
Proceedings of the 2nd Workshop on Evaluating Vector-Space Representations for NLP, pages 41–45,
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Shortcut-Stacked Sentence Encoders for Multi-Domain Inference

Yixin Nie and Mohit Bansal
UNC Chapel Hill

{yixin1, mbansal}@cs.unc.edu

Abstract

We present a simple sequential sentence
encoder for multi-domain natural lan-
guage inference. Our encoder is based on
stacked bidirectional LSTM-RNNs with
shortcut connections and fine-tuning of
word embeddings. The overall supervised
model uses the above encoder to encode
two input sentences into two vectors, and
then uses a classifier over the vector com-
bination to label the relationship between
these two sentences as that of entailment,
contradiction, or neural. Our Shortcut-
Stacked sentence encoders achieve strong
improvements over existing encoders on
matched and mismatched multi-domain
natural language inference (top single-
model result in the EMNLP RepEval 2017
Shared Task (Nangia et al., 2017)). More-
over, they achieve the new state-of-the-
art encoding result on the original SNLI
dataset (Bowman et al., 2015).

1 Introduction and Background

Natural language inference (NLI) or recogniz-
ing textual entailment (RTE) is a fundamental se-
mantic task in the field of natural language pro-
cessing. The problem is to determine whether
a given hypothesis sentence can be logically in-
ferred from a given premise sentence. Recently
released datasets such as the Stanford Natural Lan-
guage Inference Corpus (Bowman et al., 2015)
(SNLI) and the Multi-Genre Natural Language
Inference Corpus (Williams et al., 2017) (Multi-
NLI) have not only encouraged several end-to-end
neural network approaches to NLI, but have also
served as an evaluation resource for general repre-
sentation learning of natural language.

Depending on whether a model will first en-
code a sentence into a fixed-length vector without
any incorporating information from the other sen-
tence, the several proposed models can be catego-
rized into two groups: (1) encoding-based mod-
els (or sentence encoders), such as Tree-based
CNN encoders (TBCNN) in Mou et al. (2015) or
Stack-augmented Parser-Interpreter Neural Net-
work (SPINN) in Bowman et al. (2016), and (2)
joint, pairwise models that use cross-features be-
tween the two sentences to encode them, such as
the Enhanced Sequential Inference Model (ESIM)
in Chen et al. (2017) or the bilateral multi-
perspective matching (BiMPM) model Wang et al.
(2017). Moreover, common sentence encoders can
again be classified into tree-based encoders such
as SPINN in Bowman et al. (2016) which we men-
tioned before, or sequential encoders such as the
biLSTM model by Bowman et al. (2015).

In this paper, we follow the former approach of
encoding-based models, and propose a novel yet
simple sequential sentence encoder for the Multi-
NLI problem. Our encoder does not require any
syntactic information of the sentence. It also does
not contain any attention or memory structure. It
is basically a stacked (multi-layered) bidirectional
LSTM-RNN with shortcut connections (feeding
all previous layers’ outputs and word embeddings
to each layer) and word embedding fine-tuning.
The overall supervised model uses these shortcut-
stacked encoders to encode two input sentences
into two vectors, and then we use a classifier
over the vector combination to label the relation-
ship between these two sentences as that of en-
tailment, contradiction, or neural (similar to the
classifier setup of Bowman et al. (2015) and Con-
neau et al. (2017)). Our simple shortcut-stacked
encoders achieve strong improvements over exist-
ing encoders due to its multi-layered and shortcut-
connected properties, on both matched and mis-

41

biLSTM

w1 w2

biLSTM biLSTM

biLSTM biLSTM biLSTM

biLSTM biLSTM biLSTM

Row max pooling

Final
Vector

Representation

Word
Embedding

Source Sentence

Fine-tunning

wn

Figure 1: Our encoder’s architecture: stacked biLSTM with shortcut connections and fine-tuning.

matched evaluation settings for multi-domain nat-
ural language inference, as well as on the origi-
nal SNLI dataset. It is the top single-model (non-
ensemble) result in the EMNLP RepEval 2017
Multi-NLI Shared Task (Nangia et al., 2017), and
the new state-of-the-art for encoding-based results
on the SNLI dataset (Bowman et al., 2015).
Github Code Link: https://github.com/
easonnie/multiNLI_encoder

2 Model

Our model mainly consists of two separate compo-
nents, a sentence encoder and an entailment classi-
fier. The sentence encoder compresses each source
sentence into a vector representation and the clas-
sifier makes a three-way classification based on
the two vectors of the two source sentences. The
model follows the ‘encoding-based rule’, i.e., the
encoder will encode each source sentence into
a fixed length vector without any information
or function based on the other sentence (e.g.,
cross-attention or memory comparing the two sen-
tences). In order to fully explore the generalization
of the sentence encoder, the same encoder is ap-
plied to both the premise and the hypothesis with
shared parameters projecting them into the same
space. This setting follows the idea of Siamese
Networks in Bromley et al. (1994). Figure 1 shows

the overview of our encoding model (the standard
classifier setup is not shown here; see Bowman
et al. (2015) and Conneau et al. (2017) for that).

2.1 Sentence Encoder

Our sentence encoder is simply composed of mul-
tiple stacked bidirectional LSTM (biLSTM) layers
with shortcut connections followed by a max pool-
ing layer. Let bilstmi represent the ith biLSTM
layer, which is defined as:

hi
t = bilstmi(xi

t, t), ∀t ∈ [1, 2, ..., n] (1)

where hi
t is the output of the ith biLSTM at time t

over input sequence (xi
1, x

i
2, ..., x

i
n).

In a typical stacked biLSTM structure, the
input of the next LSTM-RNN layer is simply
the output sequence of the previous LSTM-RNN
layer. In our settings, the input sequences for
the ith biLSTM layer are the concatenated out-
puts of all the previous layers, plus the original
word embedding sequence. This gives a shortcut
connection style setup, related to the widely used
idea of residual connections in CNNs for computer
vision (He et al., 2016), highway networks for
RNNs in speech processing (Zhang et al., 2016),
and shortcut connections in hierarchical multitask-
ing learning (Hashimoto et al., 2016); but in our
case we feed in all the previous layers’ output se-

42

quences as well as the word embedding sequence
to every layer.

Let W = (w1, w2, ..., wn) represent words in
the source sentence. We assume wi ∈ Rd is a
word embedding vector which are initialized us-
ing some pre-trained vector embeddings (and is
then fine-tuned end-to-end via the NLI supervi-
sion). Then, the input of ith biLSTM layer at time
t is defined as:

x1
t = wt (2)

xi
t = [wt, h

i−1
t , hi−2

t , ...h1
t] (for i > 1) (3)

where [] represents vector concatenation.
Then, assuming we have m layers of biLSTM,

the final vector representation will be obtained by
applying row-max-pool over the output of the last
biLSTM layer, similar to Conneau et al. (2017).
The final layer is defined as:

Hm = (hm
1 , hm

2 , ..., hm
n) (4)

v = max(Hm) (5)

where hm
i , v ∈ R2dm , Hm ∈ R2dm×n, dm is the

dimension of the hidden state of the last forward
and backward LSTM layers, and v is the final vec-
tor representation for the source sentence (which
is later fed to the NLI classifier).

The closest encoder architecture to ours is that
of Conneau et al. (2017), whose model consists of
a single-layer biLSTM with a max-pooling layer,
which we treat as our starting point. Our exper-
iments (Section 4) demonstrate that our enhance-
ments of the stacked-biRNN with shortcut connec-
tions provide significant gains on top of this base-
line (for both SNLI and Multi-NLI).

2.2 Entailment Classifier
After we obtain the vector representation for the
premise and hypothesis sentence, we apply three
matching methods to the two vectors (i) concate-
nation (ii) element-wise distance and (iii) element-
wise product for these two vectors and then con-
catenate these three match vectors (based on the
heuristic matching presented in Mou et al. (2015)).
Let vp and vh be the vector representations for
premise and hypothesis, respectively. The match-
ing vector is then defined as:

m = [vp, vh, |vp − vh| , vp ⊗ vh] (6)

At last, we feed this final concatenated result m
into a MLP layer and use a softmax layer to make
final classification.

Layers and Dimensions Accuracy
#layers bilstm-dim Matched Mismatched

1 512 72.5 72.9
2 512 + 512 73.4 73.6
1 1024 72.9 72.9
2 512 + 1024 73.7 74.2
1 2048 73.0 73.5
2 512 + 2048 73.7 74.2
2 1024 + 2048 73.8 74.4
2 2048 + 2048 74.0 74.6
3 512 + 1024 + 2048 74.2 74.7

Table 1: Analysis of results for models with dif-
ferent # of biLSTM layers and their hidden state
dimensions.

Matched Mismatched
without any shortcut connection 72.6 73.4
only word shortcut connection 74.2 74.6

full shortcut connection 74.2 74.7

Table 2: Ablation results with and without shortcut
connections.

Word-Embedding Matched Mismatched
fixed 71.8 72.6

fine-tuned 72.7 72.8

Table 3: Ablation results with and without fine-
tuning of word embeddings.

of MLPs Activation Matched Mismatched
1 tanh 73.7 74.1
2 tanh 73.5 73.6
1 relu 74.1 74.7
2 relu 74.2 74.7

Table 4: Ablation results for different MLP classi-
fiers.

3 Experimental Setup

3.1 Datasets

As instructed in the RepEval Multi-NLI shared
task, we use all of the training data in Multi-
NLI combined with 15% randomly selected sam-
ples from the SNLI training set resampled at each
epoch) as our final training set for all models;
and we use both the cross-domain (‘mismatched’)
and in-domain (‘matched’) Multi-NLI develop-
ment sets for model selection. For the SNLI test
results in Table 5, we train on only the SNLI train-
ing set (and we also verify that the tuning deci-
sions hold true on the SNLI dev set).

3.2 Parameter Settings

We use cross-entropy loss as the training objective
with Adam-based (Kingma and Ba, 2014) opti-

43

Model Accuracy
SNLI Multi-NLI Matched Multi-NLI Mismatched

CBOW (Williams et al., 2017) 80.6 65.2 64.6
biLSTM Encoder (Williams et al., 2017) 81.5 67.5 67.1

300D Tree-CNN Encoder (Mou et al., 2015) 82.1 – –
300D SPINN-PI Encoder (Bowman et al., 2016) 83.2 – –
300D NSE Encoder (Munkhdalai and Yu, 2016) 84.6 – –
biLSTM-Max Encoder (Conneau et al., 2017) 84.5 – –

Our biLSTM-Max Encoder 85.2 71.7 71.2
Our Shortcut-Stacked Encoder 86.1 74.6 73.6

Table 5: Final Test Results on SNLI and Multi-NLI datasets.

mization with 32 batch size. The starting learning
rate is 0.0002 with half decay every two epochs.
The number of hidden units for MLP in classifier
is 1600. Dropout layer is also applied on the out-
put of each layer of MLP, with dropout rate set to
0.1. We used pre-trained 300D Glove 840B vec-
tors (Pennington et al., 2014) to initialize the word
embeddings. Tuning decisions for word embed-
ding training strategy, the hyperparameters of di-
mension and number of layers for biLSTM, and
the activation type and number of layers for MLP,
are all explained in Section 4.

4 Results and Analysis

4.1 Ablation Analysis Results

We now investigate the effectiveness of each of the
enhancement components in our overall model.
These ablation results are shown in Tables 1, 2, 3
and 4, all based on the Multi-NLI development
sets. Finally, Table 5 shows results for different
encoders on SNLI and Multi-NLI test sets.

First, Table 1 shows the performance changes
for different number of biLSTM layers and their
varying dimension size. The dimension size of
a biLSTM layer is referring to the dimension of
the hidden state for both the forward and back-
ward LSTM-RNNs. As shown, each added layer
model improves the accuracy and we achieve a
substantial improvement in accuracy (around 2%)
on both matched and mismatched settings, com-
pared to the single-layer biLSTM in Conneau et al.
(2017). We only experimented with up to 3 lay-
ers with 512, 1024, 2048 dimensions each, so the
model still has potential to improve the result fur-
ther with a larger dimension and more layers.

Next, in Table 2, we show that the shortcut
connections among the biLSTM layers is also
an important contributor to accuracy improve-
ment (around 1.5% on top of the full 3-layered
stacked-RNN model). This demonstrates that sim-
ply stacking the biLSTM layers is not sufficient

to handle a complex task like Multi-NLI and it is
significantly better to have the higher layer con-
nected to both the output and the original input of
all the previous layers (note that Table 1 results are
based on multi-layered models with shortcut con-
nections).

Next, in Table 3, we show that fine-tuning the
word embeddings also improves results, again for
both the in-domain task and cross-domain tasks
(the ablation results are based on a smaller model
with a 128+256 2-layer biLSTM). Hence, all our
models were trained with word embeddings being
fine-tuned. The last ablation in Table 4 shows that
a classifier with two layers of relu is preferable
than other options. Thus, we use that setting for
our strongest encoder.

4.2 Multi-NLI and SNLI Test Results

Finally, in Table 5, we report the test results
for MNLI and SNLI. First for Multi-NLI, we
improve substantially over the CBOW and biL-
STM Encoder baselines reported in the dataset pa-
per (Williams et al., 2017). We also show that
our final shortcut-based stacked encoder achieves
around 3% improvement as compared to the 1-
layer biLSTM-Max Encoder in the second last
row (using the exact same classifier and optimizer
settings). Our shortcut-encoder was also the top
singe-model (non-ensemble) result on the EMNLP
RepEval Shared Task leaderboard.

Next, for SNLI, we compare our shortcut-
stacked encoder with the current state-of-the-art
encoders from the SNLI leaderboard (https://
nlp.stanford.edu/projects/snli/).
We also compare to the recent biLSTM-Max
Encoder of Conneau et al. (2017), which served
as our model’s 1-layer starting point.1 The results
indicate that ‘Our Shortcut-Stacked Encoder’ sur-

1Note that the ‘Our biLSTM-Max Encoder’ results in the
second-last row are obtained using our reimplementation of
the Conneau et al. (2017) model; our version is 0.7% better,
likely due to our classifier and optimizer settings.

44

passes all the previous state-of-the-art encoders,
and achieves the new best encoding-based result
on SNLI, suggesting the general effectiveness
of simple shortcut-connected stacked layers in
sentence encoders.

5 Conclusion

We explored various simple combinations and
connections of biLSTM-RNN layered architec-
tures and developed a Shortcut-Stacked Sentence
Encoder for natural language inference. Our
model is the top single result in the EMNLP RepE-
val 2017 Multi-NLI Shared Task, and it also sur-
passes the state-of-the-art encoders for the SNLI
dataset. In future work, we are also evaluating
the effectiveness of shortcut-stacked sentence en-
coders on several other semantic tasks.

Acknowledgments

We thank the shared task organizers and the
anonymous reviewers. This work was partially
supported by a Google Faculty Research Award,
an IBM Faculty Award, a Bloomberg Data Science
Research Grant, and NVidia GPU awards.

References
Samuel R. Bowman, Gabor Angeli, Christopher Potts,

and Christopher D. Manning. 2015. A large an-
notated corpus for learning natural language infer-
ence. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguis-
tics.

Samuel R Bowman, Jon Gauthier, Abhinav Ras-
togi, Raghav Gupta, Christopher D Manning, and
Christopher Potts. 2016. A fast unified model for
parsing and sentence understanding. arXiv preprint
arXiv:1603.06021 .

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard
Säckinger, and Roopak Shah. 1994. Signature ver-
ification using a “Siamese” time delay neural net-
work. In Advances in Neural Information Process-
ing Systems. pages 737–744.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced lstm for
natural language inference. In Proc. ACL.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. arXiv preprint
arXiv:1705.02364 .

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu-
ruoka, and Richard Socher. 2016. A joint many-task
model: Growing a neural network for multiple nlp
tasks. arXiv preprint arXiv:1611.01587 .

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pages
770–778.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Lili Mou, Rui Men, Ge Li, Yan Xu, Lu Zhang, Rui
Yan, and Zhi Jin. 2015. Natural language inference
by tree-based convolution and heuristic matching.
arXiv preprint arXiv:1512.08422 .

Tsendsuren Munkhdalai and Hong Yu. 2016.
Neural semantic encoders. arXiv preprint
arXiv:1607.04315 .

Nikita Nangia, Adina Williams, Angeliki Lazaridou,
and Samuel R. Bowman. 2017. The repeval 2017
shared task: Multi-genre natural language inference
with sentence representations. In Proceedings of
RepEval 2017: The Second Workshop on Evaluating
Vector Space Representations for NLP. Association
for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP). pages 1532–
1543. http://www.aclweb.org/anthology/D14-1162.

Zhiguo Wang, Wael Hamza, and Radu Florian. 2017.
Bilateral multi-perspective matching for natural lan-
guage sentences. arXiv preprint arXiv:1702.03814
.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv
preprint arXiv:1704.05426 .

Yu Zhang, Guoguo Chen, Dong Yu, Kaisheng Yaco,
Sanjeev Khudanpur, and James Glass. 2016. High-
way long short-term memory rnns for distant speech
recognition. In Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2016 IEEE International Confer-
ence on. IEEE, pages 5755–5759.

45

