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Abstract

Vector space models of words in NLP—
word embeddings—have been recently
shown to reliably encode semantic infor-
mation, offering capabilities such as solv-
ing proportional analogy tasks such as
man:woman::king:queen. We study how
well these distributional properties carry
over to similarly learned phoneme embed-
dings, and whether phoneme vector spaces
align with articulatory distinctive features,
using several methods of obtaining such
continuous-space representations. We
demonstrate a statistically significant cor-
relation between distinctive feature spaces
and vector spaces learned with word-
context PPMI+SVD and word2vec, show-
ing that many distinctive feature contrasts
are implicitly present in phoneme distribu-
tions. Furthermore, these distributed rep-
resentations allow us to solve proportional
analogy tasks with phonemes, such as p
is to b as t is to X, where the solution is
that X = d. This effect is even stronger
when a supervision signal is added where
we extract phoneme representations from
the embedding layer of an recurrent neu-
ral network that is trained to solve a word
inflection task, i.e. a model that is made
aware of word relatedness.

1 Introduction

Distributional word representations, or word em-
beddings, have attracted much attention in NLP,
and their success is considered a vindication of the
distributional hypothesis for lexical semantics es-
poused much earlier by the likes of Wittgenstein,1

1“the meaning of a word is its use in the language”
(Wittgenstein, 1953, p.43)

Firth,2 Harris,3 and other contemporaries. Often
overlooked is that this hypothesis among linguists
has extended itself much wider to include phonol-
ogy and grammar: ”all elements of speech (phono-
logical, lexical, and grammatical) are now to be
defined and classified in terms of their relations to
one another” (Haas, 1954, p.54).

Given the successes of distributional models not
only in specifying semantic similarity, but also ad-
dressing proportional analogy tasks (Turney and
Pantel, 2010; Mikolov et al., 2013a,b; Levy et al.,
2014), we want to investigate if distributional rep-
resentations of phonemes induce a similarly co-
herent space as lexical items do, and if the prop-
erties of such spaces conform to linguistic ex-
pectations, a question posed in another form as
early as in Fischer-Jørgensen (1952). In particu-
lar, we address two questions: (1) whether learned
vector representations of phonemes are congru-
ent with commonly assumed binary phonologi-
cal distinctive feature spaces, and (2) whether a
proportional analogy of the type a:b::c:d (a is to
b as c is to d) discovered in a phoneme embed-
ding space is also a valid analogy in a phonologi-
cal distinctive feature space, where phonemes are
represented in a space of standard articulatory bi-
nary features (Mielke, 2008) such as ±continuant,
±voice, ±high, ±coronal, etc.

We address these questions using three dif-
ferent methods of obtaining vector represen-
tations of phonemes; two unsupervised mod-
els that associate phonemes and the contexts
(neighboring phonemes) they occur in (word2vec,
PPMI+SVD), and one model where we are given
lemmas and inflected forms as supervised data
for a recurrent neural network (RNN) encoder-

2“The complete meaning of a word is always contextual”
(Firth, 1937, p.37)

3“distributional statements can cover all of the material of
a language” (Harris, 1954, p.34)
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decoder model that is trained to perform such in-
flections from where we extract the vector rep-
resentations in the embedding layer. The latter
method has a weak supervision signal in that the
system knows which words are truly related forms,
since it is trained only on word pairs where one
of the words is a result of transforming the other
one according to inflectional features. Hence, this
latter model can presumably better pick up on
phonological alternations along distinctive feature
lines that occur between phonemes; for example,
knowledge of relatedness helps in determining that
two forms exhibit a voicing alternation, as in the
Finnish pair mato (‘worm’, nominative) ∼ madon
(‘worm’, genitive), and hence, the segments t and
d should align themselves in the embedding space
parallel to other voiceless/voiced pairs that alter-
nate similarly. We perform experiments in three
languages: Finnish, Turkish, and Spanish.

2 Related Work

Local co-occurrence of phonemes and (in writ-
ing) phonemic graphemes has been widely ex-
plored in the literature for unsupervised discov-
ery of phonological features. The observation of
Markov (1913, 2006) that vowels and consonants
tend to alternate in a statistically robust way in
phonemic writing systems is an early observation
that some articulatory features can be recovered
in an unsupervised way. Algorithms for crypto-
graphic decipherment often take advantage of such
patterns (Guy, 1991; Sukhotin, 1962, 1973). Lo-
cal co-occurrence counts have also been analyzed
through spectral methods, such as singular value
decomposition (Moler and Morrison, 1983; Gold-
smith and Xanthos, 2009; Thaine and Penn, 2017),
revealing that significant latent structure can be re-
covered, mainly with respect to vowels and con-
sonants. Recent works along the same lines of in-
quiry include Kim and Snyder (2013) that presents
a Bayesian approach that simultaneously clus-
ters languages and reveals consonant/vowel/nasal
distinctions in an unsupervised manner. Hulden
(2017) shows that an algorithm based on the
obligatory contour principle (Leben, 1973) and an
additional assumption of phonological tiers be-
ing present (Goldsmith, 1976) robustly reveals at
least consonant/vowel, coronal/non-coronal, and
front/back distinctions from unlabeled phonetic
data or orthographic data from phonemic writing
systems.

Learning features directly from waveform rep-
resentations (see e.g. Lin (2005))—while not ad-
dressed in this paper—is also highly relevant to the
current study, and is indeed a question to which
some lower-level, speech signal-based form of dis-
tributed representations may be adapted.

The idea explored in this paper—that phonemes
(or graphemes) might exhibit linguistically apt
correlations in an embedding space—has been im-
plied by earlier research, for example Faruqui et al.
(2016). In that work, a neural encoder-decoder
model (Cho et al., 2014; Sutskever et al., 2014)
was trained to perform a transformation of words
from their citation forms to a ‘target’ inflected
form and, after training, the vowels in the embed-
ding layer of the long-short term memory (LSTM)
neural model trained for Finnish were found to
clearly group themselves according to known har-
mony patterns in the language. Li et al. (2016)
take advantage of phoneme transcriptions in a
neural speech synthesis application, showing im-
provements on this task and indicating that simi-
lar phonemes in a bidirectional LSTM (Bi-LSTM)
embedding layer map close to each other. More
closely related to the current work, Dunbar et al.
(2015) investigate how well phonetic feature rep-
resentations in English align with vector represen-
tations learned from local contexts of sound oc-
currence using both a neural language model and
also a matrix factorization model. Their (surpris-
ingly) negative results can be explained by the fact
that the experiment was set up to compare two
spaces with respect to all and only minimally dif-
fering pairs (such as: is the distinctive feature vec-
tor offset from p to b like the offset from t to
d in the embedding space?) using a small spe-
cific fixed number of phonological features. By
contrast, in our experiments, we learn a vector
space model and examine if all phoneme-pair dis-
tances correlate globally between the embedding
space and a known phonological distinctive fea-
ture space, and also whether analogies deemed to
be ‘good’ in the embedding spaces are also ‘good’
in the distinctive feature space. This is less sen-
sitive to an assumption that all distinctive features
have correlates in the embedding space. For ex-
ample, Figure 3 shows a space induced by one of
our methods, where the offset from A to æ (low
vowels) is similar to that of o to ø (high vow-
els), both being back-to-front vowel transforma-
tions, but where the equivalent harmonic corre-
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spondence u to y is not represented equally promi-
nently.

3 Models and methods

We consider three different models for learning
phoneme embeddings.

PPMI+SVD These embeddings are formulated
using truncated Singular Value Decomposition
(SVD) on a matrix of positive point-wise mutual
information (PPMI) values (Bullinaria and Levy,
2007; Levy and Goldberg, 2014). For the defi-
nition of PPMI, see Equation 1. We first com-
pute PPMI values for co-occurrences of center
phonemes and context phonemes in a five char-
acter sliding window over the training data. We
then arrange the PPMI values into an n × n ma-
trix M and apply SVD to get the factorization
M = UΣV >, where U and V are orthonormal,
and Σ is diagonal. Let Ud denote the n× d matrix
derived from UΣ by truncating all rows to length
d. Then our d-dimensional phoneme embeddings
are the rows of Ud.

PPMI(x, y) = max(log
p(x, y)

p(x)p(y)
, 0) (1)

The probabilities p(x, y), p(x), and p(y) are de-
rived from simple counts by maximum likelihood
estimation.

word2vec Our second model is the word2vec
model introduced by Mikolov et al. (2013a) for
modeling semantic relatedness of words. Like the
PPMI+SVD model, the word2vec model captures
distributional information about phonemes. How-
ever, it explicitly constructs a language model and
trains embeddings which perform well on the lan-
guage modeling task. Nevertheless, Levy et al.
(2014) show that the models are in a sense the
same: like PPMI+SVD, the skip-gram variant of
word2vec with negative sampling is also implicitly
performing a factorization of a matrix of shifted
PMI values of words and their context words. Al-
though the models are similar, we decided to in-
clude word2vec because of claims that it some-
times tends to give better results on analogy tasks
(Levy et al., 2014).

In our experiments, we use standard word2vec
embeddings generated with the gensim toolkit.4

We use the skipgram model and negative sampling
with window size 1.

m a t o N SG GEN

m a d o n

R

em ea et eo eN eSG eGEN

em ea eoed en

Figure 1: A word inflection system imple-
mented as an RNN encoder-decoder. The sys-
tem first encodes the input (the citation form)
and the desired output morphological features
“mato+N+SG+GEN” ‘worm’ into a single vector
R using a bidirectional LSTM encoder. A decoder
LSTM network then uses R to generate the output
word form “madon”. The system learns the appro-
priate phoneme embeddings, for example em and
ea, to aid in the inflection process. We use these as
our vector representations of phonemes.

RNN encoder-decoder Our final model differs
from the first two in that it learns embeddings
which maximize performance on a word inflection
task: the system receives lemmas and the morpho-
logical features of the desired inflected form as in-
put and emits corresponding inflected forms. We
formulate the system as an RNN encoder-decoder
(Cho et al., 2014). Our system is identical to the
system presented in Kann and Schütze (2016) ex-
cept that it does not incorporate attention. The
encoder is realized using a bidirectional LSTM
model which operates on character/phoneme em-
beddings (see Figure 1). The same embeddings
are also used by the decoder as explained more
thoroughly in Kann and Schütze (2016). We first
train the system and then extract the phoneme
embeddings (see Figure 2) and use them as our
phoneme vector representations.

The performance of RNN encoder-decoder
models is known to be sensitive to the random ini-
tialization of parameters during training. In all ex-

4https://radimrehurek.com/gensim/
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Figure 2: A neural network learns to map a one-
hot input into an intermediate representation (the
embedding layer). This transformation is tuned
to perform well on an inflection task and yields
a dense vector representation of segments.

periments, we therefore train five separate models
using five different random initializations of pa-
rameters and compute similarity scores and anal-
ogy scores as averages of the scores given by indi-
vidual models.

4 Data and Resources

We train all models using Finnish, Spanish and
Turkish data sets from the SIGMORPHON 2016
shared task for morphological re-inflection (Cot-
terell et al., 2016). Each line in the data sets con-
tains an inflected word form, its associated lemma
and morphological features. For Finnish, the train-
ing data consists of 12,692 lines, for Spanish,
12,575 lines and, for Turkish, 12,336 lines. We
learn embeddings for orthographic symbols occur-
ring more than 100 times in the respective data
sets. For Finnish, this set includes 25 symbols, for
Spanish, 28 symbols and, for Turkish, 27 symbols.

The PPMI+SVD and word2vec models only use
word forms for training. In contrast, the RNN
encoder-decoder is trained on all parts of the train-
ing set: word forms, lemmas and morphological
features. For all three languages, we use the train-
ing data for subtask 1 of the shared task.

There is a near one-to-one correspondence
between Finnish and Turkish graphemes and
phonemes. For Spanish, the correspondence be-
tween the orthographic and phonetic representa-
tion of the language is, however, less straightfor-
ward. We therefore perform a number of trans-
formations on the training data in order to bring
it closer to a phonetic representation of the lan-
guage. Specifically, we transform voiced stops b,
d and g to the voiced fricatives with the same place
of articulation postvocalically (B, D, G). We addi-
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Finnish (text)

=[+front] 
harmonic group

= neutral 
harmonic group

Silfverberg, Mao, Hulden (subm)

Figure 3: A vowel space for Finnish learned by
collecting local phone(me)-context counts (win-
dow size 5), followed by a PPMI transform, fol-
lowed by SVD, truncated to three dimensions.
Neutral vowels are e, i (circled in yellow) and the
harmony correspondences are a (=IPA A) ∼ ä (=
IPA æ), o ∼ ö (= IPA ø) and u ∼ y. The front
harmonic group is circled in blue.

VOWELS

(Syllabic), Front, Back, High, Low, Round, Tense
CONSONANTS

Consonantal, Sonorant, (Syllabic), Voice,
Labial, Coronal, Dorsal, Pharyngeal,

Lateral, Nasal, Continuant, Delayed Release,
Distributed, Tap, Anterior, Strident

Table 1: Features used in manually crafted articu-
latory representations.

tionally replace ll with L, r with R, and c with T.5

We compare embeddings discovered by differ-
ent systems to manually crafted articulatory repre-
sentations of phonemes/allophones based on stan-
dard IPA descriptions in Hayes (2011). The list
of the phonetic features we use is given in Ta-
ble 4. We realize the representations as vectors
v ∈ {0, 1}n in a distinctive feature space, where n
is the number of distinctive features in the descrip-
tion (22 in our model). Each dimension in feature
space corresponds to a phonetic feature such as
continuant, syllabic and voice. Entry i in a fea-
ture vector is 1 if the corresponding phoneme is
positive for the given feature. Otherwise, it is 0.

5Our code is available at s://github.com/
mpsilfvehttp/phonembedding
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PPMI+SVD
Dim 5 15 30

Finnish 0.174 0.187 0.204
Turkish 0.336 0.345 0.363
Spanish 0.328 0.311 0.301

WORD2VEC

Dim 5 15 30
Finnish 0.114 0.147 0.157
Turkish 0.184 0.178 0.177
Spanish 0.273 0.286 0.289

RNN ENCODER-DECODER

Dim 5 15 30
Finnish 0.378 0.408 0.459
Turkish 0.293 0.368 0.415
Spanish 0.279 0.318 0.339

Table 2: Correlation between feature similarities sim(feat(x), feat(y)) and embedding similarities
sim(emb(x), emb(y)) for all unordered pairs of phonemes {x, y} (where x 6= y). All correlations are
significantly higher (with p-value < 0.01) than ones obtained using a random assignment of embedding
vectors to phonemes.

Dim 5 15 30
# Top Analogies 15 30 100 15 30 100 15 30 100

PPMI+SVD

Finnish 6.40 5.83 5.50 4.07* 4.27* 4.88 4.80* 4.27* 5.26
Turkish 5.33* 4.63* 5.21* 6.87 6.43 5.97* 6.07* 6.10* 6.12*
Spanish 4.93 4.27* 4.45* 3.40* 3.53* 4.16* 2.93* 3.10* 3.79*

WORD2VEC

Finnish 4.93* 5.20 4.87 4.13* 4.07* 4.48* 3.47* 4.00* 4.47*
Turkish 4.87* 5.47* 5.74* 3.73* 4.20* 5.11* 3.73* 4.17* 5.15*
Spanish 5.47 5.23 5.56 5.73 5.20 5.10* 5.60 5.47 5.01*

RNN ENCODER-DECODER

Finnish 2.67* 3.70* 4.71* 2.27* 2.83* 3.75* 4.00* 4.07* 4.34*
Turkish 5.00* 5.27* 5.14* 3.00* 4.10* 5.20* 4.60* 4.53* 5.14*
Spanish 4.47* 4.87* 4.95* 5.40 5.00* 4.83* 4.73* 4.90* 4.88*

Table 3: The embedding space is used to generate an n-best list of a:b::c:d analogy proposals. The table
shows the average number of differing distinctive features between d and X when X is calculated by the
same analogy is performed in distinctive feature space, i.e. a:b::c:X, with a, b, and c given. For each
language and each n, we show the best performing system in bold font. Scores which are statistically
significantly better than scores for random sets of analogies are marked by an asterisk *.

5 Experiments

Correlation Our first experiment investigates
the relationship between the geometries of embed-
ding space and the distinctive feature space.

Let the embedding for phoneme p be emb(p),
its distinctive feature vector feat(p), and cosine
similarity of vectors u and v be given by Equation
2.

sim(u, v) =
u>v
|u| · |v| (2)

We measure the linear correlation of
sim(emb(p), emb(q)) and sim(feat(p), feat(q))
over all unordered pairs of phonemes {p, q}
(where p 6= q) using Pearson’s r. As a baseline,
we compute the correlation of similarities of
feature representations and random embeddings
remb(p). These are derived by randomly per-
muting the embeddings of phonemes. That is,
remb(p) = emb(q) for some random phoneme q.

Analogy Our second experiment investigates
phoneme analogies. We first score four-tuples
(a, b, c, d) of phonemes using cosine similarity in
embedding space as defined by Equation 3. This
corresponds to a proportional analogy a:b::c:d.

score(a, b, c, d) =

sim(emb(b)− emb(a), emb(d)− emb(c)) (3)

We then evaluate the top 15, 30 and 100 four-
tuples w.r.t. phonological analogy in distinctive
feature space. Our evaluation is based on ap-
plying the transformation defined by the first two
phonemes a and b on the third phoneme c and
measuring the Hamming distance of the result and
the feature representation of d. For example, given
tuple (p,b,t,d), we get Hamming distance 0. This
happens because p is transformed to b by chang-
ing the value of feature voice from 0 to 1. When
the same transformation is applied to t, the result is
d, which obviously has Hamming distance 0 with
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FINNISH TURKISH SPANISH

A is to o as æ is to ø a is to W as e is to i f is to T as p is to s
A is to æ as o is to ø a is to e as W is to i k is to ñ as t is to L
A is to æ as u is to y a is to W as e it to y p is to R as L is to l
a is to y as o is to ø a is to u as e is to i l is to L as R is to p
A is to y as o is to ø b is to k as f is to g m is to L as r is to ñ

Table 4: Top 5 analogies (in IPA) discovered by the best model for each languages: Finnish, Turkish and
Spanish.

k

g

t
n

� Find top n analogies 
in embedding space

k:t::g:n

� Perform same analogy 
with distinctive features

k:t::g:d (velar to alveolar/
dorsal to coronal)

� Count feature 
mismatch of result

[+nasal] [-nasal] 
n d

mismatch = 1 feature

embedding  
space

dist. feature 
space

Figure 4: Illustration of the evaluation of the analogy coherence. This procedure is repeated for the top
15, 30, and 100 four-tuples in the embedding space and the average distance of the resulting analogy
when performed in the distinctive feature space is reported.

Figure 5:

the fourth phoneme of the tuple in the embedding
analogy.6 We restrict tuples in two ways: (1) all
phonemes in the tuple have to be distinct symbols,
and (2) all phonemes in the tuple have to be con-
sonants or all of them have to be vowels.

As baseline, we randomly select 15, 30 or 100
phoneme tuples (a, b, c, d). We then apply the
transformation defined by a and b onto c and then
compute the Hamming distance of the transformed
image of c and the phoneme d. We restrict these
random tuples as explained above.

6 Results

Table 2 shows results for linear correlation mea-
sured by Pearson’s r for the similarity between
phonetic representations and similarity of corre-
sponding embedding vectors. Overall, the RNN
encoder-decoder with embedding dimension 30
gives the best results. The correlation is the weak-

6Note that, we can only apply a transformation in co-
ordinate i if the ith co-ordinates of the first and third phoneme
in the tuple match. If this is not the case for some i, we do not
apply any transformation for that co-ordinate. For example,
if the first phoneme is [+voice], the second [-voice], and the
third also [-voice], changing the third phoneme from + to −
voice is not well defined.

est for word2vec. However, all methods give a sta-
tistically significant positive correlation compared
with random embeddings with p-value < 0.01
for appropriately chosen embedding dimension.
For all three models: PPMI+SVD, word2vec and
RNN encoder-decoder, there seems to be a ten-
dency that higher dimension gives better correla-
tion. This is not the case for PPMI+SVD for Span-
ish or word2vec for Turkish, However, in these
cases, the results for all embedding dimensions are
very similar. Figure 6 shows the correlation be-
tween cosine similarities of phoneme embeddings
and the corresponding phonological feature repre-
sentations.

Table 3 shows results for analogies as measured
by average Hamming distance. Results are pre-
sented for the top 15, 30 and 100 analogies dis-
covered by each of the systems. Overall, there
is a strong trend that average Hamming distance
increases in distinctive feature space when more
(lower-ranked) analogies are considered in the em-
bedding space. This is to be expected if the two
spaces are coherent—as we include lower and
lower ranked analogies and evaluate them, we ex-
pect them to be less fitting in the distinctive fea-
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Figure 6: Scatter plots of cosine similarities of phonemes in feature space (x-axis) and embeddings space
(y-axis). The figures present results for 30 dimensional PPMI+SVD, word2vec and RNN embeddings
for Finnish, Turkish and Spanish, respectively. The red line represents the regression line.

ture space somewhat monotonically. The best re-
sults for Hamming distance are delivered by the 30
dimension RNN encoder-decoder for Finnish and
Turkish and the 30 dimension PPMI+SVD sys-
tem for Spanish. Table 4 shows a selection of top
analogies for each language.

7 Discussion

The results both in comparing the geometry of
the spaces learned and the alignment of analo-
gies to distinctive features show a clear effect
of distinctive features being aligned and discov-
ered by distributional properties. The strength of
the alignment appears to be somewhat language-
dependent; in both Finnish and Turkish, vowel
harmony effects are quite prominent and come
out as many of the top-ranking analogies in an
embedding space. In Spanish, by contrast, the
correlation of the space is less robust, probably
because there are fewer symmetrical phonologi-

cal alternations witnessed in the data, although
±continuant alternation is a prominent one (b/B,
d/D g/G). Likewise, non-symmetric alternations in
the data may distort the vector space to not align
perfectly along distinctive feature lines. For ex-
ample, while Finnish exhibits a t/d alternation
(katu/kadun; ‘street’ nominative/genitive) the cor-
responding analogical labial alternation in the em-
bedding space is p/v (apu/avun; ‘help’ nomina-
tive/genitive), not p/b, as one would assume by
distinctive features. This is an interesting dis-
covery since, while the analogy in the embedding
space in this case does not correlate to the anal-
ogy in the feature space, this distortion of the em-
bedding space of phonemes is arguably more “cor-
rect” than the feature-based expected one where
t:d::p:b. In fact, the /b/-phoneme is only present
in loanwords in the Finnish data, and the spiran-
tization seen in p/v was historically present for
the alveolar stop as well (t/D). This analogy it-
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Figure 7: The phoneme space, focusing on con-
sonants, for Finnish learned by collecting lo-
cal phone(me)-context counts (window size 5), a
PPMI transform, followed by SVD, truncated to
three dimensions. Marked here is the (correct from
a Finnish speaker point-of-view) analogy of con-
sonant gradation t:d::p:v.

self is an example of Finnish consonant gradation
which manifests itself through many idiosyncratic
alternations (Karlsson, 2008), some of which are
clearly captured in symmetries in the embedding
space. Hence, although such mappings are of-
ten present and prevents many analogies from be-
ing ‘perfect’ along distinctive feature lines, em-
bedding spaces where such seemingly ‘incorrect’
analogies are drawn are in fact good representa-
tions for learning tasks such as morphological in-
flection, since they yield generalization power to
task learning, i.e. learning of phonological alter-
nations. This flexibility to learn a vector space
representation that does not always strictly con-
form to distinctive features is then an advantage of
the representations and partly explains their recent
success (Cotterell et al., 2016, 2017) in learning
inflectional patterns from examples.

8 Conclusion

We have presented a set of experiments on three
languages that examine how distributional prop-
erties of phonetic segments contain information
about regularities in the distinctive feature alter-
nations present in the language. In particular, we
have shown a significant correlation between em-
bedding spaces learned from either co-occurrence
and distinctive feature spaces. While such embed-

dings can be learned from raw data without any su-
pervision, this correlation is consistently stronger
if embeddings are learned and extracted from a re-
current neural network in conjunction with a su-
pervised task of learning to inflect word forms.
Apart from a holistic inspection of the embed-
ding spaces, we also developed an experiment that
measures how well phonological analogies can be
performed using the embeddings learned. While
the analogies do not perfectly correlate with sim-
ilar analogies in distinctive feature space, it is
clear that those distinctive features that play a part
in prominent phonological alternations are also
latently present in co-occurrence generalizations
and can be seen in the learned embedding space.
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