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Abstract

Word embeddings are being used for sev-
eral linguistic problems and NLP tasks.
Improvements in solutions to such prob-
lems are great because of the recent break-
throughs in vector representation of words
and research in vector space models. How-
ever, vector embeddings of phrases keep-
ing semantics intact with words has been
challenging. We propose a novel method-
ology using Siamese deep neural networks
to embed multi-word units and fine-tune
the current state-of-the-art word embed-
dings keeping both in the same vector
space. We show several semantic rela-
tions between words and phrases using the
embeddings generated by our system and
evaluate that the similarity of words and
their corresponding paraphrases are maxi-
mized using the modified embeddings.

1 Introduction

Vector embeddings in computational linguistics is
a model that encodes words in a vector space.
These vector encodings are used in mathemati-
cal models and serve as a base for computation in
NLP.

Development of word embedding technique
started in 2000 when Bengio et al. built neural
probabilistic language models to reduce the high
dimensionality of word representations in contexts
by learning a distributed representation for words
(Bengio et al., 2003). After that, continuous re-
search has been done in the field resulting in re-
markable improvements in word vector represen-
tations as well as the methods of learning the em-
beddings (Mikolov et al., 2013a; Mikolov et al.,
2013b; Pennington et al., 2014). The primary rea-
son for the increase in quality and performance
of word vector embeddings is the huge growth of

data and and development in computational capa-
bilities as of today.

Natural language has both single word and
multi-word units. If we want vector semantics
to be near perfect, we need to embed multi-word
units with the same quality as we do with the sin-
gle word units. Improvements in phrase represen-
tation will eventually help the areas of question an-
swering, search and translation. For a phrase that
is similar to a certain word, the embedding of both
the word and phrase should be similar and should
lie in the same space. Only then a manipulation
on a word and its paraphrase embedding can prove
them to be similar.

Currently, compositional models are used to
build phrase embeddings with less emphasis on
building the compositions using deep learning and
more using specific composition functions. Our
major contribution in this work is employing deep
neural architectures to transform constituent word
embeddings of a multi-word units into its vector
representation. We build a Siamese deep neural
network architecture (Siamese LSTM, to be pre-
cise) that accepts two inputs, one being a word
while another a phrase. The energy function in the
Siamese network measures the similarity between
these two input units. In the course of training
the network, baseline word embeddings (Section
5.2) are modified and phrase embeddings are gen-
erated. We describe the model in detail in further
sections.

2 Related Work

There has been a significant development in phrase
embeddings after the word2vec breakthrough by
Mikolov et al. in 2013. Earlier, word vectors were
combined with some functions to create phrase
vectors. (Mitchell and Lapata, 2008) developed
systems with predefined composition operators.
In their work, they created datasets of similarity
for adjective-noun, noun-noun and verb-object bi-205



gram units. They found the simple additive and
multiplicative function to be quite effective. How-
ever, these simple functions ignored word orienta-
tion in phrases and their interaction.

To make these compositions robust in order
to handle complex structures in sentences, Ma-
trix composition functions (Zanzotto et al., 2010;
Socher et al., 2012) and Tensor composition func-
tions (Bride et al., 2015) were proposed. In 2013,
Mikolov et al. generated phrase representation us-
ing the same method used for word representation
in word2vec (Mikolov et al., 2013a; Mikolov et
al., 2013b). High-frequency multi-word units such
as New York was embedded along with the words
by taking them as single token, or pseudo-words,
i.e. New York. Though this method is useful for
learning short phrase representations with good
quality, it does not generalize well to relatively
longer and rare occurring phrases in the dataset.

In 2011, Socher et al. used a recursive neu-
ral network to learn representations for multi-word
phrases. In particular, they used an unsupervised
autoencoder and their model performed well on
the sentiment classification task but not so well
on phrase similarity related problems. The pri-
mary reason for this was the low-dimensional rep-
resentations (upto 50) they had used to reduce the
computational complexity. More recently (Yu and
Dredze, 2015), the idea of learning composition
functions based on phrase structure and context
was proposed to compose phrase embeddings us-
ing baseline word embeddings.

The composition model developed by Yu and
Dredze used Feature-rich Compositional Transfor-
mations (FCT) from words to phrases in which the
summation weights were defined by the linguistic
features of component words such as POS tags,
head words and so on.

3 Methodology

We develop our model with the objective of train-
ing a system to predict similarity between a word
and a phrase leveraging a similarity dataset. In our
work, unlike the previous approaches, we capture
the sequence of words in a phrase and their inter-
action as well. This is achieved by using a recur-
rent neural network to train our model. The model
learns to generate phrase representations accord-
ing to its closest single word meaning. The more
the semantic similarity between the word and the
phrase, the closer is their similarity metric output

to 0 (1 otherwise). Table 1 shows some examples
giving more insight into this.

Input word Input phrase Output
remorse deep regret 0
athletes bring up 1
suez the suez canal 0
payment earth orbit 1

Table 1: Input-Output samples. ’Output’ is the
similarity metric output, i.e. 0 for similar and 1
for dissimilar

We join the outputs of the two inputs fed to the
network using a Siamese similarity function where
the input of one sub-network is the baseline em-
bedding of a word and the input of another sub-
network is the embeddings of constituent words of
a phrase which are fed sequentially. The two out-
puts thus obtained are the resultant vector embed-
dings of the corresponding word and phrase gener-
ated by our system. The weights learned are com-
mon during both the inputs. In this way, we build a
common abstract transformation for both the word
and the phrase.

While training our system over a large dataset
containing input-output pairs as in Table 1, the
model learns weights with which we build phrase
embeddings and fine-tune baseline word embed-
dings such that both are embedded in the same
space.

3.1 Siamese Neural Network

For the task of signature verification, Siamese
Neural Networks were first proposed by Bromley
et al. in 1993. After that, the architecture has been
used in several works of similarity and discrima-
tion such as for face verification (Chopra et al.,
2005), visual search (Liu et al., 2008), sentence
similarity (Mueller and Thyagarajan, 2016), simi-
lar question retrieval in Q/A (Das et al., 2016), etc.

Suppose Out(X) is a set of functions which has
a set of parameters W. In Figure 1, input A is first
given to the network. Then another input B is fed
and a similarity function gets the outputs of these
A and B, i.e. Out(A) and Out(B). Siamese network
learns a value of W such that the similarity metric
is small if Inp. A (first input) and Inp. B (second
input) are similar and large if they are not. The
similarity function can be defined as:

S(Inp.A, Inp.B) = ||Out(A)−Out(B)|| (1)206



Figure 1: Siamese Neural Network

4 Model Architecture: Siamese LSTM

Long Short Term Memory Networks (LSTMs)
(Hochreiter and Schmidhuber, 1997) are often
used for problems with temporal (sequential) data.
Since in our work, we are dealing with phrases
which are sequences of words, we use LSTM net-
work in our Siamese architecture. We first briefly
describe LSTM networks and then the model ar-
chitecture in detail.

4.1 LSTM Networks

Long Short Term Memory Network is a special
variant of RNN which is capable of learning long-
term dependencies. Each cell of LSTM contains
four components: a memory state Ct, an output
gate ot that determines how the memory state af-
fects further units, as well as an input gate it
that controls what gets stored in and a forget gate
ft which determines what gets omitted from the
memory based on each new input and the current
state. Figure 2 shows the four components and
their interaction with the inputs and past and fu-
ture information.

Figure 2: Block diagram of LSTM Cell

The use of LSTM network helps our system to
learn the context of constituent words in a phrase.

4.2 Siamese LSTM
We use 3 layers of stacked LSTMs in our Siamese
network. The hidden layers and the number of
neurons were selected after repeated experiments
and we obtained best results with this configura-
tion. We limit the timesteps used in the LSTM to
5 since more than 99.8% of phrases in the dataset
we use (PPDB1) are constituted of 5 or less units
(words). Table 2 shows the composition of the
PPDB data in terms of the n-grams in the phrases.

Size→ XL
N-gram Nums Percentage
2-gram 2,98,536 79.40%
3-gram 60,657 16.13%
4-gram 13,132 3.49%
5-gram 2,993 0.80%
6-gram 682 0.18%
Total 3,76,000 100.0%

Table 2: Composition of the PPDB dataset of size
XL showing only 0.18% of the phrases are of more
than 5-grams; the scores are 0.15% & 0.12% for
XXL & XXXL sizes respectively

At each timestep t ∈ {1 . . . 5}, we use base-
line embeddings of the word at t. For cases (eg.
phrases of length less than 5 or word of length 1)
where there is no word at t, we use zero embed-
ding vector at that t.

Figure 3: Siamese LSTM model architecture; First
input to the network is a single word unit and sec-
ond input is a multi-word unit

Figure 3 illustrates the model architecture we
use. After training over a large dataset, the model

1http://www.cis.upenn.edu/˜ccb/ppdb/
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learns the set of parameters W. ’embd’ is the resul-
tant embedding of the word or paraphrase which is
input to the network. The outputs of the two inputs
to the network are joined using a contrastive loss
function (Hadsell et al., 2006) which is defined as:

L = (1− Y )
1

2
(S)2 + (Y )

1

2
{max(0,m− S)}2

(2)
where Y is a binary label assigned to a pair Xa

and Xb (0 for similar and 1 for dissimilar), S is the
similarity energy function which is parameterized
by W and m is margin (Hadsell et al., 2006). We
use m = 1. When two pairs are not similar the
maximum energy metric outputs 1.

The gradient of the loss function with respect to
W shared by the LSTM networks, is computed us-
ing back-propagation. Adamax optimizer, a vari-
ant of the Adam optimizer (Kingma and Lei Ba,
2015) is used to update the parameters of the sub-
network.

5 Implementation

5.1 Dataset

We use PPDB dataset (Ganitkevitch et al., 2013)
of size XL which has 3,76,000 pairs of words
and their corresponding paraphrases. Since these
are word-paraphrase pairs, we label the output of
these pairs as 0. We augment the data by the same
number of negative pairs by choosing a phrase for
a word which is not its paraphrase. We label these
pairs as 1. Thus, we train our model on 7,52,000
data samples.

5.2 Base Input Embedding

As base word embeddings for the input layers, we
use GloVe2 word vector embeddings (Pennington
et al., 2014) of dimension 200.

The input pairs are passed through the Siamese
network with the final layers of each network
giving the resultant embeddings for words and
phrases. We have 300 stacked neurons in the fi-
nal layer of both the LSTM networks. This is the
dimension of our resultant embeddings.

6 Experiments and Results

We perform the following experiments and find
impressive results on various tasks.

2https://nlp.stanford.edu/projects/
glove/

6.1 Word - Phrase Similarity Task
In this experiment, we define a classification task
to determine if a word-phrase pair are semantically
similar. We feed a word-phrase pair to the trained
Siamese model and predict whether they are simi-
lar (S ≈ 0) or dissimilar (S ≈ 1).

We evaluate on the set of PPDB data (Section
5.1) left aside for validation. Out of the total data
size, we choose 2,00,000 word-paraphrase pairs
arbitrarily for the evaluation. Besides Siamese
LSTM, we also perform this experiment on a
Siamese Multi-layer Perceptron Network (MLP)
where the MLP has 4 layers of neurons. As per our
study in Table 2, we fix the MLP input to 5 words
where each input word is in the form of a 200-D
vector (we use padding and truncation for word
units which are not of length 5). Therefore, the
first layer has 1000 neurons. The remaining lay-
ers have 512, 512 and 300 neurons in order from
second to final layer. We carry out the similarity
task using Siamese MLP. However, we get better
results (Figure 4) on Siamese LSTM which is also
one reason why we chose it over Siamese MLP.
We report the best accuracy of 76.65% on this task.

Figure 4: Accuracy of similarity over dataset size

6.2 Nearest Words and Phrases
In our work, we fine-tune the current base word
embeddings while we generate phrase embed-
dings. Therefore, to validate the new vector em-
beddings of the words (300-D) which we obtain
at the final layer of the Siamese sub-network, we
perform this experiment.

For a pair 〈U, V 〉, where U & V can be a single
word or a multi-word unit, if U is given, we predict
V (Refer Table 5). We output a list of four units
which are closest to U in the vector space. We208



Word Nearest Words
viewpoints perspectives, opinions, view-

point, views
upbeat optimistic, cautious, outlook,

gloomy
sales retail, selling, profits, profit
milder colder, mild, warmer, heavier
1600 1400, 1700, 1300, 1500
asem apec, asean, g20, summit
panelists attendees, moderators, jurists,

paragraphs
medal medals, awarded, won, silver

Table 3: Nearest words for a given word showing
that semantic relations are preserved even after the
modification in the base embeddings.

Word Nearest Phrases
viewpoints differing views, the viewpoints,

different opinions, different per-
spectives

upbeat optimistic about, overly opti-
mistic, more cautious, cautious

sales sales volume, sales orders, export
sales, the sales

milder relatively mild, cold weather,
even heavier, very mild

1600 1600 hours, 1300 hours, 1700
hours, 1100 hours

asem the asem process, apec leaders,
apec economies, summit meet-
ings

panelists discussion forums, two para-
graphs, selected topics, panel dis-
cussion

medal the gold medal, a gold medal, a
medal, the bronze

Table 4: Nearest phrases for a given word: we
show these for the same words as in Table 3 for
the ease of comparison

perform this task by calculating the cosine sim-
ilarity between the given U ’s embedding and all
the units’ embeddings in our vocabulary.

We finally select the top four ranked results for
every U using the embeddings our model has gen-
erated and show interesting sample results in Ta-
ble 3, Table 4 and Table 6. We notice several
instances where semantics are preserved even af-
ter fine-tuning the baseline embeddings using our

Experiment U V

Table 3 Word Word
Table 4 Word Phrase
Table 6 Phrase Phrase

Table 5: Experiments in this category; word is 1-
gram and phrase is n-gram where n ≥ 2

approach. The phrase representations generated
from this work also stays close to its correspond-
ing similar word’s embedding.

Phrase Nearest Phrases
are crucial are important, are needed, are

essential, are necessary
2005 to
2006

2005 to 2007, 2005 to 2008,
2003 to 2006, 2004 to 2005

the violence the acts of violence, the violent,
the prevalence of violence, the
cycle of violence

both leaders the two leaders, both members,
the leaders, leaders of the two
countries

president
hosni
mubarak

president mubarak, egyptian
president hosni mubarak, hosni
mubarak, the egyptian presi-
dent hosni mubarak

the correct-
ness

the objectivity, the veracity, the
originality, the propriety

musical
works

artistic works, musical instru-
ments, works of art, works well

Table 6: Nearest phrases for a given phrase

6.3 Semantic Similarity Task
We use the embeddings derived by our system to
evaluate the phrasal semantic similarity task of Se-
mEval20133 and compare our results with that of
the existing systems. The task of SemEval2013
5(a) is to determine if a word-phrase pair are se-
mantically similar (True for similar and False for
dissimilar) which is notably as same as the ex-
periment in Section 6.1. We report the results
(accuracy scores) of our system along with ex-
isting benchmark methods in Table 7. RAE is
the recursive auto-encoder model developed in
(Socher et al., 2011) wheras FCT-LM and FCT-
Joint are the Feature Rich Compositional Trans-
formation Models proposed by (Yu and Dredze,

3https://www.cs.york.ac.uk/
semeval-2013209



2015) with Language Modeling and Joint Traning
(Language Modeling and Task-Specific) objective
respectively for updating the embeddings. We also
report our results with the Recursive Neural Net-
work (ReNN) based model developed by (Socher
et al., 2011; Socher et al., 2013) and obtain compa-
rable results with the state-of-the-art system devel-
oped for generating phrase representations evalu-
ated on this task.

Model SemEval2013 Test
RAE 51.75
FCT-LM 67.22
FCT-Joint 70.64
ReNN 72.22
Our System 72.14

Table 7: Performance on the SemEval2013 5(a)
Semantic Similarity Task

We see that the Siamese network based model
outperforms the RAE by significant margin. How-
ever, the ReNN still has the best performance.
Since the method proposed in this work is pri-
marily dependant on the dataset containing word-
paraphrase pairs, the larger this data size, the bet-
ter quality embeddings we can generate and the
performance on this task can be ultimately im-
proved.

7 Conclusion and Discussion

In this work, we present a novel approach in
building phrase vector embeddings by the use of
its constituent word vectors through a sequential
Siamese model. The Siamese network designed
for this task leverages a word-phrase similarity
dataset (PPDB) and generates embeddings of the
phrase keeping in consideration the word position
in the phrase, and its orientation and interaction
with neighbour words as well which, in particular,
is achieved using a Long Short Term Memory Net-
work. Unlike previous attempts in building com-
positional models for phrase representation, the
system presented in this paper does not employ
any manual feature based technique for building
phrase embedding or rely on a POS tag of partic-
ular word’s neighbour or head words, or any other
linguistic feature. Rather, we develop a similarity
based deep learning network with contrastive loss
which learns its weights after training and this set
of learned parameters function as an abstract trans-
formation which compose the phrase representa-

tion eventually. In addition, we fine-tune the base
word vectors using the same abstract transforma-
tion and embed both the words and phrases in the
same vector space.

The phrase representations derived from our
model are computationally efficient as compared
to recursive neural networks employed for this
task. Besides, we are able to generate compar-
atively higher dimension (300-D) vectors in this
work as compared to recursive networks (25-30D)
which have a higher computational complexity.
We show excellent results on phrase similarity task
using the vector embeddings produced from this
work. Also, semantic relationship between nearby
words-phrases and phrases-phrases has been pre-
served.

8 Future Work

Since the network used in this work is trained
on the paraphrase dataset, quality of phrase em-
beddings will improve if we use more exhaustive
set and large number of word-paraphrase pairs for
training. If we are able to extract more paraphrases
using bigger language corpus and use it for train-
ing our system, we can considerably improve the
quality of vectors derived. In future, we plan to ex-
tend this work to other languages as well by first
extracting paraphrases and then learning a similar-
ity model to derive phrase representations. How-
ever, efficient and reliable word vectors of higher
dimension is required for this work to be done.
Similarly, we intend to use phrase embeddings
generated by our model in several NLP applica-
tions with motive of improving the performance.
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