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Abstract

We present a neural transition-based
parser for spinal trees, a dependency rep-
resentation of constituent trees. The
parser uses Stack-LSTMs that compose
constituent nodes with dependency-based
derivations. In experiments, we show that
this model adapts to different styles of de-
pendency relations, but this choice has lit-
tle effect for predicting constituent struc-
ture, suggesting that LSTMs induce useful
states by themselves.

1 Introduction

There is a clear trend in neural transition sys-
tems for parsing sentences into dependency trees
(Titov and Henderson, 2007; Chen and Manning,
2014; Dyer et al., 2015; Andor et al., 2016) and
constituent trees (Henderson, 2004; Vinyals et al.,
2014; Watanabe and Sumita, 2015; Dyer et al.,
2016; Cross and Huang, 2016b). These transition
systems use a relatively simple set of operations to
parse in linear time, and rely on the ability of neu-
ral networks to infer and propagate hidden struc-
ture through the derivation. This contrasts with
state-of-the-art factored linear models, which ex-
plicitly use of higher-order information to capture
non-local phenomena in a derivation.

In this paper, we present a transition system
for parsing sentences into spinal trees, a type of
syntactic tree that explicitly represents together
dependency and constituency structure. This
representation is inherent in head-driven models
(Collins, 1997) and was used by Carreras et al.
(2008) with a higher-order factored model. We ex-
tend the Stack-LSTMs by Dyer et al. (2015) from
dependency to spinal parsing, by augmenting the
composition operations to include constituent in-
formation in the form of spines. To parse sen-

tences, we use the extension by Cross and Huang
(2016a) of the arc-standard system for dependency
parsing (Nivre, 2004). This parsing system gen-
eralizes shift-reduce methods (Henderson, 2003;
Sagae and Lavie, 2005; Zhu et al., 2013; Watanabe
and Sumita, 2015) to be sensitive to constituent
heads, as opposed to, for example, parse a con-
stituent from left to right.

In experiments on the Penn Treebank, we look
at how sensitive our method is to different styles of
dependency relations, and show that spinal mod-
els based on leftmost or rightmost heads are as
good or better than models using linguistic de-
pendency relations such as Stanford Dependen-
cies (De Marneffe et al., 2006) or those by Ya-
mada and Matsumoto (2003). This suggests that
Stack-LSTMs figure out effective ways of model-
ing non-local phenomena within constituents. We
also show that turning a dependency Stack-LSTM
into spinal results in some improvements.

2 Spinal Trees

In a spinal tree each token is associated with a
spine. The spine of a token is a (possibly empty)
vertical sequence of non-terminal nodes for which
the token is the head word. A spinal dependency
is a binary directed relation from a node of the
head spine to a dependent spine. In this paper we
consider projective spinal trees. Figure 1 shows
a constituency tree from the Penn Treebank to-
gether with two spinal trees that use alternative
head identities: the spinal tree in 1b uses Stanford
Dependencies (De Marneffe et al., 2006), while
the spinal tree in 1c takes the leftmost word of
any constituent as the head. It is direct to map a
constituency tree with head annotations to a spinal
tree, and to map a spinal tree to a constituency or
a dependency tree.
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(a) A constituency tree from the Penn Treebank.
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(b) The spinal tree of (1a) using Stanford Dependency heads.
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(c) The spinal tree of (1a) using leftmost heads.

Figure 1: A constituency tree and two spinal trees.

3 Arc-Standard Spinal Parsing

We use the transition system by Cross and Huang
(2016a), which extends the arc-standard system by
Nivre (2004) for constituency parsing in a head-
driven way, i.e. spinal parsing. We describe it
here for completeness. The parsing state is a tu-
ple 〈β, σ, δ〉, where β is a buffer of input tokens
to be processed; σ is a stack of tokens with partial
spines; and δ is a set of spinal dependencies. The
operations are the following:

• shift : 〈i:β, σ, δ〉 → 〈β, σ:i, δ〉
Shifts the first token of the buffer i onto the
stack, i becomes a base spine consisting of a
single token.

• node(n) : 〈β, σ:s, δ〉 → 〈β, σ:s+n, δ〉
Adds a non-terminal node n onto the top el-
ement of the stack s, which becomes s+n.
At this point, the node n can receive left and
right children (by the operations below) until
the node is closed (by adding a node above,
or by reducing the spine with an arc opera-
tion with this spine as dependent). By this

Transition Buffer β Stack σ New Arc in δ
[And, their, . . . ] []

shift [their, suspicions, . . . ] [And]
shift [suspicions, of, . . . ] [And, their]
shift [of, each, . . . ] [. . . , their, susp.]
node(NP) [of, each, . . . ] [. . . , their, susp.+NP1

3]
left-arc [of, each, . . . ] [And, susp.+NP1

3] (NP1
3,their)

node(NP) [of, each, . . . ] [And, susp.+NP1
3+NP2

3]
shift [each, other, . . . ] [. . . , susp.+NP1

3+NP2
3, of]

node(PP) [each, other, . . . ] [. . . , susp.+NP1
3+NP2

3, of+PP1
4]

shift [other, run, . . . ] [. . . , of+PP1
4, each]

shift [run, deep, . . . ] [. . . , each, other]
node(NP) [run, deep, . . . ] [. . . , each, other+NP1

6]
left-arc [run, deep, . . . ] [. . . , of+PP1

4, other+NP1
6] (NP1

6, each)
right-arc [run, deep, . . . ] [. . . , susp.+NP1

3+NP2
3, of+PP1

4] (PP1
4, NP1

6)
right-arc [run, deep, . . . ] [And, susp.+NP1

3+NP2
3] (NP2

3, PP1
4)

. . .

Figure 2: Initial steps of the arc-standard deriva-
tion for the spinal tree in Figure 1b, until the tree
headed at “suspicions” is fully built. Spinal nodes
are noted nj

i , where n is the non-terminal, i is the
position of the head token, and j is the node level
in the spine.

single operation, the arc-standard system is
extended to spinal parsing.

• left-arc :
〈β, σ:t:s+n, δ〉 → 〈β, σ:s+n, δ∪(n, t)〉
The stack must have two elements, the top
one is a spine s+n, where n is the top node
of that spine, and the second element t can
be a token or a spine. The operation adds a
spinal from the node n to t, and t is reduced
from the stack. The dependent t becomes the
leftmost child of the constituent n.

• right-arc :
〈β, σ:s+n:t, δ〉 → 〈β, σ:s+n, δ∪(n, t)〉
This operation is symmetric to left-arc, it
adds a spinal dependency from the top node
n of the second spine in the stack to the top
element t, which is reduced from the stack
and becomes the rightmost child of n.

At a high level, the system builds a spinal tree
headed at token i by:

1. Shifting the i-th token to the top of the stack.
By induction, the left children of i are in the
stack and are complete.

2. Adding a constituency node n to i’s spine.
3. Adding left children to n in head-outwards

order with left-arc, which are removed
from the stack.

4. Adding right children to n in head-outwards
order with right-arc, which are built re-
cursively.

5. Repeating steps 2-4 for as many nodes in the
spine of i.
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Figure 2 shows an example of a derivation. The
process is initialized with all sentence tokens in the
buffer, an empty stack, and an empty set of depen-
dencies. Termination is always attainable and oc-
curs when the buffer is empty and there is a single
element in the stack, namely the spine of the full
sentence head. This transition system is correct
and sound with respect to the class of projective
spinal trees, in the same way as the arc-standard
system is for projective dependency trees (Nivre,
2008). A derivation has 2n+m steps, where n is
the sentence length and m is the number of con-
stituents in the derivation.

We note that the system naturally handles con-
stituents of arbitrary arity. In particular, unary
productions add one node in the spine without
any children. In practice we put a hard bound
on the number of consecutive unary productions
in a spine1, to ensure that in the early training
steps the model does not generate unreasonably
long spines. We also note there is a certain de-
gree of non-determinism: left and right arcs (steps
3 and 4) can be mixed as long as the children of a
node are added in head-outwards order. At train-
ing time, our oracle derivations impose the order
above (first left arcs, then right arcs), but the pars-
ing system runs freely. Finally, the system can be
easily extended with dependency labels, but we do
not use them.

4 Spinal Stack-LSTMs

Dyer et al. (2015) presented an arc-standard
parser that uses Stack-LSTMs, an extension of
LSTMs (Hochreiter and Schmidhuber, 1997) for
transition-based systems that maintains an embed-
ding for each element in the stack.2. Our model is
based on the same architecture, with the addition
of the node(n) action. The state of our algo-
rithm presented in Section 3 is represented by the
contents of the STACK, the BUFFER and a list with
the history of actions with Stack-LSTMs. This
state representation is then used to predict the next
action to take.

Composition: when the parser predicts a
left-arc() or right-arc(), we com-
pose the vector representation of the head and
dependent elements; this is equivalent to what
it is presented by Dyer et al. (2015). The

1Set to 10 in our experiments
2We refer interested readers to (Dyer et al., 2015; Balles-

teros et al., 2017).

representation is obtained recursively as follows:

c = tanh (U[h;d] + e) .

where U is a learned parameter matrix, h repre-
sents the head spine and d represents the depen-
dent spine (or token, if the dependent is just a sin-
gle token) ; e is a bias term.

Similarly, when the parser predicts a node(n)
action, we compose the embedding of the non-
terminal symbol that is added (n) with the repre-
sentation of the element at the top of the stack (s),
that might represent a spine or a single terminal
symbol. The representation is obtained recursively
as follows:

c = tanh (W[s;n] + b) . (1)

where W is a learned parameter matrix, s repre-
sents the token in the stack (and its partial spine, if
non-terminals have been added to it) and n repre-
sents the non-terminal symbol that we are adding
to s; b is a bias term.

As shown by Kuncoro et al. (2017) composition
is an essential component in this kind of parsing
models.

5 Related Work

Collins (1997) first proposed head-driven deriva-
tions for constituent parsing, which is the key idea
for spinal parsing, and later Carreras et al. (2008)
came up with a higher-order graph-based parser
for this representation. Transition systems for
spinal parsing are not new. Ballesteros and Car-
reras (2015) presented an arc-eager system that
labels dependencies with constituent nodes, and
builds the spinal tree in post-processing. Hayashi
et al. (2016) and Hayashi and Nagata (2016) pre-
sented a bottom-up arc-standard system that as-
signs a full spine with the shift operation, while
ours builds spines incrementally and does not de-
pend on a fixed set of full spines. Our method
is different from shift-reduce constituent parsers
(Henderson, 2003; Sagae and Lavie, 2005; Zhu
et al., 2013; Watanabe and Sumita, 2015) in that it
is head-driven. Cross and Huang (2016a) extended
the arc-standard system to constituency parsing,
which in fact corresponds to spinal parsing. The
main difference from that work relies on the neu-
ral model: they use sequential BiLSTMs, while we
use Stack-LSTMs and composition functions. Fi-
nally, dependency parsers have been extended to
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LR LP F1 UAS (SD)

Leftmost heads 91.18 90.93 91.05 -
Leftmost h., no n-comp 90.20 90.76 90.48 -
Rightmost heads 91.03 91.20 91.11 -
Rightmost h., no n-comp 90.64 91.24 90.04 -
SD heads 90.75 91.11 90.93 93.49
SD heads, no n-comp 90.38 90.58 90.48 93.16
SD heads, dummy spines - - - 93.30
YM heads 90.82 90.84 90.83 -

Table 1: Development results for spinal models,
in terms of labeled precision (LP), recall (LR)
and F1 for constituents, and unlabeled attach-
ment score (UAS) against Stanford dependencies.
Spinal models are trained using different head an-
notations (see text). Models labeled with “no n-
comp” do not use node compositions. The model
labeled with “dummy spines” corresponds to a
standard dependency model.

constituency parsing by encoding the additional
structure in the dependency labels, in different
ways (Hall et al., 2007; Hall and Nivre, 2008;
Fernández-González and Martins, 2015).

6 Experiments

We experiment with stack-LSTM spinal models
trained with different types of head rules. Our goal
is to check how the head identities, which define
the derivation sequence, interact with the ability
of Stack-LSTMs to propagate latent information
beyond the local scope of each action. We use the
Penn Treebank (Marcus et al., 1993) with standard
splits.3

We start training four spinal models, varying the
head rules that define the spinal derivations:4

• Leftmost heads as in Figure 1c.
• Rightmost heads.
• Stanford Dependencies (SD) (De Marneffe

et al., 2006), as in Figure 1b.
• Yamada and Matsumoto heads (YM) (Ya-

mada and Matsumoto, 2003).

Table 1 presents constituency and dependency
metrics on the development set. The model using
rightmost heads works the best at 91.11 F1, fol-
lowed by the one using leftmost heads. It is worth
to note that the two models using structural head

3We use the the same POS tags as Dyer et al. (2015).
4It is simple to obtain a spinal tree given a constituency

tree and a corresponding dependency tree. We assume that
the dependency tree is projective and nested within the con-
stituency tree, which holds for the head rules we use.

identities (right or left) work better than those us-
ing linguistic ones. This suggests that the Stack-
LSTM model already finds useful head-child rela-
tions in a constituent by parsing from the left (or
right) even if there are non-local interactions. In
this case, head rules are not useful.

The same Table 1 shows two ablation studies.
First, we turn off the composition of constituent
nodes into the latent derivations (Eq 1). The ab-
lated models, tagged with “no n-comp”, perform
from 0.5 to 1 points F1 worse, showing the ben-
efit of adding constituent structure. Then, we
check if constituent structure is any useful for de-
pendency parsing metrics. To this end, we em-
ulate a dependency parser using a spinal model
by taking standard Stanford dependency trees and
adding a dummy constituent for every head with
all its children. This model, tagged “SD heads,
dummy spines”, is slightly outperformed by the
“SD heads” model using true spines, even though
the margin is small.

Tables 2 and 3 present results on the test,
for constituent and dependency parsing respec-
tively. As shown in Table 2 our model is com-
petitive compared to the best parsers; the genera-
tive parsers by Choe and Charniak (2016b), Dyer
et al. (2016) and Kuncoro et al. (2017) are better
than the rest, but compared to the rest our parser
is at the same level or better. The most similar
system is by Ballesteros and Carreras (2015) and
our parser significantly improves the performance.
Considering dependency parsing, our model is
worse than the ones that train with exploration as
Kiperwasser and Goldberg (2016) and Ballesteros
et al. (2016), but it slightly improves the parser by
Dyer et al. (2015) with static training. The sys-
tems that calculate dependencies by transforming
phrase-structures with conversion rules and that
use generative training are ahead compared to the
rest.

7 Conclusions

We have presented a neural model based on Stack-
LSTMs for spinal parsing, using a simple exten-
sion of arc-standard transition parsing that adds
constituent nodes to the dependency derivation.
Our experiments suggest that Stack-LSTMs can
figure out useful internal structure within con-
stituents, and that the parser might work bet-
ter without providing linguistically-derived head
words. Overall, our spinal neural method is sim-
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LR LP F1
Spinal (leftmost) 90.30 90.54 90.42
Spinal (rightmost) 90.23 90.77 90.50
Ballesteros and Carreras (2015) 88.7 89.2 89.0
Vinyals et al. (2014) (PTB-Only) 88.3
Cross and Huang (2016a) 89.9
Choe and Charniak (2016a) (PTB-Only) 91.2
Choe and Charniak (2016a) (Semi-sup) 93.8
Dyer et al. (2016) (Discr.) 91.2
Dyer et al. (2016) (Gen.) 93.3
Kuncoro et al. (2017) (Gen.) 93.5
Liu and Zhang (2017) 91.3 92.1 91.7

Table 2: Constituency results on the PTB test set.

UAS test
Spinal, PTB spines + SD (TB-greedy) 93.15
Spinal, dummy spines + SD (TB-greedy) 93.10
Dyer et al. (2015) (TB-greedy) 93.1
Cross and Huang (2016a) 93.4
Ballesteros et al. (2016) (TB-dynamic) 93.6
Kiperwasser and Goldberg (2016) (TB-dynamic) 93.9
Andor et al. (2016) (TB-Beam) 94.6
Kuncoro et al. (2016) (Graph-Ensemble) 94.5
Choe and Charniak (2016a)* (Semi-sup) 95.9
Kuncoro et al. (2017)* (Generative) 95.8

Table 3: Stanford Dependency results (UAS) on
PTB test set. Parsers marked with * calculate de-
pendencies by transforming phrase-structures with
conversion rules.

ple, efficient, and very accurate, and might prove
useful to model constituent trees with dependency
relations.
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