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Abstract 

Traditional disease surveillance systems depend 

on outpatient reporting and virological test results 

released by hospitals. These data have valid and 

accurate information about emerging outbreaks 

but it’s often not timely. In recent years the expo-

nential growth of users getting connected to social 

media provides immense knowledge about epi-

demics by sharing related information. Social me-

dia can now flag more immediate concerns related 

to outbreaks in real time. In this paper we apply 

the long short-term memory recurrent neural net-

work (RNN) architecture to classify tweets con-

veyed influenza-related information and compare 

its performance with baseline algorithms includ-

ing support vector machine (SVM), decision tree, 

naive Bayes, simple logistics, and naive Bayes 

multinomial. The developed RNN model 

achieved an F-score of 0.845 on the MedWeb task 

test set, which outperforms the F-score of SVM 

without applying the synthetic minority over-

sampling technique by 0.08. The F-score of the 

RNN model is within 1% of the highest score 

achieved by SVM with oversampling technique. 

                                                      
* Corresponding author 

1 Introduction 

With the popularity of WWW, the use of data min-

ing techniques to analyze the big data generated by 

users provides a feasible way for identification and 

exploration of health-related information. For ex-

ample, Ginsberg et al. (2009) utilized search query 

logs of Google to develop models for influenza 

surveillance. With the recent increased use of so-

cial media platforms, users can communicate each 

other by updating their status led to wide sharing 

of personal information timely. The information 

spreads over these platforms is now a valuable in-

formation resource for building social sensors to 

develop real time event detection systems for de-

tecting events like earthquakes (Sakaki, Okazaki, 

& Matsuo, 2010) and abuse of medications (Sarker, 

O’Connor, et al., 2016). 

A review conducted by Charles-Smith et al. 

(2015) demonstrated evidence that the use of social 

media data can provide real-time surveillance of 

health issues, speed up outbreak management, 

identify target populations necessary to support and 

even improve public health and intervention out-

comes. Facebook, microblogs, blogs, and discus-

sion forums are examples of such media. Among 

them, Twitter, the leading micro-blogging platform, 

has become the primary data sources for digital dis-

ease surveillance and outbreak management. The 
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platform has been used for creating first hand re-

ports of adverse drug events (Bian, Topaloglu, & 

Yu, 2012). Shared tasks (Aramaki, Wakamiya, 

Morita, Kano, & Ohkuma, 2017; SARKER, 

NIKFARJAM, & GONZALEZ, 2016) and hacka-

thon style competitions (Adam, Jonnagaddala, 

Chughtai, & Macintyre, 2017) for digital disease 

detection or biosurveillance are also emerging. The 

rationale behind social media-based surveillance 

systems is based on the assumption that target 

events occur in the real world will immediately re-

flect on social media. Therefore, systems that ag-

gregate and determine the degree of related infor-

mation from social media can monitor or even fore-

cast the current or future outbreak events. 

Iso, Wakamiya, and Aramaki (2016) have 

demonstrated words such as “fever” present clues 

for upcoming influenza outbreaks. They concluded 

that an approximately 16-day time lag exists be-

tween the frequency of the word “fever” mentioned 

in tweets and the number of influenza patients an-

nounced by the infectious disease surveillance cen-

ter in Japan. Although their results are promising, 

the use of word-level information was noisy and 

impedes precise influenza surveillance. Take the 

following two tweets described in the work of 

Aramaki, Maskawa, and Morita (2011) as an exam-

ple.  

“Headache? You might have flu.” 

“The World Health Organization reports the 

avian influenza, or bird flu, epidemic has spread 

to nine Asian countries in the past few weeks.” 

Although the above two tweets include mentions 

of “flu”, apparently they do not indicate any influ-

enza patient has presented nearby. Therefore it is 

required to develop classifiers to categorize dis-

eases/symptoms related to influenza in order to 

have an accurate influenza forecasting model. With 

this in mind, we consider to develop classifiers for 

diseases/symptoms related to influenza. We formu-

late the task as a classification problem and employ 

several baseline algorithms and recurrent neural 

networks (RNNs) to develop our models. The per-

formance of the developed models are evaluated on 

a corpus annotated with eight disease/symptoms 

including influenza, cold, hay fever, diarrhea, head-

ache, cough, fever and runny nose. 

                                                      
2https://nlp.stanford.edu/projects/glove/ 

2 Method 

2.1 Preprocessing 

In the preprocessing step, we normalize all web 

links and usernames into “@URL” and “@REF” 

respectively. The part-of-speech tagger developed 

by Gimpel et al. (2011) is then used to tokenize 

tweets followed by removing the hashtag symbol 

“#” from its attached keywords or topics. Finally, 

we followed the numeric normalization procedure 

proposed by (Dai, Touray, Wang, Jonnagaddala, & 

Syed-Abdul, 2016) to normalize all numeral parts 

in each token into “1”. 

2.2 Network Architecture 

The network architecture used in this study is a re-

current model consisting of an embedding layer, a 

bi-directional RNN layer followed by a dense layer 

to compute the posterior probabilities for each dis-

ease or symptom. Figure 1 illustrates the architec-

ture. 

2.3 Embedding Layer 

The pre-trained word vectors for Twitter generated 

by GloVe (Pennington, Socher, & Manning, 2014) 

was used to initialize the embedding layer. The 

pre-trained 200-dimensional vectors were trained 

on two billion tweets which can be downloaded 

from the project website2 . For word cannot be 

found in the pre-trained vectors, we initialized it 

with values closed to zero. 

2.4 Recurrent Neural Network and Dense 

Layer 

RNNs have proven to be a very powerful model in 

many natural language tasks (Mesnil, He, Deng, & 

Bengio, 2013; Tomá, Martin, Luká, Jan, & Sanjeev, 

2010). This work used the long short term memory 

(LSTM), which is a special kind of RNN capable 

of learning long-term dependencies, to implement 

the RNN layer. As traditional RNNs, LSTM net-

works have the form of a chain of repeating cells of 

its neural network. LSTM uses gates to control the 

information flow inside its network. In Figure 1, 

assume that the first cell in the forward-LSTM is 

the tth token. The cell uses Equation 1 to output a 

value by considering the value ht−1 generated by the 

previous cell and the current input xt. 

 𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1) 
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The cell then produces its two outputs Ct and ht by 

using equation 4 and equation 6 respectively. 

 𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2) 

 𝐶�̃� = tanh(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (3) 

 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶�̃� (4) 

 𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (5) 

 ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) (6) 

In our network architecture, we duplicate the 

first recurrent layer to create a second recurrent 

layer so that there are now two layers side-by-side. 

The second layer is denoted as the Backward 

LSTM in Figure 1. For the backward layer, the in-

put sequence is provided as a reversed copy of the 

input sequence.  

Finally, we concatenate the last frame from the 

forward recursion, and the first frame from the 

backward recursion to build the thought vector 

(Gibson). The vector is then be the input of the 

dense layer with a dimension of 150 for soft max 

classification. 

For the task studied in this work, we created one 

RNN model for each disease/symptom. Therefore, 

in total of eight RNN models were constructed for 

the eight types of diseases/symptoms. 

2.5 Baseline Systems 

Owing to the evaluation of the MedWeb task is 

ongoing, for the purpose of performance compar-

ison, we implemented several baseline algorithms 

with Weka (Holmes, Donkin, & Witten, 1994) in-

cluding C4.5 decision tree, simple logistic, sup-

port vector machine(SVM) trained with sequen-

tial minimal optimization, and Naïve Bayes Mul-

tinomial. The features used by the baseline were 

n-gram features with TF-IDF as the weighing 

function. Based on the tokens generated by the 

preprocessing step, we generate lowercased uni-

grams, bigrams and trigrams and filtered out stop 

words by using the list developed by McCallum 

(1996) along with a custom stop word list created 

by analyzing the training set. Finally, the Snow-

ball stemmer (Porter, 2001) is used to perform 

stemming.  
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Figure 1: Network architecture developed in this work. 
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3 Results 

3.1 Dataset 

The dataset released by NTCIR13-MedWeb task 

was used in this study (Kato, Kishida, Kando, Saka, 

& Sanderson, 2017). The dataset contains annota-

tions indicating whether a Twitter user or someone 

around the user has symptoms or diseases like in-

fluenza, cold, hay fever, diarrhea, headache, cough, 

fever or runny nose at that point in time. Each tweet 

in the dataset was assigned with one of the follow-

ing two labels. The label “p” (positive) is given if a 

tweet is determined as having symptom while the 

label “n” (negative) if it is not determined as a 

symptom/disease.  

The training set consists of 1,920 tweets. Table 

1 shows the statistics of the training set. As one can 

see that the dataset suffered the class imbalance 

problem.  

3.2 Evaluation Metrics 

We used the standard precision, recall and F-

measure to evaluate the developed methods. We 

considered both the micro- and macro-averaged 

F-measure (Sokolova & Lapalme, 2009). A mi-

cro-F-score is generated by pooling all true posi-

tives, false positives and false negatives and cal-

culate the F-score from that. A macro-average, on 

the other hand, is obtained by calculating the F-

score for each class, and then averaging those F-

scores to get a single number.  

3.3 Results of the Baseline System on the 

Training Set 

Table 2 and 3 show the two fold cross validation re-

sults on the English corpus of the MedWeb task. The 

baseline classifier with the best overall F-measure is 

SVM, which achieves the highest F-scores in the cat-

egories of “Cold” and “Influenza”. The detail per-

category performance of SVM is shown in Table 4.  

Consider the imbalance observed in the training 

set, we try to increase the weight of examples when 

the classifiers makes errors on false positives. 

However the F-scores of all baseline classifiers 

didn’t be improved. We also applied the synthetic 

minority oversampling technique (SMOTE) 

(Chawla, Bowyer, Hall, & Kegelmeyer, 2002) to 

create new instances for training SVM. The result 

is indicated by SVM-SMOTE in Table 2 and 3. We 

can observe that the precision and the recall is im-

proved in micro-average and macro-average re-

spectively. The overall F-score is also slightly im-

proved.  

Symptom/Disease Positive Negative 

Influenza 112 1808 

Diarrhea 189 1731 

Hay fever 201 1719 

Cough 237 1683 

Headache 254 1666 

Cold 284 1636 

Fever 355 1565 

Runny nose 417 1503 

Total 2049 13311 

Table 1: Statistics of the training set. 

 

 

 P R F 

SVM 0.869 0.880 0.875 

C4.5 0.849 0.861 0.855 

Naïve Bayes (NB) 0.262 0.966 0.413 

Simple Logistic 0.822 0.924 0.870 

NB Multinomial 0.666 0.874 0.756 

SVM-SMOTE 0.867 0.882 0.875 

Table 2: Baseline algorithm performance on 

the training set (micro-averaged). 

 

 

 P R F 

SVM 0.865 0.874 0.869 

C4.5 0.841 0.851 0.845 

Naïve Bayes (NB) 0.265 0.967 0.406 

Simple Logistic 0.817 0.915 0.863 

NB Multinomial 0.662 0.874 0.751 

SVM-SMOTE 0.861 0.876 0.869 

Table 3: Baseline algorithm performance on 

the training set (macro-averaged). 

 

 

 P R F 

Influenza 0.746 0.759 0.752 

Diarrhea 0.849 0.894 0.871 

Hay fever 0.848 0.915 0.880 

Cough 0.982 0.911 0.945 

Headache 0.887 0.929 0.908 

Cold 0.982 0.911 0.945 

Fever 0.837 0.865 0.850 

Runny nose 0.864 0.882 0.873 

Table 4: Performance of the best performed 

baseline model on the training set. 
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3.4 Results on the Test Set 

Table 5 and 6 show the performance of the two best 

performed baselines and the proposed RNN model 

on the test set of the MedWeb task. The developed 

RNN model can achieve an F-score of 0.845, 

which outperforms the F-score of the SVM model 

by 0.0754 and is closed to that of the best per-

formed baseline SVM-SMOTE. Comparing SVM-

SMOTE with the proposed RNN model, RNN has 

better precision while lower recall. We can also ob-

serve that the precision and recall of the developed 

RNN model has similar scores while SVM-based 

models have better recall.  

3.5 Discussion 

Because the organizers of the MedWeb task have 

not released the gold annotations for the test set, we 

cannot conduct in-depth error analysis on the test 

set. Herein, we list some important key terms for 

each symptoms/diseases based on the results of the 

training set in Table 7. The list is generated by us-

ing the tree structures of C4.5 to prioritize the im-

portant terms for each symptoms/diseases. In addi-

tion to the terms directly related to the correspond-

ing symptoms/diseases, we can see some interest-

ing terms like “dog” for runny nose and “Nepali” 

for diarrhea.  

4 Conclusion 

In this paper, we presented a neural network ar-

chitecture based on a bi-directional RNNs that can 

classify tweets conveying influenza-related infor-

mation. We study the performance of this archi-

tecture and compare it to the best performing 

baseline algorithm on the test set of the MedWeb 

task. Using th e micro-F1 measure, the developed 

RNN model outperforms SVM by 0.087 and is 

within 1% of the highest score achieved by SVM 

with oversampling technique. In the future, we 

will continue to improve the performance of our 

model and conduct in depth error analysis regard-

ing to the different symptoms/diseases.  

References  

Adam, D., Jonnagaddala, J., Chughtai, A. A., & 

Macintyre, C. R. (2017). ZikaHack 2016: A 

digital disease detection competitio. Paper 

presented at the Proceedings of the International 

Workshop on Digital Disease Detection using 

Social Media 2017, Taipei, Taiwan.  

Aramaki, E., Maskawa, S., & Morita, M. (2011). 

Twitter catches the flu: detecting influenza 

epidemics using Twitter. Paper presented at the 

Proceedings of the conference on empirical 

methods in natural language processing. 

Aramaki, E., Wakamiya, S., Morita, M., Kano, Y., 

& Ohkuma, T. (2017). Overview of the NTCIR-

13: MedWeb task. Paper presented at the 

Proceeding of the NTCIR-13 Conference, 

Tokyo, Japan.  

Bian, J., Topaloglu, U., & Yu, F. (2012). Towards 

large-scale twitter mining for drug-related 

adverse events. Paper presented at the 

Proceedings of the 2012 international 

workshop on Smart health and wellbeing. 

Charles-Smith, L. E., Reynolds, T. L., Cameron, 

M. A., Conway, M., Lau, E. H. Y., Olsen, J. 

M., . . . Corley, C. D. (2015). Using Social 

Media for Actionable Disease Surveillance and 

Outbreak Management: A Systematic 

Literature Review. PLoS ONE, 10(10), 

e0139701. doi:10.1371/journal.pone.0139701 

Chawla, N. V., Bowyer, K. W., Hall, L. O., & 

Kegelmeyer, W. P. (2002). SMOTE: synthetic 

Configuration P R F 

SVM 0.734 0.809 0.770 

SVM-SMOTE 0.807 0.911 0.856 

RNN 0.836 0.854 0.845 

Table 5: Performance on the test set (micro-av-

eraged). 

Configuration P R F 

SVM 0.733 0.835 0.770 

SVM-SMOTE 0.796 0.918 0.849 

RNN 0.818 0.844 0.828 

Table 6: Performance on the test set (macro-av-

eraged). 

Type Terms 

Cold cold, fever 

Cough coughing, cough, phlegm 

Hayfever because of, allergies, spring, pol-

len,  

Headache headache, head hurt 

Influenza flu, vaccinate 

Runny-

nose 

nose, dog 

Fever temperature 

Diarrhea stomach, Nepali 

Table 7: Key terms observed on the training 

set. 

37



 
 
 

   

minority over-sampling technique. Journal of 

artificial intelligence research, 16, 321-357.  

Dai, H.-J., Touray, M., Wang, C.-K., 

Jonnagaddala, J., & Syed-Abdul, S. (2016). 

Feature Engineering for Recognizing Adverse 

Drug Reactions from Twitter Posts. 

Information.  

Gibson, C. N., Adam. Thought Vectors, Deep 

Learning & the Future of AI - Deeplearning4j: 

Open-source, distributed deep learning for the 

JVM.    

Gimpel, K., Schneider, N., O'Connor, B., Das, D., 

Mills, D., Eisenstein, J., . . . Smith, N. A. (2011). 

Part-of-speech tagging for Twitter: annotation, 

features, and experiments. Paper presented at 

the Proceedings of the 49th Annual Meeting of 

the Association for Computational Linguistics: 

Human Language Technologies: short papers - 

Volume 2, Portland, Oregon.  

Ginsberg, J., Mohebbi, M. H., Patel, R. S., 

Brammer, L., Smolinski, M. S., & Brilliant, L. 

(2009). Detecting influenza epidemics using 

search engine query data. Nature, 457(7232), 

1012-1014.  

Holmes, G., Donkin, A., & Witten, I. H. (1994). 

Weka: A machine learning workbench. Paper 

presented at the Intelligent Information 

Systems, 1994. Proceedings of the 1994 

Second Australian and New Zealand 

Conference on. 

Iso, H., Wakamiya, S., & Aramaki, E. (2016, 

December 11-17). Forecasting Word Model: 

Twitter-based Influenza Surveillance and 

Prediction. Paper presented at the Proceedings 

of the 26th International Conference on 

Computational Linguistics, Osaka, Japan. 

Kato, M. P., Kishida, K., Kando, N., Saka, T., & 

Sanderson, M. (2017). Report on NTCIR-12: 

The Twelfth Round of NII Testbeds and 

Community for Information Access Research. 

Paper presented at the ACM SIGIR Forum. 

McCallum, A. K. (1996). Bow: A toolkit for 

statistical language modeling, text retrieval, 

classification and clustering. 

http://www.cs.cmu.edu/~mccallum/bow.   

Mesnil, G., He, X., Deng, L., & Bengio, Y. (2013). 

Investigation of recurrent-neural-network 

architectures and learning methods for spoken 

language understanding. Paper presented at the 

INTERSPEECH. 

Pennington, J., Socher, R., & Manning, C. D. 

(2014). Glove: Global vectors for word 

representation. Proceedings of the Empiricial 

Methods in Natural Language Processing 

(EMNLP 2014), 12, 1532-1543.  

Porter, M. F. (2001). Snowball: A language for 

stemming algorithms.   Retrieved from 

http://snowball.tartarus.org/texts/introduction.

html 

Sakaki, T., Okazaki, M., & Matsuo, Y. (2010). 

Earthquake shakes Twitter users: real-time 

event detection by social sensors. Paper 

presented at the Proceedings of the 19th 

international conference on World wide web. 

SARKER, A., NIKFARJAM, A., & GONZALEZ, 

G. (2016). SOCIAL MEDIA MINING SHARED 

TASK WORKSHOP. Paper presented at the 

Pacific Symposium on Biocomputing 2016.  

Sarker, A., O’Connor, K., Ginn, R., Scotch, M., 

Smith, K., Malone, D., & Gonzalez, G. (2016). 

Social Media Mining for Toxicovigilance: 

Automatic Monitoring of Prescription 

Medication Abuse from Twitter. Drug Safety, 

39(3), 231-240. doi:10.1007/s40264-015-

0379-4 

Sokolova, M., & Lapalme, G. (2009). A 

systematic analysis of performance measures 

for classification tasks. Information Processing 

& Management, 45(4), 427-437.  

Tomá, M., Martin, K., Luká, B., Jan, È ., & 

Sanjeev, K. (2010). Recurrent neural network 

based language model. Paper presented at the 

Proceedings of the 11th Annual Conference of 

the International Speech Communication 

Association, Makuhari, Chiba, Japan.  

 

38


