
Proceedings of the 4th Workshop on Asian Translation, pages 154–159,
Taipei, Taiwan, November 27, 2017. c©2017 AFNLP

CUNI NMT System for WAT 2017 Translation Tasks

Tom Kocmi Dušan Variš Ondřej Bojar
Charles University,

Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics
{kocmi,varis,bojar}@ufal.mff.cuni.cz

Abstract

The paper presents this year’s CUNI sub-
missions to the WAT 2017 Translation
Task focusing on the Japanese-English
translation, namely Scientific papers sub-
task, Patents subtask and Newswire sub-
task. We compare two neural network
architectures, the standard sequence-to-
sequence with attention (Seq2Seq) (Bah-
danau et al., 2014) and an architecture us-
ing convolutional sentence encoder (FB-
Conv2Seq) described by Gehring et al.
(2017), both implemented in the NMT
framework Neural Monkey1 that we cur-
rently participate in developing. We also
compare various types of preprocessing of
the source Japanese sentences and their
impact on the overall results. Furthermore,
we include the results of our experiments
with out-of-domain data obtained by com-
bining the corpora provided for each sub-
task.

1 Introduction

With neural machine translation (NMT) currently
becoming the leading paradigm in the field of
machine translation, many novel NMT architec-
tures with state-of-the-art results are being pro-
posed. In the past, there were reports on large
scale evaluation (Britz et al., 2017), however, the
experiments were performed on a limited number
of language pairs from related language families
(English→German, English→French) or focused
on a subset of possible NMT architectures, leav-
ing room for further exploration.

One of the downsides of NMT is the limited al-
lowable size of both input and output vocabular-
ies. Various solutions for dealing with potential

1http://ufal.mff.cuni.cz/neuralmonkey

out-of-vocabulary (OOV) tokens were proposed
either by using a back-off dictionary look-up (Lu-
ong et al., 2015), character-level translation of un-
known words (Luong and Manning, 2016) or re-
cently quite popular translation via subword units
generated by byte pair encoding (Sennrich et al.,
2016c). However, in the case of Japanese which
has no clear definition of a word unit, there has
been less research on how a particular preprocess-
ing can influence the overall NMT performance.

In this system description paper we compare
two sequence-to-sequence architectures, one us-
ing a recurrent encoder and one using a convolu-
tional encoder. We also report results of our exper-
iments with preprocessing of Japanese. Further-
more, we report how including additional out-of-
domain training data influence the performance of
NMT.

2 Dataset Preparation

In this section we describe the methods we used
for preprocessing both Japanese and English.

Due to Japanese being an unsegmented lan-
guage with no clear definition of word boundaries,
proper text segmentation is essential. We used
MeCab2 (Kudo et al., 2004) with the UniDic3 dic-
tionary to perform the tokenization.

For English, we used morphological analyser
MorphoDiTa4 (Straková et al., 2014) to tokenize
English training sentences. Based on the gener-
ated lemmas, we also performed truecasing of the
target side of the training data.

To reduce the vocabulary size, we use byte
pair encoding (BPE; Sennrich et al., 2016c) which
breaks all words into subword units. The vo-
cabulary is initialized with all alphabet characters

2http://taku910.github.io/mecab/
3https://osdn.net/projects/unidic/
4https://github.com/ufal/morphodita/

154

present in the training data and larger units are
added on the basis of corpus statistics. Frequent
words make it to the vocabulary, less frequent
words are (deterministically) broken into smaller
units from the vocabulary. We generated separate
BPE merges for each dataset, both source and tar-
get side.

Because the BPE algorithm, when generat-
ing the vocabulary, performs its own (subword)
segmentation, we decided to compare a system
trained on the tokenized Japanese (which was then
further segmented by BPE) with a system that
was segmented only via BPE. Additionally, we
also performed a comparison with a system with
Japanese text transcribed in Latin alphabet. The
romanization was done by generating Hiragana
transcription of each token using MeCab and then
transcribing these tokens to Romaji using jaconv.5

The resulting text was then also further segmented
by BPE. The results are discussed in Section 4.1

3 Architecture Description

We use Neural Monkey6 (Helcl and Libovický,
2017), an open-source NMT and general
sequence-to-sequence learning toolkit built using
the TensorFlow (Abadi et al., 2015) machine
learning library.

Neural Monkey is flexible in model configura-
tion supporting the combination of different en-
coder and decoder architectures as well as solving
various tasks and metrics.

We perform most of the experiments on the
8GB GPU NVIDIA GeForce GTX 1080. For the
preprocessing of data and final inference, we use
our cluster of CPUs.

The main hyperparameters of the neural net-
work are set as follows. We use the batch size of
60. As the optimization algorithm we use Adam
(Kingma and Ba, 2014) with initial learning rate
of 0.0001. We used only the non-ensembled left-
to-right run (i.e. no right-to-left rescoring as done
by Sennrich et al. 2016a) with beam size of 20,
taking just the single-best output.

We limit the vocabulary size to 30,000 subword
units. The vocabulary is constructed separately for
the source and target side of the corpus.

We compare two different architectures. We de-
scribe both of them in more details as well as the

5https://github.com/ikegami-yukino/
jaconv

6http://ufal.mff.cuni.cz/neuralmonkey

hyperparameters used during the training in the
following sections.

3.1 Sequence to Sequence

Our main architecture is the standard encoder-
decoder architecture with attention as proposed by
Bahdanau et al. (2014).

The encoder is a bidirectional recurrent neu-
ral network (BiRNN) using Gated Recurrent Units
(GRU; Cho et al., 2014). In each step, it takes an
embedded token from the input sequence and its
previous output and outputs a representation of the
token. The encoder works in both directions; the
resulting vector representations at corresponding
positions are concatenated. Additionally, the final
outputs of both the forward and backward run are
concatenated and used as the initial state of the de-
coder.7

The decoder is a standard RNN with the con-
ditional GRU (Calixto et al., 2017) recurrent unit.
At each decoding step, it takes its previous hid-
den state and the embedding of the token produced
in the previous step as the input and produces the
output vector. This vector is used to compute the
attention distribution vector over the encoder out-
puts. The RNN output and the attention distribu-
tion vector are then used as the input of a linear
layer to produce the distribution over the target
vocabulary. During training, the previously gener-
ated token is replaced by the token present in the
reference translation. The architecture overview is
in Figure 1.

We have used the following setup of network
hyperparameters. The encoder uses embeddings
of size 500 and the hidden state of bidirectional
GRU network of size 600 in both directions.
Dropout (Srivastava et al., 2014) is turned off and
the maximum length of the source sentence is set
to 50 tokens. The size of the decoder hidden state
is 600 and the output embedding is 500. In this
case, dropout is also turned off. The maximum
output length is 50 tokens. In this paper, we will
refer to this architecture as Seq2Seq.

3.2 Convolutional Encoder

The second architecture is a hybrid system using
convolutional encoder and recurrent decoder.

We use the convolutional encoder defined by
Gehring et al. (2017). First, the input sequence

7The concatenated final states are transformed to match
the size of the decoder hidden state.

155

Figure 1: Simplified illustration of the standard RNN encoder-decoder architecture. Labels describing
parts of the network are in italics. <bos> and <eos> are special tokens marking the beginning and end
of the sentence.

of tokens x = (x1, ..., xn) is assigned a sequence
of embeddings w = (w1, ..., wn) where wi ∈ Rf

is produced by embedding matrix D ∈ R|V |×f .
When compared to the RNN encoder, the convolu-
tional encoder does not explicitly model positions
of the tokens in the input sequence. Therefore, we
include this information using positional embed-
dings. We model the information about the posi-
tion in the input sequence via p = (p1, ..., pn)8

where pi ∈ Rf . The resulting input sequence em-
bedding is computed as e = (w1+p1, ..., wn+pn).

The encoder is a convolutional network stack-
ing several convolution blocks over each other.
Each block contains a one dimensional convolu-
tion followed by a nonlinearity. The convolu-
tion with kernel size k and stride 1 with SAME
padding is applied on the input sequence using d
input channels and 2 × d output channels. This
output is then fed to the Gated Linear Unit (GLU;
Dauphin et al., 2016) which substitutes a nonlin-
earity between the convolution blocks. Addition-
ally, residual connections are added to the pro-
duced output. At the final layer, we get the en-
coded sequence y = (y1, ..., yn) where yi ∈ Rd.

We use same decoder as in the previous sec-
tion. The initial decoder state s ∈ Rd is created by
picking element-wise maximum across the length

8Another option is to use the sine and cosine functions of
different frequencies (Vaswani et al., 2017) instead of train-
able positional embeddings.

of the encoder output sequence y. We tried other
methods for creating the initial decoder state and
this one produced the best results. Figure 2 shows
the overview of the encoder architecture.

In the experiments we use encoder with the em-
bedding size of 500 and maximum length of 50
tokens per sentence. The encoder uses 600 input
features in each of its 6 convolutional layers with
the kernel size of 5. Dropout is turned off. For the
rest of this paper we will refer to this architecture
as FBConv2Seq.

4 Experiments

In this section we describe all experiments we con-
ducted for the WAT 2017 Translation Task. We
report results over the development set.

4.1 Japanese Tokenization

We experimented with various tokenization meth-
ods of the Japanese source side. In Table 1 we
compare untokenized, tokenized and romanized
Japanese side. This experiment was evaluated over
the top 1 million training examples in the ASPEC
dataset.

4.2 Architecture Comparison

In Table 2 we compare the architectures we de-
scribed in Section 3. We ran experiments on 4
different datasets. The JPO, JIJI, ASPEC with 1
million best sentences were used with tokenized

156

Figure 2: Illustration of the encoder used in the
FBConv2Seq architecture. The attention over the
Encoder Outputs is computed in a similar fashion
as in Seq2Seq architecture and is omitted for sim-
plicity.

Tokenization BLEU
Untokenized 24.69
Tokenized 26.56
Romanized 25.46

Table 1: Comparison of various tokenization
methods measured on the ASPEC dataset.

Japanese. The dataset ASPEC 3M was not tok-
enized by MeCab.

After examination of the Table 2, we can see
that in most cases the Seq2Seq model (Bahdanau
et al., 2014) outperforms the FBConv2Seq archi-
tecture. On the other hand, the FBConv2Seq
model performed better on the untokenized cor-
pus. This might suggest that the model has an ad-
vantage in processing inputs which are not prop-
erly segmented thanks to the convolutional nature
of the encoder. This could be valuable for lan-
guages that cannot be segmented.

4.3 ASPEC Size of Data

The ASPEC dataset consists of 3 millions of En-
glish to Japanese sentence pairs ordered with a de-
creasing accuracy of the translation. It is a well
known fact about neural networks that the more

Corpora Seq2Seq FBConv2Seq
JPO 35.40 BLEU 33.87 BLEU
JIJI 16.40 BLEU 13.72 BLEU
ASPEC 1M 26.56 BLEU 22.29 BLEU
ASPEC 3M untok. 18.14 BLEU 19.16 BLEU

Table 2: Comparison of two examined architec-
tures.

Corpora In-domain Combined corpora
JPO (1M) 34.95 BLEU 33.62 BLEU
JIJI (0.2M) 16.40 BLEU 14.19 BLEU
ASPEC (2M) 23.19 BLEU 23.46 BLEU

Table 3: Comparison of in-domain data only and
combined corpora.

data is available, the better performance they can
get. In this experiment we try to compare the in-
fluence of the size of dataset and the quality of the
training pairs. We decided to experiment with sub-
corpora containing 1, 1.5, 2, 2.5 and 3 million best
sentence pairs. We refer to them as ASPEC 1M,
ASPEC 1.5M, ASPEC 2M, ASPEC 2.5M, ASPEC
3M respectively.

For simplicity, the experiment was performed
with untokenized Japanese side and we used the
Seq2Seq architecture. All corpora are shuffled in
order to overcome the ordering by the quality of
translation.

The results presented in Figure 3 show a clear
picture that the overall quality of the training data
is more important than the total amount of the
data.

4.4 Corpus Combination

In the previous section, we experimented with the
quality of the training corpora. In this experiment
we show whether more data can help in various
domains or if it is also a burden as shown in the
previous section comparing quality of the data.

We combined tokenized corpora for JPO (1 mil-
lion sentences), JIJI (200 thousand sentences) and
2 million of the best sentences from ASPEC. The
resulting corpus was shuffled.

The results in Table 3 suggest that the domain is
important for both the JPO and JIJI datasets. Inter-
estingly, it improved the score of the ASPEC 2M.

There is also another explanation which is more
plausible with respect to the experiments in the
previous section. The training data in JPO and JIJI
have better quality than the data in ASPEC 2M,
which leads to the worse performance on those
datasets and on the other hand cleaner data helps

157

0

5

10

15

20

25

0 2 4 6 8 10 12 14

B
L

E
U

Steps (in millions examples)

ASPEC 1
ASPEC 1.5

ASPEC 2
ASPEC 2.5

ASPEC 3

Figure 3: Learning curves over different sizes of ASPEC data.

Corpora Results
JPO 35.35 BLEU
JIJI 16.40 BLEU
ASPEC 25.56 BLEU

Table 4: Performance of the final models on the
development data.

ASPEC to increase the performance.
More research on this topic is needed to answer

which of the explanations is more plausible. In
future work, we want to experiment with com-
bined corpora of JPO, JIJI and only 1 million of
the cleanest sentences from ASPEC.

4.5 Official Results
Based on the previous experiments we decided to
use the tokenized and shuffled in-domain training
data for each of the tasks. For the Translation Task
submission, we chose the Seq2Seq architecture,
because it had a better overall performance. For
the ASPEC dataset, we decided to train only on
the 1 million cleanest training data. The results of
the evaluation done on the corresponding develop-
ment datasets are in Table 4.

The results of Translation Task are available on
the WAT 2017 website.9 Our system performed
mostly on average. It was beaten by more sophis-
ticated architectures using more recent state-of-the
art techniques.

5 Summary

In this system description paper, we presented ini-
tial results of our research in Japanese-English
NMT. We compared two different architectures
implemented on NMT framework, Neural Mon-
key, however, as the official results of the WAT

9http://lotus.kuee.kyoto-u.ac.jp/WAT/
evaluation/index.html

2017 Training Task suggest, future improvements
needs to be done to catch-up with the current state
of the art.

We performed experiments with different in-
put language tokenization combined with the byte-
pair-encoding subword segmentation method. In
the future, we plan to explore other tokenization
options (e.g. splitting to bunsetsu) together with
using a shared vocabulary for both the source and
target languages. We are curious, whether the
latter will bring an improvement when combined
with romanization of Japanese.

Lastly, we made several experiments with
dataset combination suggesting that including ad-
ditional out-of-domain data is generally harmful
for the NMT system. As the next step we plan
to investigate options for creating additional syn-
thetic data and their impact on the overall perfor-
mance as suggested by Sennrich et al. (2016b).

Acknowledgments

This work has been in part supported by the
European Union’s Horizon 2020 research and
innovation programme under grant agreements
No 644402 (HimL) and 645452 (QT21), by
the LINDAT/CLARIN project of the Ministry
of Education, Youth and Sports of the Czech
Republic (projects LM2015071 and OP VVV
VI CZ.02.1.01/0.0/0.0/16 013/0001781), by the
Charles University Research Programme “Pro-
gres” Q18+Q48, by the Charles University SVV
project number 260 453 and by the grant GAUK
8502/2016.

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-

158

rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Vasude-
van, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xi-
aoqiang Zheng. 2015. TensorFlow: Large-scale ma-
chine learning on heterogeneous systems. Software
available from tensorflow.org.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. In ICLR 2015.

Denny Britz, Anna Goldie, Minh-Thang Luong, and
Quoc V. Le. 2017. Massive exploration of
neural machine translation architectures. CoRR,
abs/1703.03906.

Iacer Calixto, Qun Liu, and Nick Campbell. 2017.
Doubly-attentive decoder for multi-modal neural
machine translation. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2017, Vancouver, Canada, July 30
- August 4, Volume 1: Long Papers, pages 1913–
1924.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. In Proceedings of SSST@EMNLP 2014,
Eighth Workshop on Syntax, Semantics and Struc-
ture in Statistical Translation, Doha, Qatar, 25 Oc-
tober 2014, pages 103–111.

Yann N Dauphin, Angela Fan, Michael Auli, and
David Grangier. 2016. Language modeling with
gated convolutional networks. arXiv preprint
arXiv:1612.08083.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann Dauphin. 2017. Convolutional se-
quence to sequence learning.

Jindřich Helcl and Jindřich Libovický. 2017. Neural
Monkey: An Open-source Tool for Sequence Learn-
ing. The Prague Bulletin of Mathematical Linguis-
tics, 107:5–17.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Taku Kudo, Kaoru Yamamoto, and Yuji Matsumoto.
2004. Applying conditional random fields to
japanese morphological analysis. In Proceedings
of EMNLP 2004, pages 230–237, Barcelona, Spain.
Association for Computational Linguistics.

Minh-Thang Luong and Christopher D. Manning.
2016. Achieving open vocabulary neural machine
translation with hybrid word-character models. In

Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2016,
August 7-12, 2016, Berlin, Germany, Volume 1:
Long Papers.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2015, Lisbon, Portu-
gal, September 17-21, 2015, pages 1412–1421.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Edinburgh Neural Machine Translation Sys-
tems for WMT 16. In Proceedings of the First
Conference on Machine Translation, pages 646–
654, Berlin, Germany. Association for Computa-
tional Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2016, August 7-12, 2016,
Berlin, Germany, Volume 1: Long Papers.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016c. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15:1929–1958.

Jana Straková, Milan Straka, and Jan Hajič. 2014.
Open-Source Tools for Morphology, Lemmatiza-
tion, POS Tagging and Named Entity Recognition.
In Proceedings of 52nd Annual Meeting of the As-
sociation for Computational Linguistics: System
Demonstrations, pages 13–18, Baltimore, Mary-
land. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

159

