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Abstract

PredPatt is a pattern-based framework for predicate-argument extraction. While it works across
languages and provides a well-formed syntax-semantics interface for NLP tasks, a large-scale and
reproducible evaluation has been lacking, which prevents comparisons between PredPatt and other
related systems, and inhibits the updates of the patterns in PredPatt. In this work, we improve and
evaluate PredPatt by introducing a large set of high-quality annotations converted from PropBank,
which can also be used as a benchmark for other predicate-argument extraction systems. We compare
PredPatt with other prominent systems and shows that PredPatt achieves the best precision and recall.

1 Introduction

PredPatt1 (White et al., 2016) is a pattern-based framework for predicate-argument extraction. It de-
fines a set of interpretable, extensible and non-lexicalized patterns based on Universal Dependencies
(UD) (de Marneffe et al., 2014), and extracts predicates and arguments through these manual patterns.
Figure 1 shows the predicates and arguments extracted by PredPatt from the sentence: “Chris, the de-
signer, wants to launch a new brand.”

(1) [Chris, the designer] wants [to launch a new brand]
(2) [Chris, the designer] to launch [a new brand]
(3) [Chris] be [the designer]

Figure 1: Predicates and arguments extracted by PredPatt.2

The underlying predicate-argument structure constructed by PredPatt is a directed graph, where a
special dependency ARG is built between a predicate head token and its arguments’ head tokens, and the
original UD relations are retained within predicate phrases and argument phrases. For example, Figure 2
shows the directed graph for the predicate-argument extraction (1) and (2) in Figure 1.

Compared to other existing systems for predicate-argument extraction (Banko et al., 2007; Fader
et al., 2011; Angeli et al., 2015), the use of manual language-agnostic patterns on UD makes PredPatt a
well-founded component across languages. Additionally, the underlying structure constructed by Pred-
Patt has been shown to be a well-formed syntax-semantics interface for NLP tasks: Zhang et al. (2016)
utilizes PredPatt to extract possibilistic propositions in automatic common-sense inference generation.
White et al. (2016) uses PredPatt to help augmenting data with Universal Decompositional Semantics.
Zhang et al. (2017) adapts PredPatt to data generation for cross-lingual open information extraction.

However, the evaluation of PredPatt has been restricted to manually-checked extractions over a small
set of sentences (White et al., 2016), which lacks gold annotations to conduct an objective and repro-
ducible evaluation, and inhibits the updates of patterns in PredPatt.

1PredPatt is publicly available at https://github.com/hltcoe/PredPatt
2The predicates are colored blue, and the arguments are colored purple with brackets.
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Chris , the designer , wants to launch a new brand .
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Figure 2: Underlying predicate-argument structure constructed by PredPatt. The predicates are
colored blue in dotted cycles with gray background. The arguments are colored purple in solid
cycles. The head tokens of predicates and arguments are underlined in bold. A special dependency
ARG is built between a predicate head token and its arguments head tokens. The UD relations are
kept within predicates and arguments. The relations between predicate head tokens are also kept.
The upper relations are UD. The lower relations are ARG relations added by PredPatt.

In this work, we aim to conduct a large-scale and reproducible evaluation of PredPatt by introducing
a large set of gold annotations gathered from PropBank (Palmer et al., 2005). We leverage these gold
annotations to improve PredPatt and compare it with other prominent systems. The evaluation results
demonstrate that we make a promising improvement on PredPatt, and it significantly outperforms other
comparing systems. The scripts for creating gold annotations and evaluation are available at: https:
//github.com/hltcoe/PredPatt/tree/master/eval

2 Creating Gold Annotations

Open Information Extraction (Open IE) and Semantic Role Labeling (SRL) (Carreras and Màrquez,
2005) are quite related: semantically labeled arguments correspond to the arguments in Open IE ex-
tractions, and verbs often match up with Open IE relations (Christensen et al., 2011). Lang and Lapata
(2010) has acknowledged that the SRL task can be viewed as a two stage process of (1) recognizing
predicates and arguments then (2) assigning semantics. Therefore, predicate-argument extraction (i.e.,
Open IE) should primarily be considered the same as the first of two stages of SRL, and expert annotated
SRL data would be an ideal resource for evaluating Open IE systems. This makes PropBank (Palmer
et al., 2005) a natural choice from which we can create gold annotations for Open IE, Here, we choose
to use expert annotations from PropBank, as compared to the recent suggestion to employ non-expert
annotations as a means of benchmarking systems Stanovsky and Dagan (2016). Another advantage of
choosing PropBank is that PropBank has gold annotations for UD which lays the important groundwork
for evaluating UD-based patterns in PredPatt.

In this work, we create gold annotations for predicate-argument extraction by converting PropBank
annotations on English Web Treebank (EWT) (LDC2012T13) and the Penn Treebank II Wall Street
Journal Corpus (WSJ) (Marcus et al., 1994).3 These two corpora have all verbal predicates annotated,
and are used to evaluate PredPatt in different perspectives: EWT is the corpus where the gold standard
English UD Treebank is built over, which enables an evaluation and analysis of PredPatt patterns; WSJ is
used to evaluate PredPatt in a real-world scenario where we run SyntaxNet Parser4 (Andor et al., 2016)
on the corpus to generate automated UD parses as input of PredPatt.

Table 1 shows the statistics of the auto-converted gold annotations for predicate-argument extraction
on EWT and WSJ. We convert the PropBank annotations for all verbal predicates in these two corpora,
and ignore roles of directional (DIR), manner (MNR), modals (MOD), negation (NEG) and adverbials
(ADV), as they aren’t extracted as distinct argument but instead are folded into the complex predicate
by PredPatt and other systems for predicate-argument extraction (Banko et al., 2007; Fader et al., 2011;
Angeli et al., 2015). For EWT, we select 13,583 sentences that have the version 2.0 of the gold UD
annotations.5 The resulting annotations on these two corpora contain over 94K extractions.

3PropBank annotations are available at: https://github.com/propbank/propbank-release
4SyntaxNet Parser is trained on the UD Treebank which has no overlap with WSJ.
5English Universal Depedency Treebank is available at: http://universaldependencies.org
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Corpus #sentence #predicate #unique verb #avg arg per pred
EWT 13,583 21,479 4,336 2.0
WSJ 36,432 73,076 7,880 2.1

Table 1: Statistics of the gold annotations on EWT and WSJ.

3 Improving PredPatt

PredPatt is a pattern-based system, comprising an extensible set of clean, interpretable linguistic patterns
over UD parses. By analyzing PredPatt extractions in comparison with gold annotations (Sec. 2), we are
able to refine and improve PredPatt’s pattern set. From the auto-converted gold annotations, we create
a held-out set by randomly sampling 10% sentences from EWT. We then update the existing PredPatt
patterns and introduce new patterns by analyzing PredPatt annotations on the held-out set.

PredPatt extracts predicates and arguments in four stages (White et al., 2016): (1) predicate and argu-
ment root identification, (2) argument resolution, (3) predicate and argument phrase extraction, and (4)
optional post-processing. We analyze PredPatt extraction in each of these stages on the held-out set, and
make 19 improvements to PredPatt patterns. Due to lack of space, we only highlight one improvement
for each stage below.
Fixed-MWE-pred: The UD version 2.0 introduces a new dependency relation fixed for identifying
fixed function-word “multiword expressions” (MWEs). To accommodate this new feature, we add pat-
terns to identify the MWE predicate and its argument. As shown in Figure 3, the predicate root in this
case is the dependent of fixed that is tagged as a verb (i.e., “opposed”); the root of its argument is the
token which indirectly governs the predicate root via the case and fixed relation (i.e., “one”).

Please use this new file as opposed to the one I sent earlier .

fixed

fixed

case

det

acl:relcl

nsubj advmod

ARG

Figure 3: Example for add argument for fixed MWE predicates.

Cut-complex-pred: The existing patterns take clausal complements (ccomp and xcomp) as predica-
tives of complex predicates in the argument resolution stage, where the arguments of the clausal comple-
ment will be merged into the argument set of their head predicate. For example, in the sentence “Chris,
the designer, wants to launch a new brand”, PredPatt merges the argument “a new brand” of the predi-
cate “to launch” into the argument set of the complex predicate “wants to launch”. As a result, only the
complex predicate, “[Chris, the designer] wants to launch [a new brand]”, will be extracted. It ignores
the possibility of the clausal complement itself being a predicate. Here, we add a cutting option; when
turned on, it will cut the complex predicate into simple predicates as shown in Figure 1.
Prep-separation: By default, PredPatt considers prepositions to belong to the predicate, while PropBank
places preopositions within the span of their corresponding argument. Either behavior may be preferable
under different circumstances, so we make preposition placement a new configurable option of PredPatt.
Borrow-subj-for-conj-of-xcomp: PredPatt contains a post-processing option for distributing a single
nsubj argument over multiple predicates joined by a conj relation. PredPatt also contains a pattern
assigning subject arguments to predicates introduced by open clausal complement (xcomp) relations,
according to the theory of obligatory control (Farkas, 1988). We introduce a new post-processing option
that combines these two patterns, allowing an argument in subject position to be distributed over multiple
xcomp predicates that are joined by a conj relation, as illustrated in Figure 4.
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They started firing mortars indiscriminately and shooting their AK-47’s in the air .

xcomp conj nmod:poss
case

det

ARG ARG
ARG

Figure 4: Example for borrowing subject from the conjunction of open clausal complement.

4 Evaluation

In this section, we evaluate the original PredPatt (PredPatt v1) and the improved PredPatt (PredPatt
v2) on the English Web Treebank (EWT) and the Wall Street Journal corpus (WSJ), and compare
their performance with four prominent Open IE systems: OpenIE 4,6 OLLIE (Mausam et al., 2012),
ClausIE (Del Corro and Gemulla, 2013), and Stanford Open IE (Angeli et al., 2015).

4.1 Precision-Recall Curve

We compare PredPatt with four prominent Open IE systems which are also built for predicate-argument
extraction. To allow some flexibility, we compute the precision and recall of different systems by running
the scripts used in Stanovsky and Dagan (2016),7 where an automated extraction is matched with a gold
extraction based on their token-level overlap. Figure 5 and Figure 6 show the Precision-Recall Curves
for different systems on EWT and WSJ.8 When tested on EWT which has gold UD parses (Figure 5),
PredPatt v1 and v2 outperforms the other systems by a significant margin in both precision and recall.
When tested on WSJ where only automated UD parses are available (Figure 6), ClausIE achieves a recall
that is slightly better than PredPatt v1, but PredPatt v2 still shows the best performance across all systems.
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Figure 5: Precision-Recall Curve for dif-
ferent systems on EWT w/ gold UD.
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Figure 6: Precision-Recall Curve for dif-
ferent systems on WSJ w/ automated UD.

4.2 Extraction Head Agreement

The rich underlying structure in PredPatt (see Figure 2) contains head information for predicates and
arguments, which enables a precision-recall metric based on the agreement of head information. Similar

6OpenIE 4 is available at: https://github.com/allenai/openie-standalone.
7The scripts are available at: https://github.com/gabrielStanovsky/oie-benchmark.
8 Studies of PredPatt confidence prediction have been done before, but the current system does not output them. In this

evaluation, we assign 1.0 confidence score to all PredPatt extractions.
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to He et al. (2015), we first match an automated predicate with a gold predicate if they both agree on
their head.9 With two matched predicates, we then match an automated argument with a gold argument
if the automated argument head is within the gold argument span.

We evaluate the precision and recall by a loose macro measure: For the i-th extractions that have
two matched predicates, let the argument set of the gold predicate be Ai, and the argument set of the
automated predicate be Âi. The number of matched arguments is represented by |Ai ∩ Âi|. Then the
precision is computed by Precision = 1

N

∑N
i=1 |Ai ∩ Âi|/|Âi| , and the recall is computed by Recall =

1
N

∑N
i=1 |Ai ∩ Âi|/|Ai|. Table 2 shows the evaluation results of PredPatt v1 and v2 on EWT and WSJ.

PredPatt v2 modestly increases the precision by 2.3 on EWT and 0.9 on WSJ, and increases the recall by
1.6 on EWT and 0.2 on WSJ.

EWT WSJ
PredPatt v1 PredPatt v2 PredPatt v1 PredPatt v2

Precision 77.5 79.8 (+2.3) 62.1 63.0 (+0.9)
Recall 88.0 89.6 (+1.6) 84.9 85.1 (+0.2)

Table 2: Precision and Recall based on the agreement of head information.

4.3 Statistics of Argument Span Relations

Besides the precion-recall oriented metrics, we impose another metric to further measure the argument
span relations. Following in same notations in § 4.2, for the i-th extractions that have an automated pred-
icate and a gold predicate matched with each other, let an argument in the gold argument set be α ∈ Ai,
and an argument in the automated argument set β ∈ Âi. We categorize the automated extractions into
four sets according to their arguments relation to the gold arguments.

Ssame ={(Ai, Âi) | ∀α ∈ Ai.∃β ∈ Âi.span(α) = span(β)}
Ssuperset ={(Ai, Âi) | ∀α ∈ Ai.∃β ∈ Âi.span(α) ⊆ span(β)} \ Ssame

Ssubset ={(Ai, Âi) | ∀α ∈ Ai.∃β ∈ Âi.span(α) ⊇ span(β)} \ Ssame

Soverlap ={(Ai, Âi) | ∀α ∈ Ai.∃β ∈ Âi.span(α) ∩ span(β) 6= ∅} \ (Ssame ∪ Ssuperset ∪ Ssubset)

Table 3 shows the proportion of PredPatt extractions in different sets. As we expected, compared
to WSJ, more extractions on EWT fall into Ssame, which shows that PredPatt works better on gold
UD parses. In contrast to PredPatt v1, PredPatt v2 on EWT increases extractions in Ssame by 12.97%,
which contributes to the most increase of Ssubset; on WSJ, PredPatt v2 decreases extractions in Ssubset
by 13.89%, which leads the major increases of Ssame and Ssuperset. There are still over 10% extractions
not belonging to any of these four sets. Case analysis shows that the inconsistent extractions are mainly
caused by incorrect borrowing of arguments for compound predicates or predicates under obligatory
control, missing arguments for passive/active verbs that act as adjectival modifiers, etc. These cases are
not easily reachable via UD analysis, but leave room for further improvement on PredPatt.

EWT WSJ
PredPatt v1 PredPatt v2 PredPatt v1 PredPatt v2

Same 63.77 76.74 (+12.97) 41.56 52.03 (+10.47)
Superset 2.74 4.15 (+1.41) 8.64 14.10 (+5.46)
Subset 18.31 5.82 (-12.49) 28.63 14.74 (-13.89)
Overlap 0.78 0.39 (-0.39) 2.16 1.06 (-1.10)
Other 14.40 12.90 (-1.50) 19.01 18.07 (-0.94)

Table 3: Proportion of PredPatt extractions in different sets.

9In the current settings, the head of a gold predicate is the verb token in the predicate.
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5 Conclusions

We introduce a large-scale benchmark for predicate-argument extraction by converting manual annota-
tions from PropBank. Based on the benchmark, we improve PredPatt patterns, and compare PredPatt
with four prominent Open IE systems. The comparison shows that PredPatt significantly outperforms
the other systems. The evaluation results demonstrate that we improve the performance of PredPatt in
both precion-recall and the argument span relation with the gold annotations. As for further work, we
see the confidence score estimater for PredPatt extractions as a desirable target, so that the quality of
extractions can be controlled. Additionally, we would like to further improve the PredPatt patterns by
analyzing more PredPatt extractions in comparison with gold annotations.
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