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Abstract

Automated scoring engines are usually trained
and evaluated against human scores and com-
pared to the benchmark of human-human
agreement. In this paper we compare the per-
formance of an automated speech scoring en-
gine using two corpora: a corpus of almost
700,000 randomly sampled spoken responses
with scores assigned by one or two raters dur-
ing operational scoring, and a corpus of 16,500
exemplar responses with scores reviewed by
multiple expert raters. We show that the choice
of corpus used for model evaluation has a ma-
jor effect on estimates of system performance
with r varying between 0.64 and 0.80. Sur-
prisingly, this is not the case for the choice of
corpus for model training: when the training
corpus is sufficiently large, the systems trained
on different corpora showed almost identical
performance when evaluated on the same cor-
pus. We show that this effect is consistent
across several learning algorithms. We con-
clude that evaluating the model on a corpus of
exemplar responses if one is available provides
additional evidence about system validity; at
the same time, investing effort into creating a
corpus of exemplar responses for model train-
ing is unlikely to lead to a substantial gain in
model performance.

1 Introduction

Systems that automatically score constructed re-
sponses in an assessment — such as essays or spo-
ken responses — are typically trained and evalu-
ated on a corpus of such test taker responses with
scores assigned by trained human raters, consid-
ered to be the “gold standard” for both training
and evaluation of the automated scoring system
(Page, 1966; Attali and Burstein, 2006; Bernstein
et al., 2010; Williamson et al., 2012). Human
raters follow certain agreed-upon scoring guide-
lines (“rubrics”) that define the characteristics of a

response for each discrete score level of the scor-
ing scale. For instance, in the case of speech
scoring, human raters may evaluate certain aspects
of a test taker’s speech production, such as flu-
ency, pronunciation, prosody, vocabulary diver-
sity, grammatical accuracy, content correctness,
or discourse organization when determining their
score for a given spoken response (Zechner et al.,
2009).

Even as assessment companies try their best to
ensure high quality of human scores, human raters
do not always agree in the scores they assign to
a constructed response. One reason is related to
properties of the responses themselves: the raters
use a unidimensional (holistic) scale to score a
multidimensional performance. In this situation
different raters may differently weight various as-
pects of performance (Eckes, 2008) resulting in
disagreement. The second reason is related to
various imperfections of human raters, e.g., rater
fatigue (Ling et al., 2014), differences between
novice and experienced raters (Davis, 2016), and
the effect of raters’ linguistic background on their
evaluation of the language skill being measured
(Carey et al., 2011).

To guard against such rater inconsistencies, in
addition to extensive rater training and monitoring,
responses for high-stakes tests are often scored by
multiple raters and scores from responses to mul-
tiple test questions are used to compute the final
score reported to the test taker and other stake-
holders, with different responses scored by dif-
ferent raters (Wang and von Davier, 2014; Pen-
field, 2016). As a result, the final score remains
highly reliable despite variation in human agree-
ment at the level of the individual question. How-
ever, since automated scoring engines are usually
trained using response-level scores, any inconsis-
tencies in such scores due to the variety of reasons
outlined above may negatively affect the system
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performance.
To monitor rater performance, testing programs

sometimes use previously scored responses that
are intermixed with the operational responses.
These responses are selected from operational re-
sponses to represent exemplar cases of each score
level and the scores are further reviewed by multi-
ple raters to ensure their accuracy.

In this paper we are examining the effect of us-
ing such “exemplar” responses for scoring model
training and evaluation in the context of automated
speech scoring. In particular, we aim to address
the following research questions:

1. How do automated speech scoring models
perform when trained on a corpus with ran-
domly selected responses vs. a corpus with
exemplar responses?

2. How is performance affected by the choice of
evaluation corpus (random response selection
vs. exemplar responses)?

Our initial hypothesis about research question
(1) is that if the size and score distribution for
the training corpora are comparable, we would
expect to see the scoring model perform better
when trained on the exemplar responses since the
model is trained on clear-cut examples (less noise
in the data). Similarly, as for research question (2),
we hypothesize that when evaluating on clear-cut
exemplar responses, scoring model performance
should be better than in the default case (random
selection) since the machine would likely benefit
from the same response properties that also result
in more consistent and reliable human scores.

Constructing large corpora of exemplar re-
sponses is a very resource-intensive task and there-
fore little is known about the possible impact of
the use of such corpora for training and evalua-
tion of automated scoring models. Our paper uses
a very large corpus of spoken responses and an
exemplar corpus constructed by experts over the
course of multiple years to address this gap and
improve our understanding of the effect of train-
ing data on the performance of automated scoring
models.

2 Related work

Previous studies considered the effect of annota-
tion noise on the performance of various NLP sys-
tems (Schwartz et al., 2011; Reidsma and Carletta,

2008; Martı́nez Alonso et al., 2015; Plank et al.,
2014).

In a series of papers, Beigman Klebanov and
Beigman (2014; 2009; 2009) studied annotation
noise in linguistic data, namely, a situation where
some of the data is easy to judge, with clear-cut an-
notation/classification, whereas some of the data
is harder to judge, yielding disagreements among
raters.

They show that in a binary classification task,
the presence of annotation noise (hard to judge
cases) in the evaluation data could skew bench-
marking, especially in cases of small discrepan-
cies between competing models. They also show
that the presence of hard cases in the training data
could compromise system performance on easy-
to-judge test cases, a phenomenon they termed
hard case bias. Using data annotated through
crowd-sourcing and across five linguistic tasks,
Jamison and Gurevych (2015) extended that work
and showed that filtering out low-agreement cases
improved performance on test data for some of the
tasks without having a substantial detrimental ef-
fect on the rest of the cases. They also showed that
the filtering of low-agreement instances from the
training data ceased being effective if the agree-
ment threshold is set too high, which resulted in
too little training data.

In the context of automated scoring, the size
of the training set has been shown to have a con-
sistent effect on model performance (Chen, 2012;
Heilman and Madnani, 2015; Zesch et al., 2015).
At the same time, a number of studies also con-
sidered the possibility of training automated sys-
tems on a smaller but well-chosen subset of exam-
ples. Horbach et al. (2014) simulated a grading
approach where responses are clustered automati-
cally, teachers labeled only one item per cluster,
and that label was then propagated to the other
items in the cluster. They reported a 90% grading
accuracy of their system. Zesch et al. (2015) fur-
ther applied this approach to selecting responses
for training automated scoring models for short
answer scoring. They used k-means clustering to
identify similar responses and trained their clas-
sifier on responses closest to the centroid of each
cluster. Note that in their study k corresponded to
the number of responses to be annotated, not the
score levels. They found that the system trained
on such responses did not outperform the system
trained on the same number of randomly sampled
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responses. They also found no improvement when
the score was propagated to all responses in the
cluster and the resulting scores were used to train
the model. However, the performance increased
when the training data was limited to ‘pure’ clus-
ters only, that is clusters that contained responses
assigned the same score. This system, trained on
a subset of responses selected in this fashion, sub-
stantially outperformed the system trained on the
same number of randomly sampled responses, and
in the case of short responses, performed as well
as the system trained on the whole training set.

To summarize, previous studies indicate that
training NLP systems including automated scor-
ing engines on a selected subset of responses that
are either more typical in terms of feature values
or easy-to-judge for human annotators may lead
to an increase in system performance despite a re-
duction in the size of the training set.

While previous studies on automated scoring
used automated clustering to identify the exem-
plars, we further extend this work by using a large
corpus of exemplar responses identified by experts
in assessment to train and evaluate an automated
speech scoring engine. We compare the perfor-
mance of the models to those trained on a large
corpus of randomly sampled responses.

3 Description of the data

Both corpora use real responses submitted to a
large-scale assessment of English language profi-
ciency. The test takers whose responses were used
in this study gave their consent for use of their re-
sponses for research purposes during the original
test administration. The responses in both corpora
were anonymized.

3.1 MAIN corpus

The main corpus in this study contains responses
sampled randomly from spoken responses submit-
ted to the same assessment over the course of sev-
eral years. We selected responses to 6 different
types of questions. Each question was designed
to elicit spontaneous speech. For some questions
test-takers were expected to use the provided ma-
terials (e.g., a reading passage) as the basis for
their response, other questions were more general
such as “What is your favorite food and why?”.
Depending on the question type, the speakers were
given 45 seconds or 1 minute to complete their
response. The corpus consisted of 683,694 spo-

Corpus Total Per model
MAIN: Train 464,664 77,444
MAIN: Test 219,030 36,505
MAIN* : Train 12,398 2,066
EXEMPLAR:Train 12,390 2,065
EXEMPLAR:Test 4,137 689

Table 1: Characteristics of the corpora used in this
study. The table shows the total number of responses
in each partition across all 6 question types and the av-
erage number of responses used to train/evaluate the
model for each question type.

ken responses, 113,949 responses for each ques-
tion type. For this study, the responses for each
question were partitioned randomly into a training
(2/3) and evaluation set (1/3).

All responses in the corpus were scored on a
scale of 1-4 by human raters. The raters assigned
a single holistic score to each response using a
scoring rubric that covered three aspects of lan-
guage proficiency: delivery (pronunciation, flu-
ency), language use (vocabulary, grammar), and
content and topical development. Most responses
were scored by a single rater, with 8.5% randomly
selected responses independently scored by two
raters. The average correlation between two hu-
man raters for double-scored responses was Pear-
sons’s r = 0.59.

3.2 EXEMPLAR responses

The second corpus used in this study contained
responses from the same assessment selected for
training and monitoring human raters. These re-
sponses are expected to be typical examples of the
different score levels. They are usually selected
from double-scored responses that were assigned
the same scores by both raters and then reviewed
by multiple experts in human scoring to ensure
that the final score is accurate. The corpus only in-
cludes responses where all experts agree about the
appropriate score. Thus the responses in this cor-
pus have two important characteristics: first, the
final score can be considered a true gold standard;
second, this final score is not controversial.

The original set of responses had a uniform dis-
tribution of human scores. To separate the ef-
fect of distribution, in this study we used a sub-
set sampled to match the score distribution in the
MAIN corpus. This corpus consisted of 16,527 re-
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sponses to the same 6 types of questions1 with on
average 2,754 responses per task. This corpus was
also randomly partitioned into training and test
sets using a 2:1 ratio.

Since the total number of responses in the
EXEMPLAR corpus was much smaller than in
the MAIN corpus, we randomly sampled 12,398
responses from the training partition of the
MAIN corpus matching the score distributions
in the other two corpora. We will use this
MAIN* corpus to separate the effect of the nature
of the training set (random sample vs. exemplar)
from the effect of the size of the training set. Table
1 summarizes main properties of each corpus.

4 Automated scoring engine

4.1 Automated speech recognition
All responses were processed using an automated
speech recognition system using the Kaldi toolkit
(Povey et al., 2011) and the approach described by
Tao et al. (2016). The language model was based
on tri-grams. The acoustic models were based on
a 5-layer DNN and 13 MFCC-based features. Tao
et al. (2016) give further detail about the model
training procedure.

The ASR system was trained on a propri-
etary corpus consisting of 800 hours of non-native
speech from 8,700 speakers of more than 100 na-
tive languages. The speech in the ASR training
corpus was elicited using questions similar to the
ones considered in this study. There was no over-
lap of speakers or questions between the ASR
training corpus and the corpus used in this pa-
per. We did not additionally adapt the ASR to the
speakers or responses in this study.

To estimate the ASR word error rate (WER), we
obtained human transcriptions for 480 responses
randomly selected from the evaluation partition.
The median WER for these responses was 34%.

4.2 Features
For each response, we extracted 77 different fea-
tures which covered two of the three aspects of
language proficiency considered by the human
raters: delivery (51 features) and language use (22
features). For this study we did not use any fea-
tures that cover the content of the response.

Features related to delivery covered general flu-
ency, pronunciation and prosody. Fluency fea-
tures include general speech rate as well as fea-

1The actual questions were different across the corpora.

tures that capture pausing patterns in the response
such as mean duration of pauses, mean number of
words between two pauses, and the ratio of pauses
to speech. Pronunciation quality was measured
using the average confidence scores and acoustic
model scores computed by the ASR system for
the words in the 1-best ASR hypothesis. Finally,
prosody was evaluated by measuring patterns of
variation in time intervals between stressed sylla-
bles as well as the number of syllables between
adjacent stressed syllables and variation in the du-
rations of vowels and consonants.

Features related to language use covered vo-
cabulary, grammar and some aspects of discourse
structure. Vocabulary-related features included
average log of the frequency of all content words
and a comparison between the response vocabu-
lary and several reference corpora. Grammar was
evaluated using CVA-based comparison computed
based on part-of-speech tags, a range of features
which measured occurrences of various syntac-
tic structures and the language model score of re-
sponse. Finally, a set of features measured the oc-
currence of various discourse markers.

4.3 Scoring models

To ensure that the results are not an artifact of a
particular learning algorithms (hereafter referred
to as ‘learners’), we used 7 different regressors,
both linear and non-linear. For the linear models
we used OLS Linear Regression, ElasticNet, Lin-
ear SVR, and Huber Regressor. Non-linear models
included Random Forest Regressor (RF), Gradient
Boosting Regressor (GB), and Multi-layer Percep-
tron regressor (MLP). In the operational scoring
engine the coefficients in the linear models are of-
ten restricted to allow only positive values (Louk-
ina et al., 2015). We did not apply such a restric-
tion in this study to allow for a comparison be-
tween different types of learners.

We used the scikit-learn (Pedregosa et al., 2011)
implementation of the learners and the RSMTool
toolkit (Madnani et al., 2017) for model train-
ing and evaluation. The hyper-parameters for
non-deterministic models were optimized using
a cross-validated search over a grid with mean
squared error (MSE) as the objective function.

The scoring models were trained on the train-
ing partition of each of the three corpora. Sepa-
rate models were trained for each of the 6 question
types for a total of 126 models (3 corpora * 6 ques-
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tion types * 7 regressors). Each model was then
evaluated on the responses to the same task con-
tained in the evaluation partitions of the MAIN and
the EXEMPLAR corpora.

5 Results

5.1 The effect of training set, evaluation set
and learner

We used a linear mixed-effect model (Searle et al.,
1992; Snijders and Bosker, 2012) fitted using
the statsmodels Python package (Seabold and
Perktold, 2010) to identify statistically signifi-
cant differences among the various models. We
used prediction squared error for each response
(N=3,124,338) as a dependent variable, response
as a random factor, and learner, training set and
test set as fixed effects. We included both the
main effects of training and test set as well as
their interaction and used the Linear Regression
and MAIN corpus as the reference categories.

The average model performance for each model
is shown in Table 2. While the model was fitted us-
ing squared prediction error, for ease of interpreta-
tion and comparison with other studies, we report
Pearson’s correlation coefficient in the table and
in the body of the paper. Corresponding values of
root mean squared error (RMSE) are given in the
Appendix. Unless stated otherwise, p < .0001 for
all effects is reported as significant.

The effect of the choice of learner on model
performance was statistically significant but very
small. Most of the more complex models resulted
in higher prediction error than OLS linear regres-
sion. Huber regression (p = 0.007) and MLP re-
gression gave a slight boost in performance. Ran-
dom Forest and Linear SVR gave the highest pre-
diction error. In all cases the differences in per-
formance were very small: for RF and SVR the
difference between these learners and OLS was
0.03%; in other cases the differences were around
0.01%.

The choice of the evaluation set had the
strongest effect on the estimates of model perfor-
mance. The best model trained on the MAIN cor-
pus of randomly selected responses achieved
r = 0.66 (MLP) when evaluated on the MAIN cor-
pus. This is consistent with other results reported
for similar corpora: Loukina et al. (2017) cite val-
ues between 0.60 and 0.67 depending on the ques-
tion type and system used. This model achieved
substantially higher performance on the EXEM-

PLAR corpus with r = 0.80. In other words, the
corpus that contained typical responses that could
be accurately scored by human raters was also ac-
curately scored by the automated engine.

Disappointingly, we did not see any improve-
ment in performance when the models were
trained on the EXEMPLAR corpus: the perfor-
mance on the MAIN corpus was in fact slightly
worse than when the models were trained on the
MAIN corpus, with the highest correlation being
r = 0.64 (vs. r = 0.66). The performance of these
models was also no better than the performance
of the models trained on the same amount of ran-
domly sampled responses (MAIN*).

As expected, models trained on EXEMPLAR re-
sponses reached high agreement when evaluated
on EXEMPLAR responses (r = 0.79). The perfor-
mance of this model was also better than the per-
formance of the model trained on MAIN*. That
is, training on EXEMPLAR responses gives an ad-
vantage over training on the same number of ran-
domly sampled responses when the model is eval-
uated on EXEMPLAR responses. However, there
was no difference between the model trained on
the full training set of the MAIN corpus and the
model trained on the EXEMPLAR corpus.

5.2 Size of the training set

To further evaluate whether training on a larger
number of EXEMPLAR responses may have lead
to better performance on the MAIN corpus, we
re-trained the models using all responses pooled
across the different question types. Such an ap-
proach has been previously used in other stud-
ies in situations where all types of questions are
scored based on the same or similar rubrics and
the scoring models do not include any question-
specific features (Higgins et al., 2011; Loukina
et al., 2015). A substantial increase in the size
of the training set to some extent compensates for
loss of information about question-specific pat-
terns. The models were evaluated by question
type, as in the rest of this paper.

To obtain the learning curves for different train-
ing sets, we trained all models using training sets
of varying sizes from 1000 responses to the full
training partition of a given corpus. For each N
other than where N is the length of full corpus we
trained models 5 times using 5 randomly sampled
training sets. Figure 1 shows the learning curves
for different combinations of training and evalua-
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Evaluation set MAIN EXEMPLAR

Training set MAIN MAIN* EXEMPLAR MAIN MAIN* EXEMPLAR

RandomForestRegressor 0.644 0.619 0.616 0.790 0.762 0.777
GradientBoostingRegressor 0.656 0.621 0.630 0.800 0.764 0.784
ElasticNet 0.643 0.634 0.636 0.783 0.772 0.783
LinearSVR 0.635 0.623 0.636 0.767 0.753 0.782
HuberRegressor 0.652 0.635 0.640 0.792 0.771 0.788
MLPRegressor 0.656 0.636 0.640 0.796 0.774 0.787
LinearRegression 0.653 0.633 0.641 0.793 0.771 0.790

Table 2: Average performance (Pearsons’s r) across 6 question types from the two corpora in these studies using
different combinations of learners and training sets.

tion sets (see Appendix for table with numerical
values). All models were trained using OLS linear
regression.

The comparison between the two curves
showed that when models are evaluated on the
MAIN corpus, training on EXEMPLAR responses
has a small advantage for a very small training
set (N=1000). Once the training set is sufficiently
large (for our data, N > 4, 000) training on ran-
domly sampled responses leads to a slightly higher
performance than training on the same number of
EXEMPLAR responses.

At the same time, training on EXEMPLAR re-
sponses had a clear advantage when models were
evaluated on EXEMPLAR responses, although the
difference between the two models decreased with
the increase in the size of the training set. Thus,
our results are consistent with the phenomenon of
hard case bias described in Beigman Klebanov and
Beigman (2009) – training on noisy data leads to
somewhat weaker performance on clear-cut cases.

To conclude, having a larger set of EXEM-
PLAR responses might have slightly increased the
performance of the models on EXEMPLAR re-
sponses, but it is unlikely that it would have given
a performance boost on the MAIN corpus.

5.3 How similar are predictions from
different models?

While differences in training data do not seem to
yield consistent differences in performance for the
various learners, it is still possible that learners
create somewhat different representations when
trained on MAIN vs. EXEMPLAR, as was the
case, for example, in (Beigman Klebanov and
Beigman, 2014). This would, in turn, suggest that
the two models could embody different and po-
tentially complementary views of the data, each

dealing better with a different subset of the data.
It is likewise possible that different learners cre-
ated usefully different representations. To assess
whether this is likely to be a promising direction
for further investigation, we compared the predic-
tions generated by different models by computing
correlations between the predictions generated by
these models. The correlations were very high:
the average correlations between predictions gen-
erated by different learners trained on the same
data sets were r=0.97 (min r=0.92). Average
correlation between predictions generated by the
same learner trained on different datasets was also
r=0.98 (min r=0.95). In other words, different
learners trained on different corpora seem to be
producing essentially the same predictions; this
suggests that model combination strategies are un-
likely to be very effective.

6 Error analysis

To better understand the source of errors on the
MAIN corpus, we conducted qualitative error anal-
ysis of 80 responses (20 per score level) with the
worst scoring error, based on predictions gener-
ated using OLS linear regression.

Inconsistencies in human scoring accounted for
discrepancies for 25 of these responses. For an
additional 18 responses (11 of these with a human
score of 4), the ASR hypothesis was flagged as
particularly inaccurate.

For the remaining responses we observed dif-
ferent patterns at different score levels. At lower
score points (1 and 2), responses incorrectly
scored by the automated scoring engine often
contained individually intelligible words or even
small chunks of locally grammatical strings but
the response as a whole was incoherent or incom-
prehensible in terms of content. Out of the 37 re-
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Figure 1: Model performance (r) depending on the size of the training set for different combinations of train-
ing and test sets. The dotted line indicates the maximum performance obtained on the EXEMPLAR responses to
facilitate comparison with the MAIN set. Note that the x-axis is plotted on a logarithmic scale.

maining responses, 15 fell into this category, most
of them for score 1 (13 responses). These re-
sponses were over-scored by the automated scor-
ing engine based on fluency features or grammar
features that correctly captured local patterns.

The pattern was reversed at score levels 3 and 4:
these responses were clear, intelligible and syntac-
tically well-formed, with content that was tightly
targeted to the question. Yet the speech was halt-
ing, choppy, slow and contained frequent long
pauses. Out of the 22 remaining responses, 9 fell
into this category. As a result they were scored
lower by the automated scoring engine since such
fluency patterns are generally more common of re-
sponses at lower score levels.

7 Discussion

Based on the results of our evaluations reported in
Table 2, our initial hypothesis for research ques-
tion (1) has to be rejected for the MAIN corpus:
the results show that there is no observable effect
in scoring model performance based on the train-
ing set (the large corpus with randomly selected
responses (MAIN) or the EXEMPLAR corpus) —
average prediction error and Pearson r correla-
tions vary only minimally for these two evaluation
corpora when using the different training corpora
for scoring model building. Training on EXEM-
PLAR responses has a small advantage over train-
ing on the same number of randomly sampled re-
sponses from the MAIN corpus when the models
are evaluated on EXEMPLAR responses, but this

advantage disappears by using a training corpus
with sufficiently large number of randomly sam-
pled responses.

On the other hand, our initial hypothesis for re-
search question (2) is confirmed, i.e., the system
performance increases substantially when evaluat-
ing scoring models on the EXEMPLAR corpus vs.
the MAIN corpus (r = 0.80 vs. r = 0.66). Addi-
tionally, our results also show that all 7 regressors
we used to build scoring models perform similarly
on our data, which is also borne out by high corre-
lations between scores generated by the different
learners.

In short, we can summarize that while the prop-
erties of the evaluation set matter substantially,
this does not hold for the training set (as long as
its size is not too small). On the one hand, this
is somewhat disappointing since we would have
hoped to obtain better scoring models when using
exemplar responses for training; on the other hand,
it is encouraging to see how well automated scor-
ing models work (r = 0.80) when evaluated on
data where human raters are in agreement about
the response scores (true gold standard data). In
some sense, making errors on clear-cut cases is a
bigger validity problem for a scoring system than
making errors on cases where the correct label is
somewhat controversial. Evaluation on clear-cut
cases thus provides additional information about
the performance of a scoring system.

We now consider possible reasons for the lack
of substantial improvement in performance on EX-
EMPLAR data when trained on EXEMPLAR data
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vs. a sufficiently large MAIN corpus. Based
on Beigman and Klebanov (2009), the potential
for hard case bias — namely, a situation where
the presence of hard cases in the training data
compromises performance on “easy” test data —
could arise when the hard cases have an adversar-
ial placement in the feature space for a particular
learning algorithm. For example, they show that
the clustering of hard cases in an area that is far
from the separation plane creates the potential for
hard case bias for a system that is trained through
hinge-loss minimization. Our results thus repre-
sent good news for the feature set: it is apparently
rich enough to not represent data in a way that
puts a large cluster of hard cases in an unfortu-
nate location, for a variety of learning algorithms.
That said, we do observe that Linear SVR suffers
from some hard case bias, as it performs some-
what worse on EXEMPLAR responses when trained
on MAIN vs. EXEMPLAR (0.767 vs. 0.782). We
also note that hard case bias does emerge for Lin-
ear Regression when the amount of noisy training
data is relatively small; a larger dataset thus seems
important for counteracting the detrimental effect
of the presence of hard cases in the training data.

We also performed manual error analysis on a
small set of highly discrepant machine and hu-
man scores and found that a substantial subset of
the data investigated had human rater errors that
caused score discrepancies (around 30%). In most
other cases, the discrepancies between machine
and human scores could be attributed to situations
where different sub-constructs of speaking profi-
ciency diverged substantially from each other. For
instance, we identified responses with locally cor-
rect grammar and reasonable fluency but with no
meaningful content. For the latter reason, such re-
sponses are scored very low by human raters but
somewhat higher by the machine, e.g., based on
features related to fluency and local grammatical
accuracy. We also found the opposite, i.e., re-
sponses with very good content but sub-optimal
fluency characteristics. Human raters typically
award high scores for such responses if the sub-
optimal fluency aspects do not interfere substan-
tially with intelligibility of the response, but the
machine scores are lower based on the sub-optimal
performance in the fluency domain.

For both scenarios, it is important to mention
that our scoring models do not contain any features
related to content or discourse; developing and

adding such features to the automated speech scor-
ing system is an important goal for future work
to remediate the score discrepancy in these situa-
tions, in addition to the overall goal of providing a
comprehensive coverage of the speaking construct
in an automated speech scoring system.

8 Conclusion

In this study, we compared the effect of using
two different corpora of scored spoken responses
for training and evaluation of automated scoring
models built using seven different regressor ma-
chine learning systems. The MAIN corpus con-
tained a large set of randomly selected responses
from an English language assessment. The EXEM-
PLAR corpus contained responses where multiple
human raters had agreed on the scores.

Our main findings were that while the choice of
training corpus has no substantial effect on scoring
model performance, as long as the noisier train-
ing set is sufficiently large, the reverse is true for
the choice of evaluation corpus: human-machine
score correlations were as high as r = 0.80 for the
EXEMPLAR corpus, no matter what training cor-
pus was used to build the model or what regressor
machine learning system was used. This compares
to r = 0.65 when using the MAIN corpus for eval-
uation.

Unfortunately, contrary to our initial assump-
tions, it is not possible to achieve improvement in
performance by simply training the model on the
EXEMPLAR corpus, since the model performance
in our experiments was only minimally dependent
on the training corpus. While we observed that
the number of responses necessary to achieve op-
timal performance is higher when the model is
trained on the randomly-selected responses from
the MAIN corpus than on the EXEMPLAR corpus,
the practical demands of collecting the EXEM-
PLAR corpus of such quality as used in this study
in many real-life situations are likely to outweigh
the cost of collecting a larger set of slightly more
‘noisy’ data, especially considering a very limited
gain in performance.

Furthermore, we observed effects of differential
profiles of responses in terms of various speak-
ing proficiency sub-constructs: e.g., for responses
with low human scores where the content is less
well rendered than fluency, machine scores may
be inflated; the reverse holds for responses with
high human scores where the content is very well

8



rendered but where machine scores can be lower
due to lack of fluency.

One main goal for future work derived from
our results and the associated error analysis is that
features capturing content aspects of the response
need to be developed and integrated into the au-
tomated speech scoring system to yield a more
comprehensive construct coverage and to mitigate
the observed effects of responses that exhibit dif-
ferential performance across various speech sub-
constructs.
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A Appendix: supplementary tables

Evaluation set MAIN EXEMPLAR

Training set MAIN MAIN* EXEMPLAR MAIN MAIN* EXEMPLAR

MLP Regressor 0.525 0.535 0.538 0.418 0.435 0.421
Huber Regressor 0.526 0.536 0.539 0.422 0.438 0.420
Linear Regression 0.525 0.538 0.539 0.421 0.436 0.419
Elastic Net 0.531 0.536 0.540 0.432 0.438 0.425
Linear SVR 0.535 0.544 0.542 0.443 0.451 0.425
Gradient Boosting Regressor 0.523 0.544 0.543 0.413 0.442 0.423
Random Forest Regressor 0.531 0.545 0.550 0.424 0.448 0.430

Table 3: Corresponding RMSE coefficients for values reported in Table 2.

Evaluation set MAIN EXEMPLAR

Training set MAIN EXEMPLAR MAIN EXEMPLAR

N train
1000 0.615 0.623 0.741 0.771
2000 0.632 0.634 0.764 0.785
4000 0.639 0.640 0.773 0.790
8000 0.645 0.641 0.779 0.792
12390 0.646 0.641 0.781 0.793
16000 0.647 0.782
32000 0.648 0.783
64000 0.649 0.785
128000 0.649 0.785
256000 0.649 0.785
464664 0.649 0.785

Table 4: The values for the learning curves presented in Figure 1.
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