
Proceedings of the 15th International Conference on Parsing Technologies, pages 32–43,
Pisa, Italy; September 20–22, 2017. c©2017 Association for Computational Linguistics

Prepositional Phrase Attachment over Word Embedding Products

Pranava Swaroop Madhyastha†∗ Xavier Carreras‡ Ariadna Quattoni‡
†University of Sheffield

p.madhyastha@sheffield.ac.uk
‡Naver Labs Europe

{xavier.carreras,ariadna.quattoni}@naverlabs.com

Abstract

We present a low-rank multi-linear model
for the task of solving prepositional phrase
attachment ambiguity (PP task). Our
model exploits tensor products of word
embeddings, capturing all possible con-
junctions of latent embeddings. Our re-
sults on a wide range of datasets and
task settings show that tensor products
are the best compositional operation and
that a relatively simple multi-linear model
that uses only word embeddings of lexi-
cal features can outperform more complex
non-linear architectures that exploit the
same information. Our proposed model
gives the current best reported perfor-
mance on an out-of-domain evaluation and
performs competively on out-of-domain
dependency parsing datasets.

1 Introduction

The Prepositional Phrase (PP) attachment problem
(Ratnaparkhi et al., 1994) is a classic ambiguity
problem and is one of the main sources of errors
for syntactic parsers (Kummerfeld et al., 2012).

Consider the examples in Figure 1. For the
first case, the correct attachment is the preposi-
tional phrase attaching to the restaurant, the noun.
Whereas, in the second case the attachment site is
the verb went. While the attachments are ambigu-
ous, the ambiguity is more severe when unseen or
infrequent words like Hudson are encountered.

Classical approaches for the task exploit a wide
range of lexical, syntactic, and semantic features
and make use of knowledge resources like Word-
Net and VerbNet (Stetina and Nagao, 1997;
Agirre et al., 2008; Zhao and Lin, 2004).

∗ This work was carried out when the author was a PhD
student at the Universitat Politècnica de Catalunya

I went to the restaurant by the Hudson

prep?

prep?

I went to the restaurant by bike

prep?

prep?

Figure 1: PP Attachment Ambiguity

In recent years, word embeddings have become
a very popular representation for lexical items
(Mikolov et al., 2013; Pennington et al., 2014).
The idea is that the dimensions of a word embed-
ding capture lexical, syntactic, and semantic fea-
tures of words –in essence, the type of information
that is exploited in PP attachment systems. Recent
work in dependency parsing (Chen and Manning,
2014; Lei et al., 2014) suggests that these embed-
dings can also be useful to resolve PP attachment
ambiguities. We follow this last line of research
and investigate the use of word embeddings for
PP attachment. Different from previous works,
we consider several types of compositions for the
vector embeddings corresponding to the words in-
volved in a PP attachment decision. In particu-
lar, our model will define parameters over the ten-
sor product of these embeddings. We control the
capacity of the model by imposing low-rank con-
straints on the corresponding tensor which we for-
mulate as a convex loss minimization.

We conduct experiments on several datasets
and settings and show that this relatively simple
multi-linear model can give performances com-
parable (and in some cases, even superior) than
more complex neural network models that use the
same information. Our results suggest that for the

32

PP attachment problem, exploring product spaces
of dense word representations produces improve-
ments in performance comparable to those ob-
tained by incorporating non-linearities via a neural
network.

Our main contributions are: a) we present a sim-
ple multi-linear model that makes use of tensor
products of word embeddings, capturing all possi-
ble conjunctions of latent embeddings; b) we con-
duct comprehensive experiments of different em-
beddings and composition operations for PP at-
tachment and observe that syntax infused embed-
dings perform significantly better; c) our proposed
simple multi-linear model that uses only word em-
beddings can outperform complex non-linear ar-
chitectures that exploit similar information; d) for
out-of-domain evaluation sets, we observe signif-
icant improvements by using word embeddings
trained from the source and target domains. With
these imrpovements, our tensor products outper-
form state-of-the art dependency parsers on PP at-
tachment decisions.

2 PP Attachment

Ratnaparkhi et al. (1994) first proposed a formula-
tion of PP attachment as a binary prediction prob-
lem. The task is as follows: we are given a four-
way tuple 〈v, o, p,m〉 where v is a verb, o is a
noun object, p is a preposition, and m is a mod-
ifier noun; the goal is to decide whether the prepo-
sitional phrase 〈p,m〉 attaches to the verb v or to
the noun object o.

More recently, Belinkov et al. (2014) proposed
a generalization of PP attachment that considers
multiple attachment candidates. Formally, we are
given a tuple 〈H, p,m〉, where H is a set of can-
didate attachment tokens, and the goal is to de-
cide what is the correct attachment for the 〈p,m〉
prepositional phrase. The binary case corresponds
to H = {v, o}.

In this paper we use the generalized definition.
Given a tuple 〈H, p,m〉, the models we present in
this paper compute the following prediction:

argmax
h∈H

f(h, p,m) , (1)

where f is a function that scores a candidate at-
tachment h for the 〈p,m〉 phrase. Next section
discusses several definitions of f based on tensor
products of word embeddings.

3 Tensor Products for PP Attachment

For any word x in the vocabulary, we denote as
vx ∈ Rn the n-dimensional vector for w, known
as the word embedding of w. We will assume ac-
cess to existing word embeddings for all words in
our data.

Let a ∈ Rn1 and b ∈ Rn2 be two vectors. We
denote as a ⊗ b ∈ Rn1∗n2 the Kronecker product
of the two vectors, which results in a vector that
has one dimension for any two dimensions of the
argument vectors: the product of the i-th coordi-
nate of a times the j-th coordinate of b results in
the (i− 1) ∗ n1 + j coordinate of a⊗ b.

The tensor product model for PP attachment is
as follows (see also Figure 2):

f(h, p,m) = v>h W [vp ⊗ vm] , (2)

whereW ∈ Rn×n2
is a matrix of parameters, tak-

ing the embedding of the attachment candidate h
on the left, and the product of embeddings of the
〈p,m〉 phrase on the right.

This is a multi-linear function: it is a function
that is non-linear on each of the three argument
vectors, but is linear in their product. Thus, our
model is exploiting all conjunctions of latent fea-
tures present in the word embeddings, resulting in
a cubic number of parameters with respect to n.
We note that if we pre-process the word embed-
dings to have a special dimension fixed to 1, then
our model has parameters for each of the word em-
beddings alone, all binary conjunctions between
any two vectors, and all ternary conjunctions.

Equation (2) is a multi-linear tensor written as
a bilinear form. That is, we unfold the tensor into
a matrix W that groups vectors based on the na-
ture of the attachment problem: the vector for the
head candidate is on the left side, while the vectors
for the prepositional phrase are on the right side.
Without any constraints on the parametersW , this
grouping is irrelevant. 1 However, our learning al-
gorithm imposes low-rank constraints on W (see
Section 3.2 below), for which the unfolding of the
tensor becomes relevant.

3.1 Variations of the Tensor

We now discuss variations to the above model. In
all cases we will write our models as bilinear func-

1In fact, we could choose to write a standard linear model
between a weight vector and the Kronecker product of the
three vectors: w · [vh ⊗ vp ⊗ vm].

33

W

h p m

unfolding

Figure 2: The tensor product of word embeddings. Here, h, p, and m are the head, preposition and
modifier of the PP attachment structure, represented by their word embeddings. The tensor product
forms a cube, which we unfold with respect to the head and the prepositional phrase. The resulting
matrix W ∈ Rn×n2

has a row for each head dimension, and a column for each pair of preposition and
modifier dimensions.

tions of the following form:

f(h, p,m) = α(h)>Wβ(p,m) (3)

where α is a representation vector of the at-
tachment, and β is a representation vector of
the prepositional phrase. Setting α(h) = vh and
β(p,m) = vp ⊗ vm gives our basic tensor. These
are the variations:

• Sum and Concatenation: Let us first con-
sider variations of the prepositional phrase
representation. Instead of using the prod-
uct of embeddings, we can consider the
sum β(p,m) = vp + vm, or the concatena-
tion β(p,m) = [vp;vm]. These cases drasti-
cally reduce the expressivity and dimension
of the β vector, from n2 for the product to
n for the sum, or 2n for the concatenation.
Both sum, averaging and concatenation are
common ways to compose word embeddings,
while it is more rare to find compositions
based on the product.

• Preposition Identities: Our basic model is
defined essentially over word embeddings,
and ignores the actual identity of the words in
either sides. However, for PP attachment, it is
common to have parameters for each prepo-
sition, and we can easily model this. Let P
be the set of prepositions, and let ip ∈ R|P|
be an indicator vector for preposition p. We
can then set β(p,m) = ip ⊗ vm. Our model
is now equivalent to writing:

f(h, p,m) = v>hW pvm (4)

where we have one separate parameter matrix
W p ∈ Rn×n per preposition p. This is the
model proposed by Madhyastha et al. (2014).

• Positional Information: Positional informa-
tion often improves syntactic models in gen-
eral, and PP attachment is no exception as
shown by Belinkov et al. (2014). Following
that work, we consider H to be ordered with
respect to the distance of each candidate to
the preposition, and we let δh be the position
of element h (thus δh is 1 if h is the closest
candidate to p, 2 if it’s the 2nd closest, . . .).
In vector form, let δh ∈ R|H| be a positional
indicator vector for h (i.e. the coordinate δh
is 1). We can now compose the word em-
bedding of h with positional information as
α(h) = δh⊗vh, which is equivalent to writ-
ing:

f(h, p,m) = v>hW δh [vp ⊗ vm] . (5)

A neural network with a weight matrix for
each position was proposed by Belinkov et al.
(2014).

In the experimental section we present an em-
pirical comparison of these variations, essentially
showing that making tensor products of vector
representations effectively results in more accurate
attachment models.

3.2 Low-rank Matrix Learning

To learn the parameters we optimize the logis-
tic loss with nuclear norm regularization (`∗), an
objective that favors matrices W that have low-
rank (Srebro et al., 2004). This regularized ob-
jective has been used in previous work to learn
low-rank matrices (Madhyastha et al., 2014), and
has been shown to be very effective for feature
spaces that are highly conjunctive (Primadhanty

34

et al., 2015), such as those that result from tensor
products of word embeddings.

In our basic model, the number of parameters
is n3 (where n is the size of the individual em-
beddings). If W has rank k, then we can rewrite
W = UV > where U ∈ Rn×k and V ∈ Rn2×k.
Thus the score function can we rewritten as a k-
dimensional inner product between the left and
right vectors projected down to k dimensions. If
k is low, then the score is defined in terms of a few
projected features, which can benefit generaliza-
tion.

Specifically, let T be the training set. We opti-
mize this convex objective:

argmin
W

logistic(T ,W) + λ‖W ‖? (6)

which combines the logistic loss with the nuclear
norm regularizer (‖W ‖?), weighted by the con-
stant λ. To find the optimum, we follow previous
work and use a simple optimization scheme based
on Forward-Backward Splitting (FOBOS) (Duchi
and Singer, 2009).

We describe FOBOS briefly in Algorithm 1. Es-
sentially the algorithm works by first computing
the gradient of the negative log likelihood function
as can be observed in line 4: ηt is the step size,
and g(W t) is the gradient at time t (we choose
ηt = c/

√
t). Now, for the proximal step. For `2

regularization, the weights are regularized by us-
ing geometric shrinkage (line 6). For nuclear norm
regularization (`∗), first Singular Value Decompo-
sition (SVD) of the weight matrix is performed
followed by iterative shrinkage and thresholding
of the singular values (lines 8 and 9).

This algorithm has fast convergence rates, suffi-
cient for our application. Many other optimization
approaches are possible, for example one could
express the regularizer as a convex constraint and
utilize a projected gradient method which has a
similar convergence rate. Proximal methods are
slightly more simple to implement and we chose
the proximal approach.

For nuclear norm based regularization, we are
required to compute the Singular Value Decompo-
sition of W at each iteration. In practice, for our
experiments, the dimensions ofW were relatively
small, allowing fast SVD computations.

4 Experiments

This section presents experiments using tensor
models for PP attachment. Our interest is to eval-

Algorithm 1: FOBOS Algorithm
Input: Gradient function g
Constants : λ (regularization factor), T (max

iterations) and c (step size)
Output: W t+1

1 W 1 = 0
2 while t < T do
3 ηt = c√

t

4 W t+0.5 = W t − ηtg(W t)
5 if `2 regularizer then
6 W t+1 = 1

1+ηtλ
W t+0.5

7 else if `∗ regularizer then
8 UΣV > = SVD(W t+0.5)

9 Σ̄i,i = max(Σi,i − ηtλ, 0)

10 W t+1 = UΣ̄V >

11 end

uate the accuracy of our models with respect to
the type and size of word embeddings, and with
respect to how these embeddings are composed.
We start describing the data and word embeddings,
and then present results on two settings, binary and
multiple attachments, comparing to the state-of-
the-art in each case.

4.1 Data and Evaluation

We use standard datasets for PP attachment for
two settings: binary and multiple attachments. In
both cases, the evaluation metric is the attachment
accuracy. The details are as follows.

RRR Dataset. This is the classic English dataset
for PP attachment proposed by Ratnaparkhi et al.
(1994) (referred to as RRR dataset), which is
extracted from the Penn TreeBank (PTB). The
dataset contains 20,801 training samples of PP at-
tachment tuples 〈v, o, p,m〉. We preprocess the
data as in previous work (Collins and Brooks,
1999): we lowercase all tokens, map numbers to a
special token NUM and symbols to SYM. We use the
development set from PTB, with 4,039 samples, to
compare various configurations of our model. For
testing, we consider several test sets proposed in
the literature: a) The test set from the RRR dataset,
with 3,097 samples from the PTB. b) The New
York Times test set (NYT) released by (Nakashole
and Mitchell, 2015). It contains 293 test samples.
c) Wikipedia test set (WIKI) by (Nakashole and
Mitchell, 2015). It contains 381 test samples from
Wikipedia. Because the texts are not news articles,
this is an out-of-domain test.

Belinkov et al. (2014) Datasets. We use the
datasets released by Belinkov et al. (2014) for

35

English and Arabic.2 These datasets follow the
generalized version of PP attachment, and each
sample consists of a preposition p, the noun be-
low the preposition m, and a list of possible at-
tachment headsH (which contain candidate nouns
and verbs in the same sentence of the prepositional
phrase). The English dataset is extracted from
PTB, and has 35,359 training samples and 1,951
test samples. The Arabic dataset is extracted from
the SPMRL shared task data (Seddah et al., 2014),
and consists of 40,121 training samples and 3,647
test samples.

4.2 Word Embeddings

As our models exploit pre-trained word embed-
dings, we perform experiments with a variety of
types of word embeddings. We use two word em-
bedding methods and estimate vectors using dif-
ferent data sources. The methods are: (a) Skip-
gram (Mikolov et al., 2013): We use the Skip-
gram model from word2vec, and induce em-
beddings of different dimensionalities: 50, 100
and 300. In all cases we use a window of size
5 during training.3 (b) Skip-dep (Bansal et al.,
2014): This is essentially a Skip-gram model that
uses dependency trees to define the context words
during training, thus it captures syntactic correla-
tions. We trained 50, 100 and 300 dimensional
dependency-based embeddings, using the setting
described in Bansal et al. (2014) however we made
use of TurboParser (Martins et al., 2013) to obtain
dependency trees from the source data 4.

For evaluations on English, we use the follow-
ing data sources to train word embeddings: (a)
BLLIP (Charniak et al., 2000), with ∼1.8 million
sentences and ∼43 million tokens of Wall Street
Journal text (and excludes PTB evaluation sets);
(b) English Wikipedia5, with ∼13.1 million sen-
tences and∼129 million tokens; (c) The New York
Times portion of the GigaWord corpus, with ∼52
million sentences and ∼1, 253 million tokens.

For Arabic, we used pre-trained 100-
dimensional word embeddings from the arTenTen
corpus that are distributed with the data.

2
http://groups.csail.mit.edu/rbg/code/pp.

3In preliminary experiments we tried a window of 2,
which performed worse in our setting. According to Bansal
et al. (2014) with larger context window, words that are
topically-related tend to get closer.

4http://www.cs.cmu.edu/˜ark/
TurboParser

5The corpus and preprocessing script were sourced from
http://mattmahoney.net/dc/textdata.

We created a special unknown vector for unseen
words by averaging the word vectors of least fre-
quent words (i.e., with frequency less than 5). Fur-
ther, we appended a fixed dimension set to 1 to all
word vectors. As explained in Section 3, when
doing tensor compositions, this special dimension
has the effect of keeping all lower-order conjunc-
tions, including each elementary coefficient of the
word embeddings and a bias term.

4.3 Experiments on the Binary Attachment
Setting

This section presents a series of experiments us-
ing the classic binary setting by Ratnaparkhi et al.
(1994).

Comparing Word Embeddings. We start com-
paring word embeddings of different types (Skip-
gram and Skip-dep) trained on different source
data, for different dimensions. For this compar-
ison we use the tensor product model of Eq. 2,
that resolves the attachment using only a product
of word embeddings, and used `∗ regularization.
Table 1 presents the results on the RRR develop-
ment set. Looking at results using Skip-gram, we
observe two clear trends that are expected: results
improve whenever (1) we increase the dimension-
ality of the embeddings (n); and (2) we increase
the size of the corpus used to induce the embed-
dings (BLLIP is the smallest, NYT is the largest).6

When looking at the performance of models using
Skip-dep vectors, which are induced using parse
trees, then the results are better than when using
Skip-gram. This is a signal that syntactic-based
word embeddings favor PP attachment, which af-
ter all is a syntactic disambiguation task. We note
that this was also found by Belinkov et al. (2014).
The peak performance is for Skip-dep using 100
dimensional vectors trained on BLLIP.7 For this
test, we do not see a benefit from training on larger
data.

Comparing Compositions. Our model com-
poses word embeddings using tensor products.
Section 3.1 presents variations that compose the
prepositional phrase (i.e. the preposition and mod-
ifier vectors) in different ways. We now compare

6For this experimental comparison, we also tried
Glove (Pennington et al., 2014), another popular word em-
bedding method, but the results were generally inferior.

7Under the sign test, the difference between the best Skip-
dep and Skip-gram models was significant with p < 0.05, but
other differences between Skip-dep models were not.

36

Word Embedding Accuracy wrt. dimension (n)
Type Source Data n = 50 n = 100 n = 300
Skip-gram BLLIP 83.23 83.77 83.84
Skip-gram Wikipedia 83.74 84.25 84.22
Skip-gram NYT 84.76 85.06 85.15
Skip-dep BLLIP 85.52 86.33 85.97
Skip-dep Wikipedia 84.23 84.39 84.32
Skip-dep NYT 85.27 85.48 –
Skip-gram & Skip-dep BLLIP – 83.44 –

Table 1: Attachment accuracy on the RRR development set for tensor product models using different
word embeddings. We vary the type of word embedding (Skip-gram, Skip-dep), the source data used to
induce vectors (BLLIP, Wikipedia, NYT) and the dimensionality of the vectors (50, 100, 300). The last
row “Skip-gram & Skip-dep” corresponds to the concatenation of two 50-dimensional word embeddings,
for a total of 100 dimensions.

Composition of p and m Tensor Size Acc.
Sum [vp + vm] n× n 84.42
Concatenation [vp;vm] n× 2n 84.94
p Indicator [ip ⊗ vm] n× |P| ∗ n 84.36
Product [vp ⊗ vm] n× n ∗ n 85.52

Table 2: Development accuracy for several ways
of composing the word embeddings of the preposi-
tional phrase. ip ∈ R|P| denotes an indicator vec-
tor for preposition p, where P is the set of prepo-
sitions.

these variants empirically, using Skip-dep vectors
with n = 50 as word embeddings. Table 2 sum-
marizes the accuracy results on the development
set, where we compare: summing the two vectors;
concatenating them; making the product of em-
beddings; or using indicator vectors for the prepo-
sition, which replicates the model by Madhyastha
et al. (2014). The table also shows the size of the
resulting tensor (we note that |P| is 66 for the RRR
data, thus using a 50-dimensional embedding for
p results in a more compact tensor than using p’s
identity). The results show that the product model
is the best of all8, despite the fact that the num-
ber of parameters is cubic in the dimension of the
word embeddings. We observed the same trend for
larger vectors.

Comparison to the State of the Art. We now
present results on the test sets for the binary set-
ting, and compare to the state-of-the-art. The re-
sults are in Table 3, which lists representative and
top-performing methods of the literature, as well

8The differences, though, were not significant under the
sign test.

as our tensor product model running with three
different word embeddings. Two of the repre-
sentative systems we list are the back-off model
by Collins and Brooks (1999), and the neural
model by Belinkov et al. (2014), which composes
word embeddings in a neural fashion. These two
systems use no other information that the lex-
ical items (i.e., explicit words or word embed-
dings). The other two systems, by Stetina and
Nagao (1997) and Nakashole and Mitchell (2015),
use additional features, and most notably seman-
tic information from WordNet or other ontolo-
gies, which has been shown to be beneficial for
PP attachment. In general, the results that our
models obtain are remarkably good, despite the
fact that we only combine word embeddings in a
straightforward way. On the RRR test, with the
exception of the classic result by Stetina and Na-
gao (1997), our method using Skip-dep embed-
dings clearly outperforms any other recent sys-
tem. On the WIKI test our method is clearly the
best, while on the NYT test, our system is be-
hind that of Nakashole and Mitchell (2015) but it
is still competitive. In terms of the embeddings we
use, the table shows that for the RRR test, embed-
dings induced from BLLIP perform clearly bet-
ter, while for the out-of-domain tests, the embed-
dings induced from NYT are slightly better for the
Wikipedia test, and clearly better for the NYT test.

4.4 Experiments on the Multiple Attachment
Setting

We now examine the performance of our models
on the setting and data by Belinkov et al. (2014),
which deals with multiple head candidates. We

37

Test Accuracy
Method Word Embedding RRR WIKI NYT
Tensor product Skip-gram, Wikipedia, n = 100 84.96 83.48 82.13

'' Skip-gram, NYT, n = 100 85.11 83.52 82.65
'' Skip-dep, BLLIP, n = 100 86.13 83.60 82.30
'' Skip-dep, Wikipedia, n = 100 85.01 83.53 82.10
'' Skip-dep, NYT, n = 100 85.49 83.64 83.47

Stetina and Nagao (1997) (*) 88.1 - -
Collins and Brooks (1999) 84.1 72.7 80.9
Belinkov et al. (2014) 85.6 - -
Nakashole and Mitchell (2015) (*) 84.3 79.3 84.3

Table 3: Accuracy results over the RRR, NYT and WIKI test sets. (*) indicates that the system uses
additional semantic features.

perform experiments on both English and Arabic
datasets. For this setting, following Belinkov et al.
(2014), we found necessary to use positional infor-
mation of the head candidate, as described by Eq.
5. Without it the performance was much worse
(possibly because in this data, a large number of
samples attach to the first or second candidate in
the list —about 93% of cases on the English data).

Table 4 presents our results. For English, we
present results for models trained with nuclear-
norm (`∗) and `2 regularization, using 50-
dimensional embeddings. Imposing low-rank on
the product tensor yields some gains with respect
to `2, however the improvements are not drastic.
This is probably because embeddings are already
compressed representations, and even products of
them do not result in overfitting to training. We
obtain a slight gain by using 100-dimensional em-
beddings, which results in an accuracy of 88.4 for
English and 81.1 for Arabic. In any case, one
characteristic of low-rank regularization is the in-
herent compression of the tensor. Figure 3 plots
accuracy versus rank for the tensor working with
50-dimensional embeddings composed with posi-
tional information9: with rank 50 the model ob-
tains 88% of accuracy while reducing the number
of parameters by a factor of 6. For PP attachment,
this has a computational advantage: the prepo-
sitional phrase needs to be projected only once
(from 2,601 dimensions to k, where k is the rank)
for all the head candidates in the sentence.

We compare our method to a series of results
by Belinkov et al. (2014). Their “basic” model

9We consider 7 head positions, and word vectors are 51
dimensions in practicei (with the dummy dimention). Thus,
the unfolded matrix W has 357 rows and 2,601 columns.

Test Accuracy
Arabic English

Tensor product (n=50, `2) - 87.8
Tensor product (n=50, `∗) - 88.3
Tensor product (n=100, `∗) 81.1 88.4
Belinkov et al. (2014) (basic) 77.1 85.4
Belinkov et al. (2014) (syn) 79.1 87.1
Belinkov et al. (2014) (feat) 80.4 87.7
Belinkov et al. (2014) (full) 82.6 88.7
Yu et al. (2016) - 90.3

Table 4: Test accuracy for PP attachment with
multiple head candidates.

uses Skip-gram, and like us, by moving to syn-
tactic vectors (noted “syn”) they observed a gain
in accuracy. However, in this comparable setting,
our model outperforms theirs by 1.3% in English
and 2% in Arabic. They also explored adding stan-
dard features (from WordNet and VerbNet, noted
“feat”), and combining everything (noted “full”),
which then surpasses our results. Very recently, Yu
et al. (2016) has used a tensor model that combines
standard feature templates (again using WordNet)
with word embeddings, with significant improve-
ments; however they do not report results on com-
bining word embeddings only, which is our focus.

Comparison to Dependency Parsers. We now
compare our tensor models to state-of-the-art de-
pendency parsers, specifically looking at PP att-
tachment decisions. For this comparison, we took
the English Web Treebank (WTB) (Petrov and
McDonald, 2012), which has annotated evaluation
sets for five domains, and extracted PP-attachment
tuples using the procedure described by Belinkov

38

PTB Web Treebank Development Web Treebank Test
Test A E N R W Avg A E N R W Avg
(2523) (814) (1025) (969) (783) (1064) (4655) (868) (936) (839) (902) (788) (4333)

Tensor BLLIP 89.0 83.7 80.2 81.9 83.2 85.3 82.8 82.7 82.6 87.4 82.5 86.3 84.2
Tensor BLLIP+WTB 88.9 86.2 81.8 84.1 83.7 86.7 84.5 83.3 85.2 90.1 85.9 86.6 86.1
Stanford 87.3 80.3 79.7 84.5 81.5 84.9 82.3 79.3 79.7 85.7 82.2 83.8 82.0
Turbo 2nd 88.8 84.5 80.1 82.8 83.1 85.1 83.1 83.6 83.7 87.6 84.2 87.8 85.3
Turbo 3rd 88.9 85.1 80.4 83.3 83.3 84.8 83.3 84.2 84.5 87.6 84.4 87.6 85.6

Table 5: Comparison between tensor products and dependency parsers, on PP attachment tuples in the
Penn Treebank test (PTB) and in the English Web Treebank (WTB) evaluation sets – with separate results
for each domain: answers (A), emails (E), newsgroups (N), reviews (R), and weblogs (W). The number
of evaluation instances in each set appears in parenthesis. The tensor products use embeddings trained
on BLLIP and BLLIP+WTB, and for both n = 100.

0 50 100 150 200

rank

0.78

0.80

0.82

0.84

0.86

0.88

0.90

ac
cu

ra
cy

`∗ Regularized

Figure 3: Accuracy versus rank of the tensor
model on the English data by Belinkov et al.
(2014). The tensor model uses 50-dimensional
vectors composed with head position, and has size
357× 2, 601.

et al. (2014), resulting in 4,655 tuples on the de-
velopment set and 4,333 tuples on the test set.
We also applied the same procedure to the Penn
Treebank test set, with 2.523 instances.10 We
selected two state-of-the-art dependency parsers
which are publicly available. The first is the
Stanford transition-based neural parser (Chen and
Manning, 2014), which uses word embeddings but
not as products.11 The other is TurboParser (Mar-
tins et al., 2013)12 which offers 2nd and 3rd order
arc-factored models, with grandchildren features
that capture the conjunction of the three words
in a PP-attachment decision, even though those
models do not use word embeddings. We ran

10The evaluation test by (Belinkov et al., 2014) has 1,951
instances. Hence, the results of our models are slightly differ-
ent in this evaluation. We will release our extraction script.

11We used Stanford CoreNLP 3.7.0. We could not deter-
mine the characteristics of the embeddings in the model.

12We used version 2.3, available from http://www.
cs.cmu.edu/˜ark/TurboParser

the parsers on the evaluation sentences, and ex-
tracted the PP-attachment decision from the parse
tree.13 We also evaluated two 100-dimensional
Skip-dep tensor products, one using embeddings
trained on BLLIP, and a second one using em-
beddings trained on BLLIP and the unlabeled data
from the Web Treebank.14

Table 5 presents the results. Comparing the ten-
sor products, using PTB+WTB embeddings gives
an improvement of 1.7% in accuracy on the WTB
development test, for a slight decrease of 0.1% on
the PTB test. This confirms that tensor products of
word embeddings are a valid and simple approach
to domain adaptation.

Comparing to parsers, our best tensor product
performs better in almost all domains, and on av-
erage it performs significantly better in the WTB
evaluation sets.15 First, this confirms that PP at-
tachment decisions are still an important source of
errors of state-of-the-art parsers. And we see that
a specialized model for PP attachment, despite its
simplicity, can improve on these decisions.

Error Analysis. To further understand the per-
formance of the tensor products and parsers on
WTB development set, we consider PP attachment
instances where the words are observed less than
five times in the training data (1,565 cases out of

13We ran all parsing models on correct PoS tags. Thus,
these are optimistic performances. This choice rules out cases
where the parsers fail because of tagging errors, which would
be unfair because our models work on pre-selected head can-
didate lists which depend on correct PoS tags.

14We mixed the unlabeled data from all domains, for a total
of ∼4.7 million sentences and ∼75.5 million tokens.

15Under the sign test, the differences on WTB evaluation
sets between the tensor product on BLLIP+WTB and other
models were significant: TurboParser with p < 0.05, the
Stanford parser with p < 0.01, and the tensor product on
BLLIP with p < 0.01.

39

4,655). The best tensor product obtains an accu-
racy of 84.3% (vs. 84.5%), while the 3rd order
TurboParser gets 83.0% (vs. 83.3%) and the Stan-
ford parser gets 81.3% (vs. 82.3%). The parsers
suffer a drop, while the tensor model does not,
suggesting that the tensor model is able to gener-
alize better to less frequent words. Figure 4 shows
two sample sentences from the Web Treebank that
illustrate two cases of ambiguities. Sentence (a) is
an example of lexical paucity, because the words
of the attached phrase, disintegration with LSD,
are absent in the training set. The tensor model
correctly predicts the attachment, while the parsers
do not. Sentence (b) is an example of sense am-
biguity: the tensor model incorrectly predicts ad-
dress as head of to Senators, which is plausible,
but in this case the sentence is about the return ad-
dress of the letter to Senators, which the parsers
correctly predict. There are clear complementary
benefits between parsers and products of embed-
dings, and these examples suggest combinations
of both.

Came the disintegration of the Beatles ’ minds with LSD . . .

(a) The modifier and correct head are unseen in training.

. . . the return address for the letters to the Senators . . .

(b) The correct head is ambiguous.

Figure 4: Examples from the Web Treebank de-
velopment set, with the attachments predicted by
the tensor product (solid green arc), the Stanford
neural parser (dashed red arc) and the 3rd order
TurboParser (dotted blue arc).

5 Related Work

5.1 Resolving PP Attachment Ambiguity
Several approaches have been proposed for solv-
ing the PP attachment problem, including maxi-
mum likelihood with back-off (Hindle and Rooth,
1993; Collins and Brooks, 1999), and discrimina-
tive training (Ratnaparkhi et al., 1994; Olteanu and
Moldovan, 2005), among others. A key part of
such systems is the representation they use, in the
form of lexical, syntactic and semantic features

of the main words involved in an attachment de-
cision. Crucially, the best performing models are
obtained when exploring conjunctions of such fea-
tures. Some works have also explored using ex-
ternal knowledge resources in the form of ontolo-
gies and syntactic information (Stetina and Na-
gao, 1997; Zhao and Lin, 2004; Nakashole and
Mitchell, 2015).

In our paper, we use word embeddings as the
only source of lexical information. Previous work
has explored word representations as extra fea-
tures (Zhao and Lin, 2004). In our case, we define
a model that exploits all conjunctions of the word
vectors in an attachment decision. Our model is in
fact a generalization of that of Madhyastha et al.
(2014), as described in section 3.1. From that
work, our application to PP attachment differs in
using compact word embeddings as opposed to
sparse distributional vectors. Mitchell and Lapata
(2008) compared a variety of composition opera-
tions, including the tensor product, in the context
of distributional lexical semantics.

Closely related to our work is the approach
by Belinkov et al. (2014), who use neural networks
that compose the embeddings of the words in the
PP attachment structure. Their model composes
word embeddings by first concatenating vectors
and then projecting to a low-dimensional vector
using a non-linear hidden layer. This basic com-
position block is used to define several compo-
sitional models for PP attachment. One differ-
ence is that we represent tensor products of em-
beddings, which result in projected hidden con-
junctions when the tensor has low rank. In con-
trast, projecting concatenated embeddings results
in hidden disjunctions of the input coefficients.

More recently, Yu et al. (2016) have also ex-
plored tensor models for PP attachment. Their fo-
cus is on representing standard feature templates
(which are conjunctions of features of a variety of
sources) as tensors, and on using low-rank con-
straints to favor parameter sharing among tem-
plates. One of their templates is the conjunction
of the head, preposition and modifier (and word
embeddings of these), which is the focus case of
our paper. While there are differences in the way
we learn a low-rank tensor (see below), they show
superior performance, probably due to the combi-
nation of different features. Our experiments, in
contrast, offer a controlled study over different as-
pects of word embeddings and their product.

40

Beyond applications to PP attachment, word
embeddings have been used for a number of pre-
diction tasks. In most cases, embeddings of two
or more words are composed by concatenation –
see (Turian et al., 2010; Chen and Manning, 2014;
Dyer et al., 2015) to name a few, or averaging
(Socher et al., 2011; Huang et al., 2012). Compo-
sitions based on product of embeddings have been
explored in tensor models, which we discuss next.

5.2 Low Rank Tensors in NLP

Using tensors to represent products of elementary
vectors has been a recent trend in NLP. Because
most tasks in NLP benefit from exploiting con-
junctions of elementary features, tensor models
offer the appropriate framework for defining con-
junctive feature spaces. A main benefit of the ten-
sor representation is that it allows to control the
model capacity using low-rank constraints. There
are several ways to define the rank of a tensor,
while for a matrix there is a unique definition. A
natural and simple way to impose low-rank con-
straints on a tensor is by first unfolding the ten-
sor into a matrix, and let the rank of the ten-
sor be the rank the unfolded matrix. With this
one can apply low-rank constraints by regulariza-
tion, using the nuclear norm (which is a convex
relaxation for low-rank regularization). In prac-
tice, this leads to a simple convex optimization
that uses an SVD routine to solve the core part
of the problem. This technique has been used
recently for several problems (Balle and Mohri,
2012; Quattoni et al., 2014; Madhyastha et al.,
2014, 2015; Primadhanty et al., 2015). There are
2d ways to unfold a tensor of d modes. In our
case, we have made the choice based on the ap-
plication: we have grouped the preposition and
modifier together. This choice has a clear com-
putational advantage for the task: at prediction
time, we can first project the prepositional phrase
(which is fixed) to its low-dimensional representa-
tion, and then do the inner product with the projec-
tion of each head candidate. In general, one could
try different unfoldings, or use multiple of them in
a combination.

Another popular approach to low-rank tensor
learning is directly optimizing over a low-rank de-
composition of the tensor, such as the canonical
polyadic or the Tucker forms (Lei et al., 2014;
Fried et al., 2015; Yu et al., 2016). In the Tucker
form, a tensor d modes has one projection matrix

for each of the modes, where each projection ma-
trix is a mapping from the original input vector
space to a low-dimensional one, i.e. an embedding
of the feature of the corresponding mode. One ad-
vantage of this approach is that there is no need to
choose an unfolding. However, the optimization is
non-convex.

6 Conclusion

We have described a simple PP attachment model
based on tensor products of the word vectors in a
PP attachment decision. We have established that
the product of vectors improves over more sim-
ple compositions (based on sum or concatenation),
while it remains computationally manageable due
to the compact nature of word embeddings. In
experiments on standard PP attachment datasets,
our tensor models perform better than other meth-
ods using lexical information only, and are close
in performance to methods using richer feature
spaces. In out-of-domain tests we obtain improve-
ments over state-of-the-art parsers. As our models
only depend on word embeddings, this is a clear
signal that word embeddings are appropriate rep-
resentations to generalize to unseen structures.

By using low-rank constraints during learning
we have observed small improvements over `2 reg-
ularization, but not drastic ones (compared to, for
example, tensor compositions of sparse vectors,
in which case low-rank constraints are generally
much more beneficial). All in all, low-rank con-
straints are essential tools to control the capac-
ity of tensor models. This framework is arguably
more simple than neural compositions, because it
avoids non-linearities and can be optimized with
global routines like SVD. In our PP attachment
experiments, we have obtained some gains in ac-
curacy over the neural models by Belinkov et al.
(2014) that use comparable representations. We
have also obtain improvements over state-of-the-
art dependency parsers.

In NLP, and in syntax in particular, there ex-
ist other paradigmatic lexical attachment ambigui-
ties that, like PP attachment, can be framed within
a particular scope of the dependency tree: adjec-
tives, conjunctions, raising and control verbs, etc..
The tensor product we have presented can serve
as a building block to define dependency parsing
methods that make a central use of products of
word embeddings.

41

References
Eneko Agirre, Timothy Baldwin, and David Martinez.

2008. Improving parsing and pp attachment perfor-
mance with sense information. In ACL. pages 317–
325.

Borja Balle and Mehryar Mohri. 2012. Spectral learn-
ing of general weighted automata via constrained
matrix completion. In Proceedings of Advances in
Neural Information Processing Systems (NIPS) .

Mohit Bansal, Kevin Gimpel, and Karen Livescu.
2014. Tailoring continuous word representations for
dependency parsing. In Proceedings of Association
of Computational Linguistics(ACL) Short Papers.

Yonatan Belinkov, Tao Lei, Regina Barzilay, and Amir
Globerson. 2014. Exploring compositional architec-
tures and word vector representations for preposi-
tional phrase attachment. Transactions of the Asso-
ciation for Computational Linguistics 2:561–572.

Eugene Charniak, Don Blaheta, Niyu Ge, Keith Hall,
John Hale, and Mark Johnson. 2000. BLLIP 1987-
89 WSJ Corpus Release 1, LDC No. LDC2000T43.
Linguistic Data Consortium.

Danqi Chen and Christopher Manning. 2014. A
fast and accurate dependency parser using neural
networks. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computa-
tional Linguistics, Doha, Qatar, pages 740–750.
http://www.aclweb.org/anthology/D14-1082.

Michael Collins and James Brooks. 1999. Prepo-
sitional phrase attachment through a backed-off
model. In Natural Language Processing Using Very
Large Corpora, Springer, pages 177–189.

John Duchi and Yoram Singer. 2009. Efficient online
and batch learning using forward backward splitting.
Journal of Machine Learning Research 10:2899–
2934.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd An-
nual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Beijing, China, pages 334–343.
http://www.aclweb.org/anthology/P15-1033.

Daniel Fried, Tamara Polajnar, and Stephen Clark.
2015. Low-rank tensors for verbs in compositional
distributional semantics. In Short Papers of the 53rd
Annual Meeting of the Association for Computa-
tional Linguistics (ACL 2015). pages 731–736.

Donald Hindle and Mats Rooth. 1993. Structural am-
biguity and lexical relations. Computational linguis-
tics 19(1):103–120.

Eric H Huang, Richard Socher, Christopher D Man-
ning, and Andrew Y Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguis-
tics: Long Papers-Volume 1. Association for Com-
putational Linguistics, pages 873–882.

Jonathan K Kummerfeld, David Hall, James R Cur-
ran, and Dan Klein. 2012. Parser showdown at the
wall street corral: An empirical investigation of error
types in parser output. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning. Association for Computational
Linguistics, pages 1048–1059.

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay,
and Tommi Jaakkola. 2014. Low-rank tensors
for scoring dependency structures. In Proceed-
ings of the 52nd Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1:
Long Papers). Association for Computational Lin-
guistics, Baltimore, Maryland, pages 1381–1391.
http://www.aclweb.org/anthology/P14-1130.

Pranava Swaroop Madhyastha, Xavier Carreras,
and Ariadna Quattoni. 2014. Learning task-
specific bilexical embeddings. In Proceedings
of COLING 2014, the 25th International Con-
ference on Computational Linguistics: Techni-
cal Papers. Dublin City University and Associa-
tion for Computational Linguistics, pages 161–171.
http://aclweb.org/anthology/C14-1017.

Pranava Swaroop Madhyastha, Xavier Carreras, and
Ariadna Quattoni. 2015. Tailoring word embed-
dings for bilexical predictions: An experimental
comparison. In International Conference on Learn-
ing Representations (Workshop Contribution) .

Andre Martins, Miguel Almeida, and A. Noah Smith.
2013. Turning on the turbo: Fast third-order non-
projective turbo parsers. In Proceedings of the 51st
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers). Associ-
ation for Computational Linguistics, pages 617–622.
http://aclweb.org/anthology/P13-2109.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Proceedings of Interna-
tional Conference on Learning Representations .

Jeff Mitchell and Mirella Lapata. 2008. Vector-based
models of semantic composition. In Proceedings of
the Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers). pages
236–244.

Ndapandula Nakashole and Tom M Mitchell. 2015. A
knowledge-intensive model for prepositional phrase
attachment. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics,(ACL). pages 365–375.

42

Marian Olteanu and Dan Moldovan. 2005. Pp-
attachment disambiguation using large context. In
Proceedings of the Conference on Human Language
Technology and Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, pages 273–280.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP). pages 1532–
1543. http://www.aclweb.org/anthology/D14-1162.

Slav Petrov and Ryan McDonald. 2012. Overview of
the 2012 shared task on parsing the web. Notes of
the First Workshop on Syntactic Analysis of Non-
Canonical Language (SANCL).

Audi Primadhanty, Xavier Carreras, and Ariadna Quat-
toni. 2015. Low-rank regularization for sparse con-
junctive feature spaces: An application to named
entity classification. In Proceedings of the 53rd
Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Beijing, China, pages 126–135.
http://www.aclweb.org/anthology/P15-1013.

Ariadna Quattoni, Borja Balle, Xavier Carreras,
and Amir Globerson. 2014. Spectral regular-
ization for max-margin sequence tagging. In
Tony Jebara and Eric P. Xing, editors, Proceed-
ings of the 31st International Conference on
Machine Learning (ICML-14). JMLR Workshop
and Conference Proceedings, pages 1710–1718.
http://jmlr.org/proceedings/papers/v32/quattoni14.pdf.

Adwait Ratnaparkhi, Jeff Reynar, and Salim Roukos.
1994. A maximum entropy model for prepositional
phrase attachment. In Proceedings of the workshop
on Human Language Technology. Association for
Computational Linguistics, pages 250–255.

Djamé Seddah, Sandra Kübler, and Reut Tsarfaty.
2014. Introducing the spmrl 2014 shared task on
parsing morphologically-rich languages. In Pro-
ceedings of the First Joint Workshop on Statisti-
cal Parsing of Morphologically Rich Languages and
Syntactic Analysis of Non-Canonical Languages.
Dublin City University, Dublin, Ireland, pages 103–
109. http://www.aclweb.org/anthology/W14-6111.

Richard Socher, Eric H Huang, Jeffrey Pennin, Christo-
pher D Manning, and Andrew Y Ng. 2011. Dy-
namic pooling and unfolding recursive autoencoders
for paraphrase detection. In In Proceedings of Ad-
vances in Neural Information Processing Systems.
pages 801–809.

Nathan Srebro, Jason Rennie, and Tommi S Jaakkola.
2004. Maximum-margin matrix factorization. In In
proceedings of Advances in Neural Information Pro-
cessing Systems (NIPS). pages 1329–1336.

Jiri Stetina and Makoto Nagao. 1997. Corpus based
pp attachment ambiguity resolution with a semantic
dictionary. In Proceedings of the fifth workshop on
very large corpora.

Joseph Turian, Lev Ratinov, and Yoshua Bengio.
2010. Word representations: A simple and
general method for semi-supervised learning.
In Proceedings of the 48th Annual Meeting
of the Association for Computational Linguis-
tics. Association for Computational Linguistics,
Stroudsburg, PA, USA, ACL ’10, pages 384–394.
http://dl.acm.org/citation.cfm?id=1858681.1858721.

Mo Yu, Mark Dredze, Raman Arora, and Matthew R.
Gormley. 2016. Embedding lexical features via low-
rank tensors. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies. Association for Computational Lin-
guistics, San Diego, California, pages 1019–1029.
http://www.aclweb.org/anthology/N16-1117.

Shaojun Zhao and Dekang Lin. 2004. A nearest-
neighbor method for resolving pp-attachment am-
biguity. In Natural Language Processing–IJCNLP
2004, Springer, pages 545–554.

43

