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Abstract

In this paper, we discuss the results of
the IUCL system in the NLI Shared Task
2017. For our system, we explore a va-
riety of phonetic algorithms to generate
features for Native Language Identifica-
tion. These features are contrasted with
one of the most successful type of features
in NLI, character n-grams. We find that
although phonetic features do not perform
as well as character n-grams alone, they
do increase overall F1 score when used to-
gether with character n-grams.

1 Introduction

Native Language Identification (NLI) is the task of
automatically predicting the native language (L1)
of a speaker given an unlabeled artifact such as
a writing sample or speech transcript in a second
language (L2). In a typical encounter with a non-
native speaker, humans have a variety of contex-
tual clues such as race, approximate age, style of
dress, and accent to assist us in making a predic-
tion about the person’s native language. However,
when predicting L1 relying on features that can be
extracted from text alone, we must proceed with-
out the assistance of these visual and acoustic sig-
nals. Acoustic cues can be an important source
of information since speakers often transfer char-
acteristics of their L1 onto L2. For example, a
Japanese L1 speaker may transfer the rigid CV syl-
lable structure onto English and epenthesize vow-
els into consonant clusters, which may also be re-
flected in writing. Thus, having phonetic informa-
tion may prove useful in an NLI classification task.
However, we need to make sure that the features
we add can be acquired from text and do not con-
tribute to data sparsity. For the IUCL system in the
Native Language Identification Shared Task (Mal-

masi et al., 2017), we began with the premise that
acoustic features lost in text are important for lan-
guage identification and they can be reconstructed
using pseudo-auditory features derived from pho-
netic algorithms that were developed for robust
matching in text search. Additionally, we explore
a dictionary lookup that provides a phonetic rep-
resentation of the words in text.

English orthography is rich, complex, and at
times idiosyncratic. Using phonetic algorithms,
we can reduce some of this complexity by produc-
ing a phonetic representation of a word through
a series of transformations that map characters
and character sequences with similar pronuncia-
tion to a single representation such as mapping
both <ph> and <f>→<f>. To our knowledge,
phonetic algorithms have not been explored to
generate features for NLI.

2 Related Work

The first NLI Shared Task was part of the 2013
Building Educational Applications (BEA) work-
shop (Tetreault et al., 2013). Participants received
the training portion of the TOEFL11 corpus and
were asked to identify the native language of the
essay writer from among a closed set of 11 lan-
guages available in the corpus. Scoring was based
on classification accuracy on an unseen test set in
3 tasks: 1 closed training task where only train-
ing data provided in the TOEFL11 corpus could
be used, and 2 open training tasks. In the first
open training task, researchers could use any train-
ing data except for the TOEFL11 corpus. In the
second task, they could use any training data in-
cluding the TOEFL11 corpus.

Both character-level and word-level n-grams
have featured prominently in past work. Charac-
ter n-grams ranging from lengths 1-9 have been
used (Tetreault et al., 2013). Early work featuring
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character bigrams is that of Tsur and Rappoport
(2007), which achieved 66% accuracy in 5-way
classification. They suggested that character fea-
tures can serve as a proxy for phonology and that
learners’ word choices in essays are influenced by
their native language. That is, learners gravitate
to words in the target language whose phonology
matched that of their native language while avoid-
ing words that do not. This tendency can be cap-
tured at the character level.

Word-level n-grams have been widely used in
a variety of approaches (e.g. Bykh and Meurers,
2012; Jarvis et al., 2013). Traditionally, shorter n-
grams with lengths of 1-3 characters are more use-
ful for computational tasks due to the data sparsity
that ensues as the length of the n-gram increases.
Bykh and Meurers (2012), however, used longest
recurring n-grams that appeared in 2 or more es-
says with good results, perhaps capturing longer
collocations and set phrases used by learners from
specific L1s. Wong and Dras (2009) and Jarvis
et al. (2013) found that both character features and
lexical features are effective but classification ac-
curacy deteriorated when both feature types are
used together.

Part-of-speech n-grams also feature widely in
previous work (Koppel et al., 2005a,b; Wong and
Dras, 2009). Lexical n-grams have been shown to
outperform POS n-grams for classification accu-
racy (Bykh and Meurers, 2012). The traditional
motivation for the use of POS n-grams is based on
the assumption that they abstract away from the
confounding effect of essay topic (Koppel et al.,
2005a,b; Wong and Dras, 2009). However, POS
tag sequences may still be topic dependent. For
instance, an opinion piece may contain more per-
sonal pronouns than a scientific paper. Brooke
and Hirst (2011) suggest that the essay prompts
may lend themselves to responses in different reg-
isters and the register may manifest itself beyond
the lexicon.

Additionally, a number of studies have used
syntactic features: context-free grammar (CFG)
production rules (Wong and Dras, 2011; Bykh
and Meurers, 2014), Tree Substitution Grammar
(TSG) fragments (Swanson and Charniak, 2012),
and Stanford Dependencies (Malmasi and Cahill,
2015).

3 Data

For the 2017 shared task, similar to the 2013
shared task (Tetreault et al., 2013), the data con-
sists of essays from the same 11 L1s, with the
test data drawn from a similar distribution as the
original TOEFL11 corpus. In addition to the writ-
ten text, transcripts of speech and i-vector acoustic
features were included in the data release as they
have shown promising results for dialect identi-
fication (Malmasi et al., 2016; Zampieri et al.,
2017). The NLI 2017 shared task contains tracks
for essay, speech transcript, and i-vectors alone
as well as a fusion task combining all features.
The IUCL system focuses exclusively on the es-
say task.

This dataset consisted of 11 L1s: Arabic
(ARA), Chinese (CHI), French (FRE), German
(GER), Hindi (HIN), Italian (ITA), Japanese
(JPN), Korean (KOR), Spanish (SPA), Telugu
(TEL), and Turkish (TUR). There were a total of
11,000 training essays (1,000 for each L1) and
1,100 development essays (100 for each L1). Ad-
ditionally, the data contained the test taker id, es-
say prompt, and speech prompt. The distribution
of essays by essay prompt for the development
set, shown in Figure 1, varies by L1 with Arabic
and Korean having the most balanced distribution
among prompts and Turkish and Italian having the
least.

4 Acoustic Features

Our system utilizes phonetic features for NLI. We
explore 3 algorithms that were developed for ro-
bust matching: Soundex (section 4.1), Double
Metaphone (DMETA) (section 4.2), and the New
York State Identification and Intelligence System
(NYSIIS) (section 4.3).1 Soundex relies on sim-
ple conversion rules that mostly ignore vowels and
groups consonants together by place of articula-
tion in the mouth. The approach abstracts over is-
sues of 1-to-many sound-symbol correspondence
in English. For example, the sound /ks/ can be
written as both <ks> and <x> as in tacks and
tax. Soundex converts the two spellings to two
different representations. In contrast, the NYSIIS
and the Metaphone family of algorithms (Philips,
1990, 2000) go a step further to incorporate more
of the peculiarities of English spelling, which is
necessary for better mappings of homophones.

1Features were generated using the Fuzzy library
https://pypi.python.org/pypi/Fuzzy
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Figure 1: Distribution of data in the development set by number of essays per prompt for each L1.

Thus, all of these algorithms abstract away from
specific types of acoustic distinctions, but they dif-
fer in which distinctions they ignore.

Finally, we also use the Carnegie Mellon
University Pronouncing Dictionary (CMU) (sec-
tion 4.4) which provides a lookup for the pronun-
ciation of known words. This has the added benefit
of providing more accurate mappings than a rule-
based converter would and thus a better handling
of known words. Moreover, the CMU dictionary
can differentiate different vowel sounds where the
other algorithms cannot.

4.1 Soundex

Soundex (Knuth, 1973) is an early algorithm first
patented in 1918. Under Soundex, the first letter
of a word is retained (including all vowels and
consonants), all other consonants are mapped to
the numbers 1-6, and all other vowels, along with
consonants <h>, <w>, and <y>, are dropped.
Consonants are converted to numbers within the
algorithm as follows: 1: b, f, p, v, 2: c, g, j, k, q, s,
x, z, 3: d, t, 4: l, 5: m,n, and 6: r.

This conversion ensures that the consonants
are divided roughly along places of articulation
with 1 for labials, 2 for coronals and dorsals
(excluding<l> and <r>), 3 for dentals, 4 for lat-
erals, 5 for nasals, and 6 for rhotics. Repeated
numbers after conversion, such as <mn>, which
becomes 55, are reduced to a single number (e.g.,
5). All words are normalized to a starting let-
ter plus 3 digits by either omitting any remain-

ing characters for longer words or appending ze-
ros until there are 3 digits for shorter words. Ta-
ble 1 shows an example sentence from the train-
ing set written by a Turkish speaker converted
to keys using Soundex and the other algorithms
in this paper. One of the the advantages of the
Soundex algorithm is that it is easy to implement
the small number of rules mapping from letters
to numbers. However, since it does not take into
account English spelling rules, words that do not
sound very similar can end up mapped to the same
key. For example, Cajun and Cigna both map
to C250 (Philips, 1990). For our purposes, this
means that adaptations of vowels along with adap-
tations where the place of articulation does not
change are not represented in the features.

4.2 Double Metaphone

The original Metaphone phonetic algorithm
(Philips, 1990), uses an inventory of 16 conso-
nants, 0BFHJKLMNPRSTWXZ, where 0 stands
for /T/ and X for /S/ or /tS/. All 21 orthographic En-
glish consonants are mapped to these 16, by col-
lapsing some letters like <d> and <t> to <t>.
Metaphone contains a number of improvements
over Soundex. For example, the letter <c> is
sometimes pronounced as /s/ and sometimes as /k/
and the Metaphone algorithm covers many of such
cases whereas Soundex does not due to its more
simplistic mapping strategy.

Building on the Metaphone algorithm, the
Double Metaphone (DMETA) algorithm (Philips,
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Algorithm Key
Original Furthermore in the past since the mothers were frequently hausewifes, they were able

to follow their chidren’s education.

Soundex F636 I500 T000 P230 S520 T000 M362 W600 F625 H212 T000 W600 A140 T000
F400 T600 C365 E323

DMETA FR0R AN 0 PST SNK 0 M0RS AR FRKN HSFS 0 AR APL T FL 0R XTRN ATKX

NYSIIS FARTARNAR IN T PAST SANC T MATAR WAR FRAGANTLY HASAF TAY
WAR ABL T FAL TAR CADRAN EDACATAN

CMU FER1DHER0MAO2R IH0N DHAH0 PAE1ST SIH1NS DHAH0 MAH1DHER0Z
WER0 FRIY1KWAH0NTLIY0 HHAOSUWAYFS DHEY1 WER0 , EY1BAH0L
TUW1 FAA1LOW0 DHEH1R CHIHDRAHNZ EH2JHAH0KEY1SHAH0N

Table 1: Sample sentence represented using various phonetic algorithms

2000) includes many changes and improvements
over the original algorithm. Following Soundex,
DMETA originally retains the first vowel in words
and returns a key with a maximum of 4 letters. Ad-
ditionally, it collapses all vowels to the letter A,
and as such the words Auto and Otto, for exam-
ple, are mapped to the same key. It also combines
the letters <p> and <b>, treats <y> and <w>
as vowels (thus eliminating them in post word-
initial contexts) and includes a number of mod-
ifications to account for spelling influences from
foreign words. Finally, the Double Metaphone al-
gorithm returns multiple keys for words that could
be pronounced in alternate ways. However, for
the use in the IUCL system, we only choose the
first key provided since the algorithm favors the
most common American pronunciation over other
alternatives. As an example, consider Spanish bor-
rowings with <ll> that could be pronounced in an
Americanized way as /l/ (e.g. armadillo, flotilla)
or in the Spanish way as /j/ (e.g. tortilla, paella).
This is an issue for a rather small number of words,
roughly 10% based on Phillips’ sample, but should
not be of much consequence for our application.2

4.3 NYSIIS

Similar to the Double Metaphone algorithm, the
NYSIIS algorithm extends Soundex by encoding
each letter with consideration for English spelling
nuances rather than strict reliance on place of ar-
ticulation. Unlike the previous two algorithms,
NYSIIS maintains the position of vowels within
the word but collapses them by converting all vow-

2There is a newer version of the Metaphone algorithm,
Metaphone 3 which is available for commercial use but the
details remain unpublished.

els to <A>. Also, some versions of NYSIIS main-
tain the entire key rather than limiting it to the first
N letters (e.g. exactly 4 letters for Soundex and 1-4
for DMETA). However, word final <s> and <a>
are removed. For the IUCL system, we use the
non-truncated version of the key. Thus, NYSIIS
retains more information in comparison to the pre-
vious two conversion algorithms.

4.4 CMU Pronunciations

The Carnegie Mellon University Pronouncing
Dictionary (CMU)3 is an open source dictio-
nary that contains pronunciations for more than
134,000 English words using a set of 39 phonemes
and stress markers for vowels. The previous
algorithms were designed to minimize the dif-
ferences between homophones and near homo-
phones. However, since this dictionary was de-
veloped for use in automatic speech recognition
(ASR) applications rather than text search, the
mappings are based on the common pronuncia-
tions of American English words. For unknown
words, we the LOGIOS Lexicon Tool4 which
generates a CMU pronunciation using letter-to-
sound rules. Using this tool, the misspelled word
hausewifes in Table 1 is converted into the the pro-
nunciation HHAOSUWAYFS.

Soundex, DMETA, and NYSIIS all fall under
the category of fuzzy matching algorithms. The
original intention for these algorithms were to im-
prove recall when searching for names where the
exact spelling is unknown or uncertain and they

3http://www.speech.cs.cmu.edu/cgi-bin/
cmudict

4http://www.speech.cs.cmu.edu/tools/
lextool.html
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still enjoy widespread use in search applications.
The main advantage for using algorithmic pho-
netic converters such as these is that they can pro-
duce a key as output no matter word is given as in-
put. This has an advantage over dictionary-based
methods like CMU which, under its pure imple-
mentation, fails when a word (such as a proper
name or misspelling) falls outside of its internal
list, however large. On the other hand, dictionary
methods like CMU have the advantage of produc-
ing a more nuanced and accurate key for known
words. This is especially true when it comes to
representation of vowels. All of the other phonetic
algorithms mentioned in this paper either collapse
all vowels to a common representation or elimi-
nate them in non-word-initial positions whereas in
Table 1 we see that the CMU output most closely
resembles the original words.

4.5 Experimental Setup

For all experiments, we use the C-Support Vec-
tor Classifier implementation in scikit-learn with a
linear kernel.5 For feature values, rather than us-
ing a frequency count matrix for features in the
document, the TF-IDF score for the term is used
instead. TF is the term frequency, i.e., the num-
ber of occurrences of a term in a document. IDF
is the inverse document frequency, which is calcu-
lated by dividing the total number of documents
in a corpus by the number of documents contain-
ing term t (if t is not equal 0). The application of
TF-IDF weighting has been used to good effect in
previous research (Gebre et al., 2013).

The benefit of using TF-IDF weighting in this
task is that it dampens the effect of terms that are
well dispersed throughout the corpus while em-
phasizing terms that occur less frequently and only
within a smaller set of documents. For NLI, TF-
IDF weighting is useful for capturing and amplify-
ing the effects of vocabulary choices that are L1-
specific. When using binary features, for exam-
ple, only the presence or absence of a feature is
recorded. This effectively weights rare features,
such as low frequency words and spelling errors,
the same as common features, such as function
words. In contrast, TF-IDF gives a measure of the
informativeness of a word since a word that ap-
pears in many documents will have a lower IDF
than one that rarely occurs. Therefore, terms that

5http://scikit-learn.org/stable/
modules/generated/sklearn.svm.SVC.html

System F1 (macro) Accuracy
Random baseline 0.0909 0.0909
Essay baseline 0.7104 0.7109
Soundex 0.7455 0.7473
CMU 0.7629 0.7627
DMETA 0.7697 0.7727
NYSIIS 0.7830 0.7836
Char† 0.8206 0.8209
Char+CMU 0.8147 0.8145
Char+NYSIIS 0.8190 0.8191
Char+DMETA† 0.8262 0.8264
Char+Soundex 0.8300 0.8300

Table 2: Essay track results. Systems marked by †
were submitted as part of the official NLI Shared
Task. The remaining systems were submitted out-
side of the official testing phase.

receive a high TF-IDF score will occur with high
frequency in a small number of documents.

All experiments were conducted using character
n-grams of length 2-9. Additionally, we restricted
the minimum document frequency to 5 documents
and the maximum to 5% of documents in the train-
ing set.

5 Results

We show the results of the different feature sets in
Table 2. All approaches perform well above the
random baseline of 0.0909 (1/11) and above the
shared task baseline of 0.7104 for the 11-way clas-
sification task. Results for the single feature runs
show that none of the algorithms outperformed ba-
sic character n-grams (Char) features, which result
in an F1 of 0.8206. Of the phonetic algorithms,
NYSIIS shows the highest performance while
Soundex and the CMU dictionary approach do not
fare well, reaching an F1 of 0.7455 and 0.7697
respectively. This shows that the closest model-
ing of pronunciation is not helpful for the task.
When we combine character-based features with
the acoustic features, we observe that all combina-
tions show improvements over the acoustic-only
features. Additionally, combining with DMETA
and Soundex results in higher performance than
character n-grams alone, reaching an F1 of 0.8262
and 0.8300 respectively. The highest performing
acoustic-only model, NYSIIS, shows the least im-
provement, which indicates that the features ex-
tracted from this particular conversion are harm-
ful when combined with character n-grams. One
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Figure 2: Confusion matrix for best official run, Char+DMETA

possible reason can be found in the higher num-
ber of features provided by NYSIIS as opposed
to Soundex and DMETA since NYSIIS does not
truncate the acoustic representation. However, this
requires further investigation.

6 Discussion

Overall, we see that phonetic algorithms do not
perform as well as character n-grams for NLI. One
reason for this could be that by mapping charac-
ters to a simpler representation, important infor-
mation is lost. For example, one of the most com-
mon misspellings for Arabic speakers is becouse
but it would be rendered the same as because by
all of the phonetic algorithms except for CMU.
Information losses such as this could account for
the reduced performance of phonetic algorithms as
compared to character n-grams.

On the other hand, the advantage of phonetic
algorithms is that commonly used phrases such as
for many reasons (common among Arabic speak-
ers) can be collapsed into one feature and captured
even when minor spelling differences exist (espe-
cially if those errors have to do with vowels or
consonant sounds that are close in place of articu-
lation).

One of the most informative phrases in for Turk-

ish L1 writers was ATKX SSTM (DMETA) and
E323 S235 (Soundex) which translates to ‘educa-
tion system’. Table 3 shows all of the variants
of both words found in the training and develop-
ment data with the variants for Turkish L1 writers
shown in italics. Both DMETA and Soundex cap-
ture a wide range of variants including spelling
errors and various parts-of-speech. As Table 3
demonstrates, Soundex is much more aggressive
in combining words that do not sound as simi-
lar (e.g. sixteen, scouting, skidding) into a sin-
gle key (S235). Overall, the power of DMETA
and Soundex is that used in conjunction with other
features, such as character n-grams, these types
of features are able to take advantage of longer
phrases even when they include spelling errors.

We reach the highest results in the official test-
ing phase of the NLI Shared Task 2017 with the
combination of character n-grams with DMETA
features, which surpasses the character features by
about 0.5% absolute and the DMETA features by
about 5.6% absolute. Outside of the testing phase,
our best run combined character n-grams with
Soundex, surpassing character features by 0.9%
absolute and Soundex alone by roughly 8.5% ab-
solute. This shows that the phonetic conversion
plus abstraction provides novel information that is
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DMETA education educationaly, aducation, eeducational, educuation, education, aduca-
tional, edication, educationnal, educations, educationally, eduacation, ed-
cation, ediocation, educationals, educational, edecationat

system systmatting, systems, systematic, systematical, sistm, systamatically, sis-
tematically, systamatic, systematically, syustem, sistem, sistemsm, sis-
tems, system, sysytem, systeme, systam, systme

Soundex education educationnal, educuation, educaction, educating, educaters, edicted, edu-
cations, edged, etcetera, educaded, edcation, educates, educationalisties,
edcucation, eduactional, ethusiastic, educated, edecationat, educaton, eu-
thusiastic, educate, educathion, educationally, eduacation, educoated, ed-
ucatoion, education, ettiquittes, etcetra, educatin, educational, edcated,
educationaly, ediocation, educative, educaed, edcucate, edication, edu-
cat, edcuate, eductional, eductions, eduacte, ethusiastically, educationals,
eductaion, educatinal, edxtra, eduction, eduaction, eeducational, etctec,
educatipn, educateted, educatiuonal, educatied, educators, educator

system sixteens, sustaining, sestem, sistuations, seesighting, sstem, systemic,
sostinable, systems, systematic, sixteen, suggesting, scitients, schedume,
sugestions, systematical, sustainable, skidding, sustained, sustainablity,
sketing, seggestion, sistematically, systamatic, sustan, sostitution, sca-
tion, sustanable, societyhence, sighting, sighteeing, systematically, skait-
ing, sustantiated, sustanining, sections, sistem, succeeding, sucseed-
ments, sistemsm, sistems, section, sugestion, sightings, sustaine, sys-
tem, sistm, sstems, sysytem, sustainment, suggestions, succeding, sys-
tamatically, skating, sustainability, sustain, sustances, ssudents, section,
sexteen, systmatting, scating, sostantable, suggetions, sesation, systeme,
scouting, systam, systme, suggesstion, syustem, suggestion, sistuation,
skatting, sixtenn, systen, suceeding, sastained, successding, suggestiong

Table 3: Variants of “education system” in the corpus that are collapsed by DMETA and Soundex. Words
in italics are taken from Turkish L1 essays.

not captured in spelling directly.
We had a closer look at the errors that our sys-

tem makes. Figure 2 shows a confusion matrix for
the best setting using character and DMETA fea-
tures. The table shows that the main weak point
of the learner lies in confusing Hindi and Telugu.
This is not surprising given the fact that Indians are
often multilingual and speak more than two lan-
guages. Additionally, English is often used as a
lingua franca on the Indian subcontinent with fre-
quent contact from speakers from a variety of L1s
resulting in highly similar linguistic patterns.

7 Conclusion and and Future Work

This paper explored NLI using feature sets derived
from 3 phonetic algorithms and one dictionary-
based lookup. We have shown that our system
IUCL can profit from having access to acoustic
features in addition to character n-grams. In the
future, we plan to further explore variants of pho-

netic conversions in which we do not abbreviate
the words but rather segment them into acoustic
n-grams. Will will also explore how features de-
rived from phonetic algorithms can be combined
with other lexical and syntactic features.
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