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Abstract

This paper develops a learnability argument
for strict domination by looking at the general-
ization error of learners trained on OT and HG
target grammars. The argument is based on
both a review of error bounds in the recent sta-
tistical learning literature and simulation re-
sults on realistic phonological test cases.

1 Introduction

According to Optimality Theory (OT; Prince and
Smolensky 2004), constraint interaction in natural
language phonology is severely constrained by the
hypothesis of strict domination. According to this
hypothesis, “the constraints [are] arranged in a hi-
erarchy” and “each constraint is strictly more im-
portant than — takes absolute priority over — all
the constraints lower-ranked in the hierarchy. [. . . ]
Strict domination thus limits drastically the range
of possible strength-interactions between constraints
to those representable with the algebra of total or-
der” (Prince and Smolensky, 1997). This hypothe-
sis of strict domination has been challenged in the
recent phonological literature (Pater, 2009; Potts et
al., 2010; Pater, 2016), which has therefore started
to explore an implementation of constraint-based
phonology which does away with strict domination,
known as Harmonic Grammar (HG; Legendre et
al., 1990a,b; Smolensky and Legendre, 2006). Sec-
tion 2 re-assesses the OT versus HG debate, con-
cluding that HG over-generates for many natural
constraint sets and that natural language phonology
thus supports OT’s hypothesis of strict domination.

Why should constraint interaction in natural lan-
guage phonology display strict domination? Legen-
dre et al. (2006) conjecture that “demands of learn-
ability [might] provide a pressure for strict domina-
tion among constraints” although they admit that “it
remains an open problem to formally characterize
exactly what is essential about strict domination to
guarantee efficient learning.” Riggle et al. (2009;
2010) take a closer look at this alleged connection
between strict domination and learnability. They
look at error bounds in terms of a classical mea-
sure of the learning complexity of a hypothesis class,
namely its Vapnik-Chervonenkis (VC) dimension
(Vapnik and Chervonenkis, 1971). But they find that
the VC dimension is the same for OT and HG, de-
spite OT typologies being smaller than HG typolo-
gies because of strict domination. They conclude
that, “though there may be factors that favor one
model [OT or HG] over the other, the complexity
of learning [. . . ] is not one of them.”

Yet, VC dimension is an old measure of learn-
ing complexity (it dates back to the seventies) which
is inevitably coarse as it applies to completely arbi-
trary classifiers. Since Schapire et al. (1998), statis-
tical learning theory has instead focused on a spe-
cial class of classifiers, namely voting classifiers
which aggregate the “votes” of more basic classi-
fiers scaled through corresponding weights. For this
special class of classifiers, better error bounds have
been developed, which take into account the margin
of “confidence” with which a classifier succeeds on
the data. More recently, Koltchinskii and Panchenko
(Koltchinskii and Panchenko, 2002; Koltchinskii et
al., 2003b; Koltchinskii et al., 2003a; Koltchinskii
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and Panchenko, 2005) have further refined margin
theory through error bounds which depend not only
on the margin but also on the rate of decay of the
weights of the basic classifiers: the bounds get better
(that is provide guarantees for a smaller generaliza-
tion error) as the rate of decay increases.

Crucially, HG and OT grammars can be con-
strued as voting classifiers with the phonological
constraints playing the role of the basic classifiers.
Section 3 thus brings Koltchinskii and Panchenko’s
result to bear on the debate between HG and OT,
through the well known characterization of OT as
a special case of HG with weights decreasing fast,
specifically exponentially.

Section 4 complements these theoretical results
with simulation-based estimates of the generaliza-
tion error (codes and data are provided as online sup-
plements). We look at two test cases related to vowel
harmony and syllable types. We compute the corre-
sponding typologies of OT grammars and HG-non-
OT grammars (namely HG grammars with no OT
correspondent). For both types of target grammars,
we compute the generalization error of the hypothe-
sis that performs better (that is, has the largest mar-
gin) on a training set of cardinality n. We show that
on average the generalization error decreases faster
as a function of n for the OT targets than for the HG-
non-OT ones. Section 5 concludes the paper and dis-
cusses various issues to explore in future research.

2 The OT versus HG debate

As reviewed above, HG fundamentally differs from
OT because it does away with strict domination and
therefore allows for gang effects in which multiple
violations of lower-weighted constraints outweigh a
violation of a higher-weighted constraint (see sec-
tion 3 for details). Bane and Riggle (2009) show
that sets of constraints drawn from the phonological
literature yield much richer typologies in HG than
in OT as a result of gang effects, and that many of
the additional patterns derived under HG are unat-
tested. The same point is made by the investigation
of Kaun’s (2004) analysis of the typology of round-
ing harmony discussed in section 4. However these
constraint sets were developed in the context of OT,
so these results leave open the possibility that a re-
vised HG constraint set could provide a closer match

to natural language typology. In this section we see
that there is reason to doubt that the problem of ty-
pological over-generation faced by HG phonology
can be solved in this way. The evidence comes from
classes of problematic gang effects that arise from
basic and uncontroversial constraints.

For example AGREE(place) penalizes heteror-
ganic clusters, and *g penalizes voiced velar stops.
The weighting of these constraints in figure 1a de-
rives a pattern in which only [g] undergoes place
assimilation because IDENT(place) outweighs each
markedness constraint individually, but heterorganic
[g] violates both constraints, which together out-
weigh IDENT(place). This pattern cannot be derived
by any ranking of these constraints in OT: to block
general place assimilation, IDENT(place) must out-
rank AGREE(place), but that ranking prevents assim-
ilation of [g] as well.

Place assimilation targeting only [g] is unattested
(velars resist place assimilation more than coronals
and labials and voicing does not affect place assim-
ilation (Jun, 2004) ), but once HG is adopted, it is
hard to avoid predicting the existence of this pro-
cess because its derivation does not depend on the
specific formulations of AGREE(place) and *g. The
prediction follows as long as there is some constraint
that penalizes heterorganic consonant clusters over
homorganic clusters, which is necessary to account
for place assimilation, and some constraint that pe-
nalizes [g] more than [b, d] and voiceless stops,
which is necessary to account for a variety of phe-
nomena, including languages such as Thai that allow
voiced stops but not [g] (Ohala, 1983).

Variants of this configuration are easy to generate,
e.g. *p (Hayes, 1999) can replace *g to derive place
assimilation that only targets [p], or AGREE(place)
can be replaced by AGREE(voice) to derive a pat-
tern in which mixed-voicing clusters are tolerated
unless they contain [g], in which case devoicing ap-
plies. Neither pattern has been reported in spite of
thorough investigations of the typologies of place
and voicing assimilation. More generally, HG pre-
dicts that any markedness constraints that mention
the same feature specification in compatible contexts
should be able to gang up on faithfulness constraints
regulating that feature.

Furthermore, in HG any set of markedness con-
straints that can penalize a single segment should be
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akta ID(pl) AGR(pl) *g
w = 3 w = 2 w = 2

+akta 1 2
atta 1 3

agda ID(pl) AGR(pl) *g
w = 3 w = 2 w = 2

agda 1 1 4
+adda 1 3

(a)

itka MAX *CC *[+bk][cor]
w = 3 w = 2 w = 2

+itka 1 2
ika 1 3

utka MAX *CC *[+bk][cor]
w = 3 w = 2 w = 2

utka 1 1 4
+uka 1 3

(b)

agta AGR(vce) ID(vce)
w = 3 w = 2

agta 1 3
+akta 1 2

agzta AGR(vce) ID(vce)
w = 3 w = 2

+agzta 1 3
agsta 1 1 5
aksta 2 4

(c)
Figure 1: Examples of unattested phonological patterns predicted by HG gang effects

able to gang up on a MAX constraint because dele-
tion of a segment eliminates all of its constraint vio-
lations. For example, a constraint against consonant
clusters, *CC, and a markedness constraint that pe-
nalizes particular VC sequences, e.g. *[+back][cor]
(cf. Flemming 2003), can together derive the unat-
tested pattern in figure 1b: pre-consonantal coronals
are deleted only if the preceding vowel is back.

Many potential gang effects involving deletion are
likely to be ruled out by independent principles. E.g.
an alternative repair may be universally preferred
due to a fixed ranking among faithfulness constraints
(Steriade, 2008). This cannot be the case in the cur-
rent example because it is a variant of a well-attested
process of cluster simplification. On this basis, we
can make the generalization that HG predicts the ex-
istence of variants of attested deletion processes in
which deletion applies only in the presence of addi-
tional constraint violations. This set includes many
unattested processes.

Another general class of problematic predictions
of HG concerns iterative processes in which a
markedness constraint can motivate multiple vi-
olations of faithfulness. For example, if voic-
ing assimilation is motivated by a constraint like
AGREE(voice), then mappings like /agta/→[akta]
and /agzta/→[aksta] eliminate just one violation of
AGREE(voice) at the cost of n − 1 violations of
IDENT(voice) with a cluster of n obstruents. In HG,
the relative weighting of these two constraints estab-
lishes a maximum number of consonants that will
undergo assimilation (a maximum of 1 in figure 1c)
— an unattested phenomenon. In OT, the equivalent
ranking derives unbounded assimilation because one
violation of AGREE(voice) is worse than any num-
ber of violations of IDENT(voice).

Examples of gang effects have been posited by
analysts (see Pater 2016 for a review), but alterna-
tive OT analyses have been proposed in a number
of cases, as in the much discussed case of Japanese
loanword devoicing (Pater, 2009; Kawahara, 2006).
On balance, the evidence for HG gang effects is
weak compared to the evidence that they result in
substantial typological over-generation, supporting
OT’s hypothesis of strict constraint domination.

3 The perspective of statistical learning

We turn now to results from statistical learning the-
ory and bring them to bear on OT’s hypothesis of
strict domination. The presentation is kept informal
with technical details relegated to the final appendix.

3.1 Binary classification
The statistical learning framework of binary classi-
fication assumes a set of instances X and a set of
labels Y = {+1,−1}. A classifier can then be con-
strued as a function which assigns a label y = +1 or
y = −1 to an instance x in the set X . We are inter-
ested in classifiers with a special shape, as follows.

We start with a collectionH of functions h : X →
[−1,+1] that take an instance and return a num-
ber between −1 and +1. Using the functions in H,
we construct the collection F of all weighted sums
f =

∑K
k=1wkhk of an arbitrary finite number K

of functions hk in H through some corresponding
weights wk. We restrict ourself to weights which
are non-negative and sum up to 1 (whereby F is the
convex hull of H). A function h ∈ H or a function
f ∈ F maps instances in X to numbers between −1
and +1. The sign of these numbers can in turn be
interpreted as a classification label. Thus, sign(h)
with h ∈ H is called a basic classifier and sign(f)
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with f =
∑K

k=1wkhk ∈ F is called a voting (or
an ensemble) classifier, because it aggregates and
averages the “votes” of the basic classifiers.

We consider a probability distribution P onX ×Y
that generates labels from instances according to the
conditional probability P(y|x). The generalization
error ErrP(f) of a classifier f ∈F relative to P is
the probability of misclassification of f , namely the
probability under P of a labeled instance (x, y) such
that f assigns to the instance x a label sign(f(x))
different from the intended label y:

ErrP(f) = P
[

sign(f(x)) 6= y
]

As the generalization error measures the proba-
bility of misclassification, a classifier with a smaller
generalization error is better than a classifier with a
larger generalization error. The learner’s ideal goal
would be to find a classifier f ∈ F with the small-
est possible generalization error, that is a classifier
which maps instances to their most probable label.
Unfortunately, the generalization error ErrP(·) can-
not be minimized directly, because it is defined in
terms of the probability P which is unknown to the
learner. Indeed, the learner only has at its disposal
a training set T = ((x1, y1), . . . , (xn, yn)) consist-
ing of n labeled instances (xi, yi) ∈ X ×Y sampled
independently according to P.

The goal of statistical learning theory is to provide
error bounds, that is bounds on the generalization
error ErrP(f) of an arbitrary classifier f ∈ F based
on parameters such as the shape of f or its perfor-
mance on the training set T . Of course, we want our
error bounds to be as low as possible, thus providing
guarantees for the smallest possible generalization
error. In this section, we focus on a state-of-the-
art error bound due to Koltchinskii and Panchenko
(2005, theorem 2, page 1464; henceforth KP), re-
called in appendix A.1. Sections 3.2 and 3.3 dis-
cuss the two crucial properties of KP’s bound quali-
tatively. This will suffice to make a connection with
OT’s strict domination in section 3.4.

3.2 KP’s bound depends on the margin
The condition sign(f(xi)) = yi that a voting classi-
fier sign(f) classifies correctly the data pair (xi, yi)
is equivalent to the inequality yif(xi) > 0. Thus,
the size of the real number yif(xi) can be intu-
itively interpreted as the margin of confidence with

which f succeeds at assigning the correct label yi
to the instance xi: the larger yif(xi) is above zero,
the larger the confidence. Given a training set
T = ((x1, y1), . . . , (xn, yn)) that f classifies cor-
rectly, we focus on the most dangerous training pair,
namely the one that f classifies with the smallest
confidence. That smallest margin of confidence is
called the margin δT (f) of f on the training set T :

δT (f) = min
i=1,...,n

yif(xi) (1)

Since the margin δT (f) represents the worst-case
confidence of f on the training set T , it is intuitive
that KP’s bound (like earlier bounds, since Schapire
et al. 1998) depends on the margin in such a way
that the error bound is large (that is, worse) when
the margin δT (f) is small (namely close to 0). See
appendix A.2 for details on the dependence of KP’s
bound on the margin. In conclusion, KP’s bound
says that, all else being equal, the learner should pick
a classifier in F which correctly classifies the train-
ing set T with the largest margin δT (f). We will use
this fact extensively in section 4.

3.3 KP’s bound depends on the effective dimension

Consider a representation of a voting classifier f ∈
F as a sum of basic classifiers in H, namely f =∑K

k=1wkhk with non-negative weights wk which
sum up to 1 and are therefore each smaller than 1.
We assume without loss of generality that w1 ≥
w2 ≥ · · · ≥ wK . Intuitively, the number K of ba-
sic classifiers in the representation of f can be inter-
preted as the dimension of f . Yet, the weights in the
tail of the representation of f might be tiny whereby
the corresponding basic classifiers contribute only
little and should be discounted when determining the
dimension of f . KP thus consider the alternative no-
tion (2) of effective dimension dT (f) of the classi-
fier f . Intuitively, we split K as K = d + (K − d)
and replace K − d with the sum

∑K
j=d+1wj of the

K − d weights in the tail, thus taking into account
the smallness of the smallest weights. If the weights
decrease fast, the tail weights will be small and the
effective dimension dT (f) will therefore be small.

dT (f)= min
0≤d≤K


d+




K∑

j=d+1

wj




2

2 log n

δT (f)2


 (2)
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The novelty of KP’s error bound is that it depends
not only on the margin δT (f) of the classifier f but
also on its effective dimension dT (f) and thus on
the decay of the weights in a representation of f .
In the sense that (for a fixed margin) KP’s bound is
small (that is, better) when the effective dimension is
small because of a fast decay of the weights. For in-
stance, the bound is smaller for exponentially decay-
ing weights than for polynomially decaying weights
(assuming that the margin is the same in the two
cases). See appendix A.3 for details on the depen-
dence of KP’s bound on the decay of the weights.
In conclusion, KP’s error bound says that, all else
being equal, the learner should pick a classifier in
F which correctly classifies the training set T and
whose weights decay fastest, possibly exponentially.
We now make explicit the implications of this con-
clusion for the OT versus HG debate.

3.4 KP’s bound and OT’s strict domination
The connection between the classification frame-
work reviewed above and the framework of
constraint-based phonology can be drawn as fol-
lows. Let the space of instances consist of triplets
(u, s, s′) where u is an underlying form and s, s′

are corresponding candidate surface forms. We in-
terpret s as the intended winner and s′ as the in-
tended loser. The HG grammar relative to con-
straints C1, . . . , CK and weights w1, . . . , wK ≥
0 is consistent with the triplet (u, s, s′) provided∑K

k=1wkhk(u, s, s
′) > 0 where hk(u, s, s′) is the

constraint violation difference

hk(u, s, s
′) = Ck(u, s

′)− Ck(u, s) (3)

Without loss of generality, we assume the weights
wk sum up to 1. Furthermore, we assume that there
are a finite number of underlying forms and a finite
number of surface forms (for discussion of this as-
sumption, see Alber et al. 2015). Thus, we can as-
sume without loss of generality that

−1 ≤ hk(u, s, s′) ≤ +1 (4)

for every triplet (u, s, s′). In fact, if the inequali-
ties (4) fail for the original constraints, we can di-
vide them by the largest number of constraint vio-
lations without affecting the typological predictions.
In conclusion, an HG grammar can be construed as a

classifier f ∈F=conv(H) in the convex hull of the
collection H of the constraint violation differences
hk in (3) which take values in [−1,+1] by (4).

The OT grammar relative to constraints
C1, . . . , CK and a constraint ranking π is consistent
with the triplet (u, s, s′) provided there exists a
constraint Ck such that each of the constraints
π-ranked above Ck assigns the same number of
violations to the two mappings (u, s) and (u, s′)
while the constraint Ck assigns less violations to the
winner mapping (u, s) than to the loser mapping
(u, s′). The following well known result says that
the latter condition is equivalent to the HG consis-
tency condition relative to exponentially decaying
weights (Prince and Smolensky, 2004; Keller, 2000;
Keller, 2005). The constant Z in (5b) is arbitrary
and can be used to normalize the weights.

Theorem 1 Consider an arbitrary ranking π. With-
out loss of generality, assume that π is (5a), whereby
C1 is ranked at the top, C2 is ranked below it and so
on, until the bottom ranked CK .

a. C1

|
C2

|...
|
CK

b. w1 = 1
Z

(
∆+δ
δ

)−1

w2 = 1
Z

(
∆+δ
δ

)−2

...

wK = 1
Z

(
∆+δ
δ

)−K

(5)

The HG grammar corresponding to the weights in
(5b) for an arbitrary Z > 0 and

∆ = max
{
|hk(u, s, s′)|

∣∣ k = 1 · · ·K
}

δ = min
{
hk(u, s, s

′)
∣∣hk(u, s, s′) > 0

}

is consistent with a triplet (u, s, s′) if and only if the
OT grammar corresponding to π is.

Theorem 1 says that OT’s strict domination corre-
sponds to a restriction to the subset of the HG typol-
ogy corresponding to weights which decay exponen-
tially, as in (5b). KP’s bound provides a learnability
rationale for this restriction: fast decaying weights
ensure a smaller effective dimension (as long as the
margin does not shrink) and thus a smaller (that is,
better) error-bound. Thus, a learner of an OT gram-
mar would have a better guarantee of a low general-
ization error, and we may conjecture that it will ac-
tually have a lower generalization error in practice.
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4 Empirical simulations

To complement the theoretical perspective of sec-
tion 3, we now turn to simulations of margin-based
learning on two test cases. Our experiments found
OT target grammars to be easier, on average, to learn
than HG-non-OT ones. Furthermore, we found that
this learning procedure yields weights with a lower
effective dimension on OT targets than on HG-non-
OT ones.

4.1 Test cases

Our first test case is based on the analysis of round-
ing harmony by Kaun (2004). It models progressive
harmony between two vowels of the same backness.
As it posits two levels of height and backness, it as-
sumes 8 underlying forms consisting of one of 4 pos-
sible triggers (i.e., the four rounded vowels which
differ for height and backness) and of one of 2 possi-
ble targets (the unrounded vowels of corresponding
backness of both possible heights). Each underlying
form has 2 candidate surface forms, one with har-
mony and one without. The constraint set consists
of 7 constraints (see the online supplementary ma-
terials). The typology (computed with OT-Help2;
Staubs et al. 2010) consists of 37 OT grammars and
26 HG-non-OT grammars.

Our second test case is based on the analysis of
syllable structure by Prince and Smolensky (2004,
Part II). This analysis involves 5 constraints in its
simpler variant. As in Bane and Riggle (2009), the
set of underlying forms consists of all 13 strings
of length 1 to 3 of symbols in {C, V } (except CV
which has only one possible output). Furthermore,
we used their procedure to precompute all possi-
bly optimal outputs, yielding a total of 56 surface
forms.1 The typology (computed with OT-Help2)
consists of 12 OT and 13 HG-non-OT grammars.

1Note that what we call underlying and surface forms do not
really correspond to actual forms but to patterns of constraint
violations. For instance in our second test case, the underlying
forms /tat/ and /bat/ are a single “underlying form” /CV/, and the
surface forms (say for /tat/) [ta] and [da] are a single “surface
form” [CV]. This means that the admittedly low number of data
points we have should not be compared to the number of words
human learners are exposed to; our data points exemplify all the
possible patterns of small length for each phenomenon.

4.2 Procedure

Algorithm 1 features the pseudo-code for our sim-
ulation procedure. For each grammar G in the ty-
pology, we build the set of instances XG in (6). We
consider all triplets (u, s, s′) where: u is an underly-
ing form; s is the corresponding winner surface form
according to the grammar G; and s′ is a loser can-
didate for u different from s. We represent (u, s, s′)
as the vector h(u, s, s′) whose components are the
constraint violation differences hk(u, s, s′) in (3).

XG = {x = h(u, s, s′) |G maps u to s} (6)

We sample a training set T by drawing uniformly
with replacement n data points fromXG (we assume
all labels are equal to y = 1, because we only gen-
erate positive data). Based on the considerations in
section 3.2, we compute the weights w∗ which max-
imise the empirical margin on the training set T over
all non-negative weight vectors w ≥ 0. The margin
(1) can be made explicit as in (7) in the specific case
considered

δT (w) = min{wTx |x ∈ T} (7)

We do this for n ranging from 3 to an arbitrary
number N . This procedure is repeated 250 times,
so we can compute the average generalization er-
ror Err(n,G) that a margin-based learner trying to
learn G makes after seeing n data points.

Algorithm 1: Learning simulation procedure.
1 for G in the typology do
2 for n = 3, . . . , N do
3 for m = 1, . . . , 250 do
4 Randomly select T ∈ X nG
5 w∗ ← arg maxw≥0 δT (w)

6 Err(m)← P(w∗Tx ≤ 0 |x ∈ XG)

7 Err(n,G)← 1
250

∑
mErr(m)

4.3 Results

Figure 2 plots the error Err(n,G) averaged over
target OT-grammars G (solid red lines) and aver-
aged over target HG-non-OT grammars (dashed blue
lines). We observe a learnability advantage for OT
grammars in practice, as the generalization error of
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Figure 2: Average of the generalization error Err(n,G) over
OT and over HG-non-OT target grammars as a function of n,
for rounding harmony (left) and syllable types (right) data.
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Figure 3: Average effective dimension of the learner’s weights
over OT and HG-non-OT target grammars as a function of n,
for rounding harmony (left) and syllable types (right) data.

a margin-based learner on OT target grammars is
lower for any given number n of data points than
that of the same learner on HG-non-OT targets.

The error obtained in the simulations cannot
be straightforwardly compared to Koltchinskii and
Panchenko’s error bound (8), as we do not know the
value of the constant K which appears in the bound.
Yet, figure 3 shows a lower effective dimension —
as defined in (2) — of the weights w∗ selected by
the learner when trained on OT target grammars (red
solid line) than on HG-non-OT targets (blue dotted
line). Thus, we can speculate that the easier learn-
ability of OT grammars compared to HG-non-OT
grammars is related to the lower effective dimension
of the HG weights that generate them.

Of course, the advantage of OT that we observe on
average could be due to just a couple of very “easy”
OT grammars that drag the average down. For in-
stance, in the case of harmony, both the grammar
with systematic harmony and the one with no har-
mony at all only depend on only one constraint (re-
spectively ALIGN-L/R([RD]) and DEP(LINK)) and
both belong to the OT typology. Figure 4 thus plots
the generalization error Err(n,G) for each individ-
ual OT (red dashed lines) and each individual HG-
non-OT (blue dotted lines) target grammar G. The
overall pattern is that most OT grammars are eas-

ier to learn than most HG-non-OT grammars. In the
case of syllable structure, there are indeed only a few
exceptions to this general pattern. The pattern is ad-
mittedly somewhat less clear in the case of vowel
harmony, as discussed below in section 5.A.

5 Conclusions and open issues

This paper has argued that OT’s strict domination
seems to be warranted by phonological typology
(section 2) and that strict domination might provide
a learnability advantage (pace Riggle et al. 2009;
2010). This learnability argument is twofold: first,
a review of recent results in the statistical learning
literature (section 3) lets us conclude that learners of
OT grammars will infer them with greater chance of
success for the same amount of data. Second, simu-
lation results on realistic test cases (section 4) show
that OT target grammars are indeed easier to learn
under certain assumptions. We conclude with var-
ious open issues that we would like to address in
future research.

(A) As remarked above, figure 4 shows that
several of the “hardest” grammars are part of the
OT typology in the harmony case. As a tenta-
tive explanation, we note that in this test case,
there are few underlying and surface forms, and
many constraints, some of which are closely related.
For instance, there are three different variants of
ALIGN-L/R([RD]) for different features of the trig-
ger vowel. Thus, in most grammars of the HG typol-
ogy, not all constraints have to be active (in the sense
of having non-zero weights). Certain OT grammars
are harder than certain HG-non-OT grammars by
virtue of requiring more active constraints. Future
work will try to get a cleaner picture by comparing
only OT and HG-non-OT grammars that require a
comparable number of active constraints.

(B) For consistency with the classification frame-
work of section 3.1, the simulations described in
section 4 define the error in terms of the number of
triplets (u, s, s′) where the loser s′ incorrectly beats
the winner s (see line 6 in algorithm 1). We might in-
stead want to redefine the error in terms of the num-
ber of underlying forms umapped to a winner differ-
ent from s. For the results from statistical learning
theory in section 3 to still be relevant, we would need
to extend them from classifiers of the form f(x) =

7
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Figure 4: Generalization error Err(n,G) as a function of n, for rounding harmony (left) and syllable types (right) data, for each
OT target grammar G (red line) and each HG-non-OT target grammar G (blue line).

∑
k wkhk(x) to f(x) = mint∈S(x)

∑
k wkhk(x, t),

where S is a function from x to some finite set.
(C) The simulations reported in section 4 assume

a uniform distribution over triplets (u, s, s′) all con-
sistent with some target grammarG. Future research
will look at different data distributions (e.g., a Zip-
fian distribution over the underlying forms u) and
the addition of some noise in the training data.

(D) The learner tested in section 4 simply looks
for weights which maximize the margin but is obliv-
ious to whether the target grammar is an OT or an
HG-non-OT grammar. For OT targets, theorem 1
suggests the more specific learning strategy in al-
gorithm 2. We consider each ranking π, construct
the corresponding exponentially decaying weights
wπ in (5), and determine the ranking π∗ whose
weights wπ∗ maximize the margin. We denote by
ErrOT(n,G) the average error of the OT grammar
corresponding to π∗ on the target grammar G.
ErrOT(n,G) is generally quite high when G is a

HG-non-OT grammar. This is not surprising, since
we’re trying to learn a grammar outside the search
space. Yet, figure 5 shows that even when the tar-
get grammar G is OT, ErrOT(n,G) (red solid line)
is slightly higher than the error Err(n,G) (dashed
blue line) obtained with the general learning proce-
dure in algorithm 1. This is puzzling, as one might
have expected that the restriction of the search space
in algorithm 2 should have led to a lower error. To-
wards a possible explanation, we observe that the
weights wπ∗ obtained by algorithm 2 result in a very
low margin, and thus a very high effective dimen-
sion compared to the weights w∗ obtained through
algorithm 1, as shown in figure 6.
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Figure 5: Average over OT target grammars of the general-
ization errors Err(n,G) in algorithm 1 and ErrOT(n,G) in
algorithm 2, for harmony (left) and syllable types (right) data.
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Figure 6: Effective dimension of the weights in algorithm 1
averaged over OT and over HG-non-OT target grammars; ef-
fective dimension of the weights in algorithm 2 averaged over
OT target grammars.

Evidently, margin-based learning is incompatible
with the strategy (5) for computing exponentially-
decaying weights corresponding to OT rankings.
One possibility for future research is to base weights
not on full rankings, but on RCD’s (Tesar and
Smolensky, 1998) hierarchy H1 � H2 � · · · (H1

consists of constraints never loser preferring in T ;
H2 consists of constraints which are only loser-
preferring on triplets (u, s, s′) of T where some
constraint in H1 is winner-preferring; and so on).
For instance, one could pick weights wH so that
the constraints in H1 all have the same weight, the

8



constraints in H2 all have the same exponentially
smaller weight, and so on. A strategy of this kind
might reach a compromise between fast decay and
large margin.

Algorithm 2: Learning simulation for OT targets.

1 for G in the typology do
2 for n = 3, . . . , N do
3 for m = 1, . . . , 250 do
4 Randomly select T ∈ X nG
5 π∗ ← arg maxπ δT (wπ)
6 ErrOT(m)←P(wTπ∗x ≤ 0|x ∈ XG)
7 ErrOT(n,G)← 1

250

∑
mErrOT(m)
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Appendix: more details on KP’s bound

A.1 The exact formulation of Koltchinskii and
Panchenko’s (2005, theorem 2, p. 1464) error bound
discussed in section 3 is as follows:

Theorem 2 Suppose thatH is a VC-subgraph class
with VC-dimension V (see for instance Mohri et
al. 2012). Consider a voting classifier f =∑K

k=1wkhk ∈ F = conv(H) which classifies cor-
rectly a training set T = ((x1, y1), . . . , (xn, yn))
sampled i.i.d. according to a distribution P. For ev-
ery t > 0, the generalization error ErrP(f) of f is
bound as follows with probability at least 1− e−t:

ErrP(f) ≤ K
(
V dT (f)

n
log

n

δT (f)
+
t

n

)
(8)

whereK is a universal constant, δT (f) is the margin
of the classifier f on the training set T defined in (1)
and dT (f) is its effective dimension defined in (2).

A.2 Since
∑K

k=1wk ≤ 1, the choice d = 0 in
the definition (2) of the effective dimension yields
dT (f) ≤ 2

δT (f)2
log n. KP’s bound (8) thus becomes

ErrP(f) ≤ K
(
V log n

nδ2
log

n

δ
+
t

n

)
(9)

which decreases as 1/n when n→∞ and increases
as 1/δ2 when δ → 0.

A.3 The effective dimension dT (f) which ap-
pears in KP’s bound (8) depends on the decay of
the weights in a representation of f . The follow-
ing corollary (see Koltchinskii and Panchenko 2005,
example on p. 1465) details the dependence of the
bound on the decay. The proof of the corollary is
provided in the online supplement, based on class
notes by Panchenko (2004, class 21), as it has not
appeared in the literature.

Corollary 1 Consider a classifier f =
∑K

i=1wkhk
in F which classifies correctly a training set T =
((x1, y1), . . . , (xn, yn)) with margin δ = δT (f),
namely y1f(x1), . . . , ynf(xn) > δ.

• If the weights wk decay polynomially, i.e. wk ≤
k−B for someB > 1, KP’s bound (8) becomes:

ErrP(f) ≤ K
(

CB
δ2/(2B−1)

V

n
log2 n

δ
+
t

n

)
(10)

where CB → 1 as B →∞.

• If the weights wk decay exponentially, namely
wk ≤ e−k, KP’s bound (8) becomes:

ErrP(f) ≤ K
(
V

n
log2 n

δ
+
t

n

)
(11)

The two bounds (10) and (11) decrease as 1/n when
n→∞, just as in the general case (9). The substan-
tial improvement concerns the growth of the bound
when δ → 0. The general bound (9) grows as 1/δ2

when δ → 0. The bound (10) for the case of poly-
nomial decay instead grows only as 1/δ2/(2B−1),
which is slower than 1/δ2 because 2/(2B − 1) ≤ 2
as B > 1. Furthermore, the bound (11) for the case
of exponential decay grows only as log 1/δ when
δ → 0, which is substantially slower than 1/δ2.
When B →∞, the bound (10) for the case of poly-
nomial decay becomes the bound (11) for the case
of exponential decay.
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