
Proceedings of the 4th Workshop on Asian Translation, pages 146–153,
Taipei, Taiwan, November 27, 2017. c©2017 AFNLP

Kyoto University Participation to WAT 2017
Fabien Cromieres

Japan Science and Technology Agency
5-3, Yonbancho, Chiyoda-ku,

Tokyo, 102-8666, Japan
fabien@pa.jst.jp

Raj Dabre
Kyoto University

Yoshida-honmachi, Sakyo-ku,
Kyoto, 606-8501, Japan

prajdabre@gmail.com

Toshiaki Nakazawa
Japan Science and Technology Agency

5-3, Yonbancho, Chiyoda-ku,
Tokyo, 102-8666, Japan
nakazawa@pa.jst.jp

Sadao Kurohashi
Kyoto University

Yoshida-honmachi, Sakyo-ku,
Kyoto, 606-8501, Japan

kuro@i.kyoto-u.ac.jp

Abstract

We describe here our approaches and re-
sults on the WAT 2017 shared translation
tasks. Motivated by the good results we
obtained with Neural Machine Translation
in the previous shared task, we continued
to explore this approach this year, with
incremental improvements in models and
training methods. We focused on the AS-
PEC dataset and could improve the state-
of-the-art results for Chinese-to-Japanese
and Japanese-to-Chinese translations.

1 Introduction

This paper describes our experiments for the WAT
2017 shared translation task. For more details
refer to the overview paper (Nakazawa et al.,
2017). This translation task contains several sub-
tasks, but we focused on the ASPEC dataset, for
the Japanese-English and Japanese-Chinese lan-
guage pairs. Following up on our findings during
WAT 2016 (Nakazawa et al., 2016) that our Neural
Machine Translation system yielded significantly
better results than our Example-Based Machine
Translation system, we only experimented with
NMT this year.

Our improvements are actually quite incremen-
tal, with only small changes in the model archi-
tectures, model sizes, training and decoding ap-
proaches. Together, these small changes, however,
allow us to improve over our past year’s results by
several BLEU points, leading to the best official
results for the Japanese-Chinese pair. In terms of
pairwise human evaluation scores we have the best
official results for all language directions except
for English to Japanese. Our JPO adequacy scores

are also within 1% of the best score for these lan-
guage directions.

2 The Kyoto-NMT system

Following its success in the past few years, Neu-
ral Machine Translation has become the new ma-
jor approach to Machine Translation. In particu-
lar, the sequence-to-sequence with attention mech-
anism model, first proposed in (Bahdanau et al.,
2015) was proven to be very powerful and has be-
come the de facto baseline for NMT.

Our Kyoto-NMT system largely relies on an
implementation of this model, with small modi-
fications. Kyoto-NMT is implemented using the
Chainer1 toolkit (Tokui et al., 2015). We make this
implementation available under a GPL license.2

2.1 Overview of NMT

We describe here, briefly, our implementation
based on the (Bahdanau et al., 2015) model. As
shown in Figure 1, an input sentence is first con-
verted into a sequence of vector through an em-
bedding layer; these vectors are then fed to two
LSTM layers (one going forward, the other going
backward) to give a new sequence of vectors that
encode the input sentence. On the decoding part of
the model, a target-side sentence is generated with
what is conceptually a recurrent neural network
language model: an LSTM is sequentially fed the
embedding of the previously generated word, and
its output is sent through a deep softmax layer to
produce the probability of the next word. This de-
coding LSTM is also fed a context vector, which is

1http://chainer.org/
2https://github.com/fabiencro/knmt . See also

(Cromieres, 2016)

146

a weighted sum of the vectors encoding the input
sentence, provided by the attention mechanism.

As is a common practice, we stack several lay-
ers of LSTMs for both the encoder and the de-
coder. When using deeper stacks of LSTMs, we
can optionally add residual connections (He et al.,
2016) to make the training easier. Furthermore, we
also added layer normalization (He et al., 2016)
to the LSTMs, which is supposed to also help
training as well as regularization. However, we
did not actually notice improvements when using
layer normalization.

2.2 Direct connection from previous word to
attention model

There is an interesting flaw in the original archi-
tecture of the model (as well as in the model de-
scribed in (Bahdanau et al., 2015)). This is briefly
mentioned3 in (Goto and Tanaka, 2017), but we
will expand on the details a bit more here.

The attention mechanism computes the current
context using only the previous decoder state as
input. But the previous decoder state has been
itself computed before the previously generated
target word was selected. Therefore, when com-
puting the current context, the attention mecha-
nism is totally unaware of the previously generated
word. Intuitively, this seems wrong: the attention
should certainly depend on the previously gener-
ated word.

Therefore, we add another input to the attention
model: the previous word embedding. To be pre-
cise, re-using the notations from (Bahdanau et al.,
2015)), the original attention is computed with this
equation:

eij = vT
a tanh(Wa · si−1 + Ua · hj) (1)

where eij is the unnormalized attention coeffi-
cient on source word j when decoding target word
at step i, si−1 is the decoder state at step i−1, and
hj is the encoding of source word j. The matrices
Wa and Ua, and the vector va are the parameters
of the alignment model. We replace this equation
with:

eij = vT
a tanh(Wa·si−1+Ua·hj+Xa·Ey−1) (2)

3The author had previously mentioned this to us in private
communications.

where Ey−1 is the embedding of the previously
generated target word. This increases the number
of parameters by Eo ·Ho (ie. the size of the matrix
Xa), where Eo is the size of target embedings, and
Ho is the size of the decoder state.

This change appeared to be remarkably effi-
cient, giving a +1 to +2 BLEU improvement at the
cost of about 1% increase in the size of the model.

2.3 Feed-Forward model

Aside from this implementation relying on
LSTMs, we also implemented a model without re-
current unit but with self-attention layers, based
on the model proposed in (Vaswani et al., 2017a).
This model obtained state-of-the-art results on
some European languages. And the code released
by the author of the original paper was used as
one of the organizer’s baseline of WAT2017. This
baseline ended up being unbeaten (in term of
BLEU) by participants for the English-to-Japanese
direction4, but was inferior to other participant’s
submissions (including ours) in the other direc-
tions.

Our experiences with our own implementation
of a feed-forward self-attention model led to re-
sults slightly inferior to the ones we obtained using
a more classic LSTM-based architecture. Which is
why all results presented in this paper are related
to the LSTM-based model. Such feed-forward
models probably have high potentials for the fu-
ture, as they are more computationally efficient
and do obtain state-of-the-art results on certain
language directions. But, currently, we do not find
that they should be necessarily preferred to recur-
rent architectures.

3 Models hyperparameters and
pre-processing

We describe here the general settings we used for
the hyperparameters of our models, as well as the
pre-processing we applied to the data.

3.1 Preprocessing

As a first preprocessing step, English sentences
were tokenized and lowercased. Both Japanese
sentences and Chinese sentences were automat-
ically segmented, respectively with JUMAN5

(Kurohashi, 1994) and SKP (Shen et al., 2016).

4but see section 4.2.1 for our attempt at system combina-
tion

5http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JUMAN

147

Figure 1: The structure of a NMT system with attention, as described in (Bahdanau et al., 2015) (but with
LSTMs instead of GRUs). The notation “<1000>” means a vector of size 1000. The vector sizes shown
here are the ones suggested in the original paper. We use this general architecture for our model, but the
single LSTMs are replaced by stacks of LSTMs. We also add a connection from the target embedding to
the attention model, as suggested by (Goto and Tanaka, 2017), which was not in the original model (see
section 2.2)

We used subword segmentation for all target
languages, so as to reduce the target vocabulary
size. This makes the translation process more ef-
ficient memory-wise and computation-wise, while
mostly avoiding the need for unknown-word re-
placement tricks such as in (Luong et al., 2015).
The subword segmentation was done using the
BPE algorithm (Sennrich et al., 2015) 6.

For the Japanese-Chinese language pair, we
learned a joint segmentation (as suggested in (Sen-
nrich et al., 2015)). We used a character equiv-
alence map (Chu et al., 2013) to maximize the
number of common characters between Japanese
and Chinese when learning the joint segmentation.
The joint segmentation was aimed at producing a
vocabulary size of about 40,000 words for both the
source and target vocabulary.

For the Japanese-English language pair, we did
not use a joint segmentation. We created a BPE
model of about 40,000 words for the target lan-
guage, and about 100,000 words for the source
vocabulary. Indeed, a large source vocabulary has
less impact on performance than a large target vo-
cabulary, and we expected the larger amount of

6using the BPE segmentation code at
https://github.com/rsennrich/subword-nmt

data available for this language pair would let us
correctly train a larger amount of embeddings.

3.2 Model hyper-parameters
For all experiments, we have used the following
basic settings:

• Source and target-side embeddings of size
1024

• Source and target-side hidden states of size
1024

• Attention mechanism hidden states of size
1024

• Deep softmax output with a 2-maxout layer
of size 512

We used LSTMs (Hochreiter and Schmidhuber,
1997) as the recurrent units for both the encoder
and the decoder. We empirically found them to
give better results than GRUs (Chung et al., 2014)
in the previous shared task.

We considered stacks of 2 and 3 layers of
LSTMs. Some preliminary experiments had con-
vinced us that 4 layers or more did not lead to sig-
nificant improvements, at least in the case of the

148

Japanese-Chinese dataset. Adding residual con-
nections proved to be helpful in accelerating train-
ing in the case of a 3-layers encoder-decoder7.
They are not necessary when we stack only 2 lay-
ers of LSTMs.

We also experimented with inter-layer dropout
regularization (Srivastava et al., 2014), as first sug-
gested by (Zaremba et al., 2014).

3.3 Training Settings

Our training settings were mostly the same as
those reported for WAT2016. We used ADAM
(Kingma and Ba, 2014) as the training algorithm.

We also tried to do some annealing after the
ADAM training. That is, we first ran ADAM un-
til the dev loss stabilized. Then we switched to
a simple stochastic gradient descent with a small
learning rate ranging from 0.1 to 0.01. This pro-
cess did lead to an significant further decrease of
dev loss and increase of greedy dev BLEU. How-
ever, somehow surprisingly, this did not lead to
a BLEU improvement when translating with the
beam-search algorithm.

We used a dropout rate of 20% for the inter-
layer dropout. We used L2 regularization through
a weight decay factor of 1e-6. We also used an
early stopping scheme: every 200 training itera-
tions, we computed the perplexity of the devel-
opment part of the ASPEC data. We also com-
puted a BLEU score by translating this develop-
ment data with a “greedy search.”8 We kept track
of the parameters that gave the best development
BLEU and the best development perplexity so far.

We used dynamically-sized minibatches. Mini-
batches were created by grouping training sen-
tences of similar size until a threshold on the total
number of words was met. The threshold was cho-
sen so as to fill the memory of the GPU and could
differ depending on the dataset and the model
trained. This threshold was usually between 4000
and 8000 words per minibatch. We found these
dynamically-sized minibatches to allow for faster
training than the fixed-size minibatches we had
used previously. We also discarded training sen-
tences longer than 90 words.

7In our participation to WAT2016, we had reported having
disappointing results with 3-layers encoder-decoders. We can
now confirm that better results can be obtained either by a
much longer training or by adding residual connections.

8i.e., we did not use the beam search procedure described
in section 3.4, but simply translated with the most likely word
at each step. Using a beam search is to slow when we need to
do frequent BLEU evaluations.

As we had described in (Cromières et al., 2016),
we added some additional noise to the target em-
beddings in the hope to make the decoder rely
more on the source context than on the previously
generated word when generating the next word.

3.4 Beam Search

In general, greedy decoding (that lets the decoder
always select the next word with highest proba-
bility given the previously generated words) gives
sub-optimal translation results. It is therefore
common to use a beam-search approach to decod-
ing, keeping a beam of translation hypotheses in-
stead of just the greediest one.

Implementations of such a beam-search decod-
ing can vary. We detail here the way our decoding
work, which differs in some ways with, for exam-
ple, the one originally provided by the LISA lab
of Université de Montréal.9. It is an algorithm we
had already used for the WAT2016 shared task and
found to give good results. This time, we option-
ally added some more complex scoring and prun-
ing inspired from the beam-search algorithm in
(Wu et al., 2016).

We detail our basic beam search procedure in
Algorithm 1. Given an input sentence i of length
Li, we first estimate the maximum length of the
translation Lmt. Lmt is estimated by Lmt = r ·Li,
where r is a language dependent ratio. We em-
pirically found the following values to work well
: r = 1.2 for Japanese-to-English, r = 2 for
English-to-Japanese, and r = 1.5 for Japanese-
to-Chinese and Chinese-to-Japanese. At the end,
we found it beneficial to rank the generated trans-
lations by their log-probability divided by their
length.

Instead of our simple pruning and normalized
scores, we also considered pruning and scoring
functions such as the ones proposed in (Wu et al.,
2016). In particular, the equation 14 of this paper
describes a more complex parameterized scoring
function that takes into account both the length of
the translation and the coverage of the attention.
We did not take the time to select the three hyper-
parameters of this scoring function and just used
the default ones given in the paper. As a result we
could only observe benefits from this more com-
plex scoring function for the Japanese-to-English
direction (improving the results by only about 0.2
BLEU). For the three other directions, our basic

9https://github.com/lisa-groundhog/

149

algorithm gavw slightly better results. It could be
that the better results could be obtained by tuning
each hyperparameter to each dataset and language
direction.

3.5 Averaging and Ensembling

It is well known that using an ensemble of several
independently trained models can boost NMT per-
formances by several BLEU points. We did this
in the same way as was described in (Cromières
et al., 2016).

On top of ensembling independently trained
models, we had found it useful to also make an
ensemble with the parameters of the same model
corresponding respectively to the best loss, best
dev BLEU and last obtained during the training
process (a practice which we will call here self-
ensemble). Following (Junczys-Dowmunt et al.,
2016), we tried to compute averaged parameters
instead of ensembling models. We found this to
work surprisingly well. We observed only non-
significant BLEU drops (by about 0.1 BLEU). But
with the benefit that the averaged model has the
same time and space complexity as a single model,
while an ensemble of N models has N times the
time and space complexity of a single model. We
therefore switched to this averaging approach in-
stead of the self-ensemble approach10.

4 Results

4.1 Details for each submission

In general, all experiments were run following
the methodology and hyperparameters described
in section 3. We detail here the specific settings
for each submissions.

Ja → En Submission 1 and 2 correspond to an
ensemble of 4 models, two of them having 2 lay-
ers for encoders and decoders, and two of them
having 3 layers. In submission 2, we decode using
the scoring function from (Wu et al., 2016) (see
section 3.4), while submission 1 uses our normal
scoring function.

En → Ja Submission 1 corresponds to an en-
semble of 4 models, two of them having 2 layers
for encoders and decoders, and two of them having
3 layers.

10Of course, this is only expected to work when averaging
parameters from the same training run. Ensembling remains
the only option to combine independently trained models.

Ja → Zh Submission 2 corresponds to an en-
semble of 5 models, three of them having 2 layers
for encoders and decoders, and two of them having
3 layers. Submission 1 adds 2 additional models to
the ensemble, having 3 layers on the encoder and
2 on the decoder.

Zh → Ja Submission 1 corresponds to an en-
semble of 5 models, three of them having 2 lay-
ers for encoders and decoders, and two of them
having 3 layers. Submission 2 does things a bit
differently. It is an ensemble of 6 models using a
keyword replacement method similar to (Li et al.,
2016).

4.2 Official Evaluation Results

Table 1 shows the official automatic and human
evaluation results of the ASPEC subtasks that we
participated in. “Rank” shows the ranking of our
submissions among all the submissions for each
subtask.

From the point of view of human pairwise eval-
uation, our system achieved the best translation
quality for all the subtasks except for En→ Ja.

From the point of view of automatic BLEU
evaluation, we obtained the best results for the
two directions of the Japanese-Chinese dataset,
but not for the Japanese-English dataset. In the
case of JPO Adequacy scores we rank 2nd for the
three language directions for which we had ranked
first in term of pairwise evaluation. But because
the difference in adequacy score with respect to
the first system is by less than 1%, it might not
be statistcially significant. For Japanese to Chi-
nese we noticed that we had a higher percentage
of translations which were rated as perfect com-
pared to the other systems.In general the number
of translations with the lowest scores (with a rating
of 1) are much lower when compared to last years
results which is a clear indication of progress.

It is interesting to note that these results reveal
a certain discrepancy between BLEU and human
evaluation. In particular, for Japanese-to-English,
although our submission was significantly below
some other submissions in term of BLEU, it ended
up being given a higher score by human evalua-
tion.

It somehow confirms that BLEU is not always
a clear indicator of translation quality, maybe es-
pecially for a language like Japanese that has free
word order. Moreover, there are questions on the
reliability of BLEU when the BLEU scores are

150

Algorithm 1 Beam Search
1: Input: decoder dec conditionalized on input sentence i, beam width B
2: Lmt← r · |i| ▷ Lmt: Maximum translation length, r: Language-dependent length ratio
3: finished← [] ▷ list of finished translations (log-prob, translation)
4: beam← array of Lmt item lists ▷ an item: (log-probability, decoder state, partial translation)
5: beam[0]← [(0, sti, ”)] ▷ sti: initial decoder state
6: for n← 1 to Lmt do
7: for (lp, st, t) ∈ beam[n− 1] do
8: prob, st′← dec(st, t[−1]) ▷ dec return the probability of next words, and the next state
9: for w, pw ∈ topB(prob) do ▷ topB return the B words with highest probability

10: if w = EOS then
11: add (lp + log(pw), t) to finished
12: else
13: add (lp + log(pw), st′, t + w) to beam[n]
14: end if
15: end for
16: end for
17: prune beam[n]
18: end for
19: Sort (lp, t) ∈ finished according to lp/|t|
20: return t s.t. lp/|t| is maximum

Subtask Ja→ En En→ Ja Ja→ Zh Zh→ Ja
Submission 1 2 1 1 2 1 2

BLEU 27.55 27.66 38.72 35.31 35.67 48.34 48.43
Rank(BLEU) 7/10 4/10 6/11 2/6 1/6 2/5 1/5

Adequacy (JPO) 4.10 - 4.26 3.95 - 4.30 -
Rank(Adequacy) 2/10* - 4/11 2/6* - 2/5* -

RIBES 0.7614 0.7654 0.8324 0.8501 0.8494 0.8842 0.8834
AM-FM 0.5855 0.5911 0.7542 0.7854 0.7794 0.7998 0.7995

Human (Pairwise) 77.75 74.50 69.75 72.50 71.50 82.75 79.50
Rank(Human) 1/10 5/10 5/11 1/6 2/6 1/5 2/5

Table 1: Official automatic and human evaluation results of our NMT systems for the ASPEC subtasks.
The scores in bold are the best compared to the scores of the other systems. For JPO adequacy, rank
marked by a * indicates the score was within 1% of the best and therefore the difference might not be
statistically significant.

very high. This hints that it might not be a good
idea to use training procedures that directly op-
timize BLEU, something that was already men-
tioned in (Wu et al., 2016).

We also performed additional experiments for
En → Ja after the official submission deadline
which we describe in the following subsection.

4.2.1 System Combination

Considering that English-to-Japanese was the one
direction where we were behind other submis-
sions, we tried to see if we could at least get an
improvement by system combination. This expe-
rience was done after the shared task results were
published and is not part of the official results of

WAT2017’s shared task.
Tensor2Tensor’s Transformer11 (Vaswani et al.,

2017b) achieved the best performance in term of
BLEU (organizer’s result; also the state-of-the-art)
for En→ Ja and we decided to combine it with our
system using MEMT (Heafield and Lavie, 2010).
MEMT relies on computing a lattice with vari-
ous features12 by aligning the translations at the
sentence level and then using a n-gram language
model for generating and ranking a n-best list. We
used MEMT with the default settings which re-
quires the following:

11https://github.com/tensorflow/tensor2tensor
12These features include paraphrases, synonyms using

wordnets and common subwords using a stemmer

151

System Google’s
Transformer KNMT

MEMT
(System

Combination)
BLEU 40.79 38.74 41.53
RIBES 0.8448 0.8318 0.8410

AM-FM 0.7686 0.7565 0.7710

Table 2: Automatic evaluation results of system combination for English to Japanese. These results
represent the SOTA in terms of BLEU and AM-FM.

• Dev set translations for both systems.

• Test set translations for both systems.

• Dev set reference sentences.

• N-gram Language Model using KenLM (We
used a 6 gram model) (Heafield, 2011).

Table 2 shows the results for system combi-
nation for En → Ja. Although the Transformer
model is about 2 BLEU points better than ours
system combination still manages to give an incre-
ment of 0.74 BLEU which is statistically signifi-
cant (p < 0.01).This indicates that the two models
give results that are complementary. In the future
we will explore methods to determine the best set-
tings for system combination in order to further
improve the translation quality.

5 Conclusion

We have detailed our methods and experimen-
tal process for our participation to the WAT2017
translation shared task. We could improve the
state-of-the-art for the Japanese-Chinese dataset in
term of both BLEU and pairwise human evalua-
tion. We also obtained the best pairwise human
evaluation score for Japanese-to-English transla-
tion. However, our improvements over our last
year’s participation were incremental and evolu-
tionary rather than revolutionary. Small improve-
ments across the models, training process and de-
coding process added up to bring a +2 to +4 BLEU
improvements in the results.

In the future, we intend to do experiments with
more recent evolutions of the translation models,
in particular those that use more linguistic infor-
mation.

Acknowledgments

This work is funded by the Japan Science and
Technology Agency. We are especially grateful to
Professor Isao Goto for his insightful comments
on the attention model.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR 2015.

Chenhui Chu, Toshiaki Nakazawa, Daisuke Kawa-
hara, and Sadao Kurohashi. 2013. Chinese-japanese
machine translation exploiting chinese characters.
ACM Transactions on Asian Language Information
Processing (TALIP), 12(4):16:1–16:25.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

Fabien Cromieres. 2016. Kyoto-NMT: a neural ma-
chine translation implementation in Chainer. In Col-
ing 2016 System Demonstration.

Fabien Cromières, Chenhui Chu, Toshiaki Nakazawa,
and Sadao Kurohashi. 2016. Kyoto university par-
ticipation to wat 2016. In Third Workshop on Asian
Translation (WAT2016).

Isao Goto and Hideki Tanaka. 2017. Detecting untrans-
lated content for neural machine translation. In Pro-
ceedings of the First Workshop on Neural Machine
Translation, pages 47–55, Vancouver. Association
for Computational Linguistics.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Kenneth Heafield. 2011. KenLM: faster and smaller
language model queries. In Proceedings of the
EMNLP 2011 Sixth Workshop on Statistical Ma-
chine Translation, pages 187–197, Edinburgh, Scot-
land, United Kingdom.

Kenneth Heafield and Alon Lavie. 2010. Combining
machine translation output with open source: The
Carnegie Mellon multi-engine machine translation
scheme. The Prague Bulletin of Mathematical Lin-
guistics, 93:27–36.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

152

Marcin Junczys-Dowmunt, Tomasz Dwojak, and Rico
Sennrich. 2016. The AMU-UEDIN submission to
the WMT16 news translation task: Attention-based
NMT models as feature functions in phrase-based
SMT. In Proceedings of the First Conference on
Machine Translation, WMT 2016, colocated with
ACL 2016, August 11-12, Berlin, Germany, pages
319–325.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Sadao Kurohashi. 1994. Improvements of japanese
morphological analyzer juman. In Proceedings of
the Workshop on Sharable Natural Language Re-
sources, 1994, pages 22–28.

Xiaoqing Li, Jiajun Zhang, and Chengqing Zong. 2016.
Towards zero unknown word in neural machine
translation. In IJCAI, pages 2852–2858.

Minh-Thang Luong, Ilya Sutskever, Quoc V Le, Oriol
Vinyals, and Wojciech Zaremba. 2015. Addressing
the rare word problem in neural machine translation.
In Proceedings of ACL 2015.

Toshiaki Nakazawa, Shohei Higashiyama, Chenchen
Ding, Hideya Mino, Isao Goto, Graham Neubig,
Hideto Kazawa, Yusuke Oda, Jun Harashima, and
Sadao Kurohashi. 2017. Overview of the 4th Work-
shop on Asian Translation. In Proceedings of the 4th
Workshop on Asian Translation (WAT2017), Taipei,
Taiwan.

Toshiaki Nakazawa, Hideya Mino, Chenchen Ding,
Isao Goto, Graham Neubig, Sadao Kurohashi, and
Eiichiro Sumita. 2016. Overview of the 3rd work-
shop on asian translation. In Proceedings of the 3rd
Workshop on Asian Translation (WAT2016), Osaka,
Japan.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Mo Shen, Li Wingmui, HyunJeong Choe, Chenhui
Chu, Daisuke Kawahara, and Sadao Kurohashi.
2016. Consistent word segmentation, part-of-speech
tagging and dependency labelling annotation for chi-
nese language. In Proceedings of the 26th Inter-
national Conference on Computational Linguistics,
Osaka, Japan. Association for Computational Lin-
guistics.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(1):1929–1958.

Seiya Tokui, Kenta Oono, Shohei Hido, and Justin
Clayton. 2015. Chainer: a next-generation open
source framework for deep learning. In Proceedings
of Workshop on Machine Learning Systems (Learn-
ingSys) in The Twenty-ninth Annual Conference on
Neural Information Processing Systems (NIPS).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017a. Attention is all
you need.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017b. Attention is all
you need. CoRR, abs/1706.03762.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, ukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
neural machine translation system: Bridging the gap
between human and machine translation. CoRR,
abs/1609.08144.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329.

153

