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Abstract

In this paper we present the model used by
the team Rivercorners for the 2017 RepE-
val shared task. First, our model sep-
arately encodes a pair of sentences into
variable-length representations by using
a bidirectional LSTM. Later, it creates
fixed-length raw representations by means
of simple aggregation functions, which are
then refined using an attention mechanism.
Finally it combines the refined representa-
tions of both sentences into a single vec-
tor to be used for classification. With
this model we obtained test accuracies of
72.057% and 72.055% in the matched and
mismatched evaluation tracks respectively,
outperforming the LSTM baseline, and
obtaining performances similar to a model
that relies on shared information between
sentences (ESIM). When using an ensem-
ble both accuracies increased to 72.247%
and 72.827% respectively.

1 Introduction

The task of Natural Language Inference (NLI)
aims at characterizing the semantic concepts of
entailment and contradiction, and is essential in
tasks ranging from information retrieval to seman-
tic parsing to commonsense reasoning, as both en-
tailment and contradiction are central concepts in
natural language meaning (Katz, 1972; van Ben-
them, 2008).

The aforementioned task has been addressed
with a variety of techniques, including those based
on symbolic logic, knowledge bases, and neu-
ral networks. With the advent of deep learning
techniques, NLI has become an important test-
ing ground for approaches that employ distributed

word and phrase representations, which are typical
of these models.

In this context, the Second Workshop on Eval-
uating Vector Space Representations for NLP
(RepEval 2017) features a shared task meant to
evaluate natural language understanding models
based on sentence encoders by the means of NLI
in the style of a three-class balanced classifica-
tion problem over sentence pairs. The shared task
includes two evaluations, a standard in-domain
(matched) evaluation in which the training and
test data are drawn from the same sources, and
a cross-domain (mismatched) evaluation in which
the training and test data differ substantially. This
cross-domain evaluation is aimed at testing the
ability of submitted systems to learn representa-
tions of sentence meaning that capture broadly
useful features.

2 Proposed Model

Our work is related to intra-sentence attention
models for sentence representation such as the
ones described by Liu et al. (2016) and Lin et al.
(2017). In particular, our model is based on the
notion that, when reading a sentence, we usually
need to re-read certain portions of it in order to
obtain a comprehensive understanding. To model
such phenomenon, we rely on an attention mech-
anism able to iteratively obtain a richer and more
expressive version of a raw sentence representa-
tion. The model’s architecture is described below:

Word Representation Layer: This layer is in
charge of generating a comprehensive vector rep-
resentation of each token for a given sentence. We
construct this representation based on up to two
basic components:

• Pre-trained word embeddings: We take pre-
trained word embeddings and use them to
generate a raw word representation. This can
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be seen as a simple lookup-layer that returns
a word vector for each provided word index.

• Character embeddings: We generate a
character-based representation of each word,
which we concatenate to the word vectors as
returned by the previous component. We start
by generating a randomly initialized charac-
ter embedding matrix C. Then, we split each
word into its component characters, get their
corresponding character embedding vectors
from C and feed them into a unidirectional
Long Short-Term Memory Network (LSTM)
(Hochreiter and Schmidhuber, 1997). We
then choose the last hidden state returned by
the LSTM as the fixed-size character-based
vector representation for each token. Our em-
bedding matrix C is trained with the rest of
the model (Wang et al., 2017).

Context Representation Layer: This layer
complements the vectors generated by the Word
Representation Layer by incorporating contextual
information into them. To do this, we utilize a
bidirectional LSTM that reads through the em-
bedded sequence and returns the hidden states for
each time step. These are context-aware represen-
tations focused on each position. Formally, let S
be a sentence such as S = {x1, . . . ,xn}, where
each xi is an embedded word vector as returned
by the previous layer, then the context-rich word
representation hi is calculated as follows for each
time step i = 1, . . . , n:

−→
h i = LSTM(xi,

−→
h i−1) (1)

←−
h i = LSTM(xi,

←−
h i+1) (2)

hi = [
−→
h i;
←−
h i] (3)

Where
−→
h i is the forward contextual vector rep-

resentation of xi,
←−
h i the backward one, and

[ · ; · ] represents the concatenation of two vec-
tors. The output of this layer is a variable-length
sentence representation for both the premise and
hypothesis. We then define a pooling layer in
charge of a generating a raw fixed-size represen-
tation of each sentence.

Pooling Layer: This layer is in charge of gener-
ating a crude sentence representation vector by re-
ducing the sequence dimension using one of four
simple operations, all of which are fed the context-
aware token representations obtained previously:

h̄ =
1
n

n∑
i=1

hi (4)

h̄ =
n∑

i=1

hi (5)

h̄ = [
−→
h n;
←−
h 1] (6)

h̄ = max
i=1...n

hi (7)

These operations correspond to the mean of the
word representations (eq. 4), their sum (eq. 5),
the concatenation of the last hidden state for each
direction (eq. 6), and the maximum one (eq. 7).

Inner Attention Layer: To refine the represen-
tations generated by the pooling strategy, we use
a global attention mechanism (Luong et al., 2015;
Vinyals et al., 2015) that compares each context-
aware token representation hi with the raw sen-
tence representation h̄. Formally,

ui = v> tanh(W [h̄; hi]) (8)

αi =
expui∑n

k=1 expuk
(9)

h̄′ =
n∑

i=1

αihi (10)

Where both v and W are trainable parameters and
h̄′ is the refined sentence representation1.

Aggregation Layer: We apply two matching
mechanisms to aggregate the refined sentence rep-
resentations, which are directly aimed at extract-
ing relationships between the premise and the hy-
pothesis. Concretely, we concatenate the repre-
sentations of the premise h̄′P and hypothesis h̄′H
in addition to their element-wise product (�) and
the absolute value (| · |) of their difference, obtain-
ing the vector r. These last two operations, first
proposed by Mou et al. (2015), can be seen as a
sentence matching strategy.

hmul = h̄′P � h̄′H (11)

hdif = |h̄′P − h̄′H | (12)

r = [h̄′P ; h̄′H ; hmul; hdif ] (13)

Dense Layer: Finally, r is fed to a fully-
connected layer whose output is a vector contain-
ing the logits for each class, which are then fed to

1The refined sentence representation h̄′ for both premise
and hypothesis is the final representation in which both are
treated as separate entities. The representations produced
by our best-performing model are available in https://
zenodo.org/record/825946.
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a softmax function for obtaining their probability
distribution. The class with the highest probabil-
ity is chosen as the predicted relationship between
premise and hypothesis.

3 Experiments

To make our results comparable to the baselines
reported in the Kaggle platform we randomly sam-
pled 15% of the SNLI corpus (Bowman et al.,
2015) and added it to the MultiNLI corpus.

We used the pre-trained 300-dimensional GloVe
vectors trained on 840B tokens (Pennington et al.,
2014). These embeddings were not fine-tuned dur-
ing training and unknown word vectors were ini-
tialized by randomly sampling from the uniform
distribution in (−0.05, 0.05).

Each character embedding was initialized as
a 20-dimensional vector and the character-level
LSTM output dimension was set to 50. The word-
level LSTM output dimension was set to 300,
which means that after concatenating word-level
and character-level representations the word vec-
tors for each direction are 350-dimensional (i.e.,
hi ∈ R700).

For the Inner Attention Layer we defined the pa-
rameterW as a square matrix matching the dimen-
sion of the concatenated vector [h̄; hi] (i.e., W ∈
R1400×1400), and v as a vector matching the same
dimension (i.e., v ∈ R1400). Both W and v were
initialized by randomly sampling from the uni-
form distribution on the interval (−0.005, 0.005).

The final layer was created as a 3-layer MLP
with 2000 hidden units each, and with ReLU acti-
vations.

Additionally, we used the Rmsprop optimizer
with a learning rate of 0.001. We applied dropout
of 0.25 only between the MLP layers of the Dense
Layer.

Further, we found out that normalizing the cap-
italization of words by making all characters low-
ercase, and transforming numbers into a specific
numeric token improved the model’s performance
while reducing the size of the embedding ma-
trix. We also ignored the sentence pairs with a
premise longer than 200 words during training (for
improved memory stability), and those without a
valid label (“-”) both during training and valida-
tion.

Since one of the most conceptually important
parts of our model was the raw sentence represen-
tation created in the Pooling Layer, we used four

different methods for generating it (eqs. 4 – 7).
Results are reported in Table 1.

We also tried using other architectures that rely
on some sort of “inner” attention such as the self-
attentive model proposed by Lin et al. (2017) and
the co-attentive model by Xiong et al. (2016), but
our preliminary results were not promising so we
did not invest in fine-tuning them.

All the experiments were repeated without us-
ing character-level embeddings (i.e., hi ∈ R600).

4 Results

Table 1 presents the results of using different pool-
ing strategies for generating a raw sentence repre-
sentation vector from the word vectors. We can
observe that that both the mean method, and pick-
ing the last hidden state for both directions per-
formed slightly better than the two other strategies,
however at 95% confidence we cannot assert that
any of these methods is statistically different from
one another.

This could be interpreted as if any of the four
methods was good enough for capturing the over-
all meaning of the sentence, and the heavy lifting
was done by the attention mechanism. It would
be interesting to test these four strategies without
the presence of attention to see whether it really
plays an important role in this task or whether the
predictive power lies within the sentence matching
mechanism.

Method w/o. chars w. chars
mean 71.3 ± 1.2 71.3 ± 0.7
sum 70.7 ± 1.0 70.9 ± 0.8
last 70.9 ± 0.6 71.0 ± 1.2
max 70.6 ± 1.1 71.0 ± 1.1

Table 1: Mean matched validation accuracies (%)
broken down by type of pooling method and pres-
ence or absence of character embeddings. Confi-
dence intervals are calculated at 95% confidence
over 10 runs for each method.

Another interesting result, as shown by Table 1
and Table 2, is that the model seemed to be insen-
sitive to the usage of character embeddings, which
was surprising because in our experiments with
more complex models relying on shared informa-
tion between premise and hypothesis, such as the
one presented by Wang et al. (2017), the usage of
character embeddings had a considerable impact
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Method w/o. chars w. chars
mean 72.3 71.8
sum 71.6 71.6
last 71.4 72.1
max 71.1 71.6

Table 2: Best matched validation accuracies (%)
obtained by each pooling method in presence and
absence of character embeddings.

in model performance2.
In Table 3 we report the accuracies obtained

by our best model in both matched (first 5 gen-
res) and mismatched (last 5 genres) development
sets. We can observe that our implementation per-
formed like ESIM overall, however ESIM relies
on an attention mechanism that has access to both
premise and hypothesis (Chen et al., 2017), while
our model’s treats each one separately. This sup-
ports the notion that inner attention is a powerful
concept.

Genre CBOW ESIM InnerAtt
Fiction 67.5 73.0 73.2
Government 67.5 74.8 75.2
Slate 60.6 67.9 67.2
Telephone 63.7 72.2 73.0
Travel 64.6 73.7 72.8
9/11 63.2 71.9 70.5
Face-to-face 66.3 71.2 74.5
Letters 68.3 74.7 75.4
Oup 62.8 71.7 71.5
Verbatim 62.7 71.9 69.5
MultiNLI Overall 64.7 72.2 72.3

Table 3: Validation accuracies (%) for our best
model broken down by genre. Both CBOW and
ESIM results are reported as in (Williams et al.,
2017).

We picked the best model based on the best val-
idation accuracy score obtained on the matched
development set (72.257%). This model is as de-
scribed in the previous section but without using
character embeddings3.

In addition, we created an ensemble by training
4 models as described earlier but initialized with
different random seeds. The prediction is made
by averaging the probability distributions returned

2This type of models were not allowed in this competition
which is why we do not report further on them.

3Without the use of character embeddings, the sentence
representations are 600-dimensional.

by each model and then picking the class with the
highest probability for each example. This im-
proved our best test results, as reported by Kaggle,
from 72.057% to 72.247% in the matched evalu-
ation track, and from 72.055% to 72.827% in the
mismatched evaluation track.

5 Conclusions and Future work

We presented the model used by the team River-
corners in the 2017 RepEval shared task. De-
spite being conceptually simple and not relying on
shared information between premise and hypothe-
sis for encoding each sentence, nor on tree struc-
tures, our implementation achieved results as good
as the ESIM model.

As future work we plan to incorporate part-
of-speech embeddings to our implementation and
concatenate them at the same level as we did with
the character embeddings. We also plan to use pre-
trained character embeddings to see whether they
have any positive impact on performance.

Additionally, we think we could obtain bet-
ter results by fine-tuning some hyperparameters
such as the character embedding dimensions, the
character-level LSTM encoder output dimension,
and the Dense Layer architecture.

Further, we would like to see how different
types of attention affect the overall performance.
For this implementation we used the concat scor-
ing scheme (eq. 8), as described by Luong et al.
(2015), but there are several others that could pro-
vide better results.

Finally, we would like to exploit the structured
nature of dependency parse trees by means of re-
cursive neural networks (Tai et al., 2015) to enrich
our initial sentence representations.

6 Resources

The code for replicating the results presented
in this paper is available in the following
link: https://github.com/jabalazs/
repeval_rivercorners.
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