
TMU system has two components: (1) a base com-
ponent that predicts whether a learner has made
a mistake for the given word in an exercise (Fig.
2, Prediction Bi-LSTM) and (2) a component that
tracks a specific learner’s information regarding
the learned exercises and the words that he or she
might have mistaken (Fig. 2, History LSTM). It is
expected to track huge history of the learned exer-
cise by inputting the hidden state of the Prediction
model to the History LSTM.

In prediction, we receive exercise as input and
make predictions on word-level. Using Bi-LSTM
for sequence labeling on exercise level, e.g., in-
formation as POS tags or dependency edge labels,
allows us to share information within each exer-
cise for better prediction. We perform training by
feeding input exercises arranged in a chronologi-

cal order for each learner.

3.1 Features

Table 1 lists all the features used by our system.
We use features (1-7) included in the dataset dis-
tributed by the task organizers as well as the track-
ing history (8) (Section 3.3) and labels for lan-
guage identification (9). We trained a single model
with three languages, including English, Spanish,
and French; in addition, we used the language
identification feature to distinguish them.

There are three types of inputs for the Bi-
LSTM. The first input includes word-level features
that indicate information changing for each word
in an exercise. In particular, word surface and POS
are used as word-level features. The second input
consists of exercise-level features. In particular,
days, session, format, time, and history are used
as exercise-level features. The third input includes
learner-level features. For this, learner and lan-
guage features are extracted for each learner.

3.2 Prediction Bidirectional LSTM

We used bidirectional LSTM (Bi-LSTM) to pre-
dict whether a learner has mistaken each word in
an exercise. The k-th word and POS of the j-th
exercise of the i-th learner are converted into ei

(j,k)
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Feature Embeddings Description
1 Word ei

(j,k) ∈ Rde×1 Word Surface
2 POS pi

(j,k) ∈ Rdp×1 Part of Speech
3 Session si

j ∈ Rds×1 Lesson, Practice or Test
4 Format f i

j ∈ Rdf ×1 Reverse translate, Reverse tap, or Listen
5 Days bi

j ∈ R1×1 Number of Days Since the Start for Each Learner
6 Time tij ∈ R1×1 Amount of Time to Construct and Submit Answers for Each Learner
7 User ui ∈ Rdu×1 Unique Identifier for Each Learner
8 History ci

(j−1,M) ∈ Rdc×1 Last Hidden Layer of History LSTM
9 Language li ∈ Rdl×1 English, Spanish, French

Table 1: Features used in our system. i: Learner’s ID; j: Exercise Number of the i-th Learner; k: Word’s
and POS’s index of the j-th Exercise. de: Word Embedding Size; dp: POS Embedding Size; ds: Session
Embedding Size; df : Format Embedding Size; du: User Embedding Size; dc: History Embedding Size;
M : Total Sentence Length of All Previous Exercises; dl: Language Embedding Size.

and pi
(j,k) distributed representations, respectively.

Further, the session and format of the j-th exer-
cise of the i-th learner are converted into si

j and
f i

j distributed representations, respectively. Days
and time are represented as bi

j and tij , respectively.
User and language are converted into ui and li

distributed representations, respectively. History
is the last hidden state ci

(j−1,M) of the History
LSTM, which will be described later (Section 3.3).

The inputs of the Bi-LSTM are given as
xi

(j,1), x
i
(j,2), · · · , xi

(j,N). where, xi
(j,k) =

[ei
(j,k); p

i
(j,k); s

i
j ; f

i
j ; b

i
j ; t

i
j ; c

i
(j−1,M); u

i; li] is the
concatenation of all features and N is the length
of the j-th exercise. xi

(j,k) is converted into the

forward hidden state
−−−→
hi

(j,k) ∈ Rdh×1 and back-

ward hidden state
←−−−
hi

(j,k) ∈ Rdh×1 using LSTM,
where dh is the hidden size. The final hidden
state hi

(j,k) ∈ R2dh×1 is acquired by concatenat-

ing
−−−→
hi

(j,k) and
←−−−
hi

(j,k). Further, hi
(j,k) is fed into the

extra hidden layer:

ĥi
(j,k) = ReLU(Whhi

(j,k) + bh) (1)

where ĥi
(j,k) ∈ Rdĥ×1 is an extra hidden layer out-

put, Wh ∈ Rdĥ×dh is a weighting matrix, and
bh ∈ Rdĥ×1 is a bias. The extra hidden layer
output ĥi

(j,k) is linearly transformed using the out-
put layer as follows and the probability distribu-
tion pi

(j,k) ∈ Rt×1 of the true/false tag is acquired
using the softmax function, where t is the size of
the tag, which is set to 2 in our study.

pi
(j,k) = softmax(Wĥĥi

(j,k) + bĥ) (2)

where Wĥ ∈ Rt×dĥ is a weighting matrix and bĥ ∈
Rt×1 is a bias.

3.3 History LSTM
As previously mentioned, to correctly predict each
learner’s mistakes, it is important to consider not
only the history of learned exercises, but also the
learner’s answers to exercises. Thus, the History
LSTM tracks all previous information regarding
the learned exercises and how they were answered
by each learner.

For each j-th exercise, oi
(j,1), o

i
(j,2), · · · , oi

(j,N)
is given as an input to the j-th History LSTM,
where oi

(j,k) = [hi
(j,k); g

i
(j,k)]. hi

(j,k) (Section 3.2)
is considered as information about the j-th exer-
cise of the i-th learner and gi

(j,k) ∈ R1×1 is the
gold answer of the i-th learner to the j-th exercise.
In addition, the first hidden state and cell mem-
ory of the j-th History LSTM is initialized with
the last hidden state and cell memory of the previ-
ous j-1-th History LSTM. The hidden state ci

(j,1)

is created from oi
(j,1) using the LSTM for the next

step of the Prediction Bi-LSTM.

3.4 Training
The objective function is defined as follows:

Lθ =
1

|D|
∑

(x,y)∈D

log p(y|x; θ) (3)

where D is the training data and θ represents
model parameters. We use Backpropagation
Through Time (BPTT) for training.

In general, low-frequency words are replaced
by unk word to learn unk vector. However, in our
study, unknown words appear not because they
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Language Train Dev Test
English 936,782 3,000 114,586
Spanish 824,899 3,000 93,145
French 367,402 3,000 41,753

Table 2: Number of exercises for each language.

have low-frequency, but because they have not
been learned yet. Hence, we use words that ap-
pear for the first time in an exercise to be replaced
by unk word to learn unk vector. In addition, we
use words without unk replacement to track the
history for the History LSTM.

The final loss is calculated as follows:

Lθ = αLunk
θ + (1− α)Lorig

θ (4)

where αLunk
θ is calculated by replacing the word

appearing for the first time with unk, while (1 −
α)Lorig

θ is calculated using this word itself. In par-
ticular, α expresses the degree of emphasis placed
on unk and a learned word. For example, when a
word “Japanese” appears for the first time, then:

Original exercise: I am Japanese
Replaced by unk: I am <unk>

If the unk does not exist in any exercise, Lθ has the
same value as Lorig

θ .

3.5 Testing
During our test, predictions were made on exer-
cises of the test data arranged in chronological or-
der for each learner. We update History LSTM
using output and hidden state of Prediction Bi-
LSTM. Test data does not have gold answers un-
like training data. Hence, each system used its
own converted probability outputs of the Predic-
tion Bi-LSTM component with arg max as gold
answers.

In addition, we performed ensemble predic-
tions. The parameters of ensemble models are ini-
tialized with different values. As the final predic-
tion result, we used the average of the probability
outputs of each Prediction Bi-LSTM. Each system
used its own converted probability outputs of the
Prediction Bi-LSTM component as gold answers.

4 Experiments

4.1 Experiment settings
Table 2 shows the number of exercises for train,
dev and test data for each language. The hyper pa-
rameters of our model are listed in Table 3. All

Parameter Value
de: Word Embedding Size 100
dp: POS Embedding Size 20
ds: Session Embedding Size 20
df : Format Embedding Size 20
du: User Embedding Size 50
dl: Language Embedding Size 20
dc: Hidden Size (History) 200
dh: Hidden Size (Prediction) 100
dĥ: Extra Hidden Size 50
Minibatch size 32
BPTT 18
Optimizer Adadelta
Learning rate 0.1
Initialization parameters [-0.1, +0.1]
α, Eq. (4) 0.01
Dev, (Section 3.5) 3,000
Ensemble, (Section 3.5) 10

Table 3: Hyper parameter values.

words that appeared in the training data were in-
cluded in the vocabulary. Preliminary experiments
showed that the AUROC of the one model trained
on data of three languages was higher than those
models trained for each language. Therefore, we
trained a single model with three language tracks,
including English, Spanish and French. Espe-
cially, AUROC increased for low-resource French
language.

Each model of the ensemble uses different dev
and training sets randomly sampled from the data.
In particular, since we needed to evaluate the
learning results of Future Days of each learner, we
combined the provided official training and dev
sets and arranged exercises in chronological or-
der of Days for each learner. Next, we randomly
sampled exercises from final learning exercises of
learners to create a dev set and the remaining data
were used as training data.

4.2 Results

Table 4 lists the results of SLAM for English
learners, Spanish learners, and French learners.
The systems are ranked by their AUROC. The
TMU system ranked fourth in English and Spanish
subtasks, while it ranked fifth in the French sub-
task.

4.3 Analysis of Tracking History

In order to confirm the importance of history
tracking, we compared the model that considers
history (W/ History Model) with the model that
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English Spanish French
0.861 SanaLabs 0.838 SanaLabs 0.857 SanaLabs
0.860 singsound-xushuyao 0.835 alexrich 0.854 singsound-xushuyao
0.858 alexrich 0.834 singsound-xushuyao 0.858 alexrich
0.848 TMU 0.823 TMU 0.843 zz
0.846 zz 0.818 zz 0.839 TMU
0.841 Cam 0.807 Cam 0.834 Cam
0.828 btomosch 0.802 btomosch 0.822 btomosch
0.821 nihalnayak 0.801 LambdaLearning 0.815 LambdaLearning
0.821 LambdaLearning 0.790 Grotoco 0.813 Grotoco
0.816 Grotoco 0.790 nihalnayak 0.811 nihalnayak
0.815 jilljenn 0.788 ymatusevich 0.808 jilljenn
0.813 ymatusevich 0.787 jilljenn 0.808 ymatusevich
0.796 renhk 0.773 renhk 0.806 caseykennington
0.787 zlb241 0.745 SLAM baseline 0.795 renhk
0.773 SLAM baseline 0.681 zlb241 0.770 SLAM baseline

Table 4: SLAM official evaluation results. Systems are ranked by AUROC.

Model AUROC
W/ History Model 0.834
W/O History Model 0.648

Table 5: The history model has an effect to improve
AUROC on English subtask.

does not consider history (W/O History Model) on
the dev set for English. The W/O History Model
used only the Prediction Bi-LSTM component
which does not use the history feature. For exper-
iments using this model, we used a single model
trained only on the English corpus. The default
split of training set and dev set was 824,012 ex-
ercises and 115,770 exercises, respectively. Both
aforementioned models used the same parameters
as listed in Table 3.

Table 5 lists our evaluation results1. It can be
observed that the AUROC of prediction of the W/
History Model case is considerably higher than
that of the W/O History Model. As we expected, it
is important to consider what learner have learned
in the past and how they responded to it in order to
improve future predictions.

5 Conclusion

In this study, we described the TMU system for
the 2018 SLAM Shared Task. Our system is based
on RNN; It has two components: (1) Bi-LSTM for
predicting learners’ error and (2) LSTM for track-
ing learners’ learning history.

1The performance is slightly different from the one re-
ported in Table 3 because of the difference in models and
ensembling.

In this work, we have not used any language-
specific information. As future work, we plan
to exploit additional data for each language,
such as pre-trained word representations, n-
grams, and character-based features. Additionally,
we hope to incorporate word difficulty features
(Kajiwara and Komachi, 2018). In particular, the
more complex a word is, the more difficult it likely
is to be learned.
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