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Abstract

Evaluation of text difficulty is important both
for downstream tasks like text simplification,
and for supporting educators in classrooms.
Existing work on automated text complexity
analysis uses linear models with engineered
knowledge-driven features as inputs. While
this offers interpretability, these models have
lower accuracy for shorter texts. Traditional
readability metrics have the additional draw-
back of not generalizing to informational texts
such as science. We propose a neural ap-
proach, training on science and other informa-
tional texts, to mitigate both problems. Our
results show that neural methods outperform
knowledge-based linear models for short texts,
and have the capacity to generalize to genres
not present in the training data.

1 Introduction

A typical classroom presents a diverse set of stu-
dents in terms of their reading comprehension
skills, particularly in the case of English language
learners (ELLs). Supporting these students often
requires educators to estimate accessibility of in-
structional texts. To address this need, several
automated systems have been developed to es-
timate text difficulty, including readability met-
rics like Lexile (Stenner et al., 1988), the end-to-
end system TextEvaluator (Sheehan et al., 2013),
and linear models (Vajjala and Meurers, 2014; Pe-
tersen and Ostendorf, 2009; Schwarm and Osten-
dorf, 2005). These systems leverage knowledge-
based features to train regression or classifica-
tion models. Most systems are trained on liter-
ary and generic texts, since analysis of text diffi-
culty is usually tied to language teaching. Existing
approaches for automated text complexity analy-
sis pose two issues: 1) systems using knowledge
based features typically work better for longer
texts (Vajjala and Meurers, 2014), and 2) complex-

ity estimates are less accurate for informational
texts such as science (Sheehan et al., 2013). In
the context of science, technology and engineer-
ing (STEM) education, both problems are signif-
icant. Teachers in these areas have less expertise
in identifying appropriate reading material for stu-
dents as opposed to language teachers, and shorter
texts become important when dealing with assess-
ment questions and identifying the most difficult
parts of instructional texts to modify for support-
ing students who are ELLs.

Our work specifically looks at ways to address
these two problems. First, we propose recurrent
neural network (RNN) architectures for estimating
linguistic complexity, using text as input without
feature engineering. Second, we specifically train
on science and other informational texts, using the
grade level of text as a proxy for linguistic com-
plexity and dividing grades k-12 into 6 groups. We
explore four different RNN architectures in order
to identify aspects of text which contribute more
to complexity, with a novel structure introduced
to account for cross-sentence context. Experi-
mental results show that when specifically trained
for informational texts, RNNs can accurately pre-
dict text difficulty for shorter science texts. The
models also generalize to other types of texts, but
perform slightly worse than feature-based regres-
sion models on a mix of genres for texts longer
than 100 words. We use attention with all mod-
els, both to improve accuracy, and as a tool to
visualize important elements of text contributing
to linguistic complexity. The key contributions of
the work include new neural network architectures
for characterizing documents and experimental re-
sults demonstrating good performance for predict-
ing reading level of short science texts.

The rest of the paper is organized as follows:
section 2 looks at existing work on automated
readability analysis and introduces RNN architec-
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tures we build on for this work. Section 3 lays out
the data sources, section 4 covers proposed mod-
els, and section 5 presents results. Discussion and
concluding remarks follow in sections 6 and 7.

2 Background

Studies have shown that language difficulty of in-
structional materials and assessment questions im-
pacts student performance, particularly for lan-
guage learners (Hickendorff, 2013; Abedi and
Lord, 2001; Abedi, 2006). This has lead to exten-
sive work on readability analysis, some of which
is explored here. The second part of this section
looks at work that leverages RNNs in automatic
text classification tasks and the use of attention
with RNNs.

2.1 Automated Readability Analysis

Traditional reading metrics including Flesch-
Kincaid (Kincaid et al., 1975) and Coleman-Liau
index (Coleman and Liau, 1975) are often used
to assess a text for difficulty. These metrics uti-
lize surface features such as average length of sen-
tences and words, or word lists (Chall and Dale,
1995). The development of automated text analy-
sis systems has made it possible to leverage addi-
tional linguistic features, as well as conventional
reading metrics, to estimate text complexity quan-
tified as reading level. NLP tools can be used to
extract a variety of lexical, syntactic and discourse
features from text, which can then be used with
traditional features as input to models for predict-
ing reading level. Some of the models include sta-
tistical language models (Collins-Thompson and
Callan, 2004), support vector machine classifiers
(Schwarm and Ostendorf, 2005; Petersen and Os-
tendorf, 2009), and logistic regression (Feng et al.,
2010). Text coherence has also been explored as
a predictor of difficulty level in (Graesser et al.,
2004), with an extended feature set that includes
syntactic complexity and discourse in addition to
coherence (Graesser et al., 2011).

A study conducted in (Nelson et al., 2012) in-
dicates that metrics that incorporate a large set of
linguistic features perform better at predicting text
difficulty level; the metrics were specifically tested
on the Common Core Standards (CCS) texts.1

Features from second language acquisition com-
plexity measures were used in (Vajjala and Meur-
ers, 2012) to improve readability assessment. This

1http://www.corestandards.org/

feature set was further extended to include mor-
phological, semantic and psycholinguistic features
to build a readability analyzer for shorter texts (Va-
jjala and Meurers, 2014). A tool specifically built
for text complexity analysis for teaching and as-
sessing is the TextEvaluatorTM. While knowledge-
based features offer interpretability, a drawback is
that if the text being analyzed is short, the feature
vector is sparse, and prediction accuracy drops
(Vajjala and Meurers, 2014). This is particularly
true for assessment questions, which are shorter
than the samples most models are trained on.

Generally, for any text classification task, the
type of text used for training the model is im-
portant in terms of how well it performs; train-
ing on more representative text tends to improve
performance. The work in (Sheehan et al., 2013)
shows that traditional readability measures under-
estimate the reading level of literary texts, and
overestimate that of informational texts, such as
history, science and mathematics articles. This is
due, in part, to the vocabulary specific to the genre.
Science texts have longer words, though they may
be easier to infer from context. Literary texts,
on the other hand, might have simpler words, but
more complicated sentence structure. The work
demonstrated that more accurate grade level esti-
mates can be obtained by two stage classification:
i) classify the text as either literary, informational,
or mixed, and then ii) use a genre-dependent ana-
lyzer to estimate the level. In an analysis on how
well a model trained on news and informational
articles generalizes to the categories in CCS, the
work in (Vajjala and Meurers, 2014) shows better
performance on informational genre than literary
texts. Training on more representative text, how-
ever, requires genre-specific annotated data.

2.2 Text Classification with RNNs
Recurrent neural networks (RNNs) are adept at
learning text representations, as demonstrated by
language modeling (Mikolov et al., 2010) and text
classification tasks (Yogatama et al., 2017). Addi-
tional RNN structures have been proposed for im-
proved representation, including tree LSTMs (Tai
et al., 2015) and a hierarchical RNN (Yang et al.,
2016). In addition, hierarchical models have been
proposed to better represent document structure
(Yang et al., 2016).

Attention mechanisms were introduced to im-
prove neural machine translation tasks (Bahdanau
et al., 2014), and have also been shown to im-
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prove the performance of text classification (Yang
et al., 2016). In machine translation, attention is
computed over the source sequence when predict-
ing the words in the target sequence. This “con-
text” attention is based on a score computed be-
tween the target hidden state ht and a subset of the
source hidden states hs. The score can be com-
puted in several ways, of which a general form is
score(ht, hs) = hTt Wαh

T
s (Luong et al., 2015).

Attention has also been used for a variety of
other language processing tasks. In particular, for
text classification, attention weights are learned
that target the final classification decision. This
approach is referred to as “self attention” in (Lin
et al., 2017), but will be referred to here as “task
attention.” The hierarchical RNN in (Yang et al.,
2016) uses task attention mechanisms at both word
and sentence levels. Since our work builds on this
model, it is described in further detail in section
4. In addition, we propose extensions of the hi-
erarchical RNN that leverage attention in different
ways, including combining the concept of context
attention from machine translation with task atten-
tion to capture interdependence of adjoining sen-
tences in a document.

3 Data

For our work we consider grade level as a proxy
for linguistic complexity. Within a grade level,
there is variability across different genres, which
students are expected to learn. Since there is no
publicly available data set for estimating grade
level and text difficulty aimed at informational
texts, we created a corpus using online science,
history and social studies textbooks. The text-
books are written for either specific grades, or for
a grade range, e.g. grades 6-8. There are a total
of 44 science textbooks and 11 history and social
studies textbooks, distributed evenly across grades
K-12. Given the distribution of textbooks for each
grade level, we decide to classify into one of six
grade bands: K-1, 2-3, 4-5, 6-8, 9-10 and 11-12.
Because of our interest in working with short texts,
we split the books into paragraphs, using end line
as the delimiter.2 In addition to the textbooks, we
also used the WeeBit corpus (Vajjala and Meurers,
2012) for training, again split into paragraphs.

2In splitting the text into paragraphs, we are implicitly as-
suming that all paragraphs have the same linguistic complex-
ity as the textbook, which is probably not the case. Thus,
there will be noise in both the training and test data, so some
variation in the predicted levels is to be expected.

Grade Level All chapters Test set
chapters

K-1 25 -
2-3 22 2
4-5 53 9
6-8 165 12
9-10 48 5
11-12 28 3

Table 1: Chapter-based test data split

We have three different sources of test data: i)
the CCS appendix B texts, ii) a subset of the on-
line texts that we collected,3 and iii) a collection
of science assessment items.

The CCS appendix B data is of interest be-
cause it has been extensively used for evaluat-
ing linguistic complexity models, e.g. in (Sheehan
et al., 2013; Vajjala and Meurers, 2014). It in-
cludes both informational and literary texts. We
use document-level samples from the CCS data
for comparison to prior work, and paragraph-level
samples to provide a more direct comparison to
the information test data we created.

For the informational texts, we selected chap-
ters from multiple open source texts. Since we had
so few texts at the K-1 level, the test data only in-
cluded texts from higher grade levels, as shown
in table 1. The paragraphs in these chapters were
randomly assigned to test and validation sets.

To assess the models on stand alone texts, we
assembled a corpora of science assessment ques-
tions from (Khot et al., 2015; Clark et al., 2018),
AI2 Science Questions Mercury,4 and AI2 Sci-
ence Questions v2.1 (October 2017).5 This test
set includes 5470 questions for grades 6-8 from
sources including standardized state and national
tests. The average length of a question is 49 words.

For training, two data configurations were used.
When testing on the CCS data and the science
assessment questions, there is no concern about
overlap between training and test data, so all text
can be used for training. We held out 10% of this
data for analysis, and the remaining text is used for
the D1 training configuration. Data statistics are
given in table 2. About 20% of the training sam-

3Available at https://tinyurl.com/yc59hlgj.
4http://data.allenai.org/

ai2-science-questions-mercury/
5http://data.allenai.org/

ai2-science-questions/
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Grade
Level

Train
Samples

Mean
Length

K-1 739 24.42
2-3 723 62.05
4-5 4570 63.82
6-8 15940 74.79

9-10 3051 68.24
11-12 2301 75.28

Table 2: Training data (D1) with mean length of text in
words

ples (5152) are from WeeBit, spread across grades
2-12. For testing on all three sets, we defined
a training configuration D2 that did not include
any text from chapters overlapping with the test
data, so there training set is somewhat smaller than
for D1, except for grades K-1. The same WeeBit
training data was included in both cases.

For the elementary grade levels, we have much
less data than for middle school, and for high
school, we have substantial training data with
coarser labels (grades 9-12). To work around both
issues, we first used all training samples to train
the RNN to predict one of four labels (grades K-3,
4-5, 6-8 and 9-12). We then used the training data
with fine labels to train to predict one of six labels.
This approach was more effective than alternating
the training.

4 Models for Estimating Linguistic
Complexity

This section introduces the four RNN structures
for linguistic complexity estimation, including: a
sequential RNN with task attention, a hierarchical
attention network, and two proposed extensions
of the hierarchical model using multi-head atten-
tion and attention over bidirectional context. In all
cases, the resulting document vector is used in a fi-
nal stage of ordinal regression to predict linguistic
complexity. All systems are trained in an end-to-
end fashion.

4.1 Sequential RNN
The basic RNN model we consider is a sequential
RNN with task attention, where the entire text in
a paragraph or document is taken as a sequence.
For a document ti with words K words wik k ∈
{1, 2, ...,K}, a bidirectional GRU is used to learn
representation for each word hik, using a forward
run from wi1 to wiK , and a backward run from

wiK to wi1.

−→
hik =

−−−→
GRU(wik) (1)

←−
hik =

←−−−
GRU(wik) (2)

hik = [
−→
hik,
←−
hik] (3)

Attention is computed over the entire sequence
αik, and used to compute the document represen-
tation vseqi :

uik = tanh(Wshik + bs) (4)

αik =
exp(uTikus)∑
ik
exp(uT

ik
us)

(5)

vseqi =
∑
k αikhik (6)

The document vector is used to predict reading
level. Since the grade levels are ordered categori-
cal labels, we implement ordinal regression using
the proportional odds model (McCullagh, 1980).
For the reading level labels j ∈ {1, 2, ..., J}, the
cumulative probability is modeled as

P (y ≤ j|vseqi ) = σ(βj − wTordv
seq
i ), (7)

where σ(.) is the sigmoid function, and βj and
word are estimated during training by minimizing
the negative log-likelihood

Lord = −∑
i log(σ(βj(i) − wTordv

seq
i )− (8)

σ(βj(i)−1 − wTordv
seq
i )).

4.2 Hierarchical RNN

While a sequential RNN has the capacity to cap-
ture discourse across sentences, it does not capture
document structure. Therefore, we also explored
the hierarchical attention network for text classifi-
cation from (Yang et al., 2016). The model builds
a vector representation vi for each document ti
with L sentences sl, l ∈ {1, 2, .., L}, each with
Tl words wlt, t ∈ {1, 2, ..., Tl}. The first level of
the hierarchy takes words as input and learns a rep-
resentation for each word hlt using a bidirectional
GRU. Task attention at the word level αlt high-
lights words important for the classification task,
and is computed using the word level context vec-
tor uw. The word representations are then aver-
aged using attention weights to form a sentence
representation sl

αlt =
exp(uTltuw)∑
t
exp(uT

lt
uw)

(9)

sl =
∑
t αlthlt, (10)
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where ult = tanh(Wwhlt + bw) is a projection
of the target hidden state for learning word-level
attention. The second level of the hierarchy takes
the sentence vectors as input, learns representation
hl for them using a bidirectional GRU. Using a
method similar to the word-level attention, a doc-
ument representation vi is created using sentence-
level task attention αl which is computed using the
sentence level context vector us

αl =
exp(uTl us)∑
l
exp(uT

l
us)

(11)

vi =
∑
l αlhl, (12)

where ul = tanh(Wshl+bs) is analogous to ult at
the sentence level. The word- and sentence-level
context vectors, uw and us, as well asWw, Ws, bw
and bs, are learned during training.

4.3 Multi-Head Attention

Work has shown that having multiple attention
heads improves neural machine translation tasks
(Vaswani et al., 2017). To capture multiple aspects
contributing to text complexity, we learn two sets
of word level task attention over the word level
GRU output. These two sets of sentence vectors
feed into separate sentence-level GRUs to give us
two document vectors by averaging using task at-
tention weights at the sentence level. The doc-
ument vectors are then concatenated to form the
document representation. The multi-head atten-
tion RNN is shown in figure 1.

4.4 Hierarchical RNN with Bidirectional
Context

The hierarchical model is designed for represent-
ing document structure, however, the sentences
within a document are encoded independently. To
capture information across sentences, we extend
the concept of context attention used in machine
translation, using it to learn context vectors for
adjoining sentences. We extend the hierarchical
RNN by introducing bi-directional context with
attention. Using the word level GRU output, a
“look-back” context vector cl−1(wlt) is calculated
using context attention over the preceding sen-
tence, and a “look-ahead” context vector cl+1(wlt)
using context attention over the following sen-
tence for each word in the current sentence.

α(l−1)t(wlt) =
exp(score(hlt,h(l−1)t))∑
t′ exp(score(hlt,h(l−1)t′ ))

(13)

cl−1(wlt) =
∑
t′ α(l−1)t′(wlt)h(l−1)t′ (14)

α(l+1)t(wlt) =
exp(score(hlt,h(l+1)t))∑
t′ exp(score(hlt,h(l+1)t′ ))

(15)

cl+1(wlt) =
∑
t′ α(l+1)t′(wlt)h(l+1)t′ (16)

where score(hlt, hkt) = hltWαh
T
kt and a single

Wα is used for computing the score in both direc-
tions. The context vectors are concatenated with
the hidden state to form the new hidden state h′lt.

h′lt = [cl−1(wlt), hlt, cl+1(wlt)] (17)

The rest of the structure is the same as a hierarchi-
cal RNN, using equations 9-12 with h′lt instead of
hlt. Figure 2 shows the structure for calculating
‘look-back” context.

4.5 Implementation Details
The implementation is done via the Tensorflow
library (Abadi et al., 2016).6 All RNNs use
GRUs (Cho et al., 2014) with layer normalization
(Ba et al., 2016), trained using Adam optimizer
(Kingma and Ba, 2014) with a learning rate of
0.001. Regularization was done via drop out. The
validation set was used to do hyper-parameter tun-
ing, with a grid search over drop out rate, number
of epochs, and hidden dimension of GRU cells.
Good result for all four architectures are obtained
with a batch size of 10, a dropout rate of 0.5-0.7, a
cell size of 75-250 for the word-level GRU, and a
cell size of 40-75 for the sentence-level GRU. For
the RNN, we also trained a version with a larger
word-level hidden layer cell size of 600.

Pre-trained Glove embeddings7 are used for all
models (Pennington et al., 2014), using a vocabu-
lary size of 65000-75000.8 The out of vocabulary
(OOV) percentage on the CCS test set was 3%,
and on the informational test set was 0.5%. All
OOV words were mapped to an ‘UNK’ token. The
text was lower-cased, and split into sentences for
the hierarchical models using the natural language
toolkit (NLTK) (Loper and Bird, 2002).

5 Results and Analysis

We test our models on the two science test sets,
as well as on the CCS appendix B document
level texts and a paragraph-level version of these
texts. We also evaluated the best performing

6The code and trained models are available at https:
//github.com/Farahn/Liguistic-Complexity.

7http://nlp.stanford.edu/data/glove.
840B.300d.zip

8In vocabulary words not present in Glove had randomly
initialized word embeddings.
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Figure 1: RNN with Multi-Head Attention

Figure 2: RNN with Bidirectional Context and Atten-
tion

model on the middle school science questions data
set. Since both the true reading level and predicted
levels are ordered variables, we use Spearman’s
rank correlation as the evaluation metric to cap-
ture the monotonic relation between the predic-
tions and the true levels.

As a baseline, we use the WeeBit linear regres-
sion system (Vajjala and Meurers, 2014). The
WeeBit system uses knowledge-based features as
input to a linear regression model to predict read-
ing level as a number between 1 and 5.5, which
maps to text appropriate for readers 7-16 years
of age. The feature set includes parts-of-speech
(e.g. density of different parts-of-speech), lexical
(e.g. measurement of lexical variation), syntactic
(e.g. the number of verb phrases), morphological
(e.g. ratio of transitive verbs to total words) and
psycholinguistic (e.g. age of acquisition) features.
There are no features related to discourse, thus it
is possible to compute features for sentence level
texts. The system was trained on a subset of the
data that our system was trained on, so it is at a
disadvantage. We did not have the capability to

retrain the system.

5.1 Results by Genre
Results for the different models:

• sequential RNN with self attention (RNN),

• large sequential RNN with self attention
(RNN 600),

• hierarchical RNN with attention at the word
and sentence level (HAN),

• hierarchical RNN with bidirectional context
and attention (BCA), and

• multi-head attention (MHA)

are shown in table 3, together with the results for
the WeeBit system which has state-of-the-art re-
sults on the CCS documents. For the CCS data,
both D1 and D2 training configurations are used
for the neural models; only D2 is used for the in-
formational test set. For all of these models the
hidden layer dimension for the word level was be-
tween 125 and 250. We also trained a sequential
RNN with a larger hidden layer dimension of 600.

The HAN does better for document level sam-
ples than a sequential RNN; the converse is true
for paragraph level texts. The RNN with a larger
hidden layer dimension performs better for longer
texts, while the performance for smaller dimen-
sion RNN deteriorates with increasing text length.
The BCA model seems to generalize to longer
documents and new genres better than the other
neural networks.

Figure 3 shows the error distribution for
BCA(D1) in terms of distance from true prediction
broken down by genre on the 168 CCS documents.
The category of informational texts is often over
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Test Set Model Samples WeeBit RNN RNN 600 HAN BCA MHA
CCS Document D1 168 0.69 0.28 0.43 0.47 0.55 0.42
CCS Paragraphs D1 1532 0.36 0.30 0.25 0.29 0.32 0.28
CCS Document D2 168 0.69 0.34 0.38 0.43 0.48 0.43
CCS Paragraphs D2 1532 0.36 0.27 0.26 0.24 0.30 0.29
Informational
Paragraphs

D2 1361 0.22 0.51 0.60 0.60 0.62 0.60

Table 3: Results (Spearman Rank Correlation)

Figure 3: Error distribution for the CCS documents
BCA(D1)

predicted, which we hypothesize is roughly due to
specific articles related to the United States history
and constitution. The only training data for our
models with that subject is in the grades 6-8 and
9-12 categories. The performance for literary and
mixed texts, on the other hand, is roughly unbi-
ased; this shows that the model is better at general-
izing to non-informational texts, even when there
are no literary text samples in the training data.

5.2 Results by Length

Figures 4 and 5 show the performance of our mod-
els and the WeeBit model as a function of docu-
ment length, both on the informational paragraphs
test set and the CCS paragraph level test set. The
results indicate that for shorter texts, particularly
under 100 words, neural models tend to do better.
Even for a mixture of genres, the model with bidi-
rectional context performs better than the feature-
based regression model, as shown in figure 5.

It is likely that the WeeBit results results on
shorter texts would improve if trained on the same
training set that is used for the neural models.
However, we hypothesize that the feature-based
approach is less well suited for shorter documents
because the feature vector will be more sparse.

Figure 4: Performance vs. text length for informational
paragraphs BCA(D2)

Comparing the CCS document- and paragraph-
level test sets, the average percentage of features
that are zero-valued is 28% for document-level
texts and 44% for paragraph-level texts. The most
sparse vectors are 40% and 81% for document and
paragraph-level texts, respectively.

5.3 Results for Science Assessment Questions
Finally, we apply both the baseline WeeBit system
and our best model (BCA trained onD1) to the set
of 5470 grade 6-8 science questions. The results
are shown in figures 6 and 7, where the grade 6-
8 category (ages 11-14) corresponds to predicted
level 3 for BCA and predicted level 4 for WeeBit.
The results indicate that BCA predictions are bet-
ter aligned with human rankings than the baseline.
As expected, grade 6 questions more likely to be
predicted as less difficult than grade 8 questions.

5.4 Attention Visualization
Attention can help provide insight into what the
model is learning. In the analyses here, all at-
tention values are normalized by dividing by the
highest attention value in the sentence/document
to account for different sequence lengths.

Figure 8 shows the word-level attention for the
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Figure 5: Performance vs. maximum text length for
CCS paragraphs BCA(D1)

BCA and HAN for a sample text from the science
assessment questions test set. (Attention weights
in the figure are smoothed to reflect the fact that
a word vector from a biLSTM reflects the word’s
context.) The results show that attention weights
are more sparse for HAN than for BCA. At the
sentence level (not shown here), the BCA sentence
weights tend to be more uniformly distributed,
whereas HAN weights are again more selective.

Another aspect of the attention is that a word
does not have the same attention level for all oc-
currences in a document. We look at maximum
and minimum values of attention as a function of
word frequency for each grade band, shown in fig-
ure 9 for grade 6-8 science assessment questions.

The pattern is similar for each grade band in
the validation and test sets. The minimum atten-
tion values assigned to a word drop with increas-
ing word frequency, while the maximum values
increase. This suggests that the attention weights
are more confident for more frequent words, such
as of. Words like fusion and m/s get high max-

Figure 6: BCA predicted levels for middle school sci-
ence assessment questions

imum attention values, despite not being as high
frequency as words like of and the. This may in-
dicate that they are likely to contribute to linguis-
tic complexity. The fact that transformation has a
high minimum is also likely an indicator of its im-
portance. For HAN without bidirectional context,
a similar visualization shows that while the trend
is similar, the attention weights typically tend to be
lower, both for minimum and maximum values.

We find that sentence-end tokens (period, ex-
clamation and question mark) have high average
attention weight, ranging from 0.54 to 0.81, while
sentence-internal punctuation (comma, colon and
semicolon) get slightly lower weights, ranging
from 0.20 to 0.47. The trend is similar for all
grades. These high attention values might be due
to punctuation serving as a proxy for sentence
structure. It is interesting to note that the question
mark gets higher minimum attention value than
period, despite being high frequency. It may be
that questions carry information that is particularly
relevant to informational text difficulty.

6 Discussion

Our work differs from existing models that es-
timate text difficulty since we do not use engi-
neered features. There are advantages and dis-
advantages to both approaches, which we briefly
discuss here. Models using engineered features
based on research on language acquisition offer
interpretability and insight into which specific lin-
guistic features are contributing to text difficulty.
An additional advantage of using engineered fea-
tures in a regression or classification model is that
less training data is required.

However, given both the evolving theories in

Figure 7: WeeBit predicted levels for middle school
science assessment questions
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Figure 8: Word level attention visualization for BCA
(top) and HAN (bottom) for a middle school science
assessment question

Figure 9: Maximum and minimum values of attention
as a function of word count for BCA

language acquisition and the large number of vari-
ables that impact second language acquisition, the
methodologies used in language acquisition re-
search have certain limitations. For example, the
number of variables that can be considered in a
study is practically limited, the sample popula-
tion is often small, and the question of qualita-
tive vs. quantitative methodologies used can influ-
ence outcomes (more details in (Larsen-Freeman
and Long, 2014; Mitchell et al., 2013)). These
limitations can carry into the feature engineering
process. Using a model with text as input ensures
that these constraints are not inherently part of the
model; the performance of the system is not lim-
ited by the features provided. Of course, perfor-
mance is limited by the training data, both in terms
of the cost of collection and any biases inherent in
the data. In addition, with advances in neural ar-
chitectures such as attention modeling, there may

be opportunities for identifying specific aspects of
texts that are particularly difficult, though research
in this direction is still in early stages.

7 Conclusion

In summary, this work explored different neural
architectures for linguistic complexity analysis, to
mitigate issues with accuracy of systems based on
engineered features. Experimental results show
that it is possible to achieve high accuracy on texts
shorter than 100 words using RNNs with attention.
Using hierarchical structure improves results, par-
ticularly with attention models that leverage bidi-
rectional sentence context. Testing on a mix of
genres shows that the best neural model can gen-
eralize to subjects beyond what it is trained on,
though it performs slightly worse than a feature-
based regression model on texts longer than 100
words. More training data from other genres will
likely reduce the performance gap. Analysis of
attention weights can provide insights into which
phrases/sentences are important, both at the aggre-
gate and sample level. Developing new methods
for analysis of attention may be useful both for
improving model performance and for providing
more interpretable results for educators.

Two aspects not considered in this work are ex-
plicit representation of syntax and discourse struc-
ture. Syntax can be incorporated by concatentat-
ing word and dependency embeddings at the token
level. Our BCA model was designed to capture
cross-sentence coherence and coordination, but it
may be useful to extend the hierarchy for longer
documents and/or introduce explicit models of the
types of discourse features used in Coh-Metrix
(Graesser et al., 2004).

Acknowledgments

We thank Dr. Meurers, Professor University of
Tubingen, and Dr. Vajjala-Balakrishna, Assistant
Professor Iowa State University, for sharing the
WeeBit training corpus, their trained readability
assessment model and the Common Core test cor-
pus.

References

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. Tensorflow: Large-scale machine learning on

53



heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467.

Jamal Abedi. 2006. Psychometric issues in the ELL as-
sessment and special education eligibility. Teachers
College Record, 108(11):2282.

Jamal Abedi and Carol Lord. 2001. The language fac-
tor in mathematics tests. Applied Measurement in
Education, 14(3):219–234.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Jeanne Sternlicht Chall and Edgar Dale. 1995. Read-
ability revisited: The new Dale-Chall readability
formula. Brookline Books.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
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