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Abstract

This paper presents initial experiments in data-driven morphological analy-
sis for Finnish using deep learning methods. Our system uses a character based
bidirectional LSTM and pretrained word embeddings to predict a set of morpho-
logical analyses for an input word form. We present experiments on morpholog-
ical analysis for Finnish. We learn to mimic the output of the OMorFi analyzer
on the Finnish portion of the Universal Dependency treebank collection. The re-
sults of the experiments are encouraging and show that the current approach has
potential to serve as an extension to existing rule-based analyzers.

Tiivistelmä

Esittelemme kokeita aineistolähtöisellä syväoppimismenetelmiin perustuval-
la suomen kielen morfologisella analysaattorilla. Esittelemämme järjestelmä pe-
rustuu merkkipohjaisiin LSTM-malleihin ja esiopetettuihin sanaupotuksiin. Jär-
jestelmämme oppii matkimaanOMorFi-jäsennintä, joka on suomen kielenmorfo-
loginen analysaattori. Teemme kokeita Universal Dependency -puupankkikoko-
elman suomenkielisellä osuudella. Kokeemme osoittavat, että koneoppimismene-
telmät tarjoavat lupaavan lähestymistavan suomen kielen morfologiseen analyy-
siin.

1 Introduction
The task of morphological analysis consists of providing a word form with the com-
plete set of morphological readings it can attain (see Figure 1). It is a cornerstone in
the development of natural language processing (NLP) utilities for morphologically
complex languages such as the Uralic languages. It is a necessary preprocessing task
because of the high type-to-token ratio, which is prevalent in morphologically com-
plex languages. Additionally, phenomena like compounding and derivation, which
frequently produce previously unseen lexemes, necessitate the use of morphological
analyzers.
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tunne tunne Noun+Sg+Nom
tuntea Verb+Act+Impv+Sg2
tuntea Verb+Act+Indv+Pres+Con

Figure 1: A complete set of morphological readings for the Finnish word tunne.

Hand-crafted analyzers (Koskenniemi, 1983) are the gold standard for morpho-
logical analysis. Creation of such analyzers is, however, a labor intensive process and
requires expertise in linguistics, the target language and the rule formalisms used to
create these analyzers. Moreover, analyzers need to be continuously updated with
new lexemes in order to maintain high coverage on running text.

In this paper, we investigate an alternative to hand-crafted analyzers, namely,
data-driven morphological analyzers which are learned from annotated training data.
In our case, the training data consists of words and complete sets of analyses. During
test time, the system takes a Finnish word such as kisaan (‘into the competition’ or ‘I
am competing’) as input and gives a set of analyses

{Noun+Sg+Ill, Verb+Act+Indv+Pres+Sg1}

as output.
We present experiments in data-driven morphological analysis of Finnish. We

learn to mimic the OMorFi analyzer (Pirinen et al., 2017) on the Finnish portion of the
Universal Dependency treebank collection (Pyysalo et al., 2015). The data sets and
OMorFi analyzer are further discussed in Section 3. We use a deep learning model
encompassing a character-level recurrent model, which maps words onto sets of anal-
yses as explained in Section 4. Our results, described in Section 5, show that this line
of research is encouraging. We present related work in Section 2 and present con-
cluding remarks in Section 6.

2 Related Work
The task of data-driven morphological analysis has received far less attention than
morphological tagging and disambiguation which aim at producing exactly one anal-
ysis, which is correct in a given sentence context. Because hand-crafted morphologi-
cal analyzers have been shown to improve the performance of neural taggers (Sagot
and Martínez Alonso, 2017), the task of data-driven morphological analysis is, never-
theless, important.

The task explored in this paper is closely related to the construction of morpho-
logical guessers (Lindén, 2009), where the aim is to guess the inflectional type of a
word. To the best of our knowledge deep learning methods have, however, not been
applied to this task. In contrast, there is a growing body of work on deep learn-
ing for word form generation (Cotterell et al., 2017, 2016). In word form generation,
or morphological reinflection, the aim is to generate word forms given lemmas and
morphological analyses. Therefore, it can be seen as a natural counterpart to mor-
phological analysis. Our work is inspired by the encoder-decoder models commonly
applied in morphological reinflection (for example Kann and Schütze (2017)) but the
task at hand is naturally quite different.

Several approaches have been explored for returning one analysis, or a small set
of possible analyses, for a word form in context. For example, Kudo et al. (2004) apply
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Conditional Random Fields for morphological analysis of Japanese but their system
only returns one tokenization for a sentence and one analysis per token. This is not the
same task as the onewe are exploring, where the objective is to return the complete set
of possible analyses. Similar in spirit is the work on Kazakhmorphological analysis by
Makhambetov et al. (2015). Their system, based on Hidden Markov Models, returns
a subset of the analyses of a token which could plausibly occur in a given context.
Sequence models are a natural choice when the aim is to generate one analysis for
each word form but they are not suitable for our needs because we want to generate
complete sets of analyses.

3 Data and Resources
We conduct experiments on the Finnish part of the Universal Dependency treebank
collection (UD_Finnish) (Pyysalo et al., 2015). We analyze corpus tokens using the
OMorFi¹ morphological analyzer (Pirinen et al., 2017) which is a high coverage Finnish
open-source morphological analyzer capable of analyzing compounds and deriva-
tions.

Because we are learning to mimic the output of the OMorFi analyzer, we have
to filter out tokens which are not recognized by OMorFi from the training, develop-
ment and test set (approximately 3% of tokens in UD_Finnish are not recognized by
OMorFi).

We slightly transform the analyses provided by OMorFi by removing lemma in-
formation since this paper does not investigate lemmatization.² Consequently, we
conflate analyses which only differ with regard to the lemma.

Table 1 describes the Finnish UD treebank analyzed by OMorFi. The partition into
training, development and test set follows the standard split provided by version 2.0
of the UD_Finnish treebank.

Table 1: Description of data sets used in experiments. Average ambiguity refers to
the average count of distinct analyses for tokens recognized by OMorFi.

Tokens Tokens recognized by OMorFi Avg. Ambiguity
Train 162,827 157,317 (96.6%) 1.82
Devel. 18,311 17,762 (97.0%) 1.76
Test 21,070 20,447 (97.0%) 1.84

As explained in Section 4, we use pretrained word vectors to initialize word em-
beddings. These were trained using the word2vec implementation in the gensim
toolkit (Řehůřek and Sojka, 2010) on approximately 71M words of Finnish newsgroup
data from the Suomi24 corpus³. The corpus contains texts available from the discus-
sion forums of the Suomi24 online social networking website between years 2001 and
2015.

¹https://github.com/flammie/omorfi/releases/tag/20170515
²We did not investigate lemmatization because it can easily be treated as a reinflection task using ex-

isting methods.
³Aller Media ltd. (2014). The Suomi 24 Corpus (2015H1) (text corpus). Kielipankki. Retrieved from

http://urn.fi/urn:nbn:fi:lb-201412171

https://github.com/flammie/omorfi/releases/tag/20170515
http://urn.fi/urn:nbn:fi:lb-201412171
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x = (k,i,s,a,a,n) system y(x) = 

⋮

-1

-1

-1
-1

1

1
Noun+Sg+Ill

Verb+Act+Indv+Pres+Sg1

Figure 2: The system gets a Finnish word, kisaan (‘I am competing’ or ‘into the compe-
tition’), as input. It then outputs the set of valid morphological analyses for the input
word. For example, kisaan has two valid morphological analyses Noun+Sg+Ill and
Verb+Act+Indv+Pres+Sg1. The input word is fed to the system as a sequence of let-
ters x = (k, i, s, a, a, n). The output y(x) is a vector in {−1, 1}N , where each index
corresponds to a morphological analysis. The entry at index i is 1, iff i corresponds
to a valid morphological analysis for the input word. Otherwise, it is −1.

4 Model
Morphological analysis can be formulated as a multi-label classification task, that is,
the objective is to return a set of analyses for each input. We accomplish this by pre-
dicting an output vector for each input example. The vector contains one element for
each morphological analysis type (for example Noun+Sg+Nom) and its values encode
which of the analyses are active for a given input example (see Figure 2).⁴ We struc-
ture the task in the following way. Each input token x = x1...xn ∈ Σ∗ (where Σ is
the Finnish alphabet) is mapped into a vector y(x) ∈ {−1, 1}|A| ⊂ R|A|, where A
is the set of morphological analyses found in the training data. The value y(x)i = 1
if the analysis corresponding to index i is a valid analysis for token x. Otherwise,
y(x)i = −1.

Our system is based on word embeddings e(x) and character-based embeddings
B(x1, ..., xn) using a bidirectional LSTMnetwork (Hochreiter and Schmidhuber, 1997;
Schuster and Paliwal, 1997). We use the final cell state of the bidirectional LSTM as our
character-based embedding (that is, we do not employ an attention mechanism). The
word embedding e(x) and the character-based embedding B(x1, ..., xn) are summed
and fed into a single-layer linear perceptron networkwhose output is the vector y(x).⁵

We initialize word embeddings using pretrained word vectors as explained in Sec-
tion 5. For OOV tokens, which are not found in the training set andwhich additionally
are not present in the pretrained word embedding, we use a special unknown word
embedding. During training time we randomly replace the embeddings of training
words with the unknown word embedding in order to train it.

When training the system, we optimize the L1-loss of the prediction vector y(x)
given the gold standard analysis vector y ∈ {−1, 1}|A| as shown in Equation 1. It is

⁴In the case of Finnish, this leads to a high dimensional vector because there are thousands of possible
morphological analysis types.

⁵In addition to summing the character-based embedding and pretrained word embedding vector, we
also experimented with concatenating the vectors. Unfortunately, this did not improve the accuracy of the
system. However, it did increase training time. Therefore, we opted for summing vectors.
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easily seen that the loss is minimized when the predicted vector exactly equals y.

L(y(x), y) =
|A|∑
i=0

|y(x)i − yi| (1)

In order to analyze a token x, we first generate the vector y(x) and then return
all analyses corresponding to indices i for which y(x)i > 0. For words in the test set,
which are present in the training set, we give the set of analyses found in the training
set. This substantially improves performance of the system in the early stages of
training but has little effect after the system is fully trained.

5 Experiments and Results
We perform experiments on the UD_Finnish treebank as explained above. We train
the system on the training data and report performance on the held-out test set.

The system was implemented using the Dynet toolkit (Neubig et al., 2017). We
set all hyper-parameters using the development set and optimize the network using
Adam (Kingma and Ba, 2014) with learning rate 0.0001 and beta values β1 = 0.9;β2 =
0.999. We train the system for 50 epochs.

We use word embeddings and character-based embeddings of dimension 200.
Character-based embeddings are computed in the following way: We set the hidden
state dimension of the character-based LSTM to 100 and use a single layer bidirec-
tional LSTM network. We concatenate the final 100 dimensional cell states of the
forward and backward component of the bidirectional LSTM. This gives us one 200
dimensional character-based embedding vector for the input word. As explained in
Section 4, the word embedding and character-based embedding are then summed.

During training, we employ 50% dropout on recurrent connections in the character-
based LSTMnetworks. We use pretrainedword vectors to initialize word embeddings.
These were trained using the word2vec (Mikolov et al., 2013) implementation in the
gensim toolkit (Řehůřek and Sojka, 2010). In order to train the unknownword embed-
ding discussed in Section 4, we randomly replace word embeddings during training
with the unknown word embedding with probability 2%.

The system is evaluated with regard to accuracy for full analysis sets as well as
recall, precision and f-score of analyses. Full analysis accuracy defined asC/A, where
C is the number of test set tokens, which received exactly the correct set of analyses,
andA is the count of all tokens in the test set. Recall is defined r = TP/T , where TP
is the amount of correct analyses that the system recovered and T is the total amount
of correct analyses in the gold standard test set. Similarly, precision is defined as
p = TP/P , where P is the total amount of analyses returned by the system. As
familiar, f-score is defined as 2pr/(p+ r).

Results of experiments are shown in Table 2. We present results separately for all
tokens in the test set and OOV tokens, which were not present in the training set.

6 Discussion and Conclusions
All in all the results seem encouraging when taking into account that the proposed
system is very straightforward. It is clear that performance drops drastically when
the system is applied on words not occurring in the training set, however, almost half
of OOV words still get the correct morphological analysis set from the system.
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Table 2: Results of experiments.

Accuracy Recall Precision F-Score
All words 87.24 89.66 94.03 91.79
OOV words 44.18 43.56 58.37 49.89

Roughly 27% of errors involvemix-ups between proper nouns and common nouns.
At first glance, this might seem weird because Finnish proper nouns almost always
start with an upper-case letter whereas common nouns do not. However, words in
sentence initial position also start with an upper-case letter. Because the current sys-
tem does not employ any contextual information, it can therefore not rely on capi-
talization when determining the distinction between common and proper nouns. It
is noteworthy, that many of these erroneous analyses only differ from the gold stan-
dard with regard to part-of-speech (Noun versus Proper). The additional inflectional
information, such as case and number, are frequently correct.

Another problem, which complicates the analysis of proper nouns, is that they are
often missing from the pretrained word embedding which might otherwise provide
good clues toward a proper noun interpretation. Word embeddings utilizing sub-
word information such as fastText embeddings (Bojanowski et al., 2016) might im-
prove accuracy for proper nouns. Incorporating sub-word information to pretrained
embeddings remains future work at the present time.

Other common errors include assigning noun or adjective analyses to participles.
For example, OMorFi gives taitava (skillful) both a participle and an adjective read-
ing but it does not give an adjective reading to sanova (a participle form of ‘to say’).
The distinction is mainly a matter of convention and cannot be reliably determined
from the orthography or distribution of the word. In addition to these common error
types, there are a substantial amount of less frequent errors but a more thorough error
analysis is required to interpret these and to offer a solutions for them.

It is clear that the precision of the system is greater than its recall. When applying
an analyzer to a task such as morphological disambiguation or morphological tagging,
this may be problematic because the disambiguation system cannot find the correct
analysis in a given context if the morphological analyzer does not suggest it. It may,
however, be possible to improve the recall of the system while reducing precision. As
explained in Section 4, the analyzer outputs a label corresponding to index i if y(x)i >
0, where y(x) is the output vector for example x. By replacing this formulation with
y(x)i > TH , where TH is an adjustable hyperparameter, it is possible to create a
trade-off between precision and recall. This remains future work at the current time.

We proposed a simple system for data-driven morphological analysis. The sys-
tem is based on a character-based bidirectional LSTM network and utilizes pretrained
word embeddings. The system is directly optimized to produce complete sets of mor-
phological analyses. We presented experiments on the Finnish Universal Dependency
treebank. The experiments show that the system is clearly capable of learning to an-
alyze unseen word forms but there is still room for substantial improvement.
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