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Abstract

The paper describes the best performing
system for EmoInt - a shared task to pre-
dict the intensity of emotions in tweets.
Intensity is a real valued score, between
0 and 1. The emotions are classified as
- anger, fear, joy and sadness. We ap-
ply three different deep neural network
based models, which approach the prob-
lem from essentially different directions.
Our final performance quantified by an av-
erage pearson correlation score of 74.7 and
an average spearman correlation score of
73.5 is obtained using an ensemble of the
three models. We outperform the base-
line model of the shared task by 9.9%
and 9.4% pearson and spearman correla-
tion scores respectively.

1 Introduction

EmoInt (Mohammad and Bravo-Marquez, 2017)
is a shared task hosted by WASSA 2017, aiming
to predict the emotion intensity in tweets. The
emotion can be one out of anger, joy, fear and
sadness. For each tweet, the emotion is known,
and the task is to predict the intensity of the
corresponding emotion, where intensity is a real
valued score ranging from 0 to 1. This is different
from most of the other tasks or systems in the
domain of emotion detection/sentiment analysis
which tend to focus on classifying the tweets or
text into different categories.
For example, given the tweet - ‘I hate my lawn
mower. If it had a soul, I’d condemn it to
the fiery pits of Hell.’ and the corresponding
emotion - ‘anger’, the system has to predict a
value for how intensely this emotion is felt by

∗ these authors have equal contributions to the paper

the author of the tweet which is as close as pos-
sible to the gold label intensity (0.833 in this case).

The systems built for this task are useful across
various NLP applications, but perhaps most ob-
viously in complementing sentiment analysis sys-
tems. For example, the degree of anger expressed
in a grievance can be used to decide its priority of
being addressed, and the intensity of joy can help
decide which reviews to project when publicizing
a product.
Our submitted system is an ensemble of three
broad sets of approaches combined using a
weighted average of the separate predictions (sec-
tion 3). All the approaches rely on representing the
input tweet as a word vector using the word2vec
approach (Mikolov et al., 2013), and using neural
network based architectures to finally give the in-
tensity score for the tweet of the given emotion X
(please note that we already know the emotion of
the tweet in this task).

The shared task organizers provided the training
and a small development dataset for building our
systems, and then a period of about 2 weeks was
given for submitting our predictions on a blind test
set.1

The rest of the paper is structured as follows. Sec-
tion 2 discusses in brief the dataset for the task.
Section 3 explains the various approaches used by
our ensemble model, the kind of experiments we
carried out along with the details of the parame-
ters which gave optimal results on cross valida-
tion, and the way we combined the predictions.
Section 4 explains how the system is evaluated
and Section 5 states the results we achieved and
discusses the various implications of those results.
We conclude our work in Section 6.

1http://saifmohammad.com/WebPages/EmotionIntensity-
SharedTask.html



2 Data

We used the dataset provided within the shared
task for training our system. No other external
datasets were used in training. The data files in-
clude the tweet id, the tweet, the emotion of the
tweet and the emotion intensity (for training and
dev sets). Test set’s gold labels were given only
after the evaluation period.
There are around 800-1100 tweets in the training
set, 70-110 in the development set, and around
700-1000 in the test set (across all the emotions).
The complete details of the dataset can be found
in (Mohammad and Bravo-Marquez, 2017).

3 Proposed System

Our system is an ensemble of three sets of ap-
proaches. We describe the individual approaches,
followed by the ensemble process. We mention
the parameters for the optimal variants of each
approach and the architecture based decisions or
parameters that were varied to provide an in-
sight into the scope of our experiments. The pa-
rameters were chosen so that they maximize the
Pearson-correlation between the predicted and ac-
tual scores on the K-fold cross-validation. The
evaluation method used to select the optimal vari-
ants is explained in section 4.
A bird’s eye view of the various architectures is
shown in Figure 1.

3.1 Approach 1: Feed-forward neural
network

Feed forward neural networks have proven to be
highly successful in classification and real value
prediction based tasks across a variety of do-
mains, including NLP applications ((Bengio et al.,
2003), (Collobert et al., 2011)). (Deep) Neural
networks have given state-of-the-art results in sen-
timent analysis (Tang et al., 2014) which is closely
related to our task. Here we detail the architecture
of our network -

Input features: Each tweet is represented as a
443 dimensional vector by concatenating two dif-
ferent feature vectors obtained as follows -

1. Word2Vec (Mikolov et al., 2013) represen-
tation of the tweet using publicly available
embeddings (Godin et al., 2015) which were
trained on 400 million tweets for the ACL W-
NUT 2015 shared task (Baldwin et al., 2015).
We chose it over other available pre-trained

tweet based embeddings as it is trained on
a large dataset and we also prefer its high
dimensionality of 400. The vector for each
word is averaged to get a 400 dimensional
representation of the tweet.

2. TweetToLexiconFeatureVector is a filter
in the AffectiveTweets2 (Mohammad and
Bravo-Marquez, 2017) package for convert-
ing tweets into numeric 43-dimensional vec-
tors that can be used directly as features in
our machine learning system. The filter cal-
culates the features from the tweet using sev-
eral lexicons:

(a) MPQA Subjectivity Lexicon: Calcu-
lates the number of positive and negative
words from the lexicon (Wilson et al.,
2005)

(b) Bing-Lui: Calculates the number of pos-
itive and negative words from the lexi-
con (Bauman et al., 2017)

(c) AFINN: Wordlist-based approach for
calculating positive and negative senti-
ment scores from the lexicon(Nielsen,
2011)

(d) Sentiment140: Calculates positive and
negative sentiment score provided by
the lexicon in which tweets are anno-
tated by lexicons (Mohammad and Tur-
ney, 2013)

(e) NRC Hashtag Sentiment lexicon: Uses
same lexicon as Sentiment 140 but here
tweets with only emotional hashtags are
considered during training.

(f) NRC-10 Expanded: Emotional associ-
ations of words matching the Twitter
specific expansion of the lexicon(Bravo-
Marquez et al., 2016) are added to give
the vale of this feature.

(g) NRC Hashtag Emotion Association
Lexicon: Emotional associations of
words of the lexicon(Mohammad and
Kiritchenko, 2015) are added to give the
vale of this feature.

(h) SentiWordNet: Calculates positive and
negative sentiment score using Senti-
WordNet(Baccianella et al., 2010)

(i) Emoticons: Calculates sentiment scores
using word associations provided by

2https://github.com/felipebravom/AffectiveTweets



Figure 1: The architecture of our various approaches

emoticons from the lexicon(Nielsen,
2011)

(j) Negations: This feature simply count
the number of negating words in the
tweet.

Network Architecture: The input layer passes
the 443 dimensional vector into 4 subsequent hid-
den layers (L1, L2, L3, L4) (the left half of Figure
1). We use Rectified Linear Unit (‘relu’) (Maas
et al., 2013) as an activation function for each of
the hidden layers (chosen as per the cross valida-
tion performance described in section 4). L1 is
followed by dropout (Srivastava et al., 2014) to
avoid over-fitting and co-adaption of features. The
number of hidden units in L1 − L4 and value of
dropout (p) was varied, and the optimal settings
were decided as per the cross validation perfor-
mance for each emotion separately. The chosen
values are mentioned in Table 1. L4 is followed
by a single sigmoid neuron which predicts the in-
tensity of the emotion between 0 to 1.
Training: The network parameters are learned by
directly minimizing the negative of the Pearson-
correlation (as it is a differentiable function) be-
tween actual and predicted intensities. We op-
timize the above function by back-propagating
through layers via Mini-batch Gradient Descent.

Parameter/
Emotion

L1 p L2 L3 L4

Anger 300 0.5 125 50 25
Fear 300 0.5 150 50 25
Joy 300 0.5 100 50 25
Sadness 300 0.5 125 50 25

Table 1: Network parameters for Approach 1

We use a batch size of 8, 30 training epochs and
Adam optimization algorithm (Kingma and Ba,
2014) with the parameters set as α = 0.001, β1 =
0.9, β2 = 0.999 and ε = 10−9.

3.2 Approach 2: Multitask Deep Learning

Multitask learning using deep neural network
via shared layers has become quite popular and
successful as exploited in, for example (Collobert
and Weston, 2008), and has been the focus of
many cross lingual models like (Huang et al.,
2013). (Collobert and Weston, 2008) described a
single unified architecture for performing a variety
of NLP tasks: named entity recognition, semantic
similarity, part-of-speech tagging, etc. In this
approach, we attempt to use the idea of multitask
learning to explore the notion of generalized or
shared learning across the different emotions.



Parameter/
Emotion

L1
(shared)

p L2
(shared)

L3 L4

Anger(a) 300 0.3 150 50 20
Fear(b) 300 0.3 150 75 25
Joy(c) 300 0.3 150 50 15
Sadness(d) 300 0.3 150 50 20

Table 2: Network parameters for Approach 2

Input features: The input features are same as
Approach 1 and same for all the 4 subtasks. We
treat the 4 emotions as different subtasks to apply
deep multi-task learning.
Network Architecture: The overall architecture
can still be realized using the left side of figure
1. The network’s initial layers are shared across
multiple emotions with an objective to increase
the generalization whereas the individual top
layers can be seen as learning emotion specific
features. Specifically, the system consists of
two hidden layers (L1 & L2) shared between 4
regressors, while the last two layers (L3 & L4)
are allowed to be different across the different
subtasks (L3a, L3b, L3c, L3d and the same for
L4). The model can be thought of as an input
vector for the tweet going into the exact same
two hidden layers regardless of the subtask, but
then going into different layers (at the 3rd and
4th level) with the output from L4 going into
their respective output neurons. The parameters
(number of neurons in the shared as well as the
non shared layers along with the dropout rate
p) for each emotion are given in Table 2. Note
that these parameters are optimized using cross
validation (section 4).

Training: We use the same settings as in Ap-
proach 1 with respect to the cost function, op-
timization algorithm, update rule, learning rate,
epochs, etc.
We train the network for 4 cycles at every epoch.
During the 1st cycle, we train the model for anger,
where the input will pass through L1, L2, L3a,
L4a and finally the corresponding output neuron.
The network is similarly trained for fear, joy and
sadness during the 2nd,3rd and 4th cycles respec-
tively. Learning parameters this way ensures addi-
tional training examples for the initial layers (L1,
L2) so that they may generalize well to learn task-
independent representations while the higher lay-
ers (L3, L4) put pressure on the parameters to

learn more task-specific representations.

3.3 Approach 3: Sequence Modeling using
CNNs and LSTMs

Using Recurrent Neural Networks (RNN) has
become a very common technique for various
NLP based tasks like language modeling (Mikolov
et al., 2010). Their time step based sequentially
connected structure is intuitive to use for sequen-
tial data such as sentences. Long-short term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
architecture is an advanced version of RNN that
uses various gates to control the vanishing gradient
problem (among other obstacles) that arise dur-
ing the training of RNNs, and has found resound-
ing success in a host of applications ((Graves and
Jaitly, 2014), (Graves and Schmidhuber, 2005)).
Convolutional Neural Network (CNN) is also a
popular neural network based architecture, and
has been successful in the NLP domain in various
tasks ((Lee and Dernoncourt, 2016), (Kim, 2014)).
Combining these architectures has also been found
to be quite successful as in (Zhou et al., 2015)
Both these architecture expect a sequence of vec-
tors as input to operate on.
We describe how we use these deep learning mod-
els, which play a dominant role in our final ensem-
ble system -

Input features: We again use the word2vec
embeddings trained on twitter tweets ((Godin
et al., 2015)) to represent the words in a tweet as
400 dimensional vectors, ignoring the words not
found. These embeddings are ideal for represent-
ing tweets as they have been trained on a very
large amount of tweets. Instead of averaging the
word vectors as in our first two approaches, we
concatenate them. Since length of different tweets
can vary, we fix the length of each concatenated
representation as 50 (since the maximum tweet
length across the training and development data is
46 according to our analysis and we do not want
to miss out on any information in the already
short tweet) by performing zero padding. For
datasets where a tweet may have length greater
than 50, the number has to be tuned accordingly.
Padding of zero vectors is done to make the
representation of every tweet as a (50,400) vector.
These representations are then fed to a host of
architectures, whose general representation is
given in the figure 1.



Parameter/
Emotion L1 p L2 L3

Anger (1) CNN
(250,Max)

0 125 50

Anger (2) CNN
(256,Avg)

0 100 -

Anger (3) LSTM
(300)

0
CNN

(200,Avg)
100

Fear (1) LSTM
(256)

.2
CNN

(150,Avg)
100

Fear (2) CNN
(250,Max)

0 125 50

Fear (3) LSTM
(250)

.2
CNN

(120,Avg)
50

Joy (1) CNN
(256,Max)

0 100 -

Joy (2) LSTM
(300)

0
CNN

(200,Avg)
100

Joy (3) LSTM
(300)

.2
CNN

(200,Avg)
100

Sadness(1) CNN
(250,Max)

0 125 50

Sadness(2) CNN
(250,Max)

.2 125 50

Sadness(3) CNN
(256,Max)

0 100 -

Table 3: Network Parameters for the 3 best models
built according to Approach 3 (Ranked as per the
cross validation scores ; The numbers in the Layer
(L) columns represent the output dimensionality
of that layer ; Max and Avg refer to the type of
pooling)

Network Architecture: As shown in figure 1,
the concatenated vector representation of the tweet
is first fed to a LSTM or CNN and then some fully
connected (dense) hidden layers. The representa-
tion learned in the last hidden layer is fed to a sin-
gle sigmoid neuron which gives us the intensity
of the emotion (as in the previous 2 approaches).
We tried many variations of the different parame-
ters involved in constructing this model (keeping
all others fixed while one is varied) to come up
with several architectures but show the parameters
for only the three top performing ones (as per cross
validation) for each emotion in Table 3. The vari-
ations we tried include -
i) using only LSTM/CNN plus fully connected
layers, and also the combination of these architec-
tures with the initial LSTM’s output for each word

fed to a CNN, or vice versa.
ii) Using Simple RNN, Bidirectional LSTM
((Schuster and Paliwal, 1997), (Godin et al.,
2015)), Gated Recurrent Units (GRU) (Cho et al.,
2014) instead of LSTM.
iii) Using (global) max pooling versus (global) av-
erage pooling for CNNs.
iv) Using dropout (Srivastava et al., 2014). Note
that a dropout layer was added after pooling layer
for a CNN, while the same dropout rate was set for
both matrices involved in the standard definition in
case of LSTM (Zaremba et al., 2014).
v) Using different number of neurons for
CNN/LSTM/fully connected hidden layers. (usu-
ally starting from 300 or 256, and halving the
number of neurons as we went deeper)
vi) Using different number of fully connected hid-
den layers (0,1 or 2 in between the LSTM/CNN
layer and sigmoid neuron).

In every case, ‘relu’ activation function was
used in the hidden dense layers (except the last
neuron which uses sigmoid). Dropout, if applied
was always set to 0.2 (we also experimented with
0.1,0.3,0.4 and 0.5 as the dropout rate). Also, the
filter height used for CNNs was always set to 3,
and striding length for convolution was always 1.

Training: The network parameters are learned
by minimizing the Mean Absolute Error be-
tween the actual and predicted values of emotion
intensity. We optimize this loss function by
back-propagating through layers via Mini-batch
Gradient descent, with batch size of 8, 15 train-
ing epochs and Adam optimization algorithm
(Kingma and Ba, 2014) with the same parameters
as mentioned in Approach 1.

The deep learning based models in all the above
approaches were implemented in Python using
Keras library (Chollet et al., 2015).

3.4 Bringing it all together: The submitted
ensemble system

As described above, we now have 5 models to
combine - 1 each out of Approach 1 and 2, and
3 from Approach 3. We take a weighted aver-
age of the predictions from each of the system to
form our final submission. The weights are in-
formed from the results from cross validation (the
CV score as explained in section 4), and are as fol-
lows - 1 for Approach 1, 3 for Approach 2, 3 each
for the two best systems from approach 3 (which



Approach Average Anger Fear Joy Sadness
CV Test CV Test CV Test CV Test CV Test

Feed Forward
NN

69.75 69.58 66.22 67.88 72.71 72.42 72.08 68.26 67.99 69.77

Multitask
DL

66.30 66.20 63.73 64.49 68.07 67.74 66.80 65.37 66.65 67.22

CNN+LSTM
Seq. Modeling

70.70 71.79 69.22 70.15 72.08 72.95 73.22 69.14 68.29 74.93

CNN+LSTM
Seq. Modeling

70.25 72.15 69.08 69.86 70.95 73.27 72.93 69.86 68.04 75.6

CNN+LSTM
Seq. Modeling

70.03 71.81 68.90 69.71 70.67 72.92 72.81 69.57 67.74 75.06

Ensemble
Model

75.26 74.70 72.94 73.2 76.78 76.20 74.42 73.20 76.90 76.50

Baseline 61.10 64.8 60.50 63.9 57.40 65.2 70.30 65.4 56.20 64.8

Table 4: Results

are very close in performance as can be seen in Ta-
ble 4), and 2 for the 3rd best system in approach
3. Our ensemble model improves the performance
by at least 2% over any of our individual models
(Table 4).

4 Evaluation

Cross Validation (CV): We combined the train-
ing and development sets, trained on 80% of
this set while predicting on the remaining 20%,
and repeated this seven times (for each emotion
separately). The average of these was used as
the CV score to evaluate our models. The metric
used for evaluating performance was Pearson
Correlation.

Test: The optimal setting for each model was
decided using the CV score (Table 4). Then these
chosen models (as described in Table 1,2 and 3)
were used to generate predicted intensities on the
test set, by training on the full training and devel-
opment sets combined. Again an average of seven
runs was taken. The predictions for the final en-
semble model are generated using a weighted av-
erage of the individual predictions as described in
section 3.4.

5 Results and Discussion

We compare the results achieved by our individ-
ual approaches, the submitted ensemble system
and the WEKA Baseline system which is the offi-
cial baseline model for this task (Mohammad and
Bravo-Marquez, 2017) in Table 4. For brevity, we

only show the Pearson Correlation scores on the
test set (although the Spearman correlation scores
show similar trends). We discuss the major take-
aways from these results -

1. Our submitted ensemble model achieves an
average (or overall) score of 75.26% and
74.70%, which beats the baseline model by
about 14% and 10% on cross validation
and test sets respectively. The improvement
points to the potential of deep learning based
models over the simpler lexicon based ap-
proaches. These are also the best scores
among all participating systems in the shared
task (according to the public leaderboard 3).

2. The ensemble model achieves about 3-5%
improvement over the average scores, and of-
fers significant improvement in performance
across all the emotions, which indicates that
the approaches do complement each other
quite well.

3. Approach 2 (Multitask DL) achieves the low-
est scores among the three sets of approaches.
Among Approach 1 (Feed Forward NN) and
Approach 3 (CNN+LSTM Seq. Modeling),
approach 3 has a best test score of 72.15 com-
pared to approach 1’s 69.58, which is a sig-
nificant improvement and points to sequential
models like LSTMs and CNNs being a better
choice over feed forward neural networks.

3https://competitions.codalab.org/competitions/16380#results



4. Among the individual emotions, our ensem-
ble model gives the best performance for
‘Sadness’, followed very closely by ‘Fear’,
then ‘Joy’ and finally ‘Anger’.

6 Conclusion and Future Work

In this paper, we propose a deep learning frame-
work to predict the intensity of the emotion in
tweets exhibiting that emotion. The proposed ap-
proach is based on an ensemble of Feed-Forward
Neural Networks, Multi-Task Deep Learning and
Sequence Modeling using CNNs and LSTMs, al-
lowing us to explore the different directions a neu-
ral network based methodology can take. Each
individual approach is described in detail with a
view of making our experiments replicable. The
optimal parameters are mentioned, along with our
method of bringing the approaches together. Our
submitted system beats the baseline system by
about 10% on the test set.
Although our model achieves state-of-the-art re-
sults, there is definite room for improvement. In
the future, we would like to experiment with hand-
crafted features in addition to word-vectors and
lexicon features. We would also experiment with
other filters provided in AffectiveTweets package
(Mohammad and Bravo-Marquez, 2017) such as
TweetToSentiStrengthFeatureVector, TweetNLP-
Tokenizer etc. Another very interesting idea
would be to try better ways of ‘ensembling’ the
different models and analyze how each system or
approach complements the other.
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