
Proceedings of the 15th International Conference on Parsing Technologies, pages 115–121,
Pisa, Italy; September 20–22, 2017. c©2017 Association for Computational Linguistics

Arc-Standard Spinal Parsing with Stack-LSTMs

Miguel Ballesteros
IBM T.J Watson Research Center

Yorktown Heights, NY 10598. U.S.
miguel.ballesteros@ibm.com

Xavier Carreras
Naver Labs Europe

Meylan, France
xavier.carreras@naverlabs.com

Abstract

We present a neural transition-based
parser for spinal trees, a dependency rep-
resentation of constituent trees. The
parser uses Stack-LSTMs that compose
constituent nodes with dependency-based
derivations. In experiments, we show that
this model adapts to different styles of de-
pendency relations, but this choice has lit-
tle effect for predicting constituent struc-
ture, suggesting that LSTMs induce useful
states by themselves.

1 Introduction

There is a clear trend in neural transition sys-
tems for parsing sentences into dependency trees
(Titov and Henderson, 2007; Chen and Manning,
2014; Dyer et al., 2015; Andor et al., 2016) and
constituent trees (Henderson, 2004; Vinyals et al.,
2014; Watanabe and Sumita, 2015; Dyer et al.,
2016; Cross and Huang, 2016b). These transition
systems use a relatively simple set of operations to
parse in linear time, and rely on the ability of neu-
ral networks to infer and propagate hidden struc-
ture through the derivation. This contrasts with
state-of-the-art factored linear models, which ex-
plicitly use of higher-order information to capture
non-local phenomena in a derivation.

In this paper, we present a transition system
for parsing sentences into spinal trees, a type of
syntactic tree that explicitly represents together
dependency and constituency structure. This
representation is inherent in head-driven models
(Collins, 1997) and was used by Carreras et al.
(2008) with a higher-order factored model. We ex-
tend the Stack-LSTMs by Dyer et al. (2015) from
dependency to spinal parsing, by augmenting the
composition operations to include constituent in-
formation in the form of spines. To parse sen-

tences, we use the extension by Cross and Huang
(2016a) of the arc-standard system for dependency
parsing (Nivre, 2004). This parsing system gen-
eralizes shift-reduce methods (Henderson, 2003;
Sagae and Lavie, 2005; Zhu et al., 2013; Watanabe
and Sumita, 2015) to be sensitive to constituent
heads, as opposed to, for example, parse a con-
stituent from left to right.

In experiments on the Penn Treebank, we look
at how sensitive our method is to different styles of
dependency relations, and show that spinal mod-
els based on leftmost or rightmost heads are as
good or better than models using linguistic de-
pendency relations such as Stanford Dependen-
cies (De Marneffe et al., 2006) or those by Ya-
mada and Matsumoto (2003). This suggests that
Stack-LSTMs figure out effective ways of model-
ing non-local phenomena within constituents. We
also show that turning a dependency Stack-LSTM
into spinal results in some improvements.

2 Spinal Trees

In a spinal tree each token is associated with a
spine. The spine of a token is a (possibly empty)
vertical sequence of non-terminal nodes for which
the token is the head word. A spinal dependency
is a binary directed relation from a node of the
head spine to a dependent spine. In this paper we
consider projective spinal trees. Figure 1 shows
a constituency tree from the Penn Treebank to-
gether with two spinal trees that use alternative
head identities: the spinal tree in 1b uses Stanford
Dependencies (De Marneffe et al., 2006), while
the spinal tree in 1c takes the leftmost word of
any constituent as the head. It is direct to map a
constituency tree with head annotations to a spinal
tree, and to map a spinal tree to a constituency or
a dependency tree.

115



S

·VP

ADVP

deep

run

NP

PP

NP

othereach

of

NP

suspicionstheir

And

(a) A constituency tree from the Penn Treebank.

And their suspicions of each other run deep .

NP

NP

PP

NP

VP

S

ADVP

s s

s

s

s s

(b) The spinal tree of (1a) using Stanford Dependency heads.

And their suspicions of each other run deep .

S

NP

NP

PP

NP

VP

ADVP

sss

s s
s

s s

(c) The spinal tree of (1a) using leftmost heads.

Figure 1: A constituency tree and two spinal trees.

3 Arc-Standard Spinal Parsing

We use the transition system by Cross and Huang
(2016a), which extends the arc-standard system by
Nivre (2004) for constituency parsing in a head-
driven way, i.e. spinal parsing. We describe it
here for completeness. The parsing state is a tu-
ple 〈β, σ, δ〉, where β is a buffer of input tokens
to be processed; σ is a stack of tokens with partial
spines; and δ is a set of spinal dependencies. The
operations are the following:

• shift : 〈i:β, σ, δ〉 → 〈β, σ:i, δ〉
Shifts the first token of the buffer i onto the
stack, i becomes a base spine consisting of a
single token.

• node(n) : 〈β, σ:s, δ〉 → 〈β, σ:s+n, δ〉
Adds a non-terminal node n onto the top el-
ement of the stack s, which becomes s+n.
At this point, the node n can receive left and
right children (by the operations below) until
the node is closed (by adding a node above,
or by reducing the spine with an arc opera-
tion with this spine as dependent). By this

Transition Buffer β Stack σ New Arc in δ
[And, their, . . . ] []

shift [their, suspicions, . . . ] [And]
shift [suspicions, of, . . . ] [And, their]
shift [of, each, . . . ] [. . . , their, susp.]
node(NP) [of, each, . . . ] [. . . , their, susp.+NP1

3]
left-arc [of, each, . . . ] [And, susp.+NP1

3] (NP1
3,their)

node(NP) [of, each, . . . ] [And, susp.+NP1
3+NP2

3]
shift [each, other, . . . ] [. . . , susp.+NP1

3+NP2
3, of]

node(PP) [each, other, . . . ] [. . . , susp.+NP1
3+NP2

3, of+PP1
4]

shift [other, run, . . . ] [. . . , of+PP1
4, each]

shift [run, deep, . . . ] [. . . , each, other]
node(NP) [run, deep, . . . ] [. . . , each, other+NP1

6]
left-arc [run, deep, . . . ] [. . . , of+PP1

4, other+NP1
6] (NP1

6, each)
right-arc [run, deep, . . . ] [. . . , susp.+NP1

3+NP2
3, of+PP1

4] (PP1
4, NP1

6)
right-arc [run, deep, . . . ] [And, susp.+NP1

3+NP2
3] (NP2

3, PP1
4)

. . .

Figure 2: Initial steps of the arc-standard deriva-
tion for the spinal tree in Figure 1b, until the tree
headed at “suspicions” is fully built. Spinal nodes
are noted nj

i , where n is the non-terminal, i is the
position of the head token, and j is the node level
in the spine.

single operation, the arc-standard system is
extended to spinal parsing.

• left-arc :
〈β, σ:t:s+n, δ〉 → 〈β, σ:s+n, δ∪(n, t)〉
The stack must have two elements, the top
one is a spine s+n, where n is the top node
of that spine, and the second element t can
be a token or a spine. The operation adds a
spinal from the node n to t, and t is reduced
from the stack. The dependent t becomes the
leftmost child of the constituent n.

• right-arc :
〈β, σ:s+n:t, δ〉 → 〈β, σ:s+n, δ∪(n, t)〉
This operation is symmetric to left-arc, it
adds a spinal dependency from the top node
n of the second spine in the stack to the top
element t, which is reduced from the stack
and becomes the rightmost child of n.

At a high level, the system builds a spinal tree
headed at token i by:

1. Shifting the i-th token to the top of the stack.
By induction, the left children of i are in the
stack and are complete.

2. Adding a constituency node n to i’s spine.
3. Adding left children to n in head-outwards

order with left-arc, which are removed
from the stack.

4. Adding right children to n in head-outwards
order with right-arc, which are built re-
cursively.

5. Repeating steps 2-4 for as many nodes in the
spine of i.

116



Figure 2 shows an example of a derivation. The
process is initialized with all sentence tokens in the
buffer, an empty stack, and an empty set of depen-
dencies. Termination is always attainable and oc-
curs when the buffer is empty and there is a single
element in the stack, namely the spine of the full
sentence head. This transition system is correct
and sound with respect to the class of projective
spinal trees, in the same way as the arc-standard
system is for projective dependency trees (Nivre,
2008). A derivation has 2n+m steps, where n is
the sentence length and m is the number of con-
stituents in the derivation.

We note that the system naturally handles con-
stituents of arbitrary arity. In particular, unary
productions add one node in the spine without
any children. In practice we put a hard bound
on the number of consecutive unary productions
in a spine1, to ensure that in the early training
steps the model does not generate unreasonably
long spines. We also note there is a certain de-
gree of non-determinism: left and right arcs (steps
3 and 4) can be mixed as long as the children of a
node are added in head-outwards order. At train-
ing time, our oracle derivations impose the order
above (first left arcs, then right arcs), but the pars-
ing system runs freely. Finally, the system can be
easily extended with dependency labels, but we do
not use them.

4 Spinal Stack-LSTMs

Dyer et al. (2015) presented an arc-standard
parser that uses Stack-LSTMs, an extension of
LSTMs (Hochreiter and Schmidhuber, 1997) for
transition-based systems that maintains an embed-
ding for each element in the stack.2. Our model is
based on the same architecture, with the addition
of the node(n) action. The state of our algo-
rithm presented in Section 3 is represented by the
contents of the STACK, the BUFFER and a list with
the history of actions with Stack-LSTMs. This
state representation is then used to predict the next
action to take.

Composition: when the parser predicts a
left-arc() or right-arc(), we com-
pose the vector representation of the head and
dependent elements; this is equivalent to what
it is presented by Dyer et al. (2015). The

1Set to 10 in our experiments
2We refer interested readers to (Dyer et al., 2015; Balles-

teros et al., 2017).

representation is obtained recursively as follows:

c = tanh (U[h;d] + e) .

where U is a learned parameter matrix, h repre-
sents the head spine and d represents the depen-
dent spine (or token, if the dependent is just a sin-
gle token) ; e is a bias term.

Similarly, when the parser predicts a node(n)
action, we compose the embedding of the non-
terminal symbol that is added (n) with the repre-
sentation of the element at the top of the stack (s),
that might represent a spine or a single terminal
symbol. The representation is obtained recursively
as follows:

c = tanh (W[s;n] + b) . (1)

where W is a learned parameter matrix, s repre-
sents the token in the stack (and its partial spine, if
non-terminals have been added to it) and n repre-
sents the non-terminal symbol that we are adding
to s; b is a bias term.

As shown by Kuncoro et al. (2017) composition
is an essential component in this kind of parsing
models.

5 Related Work

Collins (1997) first proposed head-driven deriva-
tions for constituent parsing, which is the key idea
for spinal parsing, and later Carreras et al. (2008)
came up with a higher-order graph-based parser
for this representation. Transition systems for
spinal parsing are not new. Ballesteros and Car-
reras (2015) presented an arc-eager system that
labels dependencies with constituent nodes, and
builds the spinal tree in post-processing. Hayashi
et al. (2016) and Hayashi and Nagata (2016) pre-
sented a bottom-up arc-standard system that as-
signs a full spine with the shift operation, while
ours builds spines incrementally and does not de-
pend on a fixed set of full spines. Our method
is different from shift-reduce constituent parsers
(Henderson, 2003; Sagae and Lavie, 2005; Zhu
et al., 2013; Watanabe and Sumita, 2015) in that it
is head-driven. Cross and Huang (2016a) extended
the arc-standard system to constituency parsing,
which in fact corresponds to spinal parsing. The
main difference from that work relies on the neu-
ral model: they use sequential BiLSTMs, while we
use Stack-LSTMs and composition functions. Fi-
nally, dependency parsers have been extended to

117



LR LP F1 UAS (SD)

Leftmost heads 91.18 90.93 91.05 -
Leftmost h., no n-comp 90.20 90.76 90.48 -
Rightmost heads 91.03 91.20 91.11 -
Rightmost h., no n-comp 90.64 91.24 90.04 -
SD heads 90.75 91.11 90.93 93.49
SD heads, no n-comp 90.38 90.58 90.48 93.16
SD heads, dummy spines - - - 93.30
YM heads 90.82 90.84 90.83 -

Table 1: Development results for spinal models,
in terms of labeled precision (LP), recall (LR)
and F1 for constituents, and unlabeled attach-
ment score (UAS) against Stanford dependencies.
Spinal models are trained using different head an-
notations (see text). Models labeled with “no n-
comp” do not use node compositions. The model
labeled with “dummy spines” corresponds to a
standard dependency model.

constituency parsing by encoding the additional
structure in the dependency labels, in different
ways (Hall et al., 2007; Hall and Nivre, 2008;
Fernández-González and Martins, 2015).

6 Experiments

We experiment with stack-LSTM spinal models
trained with different types of head rules. Our goal
is to check how the head identities, which define
the derivation sequence, interact with the ability
of Stack-LSTMs to propagate latent information
beyond the local scope of each action. We use the
Penn Treebank (Marcus et al., 1993) with standard
splits.3

We start training four spinal models, varying the
head rules that define the spinal derivations:4

• Leftmost heads as in Figure 1c.
• Rightmost heads.
• Stanford Dependencies (SD) (De Marneffe

et al., 2006), as in Figure 1b.
• Yamada and Matsumoto heads (YM) (Ya-

mada and Matsumoto, 2003).

Table 1 presents constituency and dependency
metrics on the development set. The model using
rightmost heads works the best at 91.11 F1, fol-
lowed by the one using leftmost heads. It is worth
to note that the two models using structural head

3We use the the same POS tags as Dyer et al. (2015).
4It is simple to obtain a spinal tree given a constituency

tree and a corresponding dependency tree. We assume that
the dependency tree is projective and nested within the con-
stituency tree, which holds for the head rules we use.

identities (right or left) work better than those us-
ing linguistic ones. This suggests that the Stack-
LSTM model already finds useful head-child rela-
tions in a constituent by parsing from the left (or
right) even if there are non-local interactions. In
this case, head rules are not useful.

The same Table 1 shows two ablation studies.
First, we turn off the composition of constituent
nodes into the latent derivations (Eq 1). The ab-
lated models, tagged with “no n-comp”, perform
from 0.5 to 1 points F1 worse, showing the ben-
efit of adding constituent structure. Then, we
check if constituent structure is any useful for de-
pendency parsing metrics. To this end, we em-
ulate a dependency parser using a spinal model
by taking standard Stanford dependency trees and
adding a dummy constituent for every head with
all its children. This model, tagged “SD heads,
dummy spines”, is slightly outperformed by the
“SD heads” model using true spines, even though
the margin is small.

Tables 2 and 3 present results on the test,
for constituent and dependency parsing respec-
tively. As shown in Table 2 our model is com-
petitive compared to the best parsers; the genera-
tive parsers by Choe and Charniak (2016b), Dyer
et al. (2016) and Kuncoro et al. (2017) are better
than the rest, but compared to the rest our parser
is at the same level or better. The most similar
system is by Ballesteros and Carreras (2015) and
our parser significantly improves the performance.
Considering dependency parsing, our model is
worse than the ones that train with exploration as
Kiperwasser and Goldberg (2016) and Ballesteros
et al. (2016), but it slightly improves the parser by
Dyer et al. (2015) with static training. The sys-
tems that calculate dependencies by transforming
phrase-structures with conversion rules and that
use generative training are ahead compared to the
rest.

7 Conclusions

We have presented a neural model based on Stack-
LSTMs for spinal parsing, using a simple exten-
sion of arc-standard transition parsing that adds
constituent nodes to the dependency derivation.
Our experiments suggest that Stack-LSTMs can
figure out useful internal structure within con-
stituents, and that the parser might work bet-
ter without providing linguistically-derived head
words. Overall, our spinal neural method is sim-

118



LR LP F1
Spinal (leftmost) 90.30 90.54 90.42
Spinal (rightmost) 90.23 90.77 90.50
Ballesteros and Carreras (2015) 88.7 89.2 89.0
Vinyals et al. (2014) (PTB-Only) 88.3
Cross and Huang (2016a) 89.9
Choe and Charniak (2016a) (PTB-Only) 91.2
Choe and Charniak (2016a) (Semi-sup) 93.8
Dyer et al. (2016) (Discr.) 91.2
Dyer et al. (2016) (Gen.) 93.3
Kuncoro et al. (2017) (Gen.) 93.5
Liu and Zhang (2017) 91.3 92.1 91.7

Table 2: Constituency results on the PTB test set.

UAS test
Spinal, PTB spines + SD (TB-greedy) 93.15
Spinal, dummy spines + SD (TB-greedy) 93.10
Dyer et al. (2015) (TB-greedy) 93.1
Cross and Huang (2016a) 93.4
Ballesteros et al. (2016) (TB-dynamic) 93.6
Kiperwasser and Goldberg (2016) (TB-dynamic) 93.9
Andor et al. (2016) (TB-Beam) 94.6
Kuncoro et al. (2016) (Graph-Ensemble) 94.5
Choe and Charniak (2016a)* (Semi-sup) 95.9
Kuncoro et al. (2017)* (Generative) 95.8

Table 3: Stanford Dependency results (UAS) on
PTB test set. Parsers marked with * calculate de-
pendencies by transforming phrase-structures with
conversion rules.

ple, efficient, and very accurate, and might prove
useful to model constituent trees with dependency
relations.

References
Daniel Andor, Chris Alberti, David Weiss, Aliak-

sei Severyn, Alessandro Presta, Kuzman Ganchev,
Slav Petrov, and Michael Collins. 2016. Glob-
ally normalized transition-based neural networks.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Berlin, Germany, pages 2442–2452.
http://www.aclweb.org/anthology/P16-1231.

Miguel Ballesteros and Xavier Carreras. 2015.
Transition-based spinal parsing. In Proceedings
of the Nineteenth Conference on Computa-
tional Natural Language Learning. Association
for Computational Linguistics, pages 289–299.
https://doi.org/10.18653/v1/K15-1029.

Miguel Ballesteros, Chris Dyer, Yoav Goldberg, and
Noah Smith. 2017. Greedy transition-based depen-
dency parsing with stack lstms. Computational Lin-
guistics 43(2).

Miguel Ballesteros, Yoav Goldberg, Chris Dyer, and
Noah A. Smith. 2016. Training with exploration im-
proves a greedy stack lstm parser. In Proceedings of

the 2016 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, Austin, Texas, pages 2005–2010.
https://aclweb.org/anthology/D16-1211.

Xavier Carreras, Michael Collins, and Terry Koo. 2008.
CoNLL 2008: Proceedings of the Twelfth Confer-
ence on Computational Natural Language Learn-
ing, Coling 2008 Organizing Committee, chapter
TAG, Dynamic Programming, and the Perceptron
for Efficient, Feature-Rich Parsing, pages 9–16.
http://aclweb.org/anthology/W08-2102.

Danqi Chen and Christopher Manning. 2014. A
fast and accurate dependency parser using neural
networks. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computa-
tional Linguistics, Doha, Qatar, pages 740–750.
http://www.aclweb.org/anthology/D14-1082.

Do Kook Choe and Eugene Charniak. 2016a. Pars-
ing as language modeling. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, Austin, Texas, pages 2331–2336.
https://aclweb.org/anthology/D16-1257.

Kook Do Choe and Eugene Charniak. 2016b. Pars-
ing as language modeling. In Proceedings
of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 2331–2336.
http://aclweb.org/anthology/D16-1257.

Michael Collins. 1997. Three generative, lexicalised
models for statistical parsing. In Proceedings of
the 35th Annual Meeting of the Association for
Computational Linguistics. Association for Compu-
tational Linguistics, Madrid, Spain, pages 16–23.
https://doi.org/10.3115/976909.979620.

James Cross and Liang Huang. 2016a. Incre-
mental parsing with minimal features using bi-
directional lstm. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers). Associa-
tion for Computational Linguistics, pages 32–37.
https://doi.org/10.18653/v1/P16-2006.

James Cross and Liang Huang. 2016b. Span-based
constituency parsing with a structure-label system
and provably optimal dynamic oracles. In Pro-
ceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing. Associ-
ation for Computational Linguistics, pages 1–11.
http://aclweb.org/anthology/D16-1001.

Marie-Catherine De Marneffe, Bill MacCartney,
Christopher D Manning, et al. 2006. Generat-
ing typed dependency parses from phrase structure
parses. In Proceedings of LREC. Genoa, volume 6,
pages 449–454.

119



Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd An-
nual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Beijing, China, pages 334–343.
http://www.aclweb.org/anthology/P15-1033.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural net-
work grammars. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics, San Diego, California, pages 199–209.
http://www.aclweb.org/anthology/N16-1024.

Daniel Fernández-González and T. André F. Mar-
tins. 2015. Parsing as reduction. In Proceed-
ings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Association
for Computational Linguistics, pages 1523–1533.
https://doi.org/10.3115/v1/P15-1147.

Johan Hall and Joakim Nivre. 2008. Proceed-
ings of the Workshop on Parsing German, Asso-
ciation for Computational Linguistics, chapter A
Dependency-Driven Parser for German Dependency
and Constituency Representations, pages 47–54.
http://aclweb.org/anthology/W08-1007.

Johan Hall, Joakim Nivre, and Jens Nilsson. 2007.
Proceedings of the 16th Nordic Conference of
Computational Linguistics (NODALIDA 2007),
University of Tartu, Estonia, chapter A Hy-
brid Constituency-Dependency Parser for Swedish,
pages 284–287. http://aclweb.org/anthology/W07-
2444.

Katsuhiko Hayashi and Masaaki Nagata. 2016.
Empty element recovery by spinal parser op-
erations. In Proceedings of the 54th Annual
Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers). Associa-
tion for Computational Linguistics, pages 95–100.
https://doi.org/10.18653/v1/P16-2016.

Katsuhiko Hayashi, Jun Suzuki, and Masaaki Nagata.
2016. Shift-reduce spinal tag parsing with dynamic
programming. Transactions of the Japanese Society
for Artificial Intelligence 31(2).

James Henderson. 2003. Inducing history representa-
tions for broad coverage statistical parsing. In Pro-
ceedings of the 2003 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics on Human Language Technology - Vol-
ume 1. Association for Computational Linguistics,
Stroudsburg, PA, USA, pages 24–31.

James Henderson. 2004. Discriminative train-
ing of a neural network statistical parser. In
Proceedings of the 42nd Meeting of the Asso-
ciation for Computational Linguistics (ACL’04),
Main Volume. Barcelona, Spain, pages 95–102.
https://doi.org/10.3115/1218955.1218968.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation
9(8):1735–1780.

Eliyahu Kiperwasser and Yoav Goldberg. 2016.
Simple and accurate dependency parsing
using bidirectional lstm feature represen-
tations. Transactions of the Association
for Computational Linguistics 4:313–327.
https://transacl.org/ojs/index.php/tacl/article/view/885.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, Graham Neubig, and Noah A.
Smith. 2017. What do recurrent neural network
grammars learn about syntax? In Proceedings
of the 15th Conference of the European Chapter
of the Association for Computational Linguistics:
Volume 1, Long Papers. Association for Compu-
tational Linguistics, Valencia, Spain, pages 1249–
1258. http://www.aclweb.org/anthology/E17-1117.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, and Noah A. Smith. 2016. Dis-
tilling an ensemble of greedy dependency parsers
into one mst parser. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, Austin, Texas, pages 1744–1753.
https://aclweb.org/anthology/D16-1180.

Jiangming Liu and Yue Zhang. 2017. Shift-reduce
constituent parsing with neural lookahead features.
Transactions of the Association of Computational
Linguistics 5:45–58. http://aclanthology.coli.uni-
saarland.de/pdf/Q/Q17/Q17-1004.pdf.

Mitchell P. Marcus, Beatrice Santorini, and Mary A.
Marcinkiewicz. 1993. Building a Large Annotated
Corpus of English: The Penn Treebank. Computa-
tional Linguistics 19(2):313–330.

Joakim Nivre. 2004. Incrementality in determinis-
tic dependency parsing. In Frank Keller, Stephen
Clark, Matthew Crocker, and Mark Steedman, edi-
tors, Proceedings of the ACL Workshop Incremental
Parsing: Bringing Engineering and Cognition To-
gether. Association for Computational Linguistics,
Barcelona, Spain, pages 50–57.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics 34(4):513–553.

Kenji Sagae and Alon Lavie. 2005. A classifier-based
parser with linear run-time complexity. In Proceed-
ings of the Ninth International Workshop on Parsing
Technology. Association for Computational Linguis-
tics, Vancouver, British Columbia, pages 125–132.

120



http://www.aclweb.org/anthology/W/W05/W05-
1513.

Ivan Titov and James Henderson. 2007. A la-
tent variable model for generative dependency
parsing. In Proceedings of the Tenth Inter-
national Conference on Parsing Technolo-
gies. Association for Computational Linguis-
tics, Prague, Czech Republic, pages 144–155.
http://www.aclweb.org/anthology/W/W07/W07-
2218.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav
Petrov, Ilya Sutskever, and Geoffrey E. Hinton.
2014. Grammar as a foreign language. CoRR
abs/1412.7449. http://arxiv.org/abs/1412.7449.

Taro Watanabe and Eiichiro Sumita. 2015. Transition-
based neural constituent parsing. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers). Association for Compu-
tational Linguistics, Beijing, China, pages 1169–
1179. http://www.aclweb.org/anthology/P15-1113.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statis-
tical dependency analysis with support vector ma-
chines. In Proceedings of IWPT . volume 3, pages
195–206.

Muhua Zhu, Yue Zhang, Wenliang Chen, Min
Zhang, and Jingbo Zhu. 2013. Fast and ac-
curate shift-reduce constituent parsing. In Pro-
ceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Sofia, Bulgaria, pages 434–443.
http://www.aclweb.org/anthology/P13-1043.

121


