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Abstract

Deep dependency parsing can be cast as
the search for maximum acyclic subgraphs
in weighted digraphs. Because this search
problem is intractable in the general case,
we consider its restriction to the class of 1-
endpoint-crossing (1ec) graphs, which has
high coverage on standard data sets. Our
main contribution is a characterization of
1ec graphs as a subclass of the graphs with
pagenumber at most 3. Building on this we
show how to extend an existing parsing al-
gorithm for 1-endpoint-crossing trees to the
full class. While the runtime complexity
of the extended algorithm is polynomial in
the length of the input sentence, it features
a large constant, which poses a challenge
for practical implementations.

1 Introduction

Motivated by applications in natural language un-
derstanding, recent work in dependency parsing
has targeted ‘deep’ graphs, a term used to refer to
representations that are not necessarily tree-shaped.
Such graphs support intuitive analyses of argument
sharing in control constructions, quantification, and
semantic modification, among others. Data sets of
deep dependency graphs are often derived from the
derivations of expressive grammar formalisms; for
an overview, see Kuhlmann and Oepen (2016).

Deep dependency parsing has been formalized
as the search for maximum acyclic subgraphs in
weighted digraphs (Schluter, 2014; Kuhlmann and
Jonsson, 2015). Because this problem is known
to be intractable in the general case (Guruswami
et al., 2011), it is interesting to identify structural
restrictions on the target graphs that can yield poly-
nomial-time parsing algorithms without sacrificing
too much of the empirical coverage.

Schluter (2015) and Kuhlmann and Jonsson
(2015) propose to address deep dependency pars-
ing under the restriction that the target structures
should be noncrossing, a constraint related to pro-
jectivity as known from syntactic parsing. When
the search space is restricted to the class of non-
crossing graphs, maximum subgraph parsing is pos-
sible in time O(n3), where n is the length of the
input sentence. Unfortunately, the restriction to
noncrossing graphs excludes a large proportion of
the linguistic data. It seems clear that deep depen-
dency parsing, much more than syntactic parsing,
needs algorithms that can handle graphs with cross-
ing arcs.

An interesting weaker restriction than the non-
crossing condition is the restriction to graphs which
are 1-endpoint-crossing (Pitler et al., 2013), a con-
straint originally formulated for tree-shaped graphs.
The maximum 1-endpoint-crossing subtree of a
weighted digraph can be found in time O(n4). In
this paper we show how to generalize this result to
non-trees. This is not straightforward, as the ob-
vious modification of existing algorithm for trees
turns out to be incomplete for general graphs. The
key to a complete algorithm, and our main techni-
cal contribution, is a characterization of 1-endpoint-
crossing graphs as a certain subset of the class of
graphs with pagenumber at most 3 (Section 3). The
exact characterization refers to the restricted pat-
terns in which arcs can cross each other. From this
characterization we obtain an O(n5) algorithm for
general graphs (Section 4). When a certain, rare
type of crossing configurations is ruled out, the run-
time complexity of the algorithm reduces to O(n4),
the same as for trees.

While the runtime of both new algorithms is
polynomial in the length of the input sentence, both
feature large constants, which leads us to discuss
challenges in extending our algorithm into a practi-
cal parser for deep dependency parsing (Section 5).
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Chief executives and presidents had come and gone

Figure 1: A sample dependency graph (Flickinger et al., 2016, CCD #20604004), drawn as an arc diagram.
Note that each word is meant to represent one endpoint. (We leave some space between different arcs that
share a common endpoint.) To save some space we draw arcs as semi-ellipses rather than semi-circles.
The graph has pagenumber 3 and is 1ec.

2 Background

We start by giving some background on the classes
of graphs that we study in this paper.

2.1 Graph Classes

A dependency graph for a natural language sen-
tence x is an acyclic digraph whose vertices are in
one-to-one correspondence with the words in x.1 A
sample dependency graph is shown in Figure 1. To
draw a dependency graph, we place its vertices on
an invisible line in the plane according to their left-
to-right order, and draw each arc as a semi-circle in
the half-plane bounded by that line. We refer to this
type of drawing as an arc diagram. Given an arc di-
agram of a dependency graph, two arcs of the graph
are said to cross if their corresponding semi-circles
intersect in points other than a common endpoint.

A dependency graph is called noncrossing if
its arc diagram does not feature crossing arcs.
Noncrossing graphs have also been called ‘planar’
(Titov et al., 2009). We can generalize the non-
crossing condition by allowing arcs to be drawn
not only in the half-plane above the vertex line but
also in that below it, or in any of some fixed num-
ber k of half-planes bounded by the vertex line.
This type of graph drawing is known as a book
embedding (Bernhart and Kainen, 1979). (We may
picture the half-planes as the pages of a book, and
the vertex line as the book spine.) The pagenumber
of a graph is the smallest number k for which the
graph has a crossing-free book embedding with
k half-planes (pages). The graph in Figure 1 has
pagenumber 3. Graphs whose pagenumber is at
most k have also been called ‘k-planar’ (Gómez-
Rodrı́guez and Nivre, 2010).

1We restrict our attention to unlabelled dependency graphs.

Our main interest in this paper is in the class of
1-endpoint-crossing graphs. A dependency graph
is called 1-endpoint-crossing (1ec) if for each of
its arcs a, all arcs that cross a share a common
endpoint (Pitler et al., 2013). The graph in Figure 1
is 1ec. The 1ec property was originally formulated
for dependency trees, but the definition carries over
to more general graphs without modifications.

2.2 Empirical Coverage

We assess the emprical coverage of 1ec graphs on
a standard data set, the data used for the 2015 Sem-
Eval Task on Broad-Coverage Dependency Parsing
(Flickinger et al., 2016). This data consists of to-
ken-aligned dependency graphs from four distinct
linguistic traditions, dubbed DM, PAS, PSD, and
CCD. For details about these target representations
we refer to Oepen et al. (2016).

Table 1 gives the percentages of complete graphs
(G) and individual arcs (A) that can be covered un-
der the restriction to noncrossing graphs, graphs
with bounded pagenumber (≤ 2), and 1ec graphs.2

We see that the coverage of 1ec graphs clearly sur-
passes that of noncrossing graphs on all four repre-
sentation types. Noncrossing graphs in fact seem
to be a rather poor match for the data, especially on
CCD, where it rules out more than half of the target
graphs. With respect to pagenumber, even the low
bound at ≤ 2 achieves very highest coverage, the
highest among the three classes considered. The
class 1ec is on average 2.11 percentage points be-
hind in terms of coverage on complete graphs and
0.14 points on individual arcs.

2Arc coverage was calculated using a brute-force algorithm
that removes the minimal number of arcs needed to make the
remaining graph satisfy the relevant property.
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class DM PAS PSD CCD

nc G 69.29 59.85 65.04 49.53
A 97.63 97.24 96.01 95.83

pn ≤ 2 G 99.46 99.48 97.64 98.33
A 99.97 99.97 99.76 99.89

1ec G 97.30 97.18 95.85 96.16
A 99.83 99.85 99.60 99.75

Table 1: Coverage in terms of complete graphs
(G) and individual arcs (A) for noncrossing graphs,
graphs with pagenumber at most 2, and 1ec graphs.

2.3 Parsing Complexity
While high coverage is desirable, it often goes hand
in hand with high parsing complexity. As already
mentioned in the introduction, the maximum non-
crossing subgraph can be found in time O(n3),
where n is the length of the input sentence. The
corresponding problem for the class of graphs with
pagenumber at most 2 is NP-hard (Kuhlmann and
Jonsson, 2015), which means that the high cov-
erage of this class incurs a considerable price to
pay. The relatively high coverage of 1ec graphs ob-
served in Table 1 suggests that this class of graphs
might strike a good balance between coverage and
complexity.

3 The Structure of 1ec Graphs

In this section we derive the structural character-
ization of 1ec graphs that we will exploit in our
parsing algorithm. Our point of departure is the
result of Pitler et al. (2013, Theorem 1) that 1ec
trees have pagenumber at most 2. This result does
not carry over to general graphs; in fact we have
already seen an empirical example of a 1ec graph
with pagenumber 3 in Figure 1.

Lemma 1 There are 1ec graphs with pagenum-
ber 3. 2

Our first goal is to prove that pagenumber 3 is
also the maximal pagenumber of 1ec graphs. To
show this we will characterize 1ec graphs in terms
of their crossing graphs.

3.1 Pagenumber of 1ec Graphs
The crossing graph of a dependency graph has a
vertex corresponding to each arc, and an edge be-
tween two vertices if and only if the corresponding
arcs cross. The crossing graphs of noncrossing
dependency graphs consist of isolated vertices.

Crossing graphs are interesting because the pa-
genumber of a dependency graph equals the chro-
matic number of its crossing graph, the smallest
number of colours needed to colour the vertices
of the crossing graph in such a way that no two
neighbouring vertices share the same colour. From
a k-colouring of its crossing graph we obtain a
crossing-free k-book embedding of the dependency
graph by placing two arcs on the same page if and
only if their corresponding vertices are coloured
with the same colour. This correspondence has
previously been studied by Gómez-Rodrı́guez and
Nivre (2010) and Kuhlmann and Jonsson (2015),
among others. The following lemma is due to Pitler
et al. (2013, Lemma 2).

Lemma 2 The crossing graphs of 1ec graphs do
not contain triangles (cycles of length 3). 2

PROOF Suppose for the sake of contradiction that
there exists a cycle abca. The arcs a and c must
share an endpoint, as they both cross b. Because
of this, they cannot cross, and therefore cannot be
adjacent in the cycle. �

We use this lemma in the proof of the following:

Lemma 3 The pagenumber of 1ec graphs is at
most 3. 2

PROOF We show that the crossing graph of a 1ec
graph is 3-colourable. To colour the crossing graph,
we separately colour each of its components (also
crossing graphs). We distinguish two cases:

1. The component does not contain a cycle, or
contains cycles of length at most 4. By
Lemma 2, the component does not contain
a triangle, and therefore no odd cycle at all.
We can therefore 2-colour the component by
traversing the component using depth-first
search and assigning to each vertex the op-
posite colour of its parent in the search tree.

2. The length of the shortest cycle in the compo-
nent is at least 5. In the graph theory literature,
our crossing graphs are better known as circle
graphs, and the length of the shortest cycle
in a graph is known as its girth. It has been
shown that every circle graph with girth at
least 5 is 3-colourable (Ageev, 1999).

Thus in each case, 3 colours suffice to colour the
component, and hence the complete graph. �
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Figure 2: Counter-clockwise from top: dependency
graph, chord diagram, crossing graph.

3.2 Isolation Property for Cog Belts

1ec graphs with pagenumber 3 (or subgraphs
thereof) have a characteristic structure reminiscent
of the teeth of a cogwheel; a minimal example is
shown at the top of Figure 2. The proof of Lemma 3
also reveals that these graphs correspond to cycles
of length 5 or more in the crossing graph. Because
of this we will refer to these graphs as cog belts.
Our aim for the remainder of this section is to show
(in Lemma 6) that these structures are ‘isolated’,
in the sense that no arcs other than the arcs in the
cog belt can cross the cog belt. This property will
be the key to the parsing algorithm in Section 4.
To show it we study the relation between crossing
graphs and chord diagrams.

The chord diagram of a dependency graph is
obtained by placing the vertices of the graph on the
boundary of a circle such that their clockwise order
extends the left-to-right order in the original graph,
and drawing each arc of the graph as a chord of the
circle. An example is given in Figure 2. Note that
the chord diagram representation does not contain
information about the direction of the arcs of the de-
pendency graph, and cannot be used to recover the
exact linear positions of the vertices. Importantly
though, we can still read off the crossing graph of
a dependency graph from its chord diagram.

To prove the maximality property, we will reason
about the chord diagram corresponding to a cross-
ing graph. In general, this diagram is not uniquely
determined. However, when we restrict ourselves
to ‘strict’ chord diagrams in which there are ex-
actly twice as many endpoints as there are chords,
then there are certain crossing graphs that have a
unique such chord diagram (up to symmetry).3 In
particular, this holds for cycles of length at least 5.

3These are exactly the graphs that are prime with respect
to split decompositions; see Gabor et al. (1989).

We start by proving a lemma about another type
of graphs with unique strict chord diagrams. A
domino is a graph of the form .

Lemma 4 The crossing graphs of 1ec graphs do
not contain dominoes. 2

PROOF For the sake of contradiction, suppose that
the crossing graph of a 1ec graph G contains a
domino. The arcs that correspond to the vertices
on this domino induce a subgraph of G. We rea-
son about how the chord diagrams for this induced
subgraph could look like. A domino has a unique
‘strict’ chord diagram (Gabor et al., 1989); this di-
agram looks as shown in the left half of Figure 3.
However, this chord diagram cannot be the actual
chord diagram of a 1ec dependency graph. For
example, the chord b is crossed by chords a and
d, but these chords do not share a common end-
point. We can try to ‘repair’ the chord diagram
(without changing the underlying crossing graph)
by merging some of the endpoints; in particular,
we can merge the two endpoints a2 and d1 into
one endpoint that we may refer to as ad, which re-
moves one violation of the 1ec property at chord b.
Eliminating as many violations as possible, we ob-
tain the modified chord diagram in the right half
of Figure 3. However, even in this diagram there
are still some violations left: Apart from a and d,
the chord b is also crossed by e, and this chord
cannot be made to share an endpoint with a and d.
We therefore conclude that the crossing graph of G
does not contain a domino. �

For our next lemma we need some terminology
from geometry. A polygram is a non-convex regu-
lar polygon, drawn by connecting a given number
of points placed at equal distance on the bound-
ary of a circle. Polygrams can be denoted by its
Schläfli symbol {p/q}, where p gives the number
of corners, and q states that each corner should
be connected to its neighbours q steps away. For
example, {5/2} denotes the pentagram in Figure 2.
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Figure 3: Proof of Lemma 4
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Figure 4: Proof of Lemma 6, illustrated using a cycle of length m = 9. The additional chord (red-dashed)
violates the 1ec property: In the graph on the left, it creates additional endpoints for the chords 13, 29, 35,
and 46; in the graph in the middle, it creates additional endpoints for the chords 46 and 57; in the graph
on the right, the new chord is crossed by 13 and 46, which do not share an endpoint.

Lemma 5 The chord diagram of the subgraph in-
duced by a cycle of length m ≥ 5 in a crossing
graph of a 1ec graph is unique (up to symmetry)
and forms a polygram {m/2}. 2

PROOF Similar to the proof of Lemma 4, we rea-
son about how the chord diagrams for the subgraph
induced by a cycle of length m ≥ 5 in a crossing
graph of a 1ec graph could look like. We illus-
trate our argument using concrete cycles, abcdea
(m = 5) and abcdefa (m = 6). The strict chord
diagrams for these examples look as follows.
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Again, these diagrams cannot be chord diagrams
of 1ec dependency graphs; for example, the chord
b is crossed by chord a and c, which do not have
a common endpoint. The only way to repair the
chord diagrams without changing the underlying
crossing graph is to merge the two endpoints a1 and
c1 into a common endpoint which we shall refer to
as ac, and likewise for all the other chords. This
yields the following (non-strict) chord diagrams:
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The left diagram is the pentagram {5/2}, the right
diagram is the hexagram {6/2} (6 corners, each of
which is connected to the neighbour 2 steps away).

From these examples it is not hard to generalize
to arbitrary values of m: If m is odd, then the chord
diagram for the cycle forms a regular star polygon.
If m is even, then the chord diagram forms a regular
polygon compound consisting of two copies of a
regular, convex (m/2)-gon. �

Pitler et al. (2013, Lemma 3) show that any odd
cycle of length m ≥ 5 in a crossing graph of a 1ec
graph uses at most m vertices in the original graph.
From Lemma 5 we get the stronger result that any
cycle of length m ≥ 5 uses exactly m vertices.

We are now ready to prove the isolation property:

Lemma 6 Any cycle of length m ≥ 5 in a crossing
graph of a 1ec graph forms a connected component
of that graph. 2

PROOF (SKETCH) The proof is by induction on m.
We start by using the construction in the proof of
Lemma 5 to obtain the polygram chord diagram
for the cycle. We then suppose, for the sake of
contradiction, that one of the vertices on the cy-
cle has an incident edge that does not itself belong
to the cycle, and reason about how to update the
chord diagram. The new edge could either go to
another on the cycle or to a new vertex. The second
alternative would require us to add a new chord to
the diagram. However, we can convince ourselves
that any new chord will necessarily violate the 1ec
property (see Figure 4). For the first alternative, we
distinguish three cases: If m = 5, then adding a
‘shortcut’ edge to another vertex on the cycle will
create a triangle, which is ruled out by Lemma 2.
If m = 6, then adding a shortcut will create ei-
ther a triangle or a domino, which is ruled out by
Lemma 4. Finally, if m ≥ 7, then adding a shortcut
will create either a triangle, a domino, or a cycle
of length m ≥ 5, of which we may assume that it
forms a connected component. �

82



4 Parsing Algorithm

In the previous section we have characterized 1ec
graphs in terms of their crossing graphs. In this sec-
tion we will exploit this characterization to show
how to obtain a parsing algorithm for 1ec graphs.
We follow Kuhlmann and Jonsson (2015) in cast-
ing dependency parsing as a maximum subgraph
problem: Given an arc-weighted digraph G, our
aim is to find a subset of arcs with maximum total
weight such that the induced subgraph is 1ec. The
weights of G should be learned from data.

4.1 Relaxed Deduction System for 1ec Trees

To obtain a parsing algorithm for 1ec graphs, an
obvious idea is to take the corresponding algorithm
for trees (Pitler et al., 2013) and ‘relax’ it by delet-
ing all book-keeping that is used to enforce the tree
constraint. We present the resulting algorithm as
a weighted deduction system (Shieber et al., 1995;
Nederhof, 2003). Such a system uses inference
rules to derive information about sets of graphs;
this information is represented by weighted formu-
las called items. Parsing amounts to finding the
derivation of a goal item with maximum weight,
starting from a set of initial items.

We assume that we are given an arc-weighted
digraph G = (V,A) with vertices V = {1, . . . , n}.
Items represent subgraphs of G corresponding to ei-
ther isolated intervals [i, j], where there are no arcs
between vertices in the open interval (i, j) and ver-
tices outside of [i, j], or isolated crossing regions
[i, j] ∪ {x}, where there are i) no arcs between ver-
tices in (i, j) and vertices outside of [i, j]∪{x}, and
ii) no arcs between the external vertex x and ver-
tices in (i, j) that are crossed by arcs with both end-
points in (i, j). Isolated intervals are represented
by items of the form Int [i, j], and isolated crossing
regions are represented by four different types of
items that put a constraint on whether arcs from x
into (i, j) may be crossed by arcs inside of [i, j]
with endpoints at the left border (L[i, j, x]), the
right border (R[i, j, x]), both borders (LR[i, j, x]),
or none of the two borders (N [i, j, x]). The initial
items of the system correspond to one-vertex sub-
graphs and take the form Int [i, i]. The goal item
is Int [1, n], representing the complete graph that
spans all vertices. Finally, the inference rules are
shown in Figure 6. The weight of the item on the
left-hand side of each rule is computed as the sum
of weights of the items on the right-hand side and,
if specified, the weight of a new arc.

1 2 3 4 5 6

Figure 5: Non-completeness for general 1ec graphs.
Splitting the item LR[1, 5, 6] at k = 3 using rule
(11) makes it impossible to retain the arc 2← 4.

4.2 Non-Completeness for General Graphs

A deduction system is correct with respect to a
class of graphs G if each of its derivations denotes
(under an intended interpretation) a graph from G
(soundness), and every graph from G has some
derivation (completeness). While the algorithm
of Pitler et al. (2013) is correct for the class of
1ec trees, it turns out that its relaxed version is
not correct for the full class of 1ec graphs. More
specifically, there are some 1ec graphs that do not
have derivations in the relaxed system.

To illustrate the problem, we consider the cog
belt in Figure 5 and reason backwards, reading
inference rules as rules for decomposing a subgraph
into smaller ones. The only way to decompose the
example graph from an Int item is to instantiate
rule (6) with k = 5. This removes the dashed arc
5→ 1, leaving the rest of the graph inside an LR
item. Now to decompose the LR item we need to
find a ‘split vertex’ k ∈ (1, 5) for rule (11), creating
items L[1, k, 6] and R[k, 5, 6]. However, splitting
the graph in this way makes it impossible to retain
arcs that cover k – and inside the interval (1, 5)
every vertex is covered by some arc. This property
prevents the decomposition of not only the graph
in Figure 5, but more generally every cog belt.

4.3 Correctness for Graphs without Cog Belts

While the relaxed deduction system is not correct
for general 1ec graphs, we can prove that it is cor-
rect for the class of all 1ec graphs that do not con-
tain cog belts. The proof is straightforward but te-
dious, so here we content ourselves with sketching
the structure and giving the most central intuitions.

Soundness To show that every derivation de-
notes a 1ec graph without cog belts, we use induc-
tion over the length of the derivation. The property
obviously holds for the initial items. For the in-
ductive case we need to check that the structural
property is preserved by each rule. This is not hard
to see with respect to the 1ec constraint, which is
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(1) Int [i, j]← Int [i + 1, j]

(2) Int [i, j]← s[i, j] + Int [i, j]

(3) Int [i, j]← s[i, k] + Int [i, k] + Int [k, j]

(4) Int [i, j]← s[i, k] + R[i, k, l] + Int [k, l] + L[l, j, k]

(5) Int [i, j]← s[i, k] + LR[i, k, l] + Int [k, l] + Int [l, j]

(6) Int [i, j]← s[i, k] + LR[i, k, j] + Int [k, j]

(7) Int [i, j]← s[i, k] + Int [i, l] + L[l, k, i] + N [k, j, l]

(8) Int [i, j]← s[i, k] + R[i, l, k] + Int [l, k] + L[k, j, l]

(9) LR[i, j, x]← R[i, j, x]

(10) LR[i, j, x]← L[i, j, x]

(11) LR[i, j, x]← L[i, k, x] + R[k, j, x]

(12) N [i, j, x]← s[x, k] + N [i, k, x] + Int [k, j]

(13) N [i, j, x]← Int [i, j]

(14) N [i, j, x]← s[i, x] + N [i, j, x]

(15) N [i, j, x]← s[j, x] + N [i, j, x]

(16) L[i, j, x]← Int [i, j]

(17) L[i, j, x]← s[x, k] + L[i, k, x] + Int [k, j]

(18) L[i, j, x]← s[i, k] + L[i, k, x] + Int [k, j]

(19) L[i, j, x]← s[x, k] + Int [i, k] + L[k, j, i]

(20) L[i, j, x]← s[i, x] + L[i, j, x]

(21) L[i, j, x]← s[j, x] + L[i, j, x]

(22) L[i, j, x]← s[i, j] + L[i, j, x]

(23) R[i, j, x]← Int [i, j]

(24) R[i, j, x]← s[x, k] + Int [i, k] + R[k, j, x]

(25) R[i, j, x]← s[j, k] + Int [i, k] + R[k, j, x]

(26) R[i, j, x]← s[x, k] + R[i, k, j] + Int [k, j]

(27) R[i, j, x]← s[i, x] + R[i, j, x]

(28) R[i, j, x]← s[j, x] + R[i, j, x]

(29) R[i, j, x]← s[i, j] + R[i, j, x]

Figure 6: The rules of the ‘relaxed’ deduction system, following the basic rules of Pitler (2013). The
scores for arcs s[i, j] do not specify the arc’s direction (we simply choose the arc with the higher weight).
The indices may not overlap, giving rise to rule (6), the special case of rule (5) for l = j.

inherited from the tree-based system. Showing that
the rule applications cannot result in cog belts is
slightly more complicated. However, we can con-
vince ourselves that the constraints implied by the
item types and the constraints on the accessibil-
ity of vertices implied in the rules are sufficient to
exclude the forbidden structures. In particular, a
derivation cannot ‘remember’ the vertex that would
be needed to close off a cog belt (see Figure 7).

Completeness To show that every 1ec graph
without cog belts can be derived by the system,
we use induction on the size of the graph, where
size is measured as the total number of vertices

1 2 3 4 5 6

Figure 7: When attempting to derive this cog
belt right-to-left we could instantiate rule (8) as
Int [1, 6]←s[1, 3]+R[1, 2, 3]+Int [2, 3]+L[3, 6, 2]
which would add the blue arc. However, the right
endpoint of the red arc (5) is no longer ‘visible’.

and arcs. Graphs with size 1 (one vertex) are repre-
sented by the initial items. For the inductive case
we need to check that every graph which satisfies
the structural property is decomposable by some
rule. We can use the same strategy as Pitler (2013),
who classifies graphs into a number of templates
and for each of those templates shows which rule
can be applied to it. In particular we need to show
that the subgraphs gained in each decomposition
adhere to the intended interpretations, and that all
arcs can be added. The important observation is
that, if the graph does not contain a cog belt, then
the information represented in each item is suffi-
cient to build all arcs (see Figure 8).

1 2 3 4 5 6

Figure 8: This dependency graph has a crossing
graph with a cycle of length 4 and is therefore
‘almost as hard’ as a cog belt. It can be derived
in the relaxed deduction system using rule (7):
Int [1, 6]←s[1, 4]+Int [1, 2]+L[2, 4, 1]+N [4, 6, 2]
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(30) C[i, j, x, y]← s[x, y] + s[i, j] + Int [i, y] + Int [y, j]

(31) C[i, j, x, y]← s[x, k] + Int [i, k] + C[k, j, i, y]

(32) Int [i, j]← s[i, k]+ s[i, y]+ s[l, j]+ Int [i, l]+ Int [l, k]+C[k, j, l, y]

Figure 9: Additional rules for cog belts.

4.4 Extension to the Full Class
We have just seen that the subgraphs which the
relaxed deduction system fails to parse are exactly
cog belts. We now show how to extend the sys-
tem into a complete parser for the full class of 1ec
graphs. The key idea is that because cog belts are
isolated from the remainder of the graph in terms
of crossing arcs as per Lemma 6, we can simply
add new items and rules that build a cog belt on top
of a set of isolated intervals.

The new items take the form C[i, j, x, y] and rep-
resent partial cog belts on an interval [i, j] with two
additional vertices: one external vertex x (which
always lies to the left of i) and one new internal
vertex y, whose purpose is to ‘remember’ the ver-
tex that will be needed to close the cog belt (cf.
Figure 7). The new inference rules are given in
Figure 9 and are set up to derive a cog belt right-to-
left. Rule (30) starts the derivation, combining two
isolated intervals and adding two arcs. Rule (31) ex-
tends the cog belt by one isolated interval, adding
a new arc. Finally, rule (32) closes the cog belt
by adding two final intervals and three new arcs.
With this simple extension, the deduction system
becomes sound and complete with respect to the
full class of 1ec graphs.
Example derivation. To illustrate the workings
of the new rules, we provide a derivation of a cog
belt with length 6, which in Figure 5 we showed
to be non-derivable in the relaxed system. We as-
sume that we have already derived isolated interval
items Int [i, i + 1] for all vertices i < n. We then
instantiate rule (30) as

C[4, 6, 3, 5]← s[3, 5] + s[4, 6]
+ Int [4, 5] + Int [5, 6]

and after that rule (31) as

C[3, 6, 2, 5]← s[2, 4] + Int [3, 4] + C[4, 6, 3, 5]

To complete the derivation of the cog belt as a
closed interval item we instantiate rule (32) as

Int [1, 6]← s[1, 3] + s[1, 5] + s[2, 6]
+ Int [1, 2] + Int [2, 3] + C[3, 6, 2, 5]

The asymptotic runtime complexity of the ex-
tended algorithm is in O(n5), one order of magni-
tude higher than that of the tree-based algorithm.
This is due to rules (31) and (32), each of which
refers to five independent positions in the sentence.

5 Discussion

In this section we discuss our results and relate
them to other published work.

5.1 Graph-Theoretical Results

The main technical contribution of this paper is
a characterization of 1ec graphs as a subclass of
graphs with pagenumber at most 3 via certain prop-
erties of their crossing graphs – in particular the
absence of dominoes and the isolation of cycles of
length at least five, which induce the substructures
that we called cog belts (Section 3). The relations
between the various graph classes discussed in this
paper are visualized in Figure 10.

1ec graphs have previously been discussed pri-
marily in the context of dependency parsing. The
characterization in this paper was established us-
ing results from graph theory, in particular from
the study of circle graphs (Ageev, 1999). Future
work of this kind may help to identify new classes
of interesting dependency graphs or new parsing
algorithms.

Gnc
pn≤ 2
pn≤ 3
1ec
1ec−

Figure 10: Relations between the classes of non-
crossing graphs (nc), graphs with pagenumber at
most k (pn ≤ 2, pn ≤ 3), 1ec graphs, and 1ec
graphs without cog belts (1ec−).
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Two classes of graphs that appear to be very
relevant for the study of 1ec graphs are fan-pla-
nar graphs (Kaufmann and Ueckerdt, 2014) and
outer-fan-planar graphs (Bekos et al., 2014). Their
defining property is essentially identical to the 1ec
constraint; however, their vertices are not linearly
ordered as in dependency graphs,

5.2 Parsing Algorithm
A second contribution of this paper is the exten-
sion of the parsing algorithm for 1ec trees (Pitler
et al., 2013) to a quintic-time algorithm for the full
class of 1ec graphs, and a quartic-time algorithm
for the restricted class of 1ec graphs without cog
belts. Closely related algorithms were recently pro-
posed by Cao et al. (2017) and Kummerfeld and
Klein (2017). The former use an approach simi-
lar to ours in Section 4.4 to parse what they call
‘coupled staggered patterns’ (our cog belts), albeit
restricted to pagenumber 2; they report state-of-
the-art results on the SemEval data. Kummerfeld
and Klein (2017) apply 1ec graphs in the context
of parsing to phrase structure representations with
traces; their algorithm cannot parse what they call
‘locked chains’ (our cog belts), but has the benefit
of enforcing acyclicity and uniqueness.

The proposed quintic-time algorithm may not be
the most attractive one for practical parsing. We
looked at the SemEval data from Section 2 and
found that cog belts occur rarely, less than once per
2,000 sentences, and for only two of the representa-
tion types (PSD and CCD). A similar observation
was made by Kummerfeld and Klein (2017) for the
graphs they obtained from their treebank data.

In presenting our algorithms, our main focus was
on theoretical properties (soundness and complete-
ness). To support the implementation of a practical
parser, the extended deduction system needs to be
refined in several ways. For one thing, the system
features a high degree of derivational ambiguity,
which in particular can lead to the same arc being
scored several times in a derivation. To avoid this,
we would need to extend the items with informa-
tion on whether an arc has already been set, very
similar to the booleans used to control treeness in
the original algorithm. For example, a modified
version of rule (5) could look like this:

Int [i, j; F ]← s[i, k] + LR[i, k, l; F, bi,l, bk,l]
+ Int [k, l; F ] + Int [l, j; bl,j ]

The LR item has three booleans, corresponding to

the three arcs that could be present among the three
sets of endpoints {i, k}, {i, l}, and {k, l}. The first
boolean has to be F (false), as the arc between
i and k is scored in the rule; the other two arcs
may or may not be already present, so the values
of the second and third boolean are free to choose.
However, when the arc between k and l was set in
the derivation of the LR item, it should not have
been already set in the derivation of the Int [k, l]
item, which is why we need to set the boolean in
this item to F .

The modified version of rule (5) is actually a
rule template which in an actual parser implemen-
tation needs to be instantiated in all legal ways.
This introduces a non-negligible constant factor
into the runtime: assuming a minimal number of
three boolean variables per rule and a fourth bi-
nary choice for the direction of the arc (which we
have left underspecified), we would already get
32 · 24 = 512 actual rules. This ignores the ad-
ditional bookkeeping that needs to be added in
order to prevent cycles or enforce uniqueness of
derivations, each of which would at least double
the number of rules, and the increased complexity
coming from labelled parsing.

The most promising parsing results so far on
the SDP data have been achieved with a simple,
quadratic-time parsing algorithm with very few
constraints on the search space but a strong learn-
ing component (Martins and Almeida, 2014; Peng
et al., 2017). A structurally restricted parsing algo-
rithm such as the one described in this paper, even
if its coverage is high, has the drawback that it is
harder to combine with an expressive learning ap-
proach such as the recurrent neural networks used
by Kiperwasser and Goldberg (2016).

6 Conclusion

We have shown how a new structural characteriza-
tion of 1ec graphs in terms of their crossing graphs
can be used to extend the parsing algorithm for 1ec
trees to the full class of graphs. The class of 1ec
graphs has a significantly higher coverage than the
previously considered class of noncrossing graphs
(Schluter, 2015; Kuhlmann and Jonsson, 2015) and
may thus be a useful constraint on the search space
for deep dependency parsing. However, to achieve
state-of-the-art results the new parsing algorithm
needs to be combined with a powerful machine
learning component, a practical challenge that we
leave to future work.
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Towards comparability of linguistic graph banks for
semantic parsing. In Proceedings of the 10th In-
ternational Conference on Language Resources and
Evaluation (LREC). Portorož, Slovenia, pages 3991–
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