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Abstract

Solving mathematical word problems by
understanding natural language texts and
by representing them in the form of equa-
tions to generate the final answers has
been gaining importance in recent days.
At the same time, automatic code genera-
tion from natural language text input (nat-
ural language programming) in the field
of software engineering and natural lan-
guage processing (NLP) is drawing the at-
tention of researchers. Representing natu-
ral language texts consisting of mathemat-
ical or logical information into such pro-
grammable event driven scenario to find
a conclusion has immense effect in auto-
matic code generation in software engi-
neering, e-learning education, financial re-
port generation, etc. In this paper, we pro-
pose a model that extracts relevant infor-
mation from mathematical word problem
(MWP) texts, stores them in predefined
templates, models them in object oriented
paradigm, and finally map into an object
oriented programming (OOP)1 language
(JAVA) automatically to create a complete
executable code. The codes are then exe-
cuted automatically to output the final an-
swer of the MWP. The proposed system
can solve addition-subtraction type MWPs
and produced an accuracy of 90.48% on a
subset of the standard AI2 arithmetic ques-
tions2 dataset.

1 Introduction

Solving MWPs is a very longstanding research
problem; researchers in the field of Artificial Intel-

1http://docs.oracle.com/javase/
tutorial/java/concepts/

2http://allenai.org/data.html

ligence (AI), machine learning and NLP have pro-
posed various methodologies for solving MWPs
since 1960s. Word problems are formed using
natural language text rather than in mathemati-
cal notations (Verschaffel et al., 2000) and they
can be of any type of numerical problems based
on domains like mathematics, physics, geometry,
etc. (Mukherjee and Garain, 2008). Addition-
subtraction type MWP is an integral part of ba-
sic understanding of mathematics and elementary
school level curriculum. The objective of the
work presented here is primarily to generate com-
puter programs automatically from natural lan-
guage texts which when executed will produce the
desired answer. Comparison with existing MWP
solvers are not appropriate to this kind of work as
our end objective is not exactly to create the equa-
tion and solve the problem itself, but rather to gen-
erate a computer program to solve the problem and
thus it adds a new dimension to research in solving
MWPs. For example, “Dan has 64 violet marbles,
he gave Mary 14 of the marbles. How many vio-
let marbles does he now have?” is a word prob-
lem which is related to the subtraction or addition
operation. This particular problem can be solved
manually by noticing the structure of the problem
statement in which the first sentence indicates an
‘assignment’ operation and the second sentence
indicates a ‘subtraction’ operation associated with
the verb ‘give’ for Dan (primary owner) and ‘ad-
dition’ operation for Mary (secondary owner). Fi-
nal answer requirement is related to violet (at-
tribute) marble (item) in the possession of Dan.
The answer to this problem is simply obtained by
subtracting 14 from 64, i.e., 64-14=50.

In the OOP approach, we define ‘classes’ to rep-
resent real life entities and declare instances of
those classes called ‘objects’. To solve such prob-
lems, a computer programmer basically defines a
class – ‘Person’ with the data fields like name,
item name, item attribute and item quantity, and146



a method, e.g., evaluate result(). Then he declares
objects ‘obj1’ and ‘obj2’ of this class. Therefore,
for the said example,
obj1.name = Den,
obj1.item name = marble,
obj1.item attribute = violet and
obj1.item quantity = 64
obj2.name = Mary,
obj2.item name = marble,
obj2.item attribute = violet and
obj2.item quantity = x (not given).
The operation associated with the verb ‘has’ is ‘=’
(assignment or observation) and can be coded as
obj1.item quantity = 64. The operations as-
sociated with the verb ‘give’ are both ‘-’ and ‘+’
i.e., subtraction and addition (negative transfer)
and can be coded as
obj1.item quantity = obj1.item quantity−14
and obj2.item quantity = obj2.item quantity
+14.
The arithmetic operators are selected based on the
verb categories (cf. Table 2) they belong to and the
operations can be executed from within a method,
e.g., ‘evaluate result()’. In the present work, the
verb categorization is rule-based and is determined
from the verb predicates (cf. Table 1).

The system first extracts and stores all the re-
quired information for the key entities – owners,
items, attributes, quantities, and the arithmetic op-
erations relevant to the verb semantics from the
MWP text. Then the system creates compos-
ite object entities resembling each unique owner-
item-attribute combination in the MWP, finds their
states and corresponding state transitions (if any)
on the basis of the operations or activities (verbs
they face) in that MWP, and generates the rele-
vant computer codes. However, automatic extrac-
tion of information from natural language text and
computer code generation are not trivial. More-
over, solving MWPs requires natural language un-
derstanding and reasoning which are very difficult
and most of the research in natural language pro-
cessing (NLP) tend to do away with it. There-
fore, solving MWPs automatically has remained
an open research challenge.

However, presently our system is unique in
three ways. Firstly, our system tries to capture how
a programmer can solve an MWP problem using a
JAVA like language and it acts as a bridge between
unstructured natural language and structured for-
mal language(s). This transformation from natural

to formal language (executable program) throws
immense challenges in the field of NLP and Infor-
mation Extraction (IE). Secondly, OOP paradigm
is used to model real world data driven tasks and
operations. Word problems are apt to be modeled
with OOP since it contains real world entities and
their specific activities, which motivated us to use
an object oriented approach for the present work.
The mathematical equation formation is not im-
portant here as all operations are represented with
JAVA programming statements which determine
the mathematical expressions. Once the desirable
complete JAVA program (cf. Figure 3) is formed
automatically, rest of the activities like compila-
tion and execution of the program to process the
result, are handled by the JAVA compiler itself
like any computer language programming assign-
ment and here lies the advantage of the proposed
approach. Finally, the proposed approach keeps
track of all the entities and their state transitions
throughout the text (cf. Figure 2) which makes it
much easier to answer any question based on the
text, not just the question actually present in the
MWP problem. It does not have to start process-
ing afresh for answering any other question based
on the same text.

The remainder of the paper is organized as fol-
lows. Section 2 presents an overview of relevant
related work. Section 3 provides a detailed dis-
cussion on the system components. Section 4 out-
lines the datasets, experiments and the correspond-
ing results together with some analysis, followed
by conclusions and avenues for further research in
Section 5.

2 Related Work

The research problem on generation of executable
computer programs for solving MWPs has not
been attempted so far to the best of our knowl-
edge. However, formal language modeling from
natural language text has been studied previously
in various domain by researchers mainly in soft-
ware engineering (Bryant et al., 2003; Lei et al.,
2013), web interfaces of databases (Alexander et
al., 2013), etc. Some researchers tried to repre-
sent natural language texts using regular expres-
sions (Kushman and Barzilay, 2013). Ballard and
Biermann (Ballard and Biermann, 1979) pro-
posed a natural language computing (‘NLC’) pro-
totype to process and evaluate small natural lan-
guage text word problems based on matrix com-147



putation. They proposed a method to generate so-
lution from a matrix entry and solve problems like
“add five with the second positive entry in row 5”,
“double the fifth entry and add that to the last en-
try of that row”, etc. Each of these assignments
have some types of mathematical terminologies
like ‘add’, ‘double’, etc., which clearly indicates
the operation or operator. This research problem
is not exactly related to automatic program gen-
eration, rather it is about processing a matrix data
structure syntactically to generate the desired re-
sult based on matrix arithmetic. Liu and Lieber-
man (Liu and Lieberman, 2005) developed a sys-
tem ‘Metafor’ which converts a small description
of an event into a ‘Python’ program based on in-
teraction logs with respect to time and entity par-
ticipation. Kate et al. (Kate et al., 2005) tried to
represent natural language texts syntactically and
semantically into a formal representation that is
based mainly on deterministic context-free gram-
mar. They used “if-then” rules to develop a new
formal language ‘CLANG’ for processing natural
language text. Mihalcea et al. (Mihalcea et al.,
2006) first proposed a system that attempts to con-
vert natural language texts directly into computer
programs. They tried to identify various algorith-
mic steps, decisions and loop structures from En-
glish text representing any event and convert it into
a program skeleton using ‘PERL’ programming
language which is object oriented in nature. Fol-
lowing the “who does what” structure their sys-
tem develops a program skeleton and generates
the ‘PERL’ code for texts like “When customer or-
ders a drink, the bartender makes it”. They de-
veloped a model which creates different classes
like ‘Customer’, ‘Bartender’ and relevant meth-
ods like ‘order drink()’, ‘make drink()’ to sup-
port their actions. Our work is little relevant to
their work. Alongside, many researchers proposed
various methodologies to solve MWPs (Kushman
et al., 2014; Hosseini et al., 2014; Walker and
Kintsch, 1985; Fletcher, 1985; Roy and Roth,
2015; Shi et al., 2015; Mitra and Baral, 2016).
The work presented in this paper differs from these
works.

3 System Description

3.1 Mapping Input Texts to The Concept

Natural language texts representing some MWPs
typically contain multiple factual sentences and a
‘question sentence’ at the end (cf. the example

given in Section 1). Each sentence may or may not
have some mathematical meaning. Our objective
is to identify the key players or entities and their
state transitions from the first sentence they occur
in and till the last sentence. An MWP example
containing multiple sentences is given below.

“Harry has 15 blue and 10 green balloons.
He lost 5 blue balloons in the market. Then
he bought 3 green balloons from a shop. Tim
has 12 kites and 10 blue balloons. Tim gave
Harry 4 blue balloons.. ... How many green
balloons does Harry have? ”

This MWP problem involves 2 persons having
2 types of balloons, blue and green, and 1 per-
son having kites. Here owner entity names are
‘Harry’, ‘Tim’, and item entity names are ‘bal-
loon’ and ‘kite’, and item attributes associated
with the item ‘balloon’ are ‘blue’ and ‘green’. Our
objective is to map such information expressed
in natural language texts into object oriented pro-
gramming paradigm. Every sentence is consid-
ered as a state and throughout the input text sev-
eral state transitions take place with all unique
‘Owner–Item–Attribute’(OIA) objects (cf. Figure
2). Here we create objects like ‘Harry-balloon-
blue’, ‘Harry-balloon-green’, ‘Tim-balloon-blue’,
‘Tim-kite-null’ along with their respective quan-
tities. It is to be noticed that the owner does not
have to be a person always. Our system iden-
tifies all different types of owner, item (and at-
tribute, if any) combinations from the input text
and create ‘objects’ for each of them. It also iden-
tifies their state transitions that they go through
throughout the problem text. Most importantly,
if the text has question sentence like “How many
blue balloons are now with Harry?” or “ How
many kites does Tim have now?”, the system for-
mulates the answer by matching the ‘OIA’ object
in the question sentence. Our system carries the
information about all the ‘OIA’ objects and the
changes in quantities of the items (if any) occur-
ring in association with the operations (related to
the ‘verbs’) they face till their final state. There-
fore, after processing the question sentence and
identifying the ‘OIA’ object associated with it, the
system displays the final processed quantity of the
corresponding ‘OIA’ object as the answer.

3.2 MWP Text Simplification
To make the processing more convenient, the in-
put text is simplified first. Conjunctions are re-148



moved and coreferences are substituted to con-
vert the input text into a simplified format so that
we can extract information with out any ambigui-
ties. We use Stanford CoreNLP3 suite 3.6.0 to per-
form the intermediate NLP tasks, e.g., POS tag-
ging, dependency parsing, coreference resolution,
etc., and extract relevant information. We remove
conjunctions like ‘and’, ‘,’ (comma), ‘but’, ‘, and’
and ‘, but’ from compound sentences and break
them into multiple simple sentences. The corefer-
ence mentions for pronouns like ‘he’, ‘she’, ‘his’,
‘her’ etc., are substituted with the corresponding
referred expressions so that we can extract the
owner entities directly and unambiguously.

3.3 Information Extraction based on
Semantic Role Labelling (SRL)

SRL techniques are mainly used to semantically
process texts and to define role(s) of every words
present in a text. For extracting information from
text, we used the SRL tool – Mateplus4 (Roth and
Woodsend, 2014; Roth and Lapata, 2015), which
was developed for meaning representations based
on the CMU SEMAFOR5 tool and frameNet6. Ta-
ble 1 shows the output of ‘Mateplus’ for the sam-
ple sentence “Sam gave Mary 23 green marbles.”.
Depending on the type of the predicates and also

ID Form POS Dependency Predicate Args:Locating
1 Sam NNP SUB - Donor
2 gave VBD ROOT Giving -
3 Mary NNP OBJ - Recipient
4 23 CD NMOD - -
5 green JJ AMOD - -
6 marbles NNS OBJ - Theme
7 ‘.’ ‘.’ P - -

Table 1: A sample SRL output

the verb grouping from VerbNet7, the verbs are
manually categorized and respective equations are
generated by the system (cf. Subsection 3.4).
Given the example, the predicate (e.g., ‘Giving’),
owners (e.g., ‘Donor’ as primary and ‘Recipient’
as secondary owner), items (e.g., ‘Theme’) and the
attribute(s) of the item(s) are extracted from the
SRL output (cf. ‘give’, ‘Sam’, ‘Mary’,‘marble’
and ‘green’ in Table 1 respectively). Depending
on the type (i.e., category) of the predicates, re-

3http://stanfordnlp.github.io/CoreNLP/
4https://github.com/microth/mateplus
5www.ark.cs.cmu.edu/SEMAFOR
6https://framenet.icsi.berkeley.edu
7http://verbs.colorado.edu/˜mpalmer/

projects/verbnet.html

spective ‘operations’ are identified for each ‘OIA’
triplet/object (cf. Section 3.4).

The system extracts all relevant information
from the input MWP texts, sentence by sentence,
identifying the owners, items, item attributes,
‘verb’, ‘cardinal number’ (or ‘quantity’) from the
SRL output (cf. Table 1) using a rule-based ap-
proach. These information are extracted from the
POS tag, and dependency relations combined with
‘predicates’ and relevant ‘arguments’. For ex-
ample, NNP/NN and SUB is an ‘owner’ entity,
NNP/NN and NMOD/PMOD/OBJ is a ‘secondary
owner’, NNS/NN and OBJ is an ‘item’, JJ and
AMOD/NMOD is an ‘item-attribute’. A maximum
of 5 conditions (rules) are used to identify each
type.

3.4 Verb Categorization & Equation
Formation

We studied the verbs appearing in the dataset (cf.
Section 4) and by manually analyzing the predi-
cates and arguments (cf. Subsection 3.3 and Table
1), we grouped the verbs into 5 categories based on
the frameNet frame definitions along with the sim-
ilarity of the verbs in terms of VerbNet verb group-
ing and probable arithmetic operational connota-
tion (=, +, -) as in Table 2. We carried out verb
categorization motivated by the work of (Hosseini
et al., 2014).

Category Verbs Operator
Observation have, find assignment
Increment gather, grow +
Decrement lose, spend −

Positive Transfer take, receive +and−
Negative Transfer give, sell, pay −and+

Table 2: Schema and operations for the verb cate-
gories.

For example, using the frame definition of ‘Giv-
ing8’ in the ‘frameNet’, we categorized ‘give’ in
the ‘negative transfer’ category where ‘-’ oper-
ator is associated with the donor/primary owner
(Sam in Table 1) and ‘+’ operator is associated
with the recipient/secondary owner (Mary in Ta-
ble 1). The frame definition for ‘Giving’ is
(Donor, [Recipient], Theme/Items, [Quantities],
[Time], [Location]....). Similarly, we categorized

8https://framenet2.icsi.berkeley.edu/
fnReports/data/frameIndex.xml?frame=
Giving149



Category Examples Schema Entry Equations

(Null) Observation Joan has 40 blue balloons
[Joan, null, balloon

blue, 40]
Joan-balloon-blue.quantity=40

Increment Tom grew 9 watermelons
[Tom, null,

watermelon, null, 9]
Tom-watermelon-null.quantity=Tom-watermelon-null.quantity+9

Decrement Sally lost 2 of the orange balloons
[Sally, null, balloons,

orange, 2]
Sally-balloon-orange.quantity=
Sally-balloon-orange.quantity-2

Positive Transfer
Dan took 22 pencils

from the drawer
[Dan, drawer,

pencils, null, 22]
Dan-pencil-null.quantity=Dan-pencil-null.quantity+22

and drawer-pencil-null.quantity=drawer-pencil-null.quantity-22

Negative Transfer
Jason gave 13

of the seashells to Tim
[Jason, Tim, seashell,

null, 13]
Jason-seashell-null.quantity=Jason-seashell-null.quantity-13

and Tim-seashell-null.quantity=Tim-seashell-null.quantity+13

Table 3: Equation formation based on verb category and schema information

the verbs like ‘has’, ‘find’, ‘are’ having sim-
ilar kind of frame definitions in the ‘observa-
tion’ category representing the ‘=’ operation as
they do not refer any changes. We developed a
database schema to store the extracted informa-
tion from each input sentence by analyzing the
predicates associated with the verbs contained in
the MWPs. The schema is generic and defined
as [primary owner, secondary owner, item name,
item attribute, item count] for all categories of
verbs that could be present in the input text sen-
tences. Table 2 presents the verb categories (based
on only one sense of the verbs) and the corre-
sponding related operations. The ‘Positive Trans-
fer’ and ‘Negative Transfer’ categories represent
two operators connected with the ‘primary owner’
and ‘secondary owner’.

Table 3 presents the targeted equations re-
lated to the verb categories. The schema en-
try (cf. Table 3) includes extracted information
for primary owner, secondary owner, item name,
item attribute, item quantity from each sentence
in the input MWP text. Owner name (pri-
mary owner or secondary owner), item name and
item attribute, these 3 components create a single
‘OIA’ entity throughout the input text processing.
E.g., the sentence “Jason gave 13 of the seashells
to Tim” contains the primary owner ‘Jason’, sec-
ondary owner ‘Tim’, item name ‘seashell’ and
item attribute ‘null (no attribute)’ (cf. Table
3). Here, ‘Jason-seashell-null’ and ‘Tim-seashell-
null’ can be referred as two ‘objects’, say ‘Ob-
ject[0]’ and ‘Object[1]’, in the OOP scenario
where the ‘item quantity(i.e. 13) is subtracted
(i.e., -) from ‘Object[0]’ and added to ‘Object[1]’
since the verb ‘give’ belongs to the ‘Negative
Transfer’ category. Similarly, the sentence “Joan
has 40 blue balloons” will create an object entity
‘Joan-balloon-blue’ where the ‘OIA’ object is as-
sociated with the ‘assignment’ (‘=’) operator with
the ‘item quantity’(i.e. 40). The equation forma-
tions also follow the same directions as in Table

3. An input text sentence may not always have
‘secondary owner’ or ‘item attribute’. Therefore,
some of the schema entries are shown as ‘null’ in
Table 3.

Owner-Item-Attribute (object)

name: name of a owner ( primary or secondary)

Item_name: name of item

Item_attribute:  attribute of item

Item_quantity:  quantity of item

Statement_list:  executable program statements

prepared  using  verb categories

Verb

Sent_sl_no: sentence serial number

Verb_lemma:  lemma of the verb

Primary_owner:  actual owner

Secondary_owner:  participating owner

Item_name: name of item

Item_attribute:  attribute of item

Item_quantity:  quantity of item

Operator1: operator for primary owner

Operator2: operator for secondary owner

Sentence

Sent_sl_no: sentence serial number

Sent_type: normal or question sentence

Sentenceline : complete sentence

Primary_owner:  actual owner

Secondary_owner:  participating owner

Item_name: name of item

Item_attribute:  attribute of item

Item_quantity:  quantity of item

Verb_lemma:  lemma of the verb

Equation1: for primary owner

Equation2:for secondary owner

Figure 1: Template-based information extraction.

3.5 Information Processing & Template
Filling

We followed a template based IE approach and
used three templates – ‘Sentence’, ‘OIA’ and
‘Verb’. Figure 1 describes the three templates.
After extracting all the relevant information, the
system stores them in the ‘Sentence’ and ‘Verb’
templates. Successively, the system identifies each
unique ‘OIA’ triplet such that at least one com-
ponent is unique with respect to the other triplets
(cf. Section 3.6). This procedure creates a num-
ber of instances of ‘OIA’ template based on the
identified unique triplets. Then by processing the
extracted information in the ‘Verb’ template, the
desired equation(s) is generated with the associ-
ated ‘OIA’ triplet(s) according to the verb cat-
egory (cf. ‘Equation’ column in Table 3) for
each sentence. The generated equations are then
added in the ‘sentence’ template as ‘Equation1’
(for primary owner) and as ‘Equation2’ (for sec-
ondary owner) (cf. Figure 1). Finally, real pro-
gramming ‘objects’ are created related to all the
‘OIA’ triplets. By matching and replacing the150



Owner-Item-Attribute
/ Objects

Item
count(x)

Verb
lemma

Operation
Equation
statements

State no.
/ Sentence no.

mike-balloon-orange
/ obj[0]

8 have assignment obj[0].quantity=8 1 / 1

Sam-balloon-orange
/ obj[1]

14 have assignment obj[1].quantity=14 1 / 2

mike-balloon-orange
/ obj[0]

4 give -
obj[0].quantity=
obj[0].quantity-4

2 / 3

Sam-balloon-orange
/ obj[1]

4 give +
obj[1].quantity=
obj[1].quantity+4

2 / 3

Table 4: Generating program statements

triplets with the respective actual objects in the
‘equations’ (cf. ‘Equations’ column in Table 3)
of the ‘Sentence’ templates, the actual JAVA pro-
gramming statements are created (cf. Subsection
3.6 and Table 4). These program statements are
then appended according to the sequence of oc-
currence of the ‘OIA’ objects in a MWP following
their state diagrams (cf. Figure 2), which make up
the executable JAVA program (cf. Figure 3). The
system generates ‘Sentence’ templates equal to the
number of sentences in an MWP, ‘Verb’ templates
equaling the numbers of verbs existing, and an
‘OIA’ template for each unique ‘OIA’ object. The
last ‘Sentence’ template is the ‘question sentence’
which is separately analyzed to identify question
requirements. Extracted and processed informa-
tion stored in templates are finally stored in tables
using a relational database approach – MYSQL9.
This introduces structure into the unstructured nat-
ural language texts and also makes the processing
and reasoning tasks easier.

3.6 Automatic Program Generation Using
OOP Approach

3.6.1 Object Creation
In order to generate an object oriented program
from the input text, the first task is to represent the
identified unique ‘OIA’ combinations as real ‘Ob-
jects’ in OOP. E.g., if after simplification, the input
MWP text is “Mike has 8 orange marbles. Sam
has 14 orange marbles. Mike gave Sam 4 of the
marbles. How many orange marbles does Mike
now have?”, the system identifies 2 unique ‘OIA’
combinations – ‘Mike-marble-orange’ and ‘Sam-
marble-orange’. The identified ‘OIA’ triplets are
then represented as ‘obj[0]’ and ‘obj[1]’ using the

9http://www.mysql.co\ref{tab:
VerbCategories}.m/

OOP concept. These objects are the real instantia-
tion of the predefined class ‘OwnerItem’ (cf. Fig-
ure 3) resembling an ‘OIA’ template. The system
dose not consider the question sentence for object
creation.

3.6.2 JAVA Program Statements Generation
For the example in Section 3.6.1, the verb, ‘have’,
belongs to the observation category (cf. Table
2) and therefore generate the assignment (‘=”)
statements. The verb ‘give’ is the type of ‘neg-
ative transfer’ (cf. Table 2)and it produces the
statement having subtraction operation (‘-’) with
the primary owner ‘Mike’ (obj[0]) and addition
operation (‘+’) with the secondary owner ‘Sam’
(obj[1]), shown in the ‘Equation statements’ col-
umn in Table 4. The statements as a whole lead
to the executable program statements in JAVA lan-
guage. Table 4 shows, how the ‘OIA’ objects are
created, corresponding values are associated to the
objects, the mathematical operations are identified
from the verb lemma and the corresponding pro-
gram statements are generated from the same ex-
ample. The equations are first formed, e.g., “mike-
balloon-orange.quantity=8” (like ‘Equations’ col-
umn in Table 3) in which the ‘OIA’ objects are
later replaced by real objects and new equations
are formed, e.g., “obj[0].quantity=8” (cf. ‘Equa-
tion statements’ column in Table 4) using JAVA
programming syntaxes.

3.6.3 State Transition Diagram
Figure 2 demonstrates a simple forward “state
transition diagram” for all ‘OIA’ combinations
or resultant ‘OwnerItem’ objects for the example
mentioned earlier. A ‘state’ of an ‘OwnerItem’ ob-
jects is basically the sentence in the MWP texts
where it exists. An ‘OwnerItem’ object in the
program appears first in any one of the sentences151



(first state) and moves towards the last sentence
they appear in (last state)of a MWP except the
question sentence (referred as forward transition).
The question sentence does not result in any state
change. Generally it does not have any operation
associated with it. Therefore, individual ‘Owner-

State-1

(first

sentence of

occurrence)

State-2

(second

sentence of

occurrence)

State-m

(last

sentence of

occurrence)

input

OwnerItem

verb:v1

item_quantity: x

OwnerItem

verb:v2

item_quantity: y

OwnerItem

verb:v3

item_quantity: n

Input text: Mike has 8 orange marbles. Sam has 14 orange marbles. Mike gave

Sam 4 of the marbles. How many orange marbles does Mike now have?

State-1

Mike-marble-orange

verb: have

item_quantity: 8

sentence 1

State-1

Sam-marble-orange

verb have

item_quantity: 14

sentence 2

State-2

Mike-marble-orange

verb - give

item_quantity: 8-4

sentence 3

State-2

Sam-marble-orange

verb give

item_quantity: 14+4

sentence 3

............

.....

State Diagram for Object[0] ( Mike-marble-orange )

State Diagram for Object[1] ( Sam-marble-orange )

Figure 2: State diagrams of the ‘OwnerItem’ ob-
jects

Item’ object entities have their own state transition
diagrams based on their presence in the sentences.
In every sentential state they may participate in an
operation or not. In Table 4, the ‘objects’ obj[0]
has 2 states, occurring in sentence numbers 1 and
3 and obj[1] has 2 states occurring in sentence
numbers are 2 and 3. Figure 2 gives a pictorial
representation of the sentential states of the ob-
ject entities and their forward transitions based on
the operations they performed. The last state of
any objects are having the final quantity associ-
ated to them. Analyzing the extracted information
from question sentence the object is identified for
whom the answer will be displayed (obj[0] in the
Figure 2). The state diagram in Figure 2 is related
to the CHANGE type word problems (Mitra and
Baral, 2016) having all quantities available for the
desired object in terms of answer generation. In
some cases, where the problems have an adverbial
modifier like all, total, together, etc (COMBINE
type (Mitra and Baral, 2016)), it is observed that
each unique object has single state and no tran-
sition. In such scenario, the statements (or related

state quantities) of all relevant objects are summed
up to generate complete JAVA code which pro-
duces final answer.

3.6.4 Executable Program Generation
After creation of the program statements for all
individual ‘OIA’ objects, they are integrated in a
predefined JAVA program skeleton in a rule-based
manner. The desired program statements are only
considered and added according to the sequence of
occurrence (i.e., events) in the given MWP. Fig-
ure 3 shows the generated program for the same
example text. The system processes the question
sentence to extract information about the ‘Owner-
Item’ about whom (or which) the question has
been asked and the presence of any modifier like
‘all’, ‘total’ etc (indicates summation). Subse-
quently, the extracted information is used to gener-
ate additional program statements (to be appended
at the end and not given in Figure 3) that processes
and displays the desired final answer. After the
program generation, compilation and execution of
that program are performed by the JAVA compiler
(JVM) itself to generate the final answer.

public class Evaluation { //main program

for execution

 public static void main(String args[]) {

int total_owner=2;

int x=0;

// array of objects

OwnerItem obj[] = new

OwnerItem [total_owner];

for (int i = 0; i < obj.length ; i++) {

obj[i] = new OwnerItem (); //object creation

}

obj[0].item_count=8;

obj[0].item_count= obj[0].item_count-4;

obj[1].item_count=14;

obj[1].item_count= obj[1].item_count+4;

obj[0].setname("mike","balloon","orange");

obj[0].display();

obj[1].setname("Sam","balloon","orange");

obj[1].display();}}

Generated Program-

class OwnerItem  {//class template

public String owner_name;

public String item_name;

public String item_attribute;

public int item_count = 0;

public void setname(String name, String var,

String atr) {

owner_name = name;

item_name = var;

item_attribute = atr;

}

public void display() {// display states

System.out.println ("Owner is:" + owner_name);

System.out.println ("Item is:" + item_name);

System.out.println ("Item attribute is:" +

item_attribute);

System.out.println ("Count:" + item_count);}}

Input text-Mike has 8 orange marbles. Sam has 14 orange marbles. Mike gave Sam 4 of the marbles.

Output- mike-balloon-orange ( obj[0])= 4 ( answer); sam-balloon-orange( obj[1])= 18

Figure 3: Automatically Generated Program

4 Dataset, Results and Discussions

There is a broad sense of natural language pro-
gramming available in literature, however, they do
not exactly relate to our objective or methodology.
Though no standard datasets are available specif-
ically for such work, we compiled a dataset con-
taining 189 questions. We selected word problems
from the dateset available with the work of (Hos-
seini et al., 2014) which is the same as the ‘AI2
Arithmetic Questions’ dataset. They compiled 395
addition-subtraction word problems with 3 subsets152



– MA1, IXL, and MA2 with varying degree of
complexity. Our selection was based on the con-
straint that the sentences of each word problems
must have links between them towards the forward
movement of state transitions and each sentence
in a MWP (i) must not have any “missing infor-
mation” and (ii) must not be an “irrelevant sen-
tence” with respect to answer generation. For ex-
ample, the problems “Joan found 70 seashells on
the beach. She gave Sam some of her seashells.
She has 27 seashells. How many seashells did
she give to Sam?” contains a sentence having the
word ‘some’ which does not hold any definitive
cardinal value, instead indicates a operation, are
referred to as ‘missing information’. Another ex-
ample from the dataset is “Tom purchased a Bat-
man game for $ 13.60 , and a Superman game for
$ 5.06. Tom already owns 2 games. How much did
Tom spend on video games?. In this example, the
sentence “Tom already owns 2 games.” does not
have any actual relation with the desired result and
this kind of sentences are referred to as ‘irrelevant
sentence’. These cases were not included in the
dataset since our system presently does not have
the capabilities to handle them. We selected in to-
tal 189 problems10 from MA1 and MA2 (out of to-
tal 255 problems) based on the constraints. We did
not consider IXL since the corresponding prob-
lems involve more information gaps which call for
complex reasoning (due to ambiguities in owners,
items) that can not be handled by the proposed ap-
proach and some problems of MA1 or MA2 do not
fit with our objective.

The system generated syntactically correct pro-
grams in all cases, however, in terms of correct an-
swer generation (i.e., logically correct programs) it
produced an accuracy of 90.48% (171 out of 189)
on the test dataset. The system performed prop-
erly for texts containing CHANGE or COMBINE
information. Cases for which the system did not
produce correct results are given below with some
examples.

• No Link Among Owners, Participating
Operation: E.g., Dan had 7 potatoes and 4
cantaloupes in the garden. The rabbits ate
4 of the potatoes. How many potatoes does
Dan now have? (8 problems/44.5%)

• Wrong Program/ Answer Generation Due
10dataset available at: https://sites.google.

com/site/autocodegeneration/

to Various Reasons like Program Logi-
cal Errors, Sentence Sequence, Wrong IE/
SRL etc.: E.g., There are 7 crayons in the
drawer and 6 crayons on the desk . Sam
placed 4 crayons and 8 scissors on the desk
. How many crayons are now there in total ?
(7 problems/38.9%)

• Improper Reasoning of Question Sen-
tence: E.g., A restaurant served 9 hot dogs
during lunch and 2 during dinner today. It
served 5 of them yesterday. How many hot
dogs were served today? (3 problems/16.6%)

5 Conclusions

Object oriented analysis and design approach is
very useful for modeling any real world data and
event-driven scenario with ease. We only need to
identify the key entities and their roles in that sce-
nario. The main objective of our work is the gen-
eration of structured programs (JAVA based) auto-
matically from natural language MWP texts, not
exactly the solution of the MWPs itself, which can
be further extended to become a complete MWP
solver. The work is more relevant to natural lan-
guage programming (like Mihalcea et al. (2006))
rather than the development of an MWP solver.
We selected the MWP domain since it is event-
driven and involves operations like assignment,
addition, subtraction, etc., related to the associated
verbs. We tested our system on typically small in-
put texts containing only 3–4 sentences (i.e., be-
fore text simplification), however, the approach is
generic and it will also work for longer input texts.
The approach can also be extended for potential
use in question answering and summarization pur-
poses by identifying the key players like owners
and items for the domains that handle operations
like additions and subtractions. If we augment
the model with various ‘OIA’ entities and large
number of functionalities then the methodology
can represent any natural language text specific
to some domain into an object-oriented paradigm
and can add great power to automatic code genera-
tion from software requirement specifications and
software designs. We would also like to extend
the proposed OOP based approach to model and
solve word problems involving multiplication and
division and try to minimize the constraints.153
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