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Abstract
Although linguistic typology has a long history, computational approaches

have only recently gained popularity. The use of distributed representations in
computational linguistics has also become increasingly popular. A recent devel-
opment is to learn distributed representations of language, such that typologically
similar languages are spatially close to one another. Although empirical successes
have been shown for such language representations, they have not been subjected
to much typological probing. In this paper, we first look at whether this type of
language representations are empirically useful for model transfer between Uralic
languages in deep neural networks. We then investigate which typological fea-
tures are encoded in these representations by attempting to predict features in the
World Atlas of Language Structures, at various stages of fine-tuning of the repre-
sentations. We focus on Uralic languages, and find that some typological traits
can be automatically inferred with accuracies well above a strong baseline.

Tiivistelmä
Vaikka kielitypologialla on pitkä historia, siihen liittyvät laskennalliset mene-

telmät ovat vasta viime aikoina saavuttaneet suosiota. Myös hajautettujen repre-
sentaatioiden käyttö laskennallisessa kielitieteessä on tullut yhä suositummak-
si. Viimeaikainen kehitys alalla on oppia kielestä hajautettu representaatio, jo-
ka esittää samankaltaiset kielet lähellä toisiaan. Vaikka kyseiset representaatiot
nauttivatkin empiiristä menestystä, ei niitä ole huomattavasti tutkittu typologi-
sesti. Tässä artikkelissa tutkitaan, ovatko tällaiset kielirepresentaatiot empiirises-
ti käyttökelpoisia uralilaisten kielten välisissä mallimuunnoksissa syvissä neuro-
verkoissa. Pyrkimällä ennustamaan piirteitä World Atlas of Language Structures-
tietokannassa tutkimme, mitä typologisia ominaisuuksia nämä representaatiot si-
sältävät. Keskityimme uralilaisiin kieliin ja huomasimme, että jotkin typologiset
ominaisuudet voidaan automaattisesti päätellä tarkkuudella, joka ylittää selvästi
vahvan perustason.
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1 Introduction
For more than two and a half centuries, linguistic typologists have studied languages
with respect to their structural and functional properties, thereby implicitly classify-
ing languages as beingmore or less similar to one another, by virtue of such properties
(Haspelmath, 2001; Velupillai, 2012). Although typology has a long history (Herder,
1772; Gabelentz, 1891; Greenberg, 1960, 1974; Dahl, 1985; Comrie, 1989; Haspelmath,
2001; Croft, 2002), computational approaches have only recently gained popularity
(Dunn et al., 2011; Wälchli, 2014; Östling, 2015; Bjerva and Börstell, 2016; Deri and
Knight, 2016; Cotterell and Eisner, 2017; Peters et al., 2017; Asgari and Schütze, 2017;
Malaviya et al., 2017). One part of traditional typological research can be seen as as-
signing sparse explicit feature vectors to languages, for instance manually encoded in
databases such as the World Atlas of Language Structures (WALS, Dryer and Haspel-
math, 2013). A recent development which can be seen as analogous to this, is the pro-
cess of learning distributed language representations in the form of dense real-valued
vectors, often referred to as language embeddings (Tsvetkov et al., 2016; Östling and
Tiedemann, 2017; Malaviya et al., 2017). These language embeddings encode typo-
logical properties of language, reminiscent of the sparse features in WALS, or even
of parameters in Chomsky’s Principles and Parameters framework (Chomsky, 1993;
Chomsky and Lasnik, 1993; Chomsky, 2014).

In this paper, we investigate the usefulness of explicitly modelling similarities be-
tween languages in deep neural networks using language embeddings. To do so, we
view NLP tasks for multiple Uralic languages as different aspects of the same prob-
lem and model them in one model using multilingual transfer in a multi-task learning
model. Multilingualmodels frequently follow a hard parameter sharing regime, where
all hidden layers of a neural network are shared between languages, with the language
either being implicitly coded in the input string (Johnson et al., 2017), given as a lan-
guage ID in a one-hot encoding (Ammar et al., 2016), or as a language embedding
(Östling and Tiedemann, 2017). In this paper, we both explore multilingual modelling
of Uralic languages, and probe the language embeddings obtained from such mod-
elling in order to gain novel insights about typological traits of Uralic languages. We
aim to answer the following three research questions (RQs).

RQ 1 To what extent is model transfer between Uralic languages for PoS tagging mu-
tually beneficial?

RQ 2 Are distributed language representations useful for model transfer between
Uralic languages?

RQ 3 Can we observe any explicit typological properties encoded in these distributed
language representations when considering Uralic languages?

2 Data

2.1 Distributed language representations

There are several methods for obtaining distributed language representations by train-
ing a recurrent neural language model (Mikolov et al., 2010) simultaneously for differ-
ent languages (Tsvetkov et al., 2016; Östling and Tiedemann, 2017). In these recurrent
multilingual language models with long short-term memory cells (LSTM, Hochreiter
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and Schmidhuber, 1997), languages are embedded into a n-dimensional space. In or-
der for multilingual parameter sharing to be successful in this setting, the neural net-
work is encouraged to use the language embeddings to encode features of language.
Other work has explored learning language embeddings in the context of neural ma-
chine translation (Malaviya et al., 2017). In this work, we explore the embeddings
trained by Östling and Tiedemann (2017), both in their original state, and by further
tuning them for PoS tagging.

2.2 Part-of-speech tagging

We use PoS annotations from version 2 of the Universal Dependencies (Nivre et al.,
2016). We focus on the four Uralic languages present in the UD, namely Finnish (based
on the Turku Dependency Treebank, Pyysalo et al., 2015), Estonian (Muischnek et al.,
2016), Hungarian (based on the Hungarian Dependency Treebank, Vincze et al., 2010),
and North Sámi (Sheyanova and Tyers, 2017). As we are mainly interested in observ-
ing the language embeddings, we down-sample all training sets to 1500 sentences
(approximate number of sentences in the Hungarian data), so as to minimise any
size-based effects.

2.3 Typological data

In the experiments for RQ3, we attempt to predict typological features. We extract the
features we aim to predict from WALS (Dryer and Haspelmath, 2013). We consider
features which are encoded for all four Uralic languages in our sample.

3 Method and experiments
Weapproach the task of PoS tagging using a fairly standard bi-directional LSTM archi-
tecture, based on Plank et al. (2016). The system is implemented using DyNet (Neubig
et al., 2017). We train using the Adam optimisation algorithm (Kingma and Ba, 2014)
over a maximum of 10 epochs, using early stopping. We make two modifications to
the bi-LSTM architecture of Plank et al. (2016). First of all, we do not use any atomic
embedded word representations, but rather use only character-based word represen-
tations. This choice was made so as to encourage the model not to rely on language-
specific vocabulary. Additionally, we concatenate a pre-trained language embedding
to each word representation. That is to say, in the original bi-LSTM formulation of
Plank et al. (2016), each word w is represented as w⃗+LSTMc(w), where w⃗ is an em-
beddedword representation, andLSTMc(w) is the final states of a character bi-LSTM
running over the characters in a word. In our formulation, each word w in language l
is represented as LSTMc(w) + l⃗, where LSTMc(w) is defined as before, and l⃗ is an
embedded language representation. We use a two-layer deep bi-LSTM, with 100 units
in each layer. The character embeddings used also have 100 dimensions. We update
the language representations, l⃗, during training. The language representations are
64-dimensional, and are initialised using the language embeddings from Östling and
Tiedemann (2017). All PoS tagging results reported are the average of five runs, each
with different initialisation seeds, so as to minimise random effects in our results.
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3.1 Model transfer between Uralic languages

The aim of these experiments is to provide insight into RQ 1 and RQ 2. We first train a
monolingual model for each of the four Uralic languages. This model is then evaluated
on all four languages, to investigate how successful model transfer between pairs of
languages is. Results are shown in Figure 1. Comparing results within each language
shows that transfer between Finnish and Estonian is the most successful. This can be
expected considering that these are the twomost closely related languages in the sam-
ple, as both are Finnic languages. Model transfer both to and from the more distantly
related languages Hungarian and North Sámi is less successful. There is little-to-no
difference in this monolingual condition with respect to whether or not language em-
beddings are used. As a baseline, we include transfer results when training on Span-
ish, which we consider a proxy of a distantly related languages. Transferring from
Spanish is significantly worse (p < 0.05) than transferring from a Uralic language in
all settings. Additionally, all transfer settings except for the Spanish setting are above
a most frequent class baseline.

Figure 1: Monolingual PoS training. The x-axes denote the training languages, and
the y-axes denote the PoS tagging accuracy on the test language at hand. The black
line indicates the most frequent class baseline accuracy.

Next, we train a bilingual model for each Uralic language. Each model is trained
on the target language in addition to one other Uralic language. Results are shown
in Figure 2. Again, transfer between the two Finnic languages is the most successful.
Here we can also observe a strong effect of whether or not language embeddings are
incorporated in the neural architecture. Including language embeddings allows for
both of the Finnic languages to benefit significantly (p < 0.05) from the transfer
setting, as compared to the monolingual setting, indicated by the figure baseline. No
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significant differences are observed for other language pairs.

Figure 2: Bilingual PoS training. The x-axes denote the added training languages (in
addition to the target language), and the y-axes denote the PoS tagging accuracy on
the test language at hand. The black line indicates the monolingual baseline accuracy.

3.2 Predicting typological features with language embeddings

Having observed that language embeddings are beneficial for model transfer between
Uralic languages, we turn to the typological experiments probing these embeddings.
The aim of these experiments is to provide insight into RQ 3. We investigate typo-
logical features from WALS (Dryer and Haspelmath, 2013), focussing on those which
have been encoded for the languages included in the UD.

We first train the same neural network architecture as for the previous experi-
ments on all languages in UD version 2. Observing the language embeddings from
various epochs of training permits tracking the typological traits encoded in the dis-
tributed language representations as they are fine-tuned. In order to answer the re-
search question, we train a simple linear classifier to predict typological traits based on
the embeddings. Concretely, we train a logistic regressionmodel, which takes as input
a language embedding l⃗e from a given epoch of training, e, and outputs the typologi-
cal class a language belongs to (as coded in WALS). We train a single model for each
typological trait and each training epoch. When e is 0, this indicates the pre-trained
language embeddings as obtained from Östling and Tiedemann (2017). Increasing e
indicates the number of epochs of PoS tagging during which the language embedding
has been updated. All results are the mean of three-fold cross-validation. We are
mainly interested in observing two things: i) Which typological traits do language
embeddings encode?; ii) To what extent can we track the changes in these language
embeddings over the course of fine-tuning for the task of PoS tagging?.
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We train the neural networkmodel over five epochs, and investigate differences of
classification accuracies of typological properties as compared to pre-trained embed-
dings. A baseline reference is also included, which is defined as the most frequently
occurring typological trait within each category. In these experiments, we disregard
typological categories which are rare in the observed sample (i.e. of which we have
one or zero examples). Looking at classification accuracy of WALS features, we can
see four emerging patterns:

1. The feature is pre-encoded;
2. The feature is encoded by fine-tuning;
3. The feature is not pre-encoded;
4. The feature encoding is lost by fine-tuning.

One example per category is given in Figure 3. Two features based on word-ordering
can be seen as belonging in the categories of features which are either pre-encoded
or which become encoded during training. The fine-tuned embeddings do not encode
the feature for whether pronominal subjects are expressed, or the feature for whether
a predicate nominal has a zero copula.

Figure 3: Predicting typological features in WALS. The x-axes denote number of
epochs the language embeddings have been fine-tuned for. The y-axes denote classi-
fication accuracy for the typological feature at hand.

3.2.1 Predicting Uralic typological features

Finally, we attempt to predict typological features for the four Uralic languages in-
cluded in our sample, as shown in Figure 4. Similarly to the larger language sample
in Figure 3, the Uralic language embeddings also both gain typological information in
some respects, and lose information in other respects. For instance, the pre-trained
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embeddings are not able to predict ordering of adpositions and noun phrase in the
Uralic languages, whereas training on PoS tagging for two epochs adds this informa-
tion.

Figure 4: Predicting typological features in Uralic languages. The x-axes denote num-
ber of epochs the language embeddings have been fine-tuned for. The y-axes denote
classification accuracy for the typological feature at hand.

4 Discussion

4.1 Language embeddings for Uralic model transfer

In the monolingual transfer setting, we observed that transferring from more closely-
related languages was relatively beneficial. This is expected, as the more similar two
languages are, the easier it ought to be for the model to directly apply what it learns
from one language to the other. Concretely, we observed that transferring between
the two Finnic languages in our sample, Finnish and Estonian, worked relatively well.
We further observed that including language embeddings in this setting had little-to-
no effect on the results. This can be explained by the fact that the language embedding
used is the same throughout the training phase, as only one language is used, hence
the network likely uses this embedding to a very low extent.

In bilingual settings, omitting the language embeddings results in a severe drop
in tagging accuracy in most cases. This is likely because that treating our sample of
languages as being the same language introduces a large amount of confusion into the
model. This is further corroborated by the fact that treating the two Finnic languages
in this manner results in a relatively small drop in accuracy.

Including language embeddings allows for the model transfer setting to be benefi-
cial for the more closely related languages. This bodes well for the low-resource case
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of many Uralic languages in particular, and possibly for low-resource NLP in general.
In the cases of the more distantly related language pairings, including language em-
beddings does not result in any significant drop in accuracy. This indicates that using
language embeddings at least allows for learning a more compact model without any
significant losses to performance.

4.2 Language embeddings for Uralic typology

Interestingly, the language embeddings are not only a manner for the neural network
to identify which language it is dealingwith, but are also used to encode language sim-
ilarities and typological features. To contrast, the neural network could have learned
something akin to a one-hot encoding of each language, in which case the languages
could easily have been told apart, but classification of typological features would have
been constantly at baseline level.

Another interesting finding is the fact that we can track the typological traits in
the distributed language representations as they are fine-tuned for the task at hand.
This has the potential to yield insight on two levels, of interest both to the more
engineering-oriented NLP community, as well as the more linguistically oriented CL
community. A more in-depth analysis of these embeddings can both show what a
neural network is learning to model, in particular. Additionally, these embeddings
can be used to glean novel insights and answer typological research questions for
languages which, e.g., do not have certain features encoded in WALS.

In the specific case of Uralic languages, as considered in this paper, the typological
insights we gained are, necessarily, ones that are already known for these languages.
This is due to the fact that we simply evaluated our method on the features present for
the Uralic languages in WALS. It is nonetheless encouraging for this line of research
that we, e.g., could predictWALS feature 86A (Order of Genitive and Noun) based solely
on these embeddings, and training a very simple classifier on a sample consisting
exclusively of non-Uralic languages.

5 Conclusions and future work
We investigated model transfer between the four Uralic languages Finnish, Estonian,
Hungarian and North Sámi, in PoS tagging, focussing on the effects of using lan-
guage embeddings. We found that model transfer is successful between these lan-
guages, with the main benefits found between the two Finnic languages (Finnish and
Estonian), when using language embeddings. We then turned to an investigation of
the typological features encoded in the language embeddings, and found that cer-
tain features are encoded. Furthermore, we found that the typological features en-
coded change when fine-tuning the embeddings. In future work, we will look more
closely at how the encoding of typological traits in distributed language representa-
tions changes depending on the task on which they are trained.
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