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Abstract
This paper describes the Neural Machine
Translation systems of Xiamen Univer-
sity for the shared translation tasks of
WAT 2017. Our systems are based on
the Encoder-Decoder framework with at-
tention. We participated in three sub-
tasks. We experimented subword segmen-
tation, synthetic training data and model
ensembling. Experiments show that all
these methods can give substantial im-
provements.

1 Introduction

Neural Machine Translation (NMT) (Bahdanau
et al., 2015; Cho et al., 2014; Sutskever et al.,
2014) has achieved great success in recent years
and outperforms traditional statistical machine
translation (SMT) on various language pairs (Sen-
nrich et al., 2016a; Wu et al., 2016; Zhou
et al., 2016). This paper describes the NMT
systems of Xiamen University (XMU) for the
WAT 2017 evaluation (Nakazawa et al., 2017).
We participated in three translation subtasks:
JIJI Japanese↔English newswire subtask, IITB
Hindi↔English mixed domain subtasks, and
Cookpad Japanese↔English recipe subtask.

In all three subtasks, we use our reimple-
mentation of dl4mt-tutorial1 with minor changes.
We use both Byte Pair Encoding (BPE) (Sen-
nrich et al., 2016c) and mixed word/character
segmentation (Wu et al., 2016) to achieve open-
vocabulary translation. We apply back-translation
method (Sennrich et al., 2016b) to make use of
monolingual data. We use ensemble (Sutskever
et al., 2014) of multiple models to further improve
the translation quality.

∗Corresponding author.
1https://github.com/nyu-dl/

dl4mt-tutorial

The remainder of this paper is organized as fol-
lows: Section 2 describes our NMT system, in-
cluding the training details. Section 3 describes
the processing of the data. Section 4 describes all
experimental features. Section 5 shows the results
of our experiments. Finally, we conclude in sec-
tion 6.

2 Baseline System

Our NMT system is a reimplementation of dl4mt-
tutorial model. We import some minor changes
and new features such as dropout (Srivastava et al.,
2014).

For all three subtasks, we train our models with
almost the same settings of hyper-parameters. We
use word embeddings of size 620 and hidden lay-
ers of size 1000. We use mini-batches of size 128
and adopt Adam (Kingma and Ba, 2015) (β1 = 0.9,
β2 = 0.999 and ε = 1× 10−8) as the optimizer. The
initial learning rate is set to 5 × 10−4. We gradu-
ally halve the learning rate during the training pro-
cess. As a common way to train RNN models, we
clip the norm of gradients to a predefined value
1.0 (Pascanu et al., 2013). We use dropout to avoid
over-fitting with a keep probability of 0.8. For en-
sembling, we train multiple models with different
random initialization of parameters and different
data shuffling.

In Decoding, we employ beam search strategy
with a beam size of 10. We use a modified version
of AmuNMT C++ decoder2 for parallel decoding.
We use the same ensembling method as (Sutskever
et al., 2014) with uniform weights for different
models.

2https://github.com/emjotde/amunmt
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3 Data Processing

We use all training data provided by JIJI, IITB, and
Cookpad corpora3. For JIJI and Cookpad corpora,
Moses4 tokenizer and truecaser are applied on the
English side. On the Japanese side, the full-width
ASCII variants are first converted into their half-
width form and the mecab5 segmenter is used to
segment the sentences. For IITB corpus, we di-
rectly use the tokenized data and truecase the En-
glish sentences with Moses truecaser.

For all three corpora, we remove duplications
and filter out bad sentence pairs according to the
word alignment scores obtained by fast-align
toolkit6. For IITB corpus, we also filter out sen-
tence pairs which are not in English-Hindi accord-
ing to the range of Devanagari characters’ Uni-
code, as well as a language identification toolkit
langid7.

4 Experimental Features

4.1 Subword Segmentation

To enable open-vocabulary, we apply subword-
based translation approaches. In our prelimi-
nary experiments, we found that BPE and mixed
word/character segmentation works better than
UNK replacement techniques.

In JIJI and IITB tasks, we apply BPE8 with 20K
operations to English sentences and Hindi sen-
tences separately. We use mixed word/character
model in the Japanese sides of JIJI task. We keep
20K most frequent Japanese words and split other
words into characters. Unlike (Wu et al., 2016),
we do not add any extra prefixes or suffixes to
the segmented Japanese characters. In the post-
processing step, we simply remove all spaces in
Japanese sentences.

Similarly, in Cookpad task, we also use BPE
segmentation in English side, but with 10K opera-
tions, since the vocabulary size is much smaller.
Correspondingly, mixed word/character model
with a shortlist of 10K words is applied to the
Japanese sentences.

3For Cookpad corpus, we extract parallel pairs from six
fields: step, history, ingredient, title, advice, and description.

4http://statmt.org/moses/
5https://taku910.github.io/mecab/
6https://github.com/clab/fast_align
7https://pypi.python.org/pypi/langid
8https://github.com/rsennrich/

subword-nmt

4.2 Synthetic Training Data

To utilize the monolingual data in IITB corpus,
we employ the back-translation method. We use
srilm 9 to train a 5-gram KN language model on
the monolingual data and select monolingual sen-
tences according to their perplexity. By this way,
2.5M English sentences are selected from IITB’s
monolingual data. We use one single EN-HI NMT
baseline model to translate the selected English
monolingual sentences back to Hindi. The syn-
thetic sentence pairs are used to train HI-EN NMT
models.

Similarly, we also select 2.5M Hindi monolin-
gual sentences and use one single HI-EN NMT
baseline model to translate them back to English.
The synthetic sentence pairs are used to train EN-
HI NMT models.

In preliminary experiments, we found that train-
ing or tuning on the synthetic data alone could
not significantly improve the performance of NMT
models. Therefore, we mix up the synthetic data
with a comparable amount of bilingual pairs over
sampled from IITB’s parallel data and train NMT
models on the mixture data. A similar method is
also used in (Sennrich et al., 2017).

5 Results

In this section, we report the automatic evalua-
tion results (word-level BLEU score10) and hu-
man evaluation results on test sets. We compare
our NMT systems with the best SMT systems pro-
vided by the organizer.

5.1 Results on JIJI Subtask

EN-JA JA-EN
System BLEU Human BLEU Human
HPBMT 16.22 10.25 15.67 10.25
Baseline 17.92 – – 15.77 – –
+Ensemble 20.14 11.75 17.95 20.75

Table 1: Automatic evaluation and human evalu-
ation results on JIJI subtask.

Table 1 shows the results of JIJI subtask. We
apply subword segmentation on the parallel data
and train 4 English-Japanese NMT models and 4

9http://www.speech.sri.com/projects/
srilm/

10The references and translations are tokenized by Moses
English tokenizer, Mecab Japanese word segmenter and Indic
Hindi tokenizer respectively.
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Japanese-English models. We found that both in
EN-JP and JP-EN, one single NMT model can
outperform the traditional SMT systems, such as
a hierarchical phrase-based model. Ensembles of
4 NMT models can further improve the results by
more than +2.0 BLEU scores.

5.2 Results on IITB Subtask

EN-HI HI-EN
System BLEU Human BLEU Human
PBMT 10.79 – – 10.32 – –
Baseline 13.69 – – 13.30 – –
+Synthetic 19.79 – – 20.61 – –
+Ensemble 21.39 64.50 22.44 68.25

Table 2: Automatic evaluation and human evalu-
ation results on IITB subtask.

In IITB subtask, we first train an English-Hindi
and a Hindi-English baseline NMT models on the
parallel data with subword segmentation. Then
we select monolingual sentences and synthesize
larger training data using the backward baseline
NMT models. As shown in Table 2, both in EN-
HI and HI-EN, training on synthetic data is effec-
tive to improve the BLEU score (more than +6.0).
When ensembling 4 models, we further gain more
than +1.6 BLEU scores.

5.3 Results on Cookpad Subtask

In Cookpad subtask, we hope one single NMT
model has the robustness to translate different
types of text. So we directly train NMT models
on all training data without any extra data sepa-
ration or labelling. And we use the same mod-
els for four test sets. The results are shown in
Table 3. Our single NMT baselines beat phrase-
based SMTs in almost all test sets, except for JA-
EN ingredient. When ensembling 4 models, we
further gain +1.3 to +3.1 BLEU scores in all test
sets and outperform SMTs by +2.2 to +5.8 BLEU
scores. For human evaluation results, we found
that NMT models achieve good results in title and
step sets, but not in ingredient sets. It’s reasonable
because NMT models are good at fluency, instead
of adequacy. And for title and step, human read-
ers usually focus on fluency. But for ingredient,
human readers care more about adequacy.

EN-JA JA-EN
System BLEU Human BLEU Human

all
PBMT 19.10 – – 23.87 – –
Baseline 22.47 – – 27.04 – –
+Ensemble 24.44 – – 28.83 – –

title
PBMT 16.57 – – 9.72 – –
Baseline 16.90 – – 14.25 – –
+Ensemble 18.78 23.75 15.57 10.25

step
PBMT 18.53 – – 22.84 – –
Baseline 22.01 – – 26.31 – –
+Ensemble 24.00 45.50 28.03 40.50

ingredient
PBMT 29.60 – – 44.42 – –
Baseline 30.90 – – 43.89 – –
+Ensemble 33.19 -3.75 46.98 3.50

Table 3: Automatic evaluation and human evalu-
ation results on Cookpad subtask.

6 Conclusion

We describe XMU’s neural machine translation
systems for the WAT 2017 shared translation
tasks. Our models perform quite well and proved
to be effective enough to outperform traditional
SMT systems in all tasks, even with limited train-
ing data. Experiments also show the effective-
ness of all features we used, including subword
segmentation, synthetic training data, and multi-
model ensemble.
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