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Abstract

This paper describes our submission to the
sentiment analysis sub-task of “Build It,
Break It: The Language Edition (BIBI)”,
on both the builder and breaker sides. As a
builder, we use convolutional neural nets,
trained on both phrase and sentence data.
As a breaker, we use Q-learning to learn
minimal change pairs, and apply a token
substitution method automatically. We
analyse the results to gauge the robustness
of NLP systems.

1 Introduction

Recently, deep learning models have made im-
pressive gains over a range of NLP tasks (Bah-
danau et al., 2015; Bitvai and Cohn, 2015). How-
ever, recent studies have exposed brittleness in
the models, e.g. through adversarial examples
(Szegedy et al., 2014; Goodfellow et al., 2015). In
these papers, researchers construct cognitively im-
plausible perturbations of raw image inputs to fool
state-of-the-art deep learning models. These per-
turbations are cheap and easy to generate using a
“fast-gradient” method, based on analysis of the
derivative of the loss with respect to the input.

One issue with the generation of adversarial ex-
amples for NLP has been the fact that language
data is discrete, and hence difficult to map the
continuous outputs of “gradient” methods onto.
Furthermore, the perturbations or mutations gen-
erated through adversarial methods may be non-
sensical to humans. Given this background, the
BIBI shared task was devised to study the relia-
bility of NLP systems by generating adversarial
test instances, and explicitly training systems to be
robust against adversarial test instances. Specif-
ically, the task is based on opposing sets of par-
ticipants: builders aim to build systems robust to

different inputs, and breakers try to construct in-
stances which will cause the builders’ systems to
make incorrect predictions.

In this paper, we describe our builder and
breaker submissions to the sentiment analysis sub-
task, which is a sentence-level binary classifica-
tion task, to predict whether a given review sen-
tence is positive or negative with respect to a given
movie. The data set is derived from movie review
data (Pang and Lee, 2005) and the Stanford Senti-
ment Treebank (Socher et al., 2013).

We participated both as a builder and breaker
because we are interested in testing the robustness
of state-of-the-art neural models, such as convo-
lutional neural networks (“CNNs”: Kim (2014)).
Also, we were interested in the breaker task as an
avenue for exploring how well we can automat-
ically construct adversarial test instances. In the
sentiment sub-task, the main job of breakers is to
construct minimally-changed pairs that are able to
fool the builders’ sentiment analysers. For exam-
ple, the following sentences can be considered to
be a minimal pair, with positive (+1) sentiment:

(+1) I love this movie!
(+1) I’m mad for this movie!

2 Approach

Here, we describe the methods we used for both
the builder and the breaker. Considering the ex-
pense of human judgements, especially for break-
ers, and the strong desire for the approaches to
generalize, we decide to use automatic methods
for both tasks.

2.1 Builder System Description

As a builder, we chose to use convolutional neural
nets (“CNNs”), based on their strong performance
over text classification tasks (Kim, 2014; Zhang
et al., 2015). Specifically, we were interested in
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testing the robustness of CNNs in NLP applica-
tions. We apply Kim (2014)’s model to this task,
which is easy and fast to train. We train our mod-
els on both phrase-level labelled data (with neu-
tral phrases removed), and sentence-level labelled
data; we will refer to these as “phrased-based” and
“sentence-based” CNNs, respectively. Below, we
present a short outline of the CNN model.

2.1.1 Convolutional Neural Network
The CNN model first operates by embedding each
word using a look-up table which is stacked into
the sentence matrix ES. Then, a 1d convolutional
layer is applied to ES, which applies a series of fil-
ters over each window of t words, with each filter
employing a rectifier transform function. In prac-
tice, we use window widths of size t ∈ {3, 4, 5},
and 128 filters for each size. MaxPooling is ap-
plied to each of the three sizes separately, and the
resulting vectors are concatenated to form a fixed-
size representation of the given sentence or phrase.
Finally, the representation vector is fed into a final
Softmax layer to generate a probability distribu-
tion over classification labels.

The model is trained to minimize the loss —
defined as the cross-entropy between the ground-
truth and the prediction — using the Adam Opti-
mizer (Kingma and Ba, 2015) with a learning rate
of 10−4 and batch size of 64.

2.2 Breaker System Description

As our breaker, we borrow ideas from generating
adversarial examples in computer vision (Szegedy
et al., 2014).

Assuming the loss of the system s is accessible
and the true label l of the sentence is known, then
the given task can be seen as an optimization prob-
lem where we simultaneously minimize the loss
between the perturbed sentence h(x) and flipped
label, and also the distance between them :

min
θh

Ls(h(x),1− l)+α ·distance(h(x), x) (1)

Here, system s maps the input sentence x into the
label space, and h is the perturbing function.

In text applications, this can be seen as an inte-
ger programming problem. Generally, integer op-
timization is NP-hard (Cunningham et al., 1996),
although estimations can be found using heuristic
methods, such as simulated annealing. However,
considering the complexity of language, solving
the given optimization function in only a discrete

text space could lead to nonsensical outputs to a
human, according to the results of our preliminary
experiments 1. Empirically, this can be attributed
to the difficulty of defining an order over a natu-
ral language token set, as well as the non-convex
nature of the semantic space in natural language
generation.

Therefore, instead of optimizing Equation (1)
directly, we split the problem into two subtasks:
first, we use a reinforcement learning method to
learn which tokens or phrases should be changed;
and second, we apply a substitution method to
those selected tokens, ensuring the quality of the
new sentence.

2.2.1 Reinforcement Learning Method
In order to learn the sentiment of a given text, most
NLP systems use n-gram feature-based learn-
ing methods, including traditional bag-of-words
methods (Pang and Lee, 2005) as well as deep
learning models (Socher et al., 2013; Kim, 2014).
Based on this observation, one intuitive method
of fooling the system is to find the “important”
tokens within a given sentence, and then modify
these to trick a given system into making a wrong
prediction.

In our method, we need a baseline system for
our breaker method to attack. Here, we choose the
sentence-based CNN model, as described above,
as an imaginary enemy. For most black-box sys-
tems, it is impossible to access the internals of the
model and parameters. Therefore, given an input
instance, we only use the output of the system,
such as the prediction and loss in our method.

To solve this discrete problem, we apply a Re-
inforcement Learning (“RL”) method (Sutton and
Barto, 1998), specifically Q-learning (Watkins and
Dayan, 1992; Mnih et al., 2013), to model the
probability of removing tokens or phrases from
a given sentence. Given the token x and an in-
stance of context sentence c, the RL system learns
a policy function π(x|c) → {remove, keep}. We
consider each instance as one game, consisting of
several rounds. In the first round, c is a randomly-
selected sentence, x is the first token in c, and π
is the decision process of removing x or not. In
each round, π will be learned at the token level,
and the resulting sentence will be taken as the new
context. The game will be repeated iteratively un-

1We used simulated annealing method to solve the given
constrain problem directly. The details of results are not pre-
sented in this paper.
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F1 % of broken examples

Builder system Total Average Breaker 1 Breaker 2 Breaker 3 Breaker 4

Builder 1 0.528 25.43 26.76 35.35 22.62 39.79 9.28
RNN (Socher et al., 2013) 0.457 25.96 27.45 34.34 27.38 36.73 11.34
DCNN (Kalchbrenner et al., 2014) 0.483 25.09 25.95 34.84 21.42 36.73 10.82
Bag-of-n-grams 0.510 24.74 25.51 38.38 20.23 36.73 6.70

Phrase-based CNN 0.518 24.39 25.23 35.35 22.62 33.67 9.28
Sentence-based CNN 0.490 28.57 31.42 39.39 39.28 39.79 7.21

Table 1: The results of builder systems for BIBI blind test set based on average F1 (higher is better)
and percentage of broken cases (lower is better). Details of each builder’s system against the breaker’s
examples are also listed. The best results are indicated in bold.

til a max-round limitation is hit. When the game is
terminated, the reward of the game will be the loss
difference between the original sentence and the
residual sentence, where the loss is calculated rela-
tive to the baseline system s. Additionally, we use
the number of removed tokens as a penalty item
in the final reward. The procedure will then ran-
domly select a new instance and start a new game.

For training, we use the standard Deep Q-
Learning algorithm, as described in Mnih et al.
(2013). For hyper-parameters, max-round is set
to 100 and γ to 0.01. The feature extractor φ
is a multi-layer perceptron over token embed-
dings, initialized by pre-trained word2vec vectors
(Mikolov et al., 2013). The batch size is 128, the
initial ε is set to 0.3, and the memory size is up
to 10, 000. In order to change as few tokens as
possible, we empirically set the distance penalty
α to 2. The reward is calculated using pre-trained
sentence-based CNN, as described above.

2.2.2 Token Substitution Method

Once the algorithm has decided which tokens
should be changed, the next move is to find ap-
propriate substitutions. As described above, most
systems are based on n-grams, making them very
sensitive to unknown tokens. Therefore, we came
up with some heuristics.

The first approach draws on our earlier work
on learning robust text representations (Li et al.,
2017), and is based on synonyms of the given to-
ken, based on Princeton WordNet (Miller et al.,
1990) using the NLTK API (Bird, 2006). Here, we
test possible synonyms, considering their part-of-
speech tag, asking the system s whether the loss
is reduced after substitution. We also tried to find
antonyms that cannot be recognized by the system,
causing the predicted sentiment label to not flip.
Finally, we add a small amount of human supervi-

sion to ensure the fluency of the output sentences,
including removal of garbled examples and minor
grammar corrections, and to ensure they have the
correct sentiment label. To be specific, we discard
the “bad-attacked” pairs with loss difference less
than 1 empirically. These “bad-attacked” pairs
might be able to fool the sentence-based CNN but
with low confidence, such that we did not expect
them to be good enough to fool other builders’ sys-
tems. We also filter out sentences with wrong or
ambiguous sentiment labels manually. For exam-
ple, the system sometimes generates expressions
with correct grammar but strange sentiment —
e.g., I don’t like this lovely movie which is con-
tradictory and possibly interpretable as ironic —
which remains a challenging problem for us to to-
tally eliminate during generation. Last, we slightly
modify the outputs to fix minor grammar errors,
such as adding or removing the determiner a or
the.

3 Results and Analysis

In this section, we detail the results of our meth-
ods, and perform error analysis.

3.1 Builder
The results for the builder systems over the test set
are shown in Table 1. To evaluate the robustness
of the builder systems, there are two evaluation
criteria: average F-score (“F1”) across all breaker
test cases (higher is better), and the percentage of
breaker test cases that break the system (lower is
better). Having a builder fail over only one exam-
ple in a given minimal pair is considered to have
broken that system.

We observed that all the systems are very close
over these two criteria. We also see that the
phrase-based CNN achieved competitive perfor-
mance, while the sentence-based CNN is not as
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robust. This aligns with our intuition, as feed-
ing phrase-labeled data is more precise for model
training, and it is much easier for the sentence-
based model to overfit the data, according to our
analysis. For example, it might consider the per-
formance is as a strong positive trigram feature in-
stead of a neutral one, because the expression has
higher frequency in the positive training set than
that in the negative set. This also occurs for certain
entity tokens, such as people’s names and places.

To better understand the advantages and disad-
vantages of CNNs, we perform some error analy-
sis.

One major class of breaker attack is modifying
the polarity of a sentence, either syntactically (e.g.
by adding/removing not) or morphologically (e.g.
by adding the prefix un-), but actually the CNN
is relatively robust to this. We believe the rea-
son is that the n-gram features our CNN learns
are more robust representations of words and short
phrases. This also explains the performance of the
bag-of-n-gram (BoN) system. However, CNN is
still slightly better than BoN because CNN only
learns the most important features through the
MaxPooling operation, and using word embed-
dings appears to help the model deal with syn-
onyms and antonyms at the word level.

It is almost the same situation when the sys-
tems encounter out-of-vocabulary words (OOV).
Although OOVs are a significant challenge, we
believe they can be overcome by training better
sentiment-sensitized word embeddings (Mrkšić
et al., 2016), or combining the system with
character-level normalization methods (Han and
Baldwin, 2011).

However, CNNs are not good at dealing with
complex grammatical structures or long-distance
dependencies. For instance, changing a compar-
ative from more than to less than flips the sen-
timent and is something that humans are sensi-
tized to, but CNNs tend not to capture this differ-
ence. Also, CNNs are not sensitive to tense, such
as changing the present tense is to the past tense
was to capture pragmatic/connotative effects. For
these kinds of examples, we expected to see higher
performance among models which better capture
syntactic structure, such as recursive neural nets
(“RNNs”: Socher et al. (2013)) and dynamic con-
volutional neural networks (“DCNNs”: Kalch-
brenner et al. (2014)). In practice, however, this
was not the case. We cannot conclude the exact

Test set Average F1 Score

Breaker 1 0.79 28.64
Breaker 3 0.84 31.17
Breaker 4 0.83 7.48

Breaker 2 (our method) 0.75 19.28

Table 2: The final score of the breakers. The aver-
age F1 over the original sentences of all builders’
systems is also listed for each break test set.

reasons without further analysis of these models,
however this might indicate that these perceptron-
based deep models struggle to capture the logic in
human langauge.

To conclude, among traditional models and
state-of-the-art deep learning models for sentiment
analysis, CNNs are relatively robust.

3.2 Breaker

Table 2 gives the final scores of the breaker teams.
The final score is calculated by averaging the
F1 of each builder’s system on the original sen-
tences, multiplied by the percentage of examples
that break that system (shown in Table 1).

Overall, about one third of the breakers’ ex-
amples were able to fool the builders’ systems,
which is not surprising. On the one hand this is
encouraging, in that, without taking the untapped
test cases into consideration, each builder can han-
dle more than half of the break examples. On the
other hand, still nearly one third of the break sen-
tences cannot be handled by state-of-the-art statis-
tical models.

For our breaking approach, we observe that all
the builders’ systems have lower F1 on our test
set, indicating that our method tends to gener-
ate difficult sentences, where systems might have
lower confidence. Actually, in our final submis-
sion, we only chose 42 pairs as the final break
data from among the 521 test data instances pro-
vided by the organisers, as the rest of the gener-
ated pairs were removed due to low confidence
or bad quality sentences. This unfortunately indi-
cates that our automatic method cannot be applied
to all examples, making our approach limited in
application. Therefore, we can’t really conclude
that our automatic approach is a success, and we
should explore more flexible approaches in the fu-
ture. However, the approach itself still achieves a
break rate higher than the error rate on the origi-
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nal test set. Additionally, our method breaks the
sentence-based CNN — which our RL model is
built on — with 39.28% break rate.

Based on error analysis over the broken exam-
ples, we found that using tokens with opposite sen-
timent in an example worked across builder sys-
tems in most cases. For instance, if you love to
waste your time could confuse most systems be-
cause of the contrast between love and waste time,
because they indicate opposing sentiment in iso-
lation, while the phrase itself is focused on waste
time, which is very difficult for most NLP systems
to understand. This indicates that representations
of natural language may be doing more than sim-
ply adding or transforming the word embeddings,
and instead non-compositionally transforming the
logic structure of the sentence.

Also, attacking words or phrases which are am-
biguous between positive and negative sentiment
is also a potentially effective approach. For ex-
ample, rock is used predominantly in positive-
sentiment contexts, in reference to jewels or
strong/reliable people, meaning that systems are
likely to learn that it has exclusively positive sen-
timent due to bias in the training set. However,
when the negative substitution phrase on the rocks
(meaning “in trouble”) is used, the builders’ sys-
tems might still predict the idiom as having posi-
tive sentiment.

Based on these observations, we can conclude
that state-of-the-art statistical models have only
minimal “understanding” of natural language. The
examples we showed above are relatively simple,
but in real cases, they can be more complex. And
we are not even considering the ambiguity of lan-
guage or tone of the language in different contexts.
To summarize, our approach provides a method to
study the robustness of modern NLP systems over
a sentiment analysis task. Our results demonstrate
that NLP systems are still far from turning the cor-
ner to real language understanding.

4 Conclusions

In this paper, we have described our builder and
breaker systems, in the context of the BIBI the
Language Edition shared task. We built senti-
ment analysis systems using text-based convolu-
tional neural networks, trained on either phrase-
and sentence-level data. Also, we used reinforce-
ment learning and substitution methods to gener-
ate adversarial test examples automatically. We

performed error analysis to better understand the
robustness of statistical NLP models.
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